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ABSTRACT
In this paper, we study the analytical and experimental con-

trol of a 7-DOF robot manipulator. A model-free decentralized
adaptive control strategy is presented for the tracking control of
the manipulator. The problem formulation and experimental re-
sults demonstrate the computational efficiency and simplicity of
the proposed method. The results presented here are one of the
first known experiments on a redundant 7-DOF robot. The ef-
ficacy of the adaptive decentralized controller is demonstrated
experimentally by using the Baxter robot to track a desired tra-
jectory. Simulation and experimental results clearly demonstrate
the versatility, tracking performance, and computational effi-
ciency of this method.

1 Introduction
As the global trend is towards increased automation, robot

manipulators have seen widespread use in many industrial ap-
plications. While the research in adaptive and nonlinear control
has seen significant advances, most robot manipulators utilized
in industry are driven by simple decentralized PID controllers
due to their simplicity in their design and implementation [1, 2].
While these controllers are effective at driving robot manipula-
tors to specific set points, they have difficulty in tracking an arbi-
trary desired trajectory. Furthermore, due to the strong intercon-
nected nonlinearities inherently present in the dynamic model of
such systems, a given set of PID gains will only work well for a

specific joint configuration and end-effector mass. While many
pick-and-place type operations in industry not needing naviga-
tion through obstacles can be performed effectively using PID
type controllers, the tasks requiring sophisticated path planning
and tracking need advanced controls. In order to maintain ac-
ceptable performance across a larger range of joint configura-
tions, one might consider utilizing a gain scheduling PID con-
troller, such as presented in [3, 4]. While these controllers can
theoretically achieve desirable performance under such circum-
stances, most implementations of these controllers will require
determining acceptable PID gains for multitude of linearized
models at different operating conditions. For a 7 DOF manipula-
tor tracking an arbitrary trajectory, the number of such lineariza-
tions required will be too large and cumbersome. Additionally,
such a method would not account for an unknown end-effector
mass. As society looks towards the use of robot manipulators
that can interact with humans in social interactions, in rescue op-
erations, and in potential medical applications, the requirement
that such manipulators must adhere to an arbitrary desired trajec-
tory during motion becomes an important task. The decentral-
ized adaptive control approach presented here provides one ef-
fective control strategy for high performance robot operations for
which PID control might not give desirable performance. Such
an approach retains much of the simplicity and computational ef-
ficiency of the decentralized PID approach, while offering a wide
range of applicability with extended joint configuration space
and variability of end-effector masses.
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Due to the strength of the dynamic interconnection between
joints, a model-based approach in which the system is split into
a set of decoupled systems is not feasible for robot manipulators.
Instead, there are several different methods designed to work
around this constraint to achieve a desirable performance. First
of all, neural network based methods [5, 6], as well as the distur-
bance observer method by Yang et al. [7], and model-reference
method such as by Sundareshan and Koenig [8], attempt to ob-
tain a model of certain system behaviors during the operation of
the robot manipulator. Such adaptive-model based methods do
not suffer from unmodeled system dynamics, and are well suited
for tasks in which the joint dynamics change during the operation
of a task. Another popular approach to the decentralized adaptive
control of robot manipulators is the model-free approach [9–12],
in which the adaptive control law is governed purely from the
performance of the manipulator in the tracking task. Model-free
approaches, such as that by Seraji [9], can bear strong similarity
to the decentralized PID approach. In such approaches, the static
gains associated with the PID approach are replaced with adap-
tive gains, that change during the execution of the task to better
track the desired trajectory. Other research efforts for decentral-
ized control of various systems can be found in [13–29].

The goal of this paper is to develop control formulation and
conduct experimental verification of the model-free decentral-
ized adaptive method using Baxter, a 7-DOF redundant robot ma-
nipulator. This work is novel in that a decentralized adaptive con-
trol with experimental verification of a 7-DOF manipulator is not
addressed in the literature. The decentralized adaptive control of
such a manipulator is an important and challenging task. The in-
creased degrees of freedom of the robot manipulator leads to an
increased complexity of dynamic models, which is a challenge
for decentralized approaches. Also, the Baxter arm configura-
tion is a more likely choice for the complex tasks to be performed
in an industrial setting. Through the analytical formulation and
experimental verification of the decentralized adaptive approach,
we seek to demonstrate the feasibility and computational effec-
tiveness of said approach, in order to facilitate its adoption into
industry practices.

The paper is organized as follows. In Section 2, we present
a brief overview of the dynamics of Baxter’s right manipulator.
Additionally, we also present a decentralized model of Baxter’s
joint dynamics, as well as the structure of the model-free decen-
tralized adaptive approach. In Section 3.1, we utilize Lyapunov’s
method to derive the update law for the adaptive gains of the con-
troller, demonstrating asymptomatic stability in the process. In
Section 4, we demonstrate and analyze the performance of the
decentralized adaptive approach on a simulation of Baxter exe-
cuting the desired trajectory, paying close attention to tracking
performance, controller effort, and selecting adaptive gains. In
Section 5, we repeat the same procedure on the Baxter robot in
practice, and thoroughly compare the experimental performance
to that derived from the simulation. Finally, in Section 6, we

FIGURE 1. The 7-DOF Baxter’s arm
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FIGURE 2. The joints’ configuration: (a) sagittal view; (b) top view

present the case that the decentralized adaptive method is com-
putationally efficient, simple to implement, effective at tracking
a desired trajectory, and is a desirable alternative to decentralized
PID and centralized control for robot manipulators.

2 Mathematical Modeling
The redundant manipulator, which is being studied here, has

7-DOF as shown in Fig. 1. The Baxter manipulator’s Denavit-
Hartenberg parameters are shown in Table 1 provided by the
manufacturer. The Euler-Lagrange formulation leads to a set
of 7 coupled nonlinear second-order ordinary differential equa-
tions:

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ f (q̇) (1)

where, q, q̇, q̈ ∈ R7 are angles, angular velocities and angular ac-
celerations of joints, respectively, and τ ∈ R7 indicates the vec-
tor of joints’ driving torques. Also, M(q) ∈ R7×7 is a symmet-
ric mass-inertia matrix, C(q, q̇) ∈ R7×7 is a matrix of Coriolis
coefficients, G(q) ∈ R7 is a vector of gravitational loading, and
τ f (q̇) ∈ R7 represents a vector of frictional torques. For the pur-
pose of simulation, the frictional torque τ f is modeled utilizing
the hyperbolic tangent function in order to approximate the be-
havior of Coulomb Friction. Our verified coupled nonlinear
dynamic model of the robot [30–37] is used as the basis of the
decentralized adaptive approach. Also the following assumption
is made for the desired joint trajectories.

Assumption 1. The desired joint trajectories are designed such
that qr(t), q̇r(t), and q̈r(t) ∈ R7 exist and are bounded for all
t ≥ 0.
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TABLE 1. Baxter’s Denavit-Hartenberg Parameters

Link ai di αi qi

1 0.069 0.27035 −π/2 q1

2 0 0 π/2 q2 +π/2

3 0.069 0.36435 −π/2 q3

4 0 0 π/2 q4

5 0.010 0.37429 −π/2 q5

6 0 0 π/2 q6

7 0 0.3945 0 q7

2.1 Decentralized Model Formulation
In order to derive the decentralized adaptive controller, it is

necessary to model the dynamics of a single joint, rather than
the system as a whole. Rewriting (1) as series of 7 differential
equations yields:

mii(q)q̈i +

 n

∑
i=1, j 6=1

mi j(q)q̈ j

+ ci(q, q̇)q̇+gi(q)

= Ti(t)+Fi(q̇) (2)

where mi j is the element in the mass matrix located at (i, j),
ci(q, q̇) is the ith row of the Coriolis matrix, gi(q) is the ith ele-
ment of the gravity vector, Ti(t) is the input torque at joint i, and
Fi(q̇) is the frictional torque at joint i. Note that this equation
represents the angular acceleration at joint i as a function of the
input torque only at joint i, and the dynamics of each link q, q̇, q̈.
Thus, (1) can be reduced to a series of 7 dynamically intercon-
nected SISO systems. In order to further express this concept,
we rewrite (2) as:

mii(q)q̈i +di(q, q̇, q̈) = Ti(t) (3)

where di(q, q̇, q̈) =

[
∑

n
i=1, j 6=1 mi j(q)q̈ j

]
+ ci(q, q̇)q̇ + gi(q) −

Fi(q̇) represents the dynamic interconnection between joints.

3 Decentralized Adaptive Controller
In order to track an arbitrary desired trajectory, we employ

the following decentralized adaptive control structure:

Ti(t) = fi(t)+ ki1(t)ei(t)+ ki2(t)ėi(t)+ zi1(t)q̇ri(t)+ zi2(t)q̈ri(t)
(4)

where qri(t) is the desired reference trajectory, ei(t) = qri(t)−
qi(t) is the tracking error, and fi(t),ki1(t),ki2(t),zi1(t),zi2(t) are
adaptive control signals to be determined through the applica-

tion of Lyapunov methods. In this formulation, fi(t) is termed
the auxiliary signal, and is the primary driver of the system state
qi, q̇i towards the desired trajectory. ki1(t),ki2(t) are adaptive PD
gains intended to account for current error in the tracking per-
formance, adjusting to the dynamics of the current joint config-
uration. Similarly, zi1(t),zi2(t) are adaptive feedforward velocity
and acceleration gains, intended to ensure that the joint stays on
the desired trajectory.

3.1 Derivation of Update Law
In order to derive the equations of the adaptive control sig-

nals, we first make the following assumption:

Assumption 2. The mass element mii, and the dynamic inter-
connection between the joints di(q, q̇, q̈), are slowly time varying
with respect to the desired trajectory qri(t). That is, ṁii ≈ 0 and
ḋi ≈ 0.

Utilizing this assumption, the decentralized model (3), and
the controller law (4), we can express the model plus controller
dynamics as:

mq̈+d = f + k1e+ k2ė+ z1q̇r + z2q̈r (5)

Note that the ith subscript, as well as notations indicating func-
tions of time and joint configuration (t,q, q̇, q̈), have been re-
moved for the sake of notational simplicity. This equation can
be rearranged to obtain:

më+ k2ė+ k1e = d− f − z1q̇r +(m− z2)q̈r (6)

Furthermore, defining the error state vector as X = [e, ė]T , (6) can
be rewritten in state-space form to obtain:

Ẋ =

[
0 1
−k1
m
−k2
m

]
X +

[
0

d− f
m

]
+

[
0
−z1
m

]
q̇r +

[
0

m−z2
m

]
q̈r (7)

In order to ensure that the robot manipulator follows the desired
trajectory, we define the desired performance of the tracking er-
ror es(t), which we define with the following 2nd order homoge-
neous differential equation:

ës +2ξ ωnės +ω
2
n es = 0 (8)

where ωn is the natural frequency of the desired performance and
ξ is the damping ratio. Similarly to (6), we define the reference
state vector Xs = [es, ės]

T , and rewrite (8) in state space form to
obtain:

Ẋs =

[
0 1
−ω2

n −2ξ ωn

]
Xs = AXs (9)
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Next, we use the following theorem to prove a crucial property
of the reference model (9).

Theorem 1. Consider the linear state-space model ẋ = Ax. The
equilibrium x = 0 is globally asymptotically stable if and only if
∃P = PT > 0, ∃Q = QT > 0 such that the following Lyapunov
equation holds:

PA+AT P =−Q (10)

Since we are free to define ξ and ωn in such a manner as to
ensure (9) is globally asymptotically stable, then by Theorem 1
there exists a unique symmetric positive definite matrix P that
solves (11) for the linear system (9). We denote the elements in
P:

P =

[
P1 P2
P2 P3

]
(11)

Next, we define E = Xs−X , and combine (7) and (9) to obtain
the tracking error state-space model:

Ė =

[
0 1
−ω2

n −2ξ ωn

]
E +

[
0 1

k1
m −ω2

n
k2
m −2ξ ωn

]
X+[

0
f−d
m

]
+

[
0
z1
m

]
q̇r +

[
0

z2−m
m

]
q̈r (12)

In order to determine the stability properties of (12), it is first
necessary to define a Lyapunov function for the system. For this
system, we define the following Lyapunov function:

V = ET PE +Q0(
f −d

m
− f ∗)2 +Q1(

k1

m
−ω

2
n − k∗1)

2

+Q2(
k2

m
−2ωnξ − k∗2)

2 +Q3(
z1

m
− z∗1)

2 +Q4(
z2−m

m
− z∗2)

2

(13)

where Q0, ...,Q4 are positive scalars, and f ∗,k∗1,k
∗
2,z
∗
1,z
∗
2 are

functions of time to be determined later. Differentiating (13) with
respect to time and applying Assumption 2 yields:

V̇ =−ET QE+2
(

f −d
m

)[
Q0(

ḟ
m
− ḟ ∗)−r

]
−2Q0 f ∗

(
ḟ
m
− ḟ ∗

)
+2
(

k1

m
−ω

2
n

)[
Q1(

k̇1

m
− k̇∗1)− re

]
−2Q1k∗1

(
k̇1

m
− k̇1

∗
)

+2
(

k2

m
−2ξ ωn

)[
Q2(

k̇2

m
− k̇∗2)− rė

]
−2Q2k∗2

(
k̇2

m
− k̇2

∗
)

+2
(

z1

m

)[
Q3(

ż1

m
− ż∗1)− rq̇r

]
−2Q3z∗1

(
ż1

m
− ż1

∗
)

+2
(

z2−m
m

)[
Q4(

ż2

m
− ż∗2)− rq̈r

]
−2Q4z∗2

(
ż2

m
− ż2

∗
)

(14)

where r = P2e+P3ė is the weighted error. Before continuing the
derivation, we make note of the following theorem:

Theorem 2. Let X ∈ Rn = 0 be an equilibrium point of the sys-
tem ẋ = f (x), and let V : Rn→ R:

1. If V (0) = 0, V (X)> 0 ∀X 6= 0, V̇ ≤ 0 ∀X 6= 0, then X = 0 is
globally stable

2. If V (X)→∞ as || X ||→∞, then V (X) is radially unbounded
3. If X = 0 is stable, V (X) is radially unbounded, and V̇ < 0
∀X 6= 0, then X = 0 is globally asymptotically stable

We first note that per our definition of V in (13), V is both
positive when E 6= 0 and radially unbounded. Thus, we seek
to derive adaptation parameters f ,k1,k2,z1,z2, and undetermined
parameters f ∗,k∗1,k

∗
2,z
∗
1,z
∗
2 such that V̇ is negative definite, and

thus E = 0 is globally asymptotically stable. First, we set the
following terms in (14) to 0:

Q0(
ḟ
m
− ḟ ∗)− r = 0, Q1(

k̇1

m
− k̇∗1)− re = 0

Q2(
k̇2

m
− k̇∗2)− rė = 0, Q3(

ż1

m
− ż∗1)− rq̇r = 0

Q4(
ż2

m
− ż∗2)− rq̈r = 0

(15)

Substituting (15) into (14) yields the following equation:

V̇ =−ET QE−2 f ∗r−2k∗1re−2k∗2rė−2z∗1rq̇r−2z∗2rq̈r (16)

We then define the following terms:

f ∗ = Q∗0r k∗1 = Q∗1re k∗2 = Q∗2rė

z∗1 = Q∗3rq̇r z∗2 = Q∗4rq̈r
(17)

where Q∗0, ...,Q
∗
4 are positive scalars. Substituting (17) into (16)

yields:

V̇ =−ET QE−2Q∗0r2−2Q∗1r2e2−2Q∗2r2ė2−2Q∗3r2q̇2
r

−2Q∗4r2q̈2
r (18)

which is negative for all E 6= 0, thus Theorem 2 is satisfied and
E = 0 is globally asymptotically stable. However, we must now
determine the values of the parameters f ,k1,k2,z1,z2 to satisfy
(15), which are as follows:
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ḟ = mQ∗0ṙ+
m
Q0

r

k̇1 = mQ∗1
d
dt
(re)+

m
Q1

re

k̇2 = mQ∗2
d
dt
(rė)+

m
Q2

rė

ż1 = mQ∗3
d
dt
(rq̇r)+

m
Q3

rq̇r

ż2 = mQ∗4
d
dt
(rq̈r)+

m
Q4

rq̈r

(19)

We then define the following terms so that (19) is independent of
m:

Q∗0 =
ρ

m
Q0 =

m
δ

Q∗1 =
β1

m
Q1 =

m
α1

Q∗2 =
β2

m
Q2 =

m
α2

Q∗3 =
λ1

m
Q1 =

m
γ1

Q∗4 =
λ2

m
Q2 =

m
γ2

(20)

Substituting (20) into (19) and integrating with respect to time
yields the following equations for the decentralized adaptive pa-
rameters:

f (t) = f (0)+δ

∫ t

0
r(t)dt +ρr(t)

k1(t) = k1(0)+α1

∫ t

0
r(t)e(t)dt +β1r(t)e(t)

k2(t) = k2(0)+α2

∫ t

0
r(t)ė(t)dt +β2r(t)ė(t)

z1(t) = z1(0)+ γ1

∫ t

0
r(t)q̇r(t)dt +λ1r(t)q̇r(t)

z2(t) = z2(0)+ γ2

∫ t

0
r(t)q̈r(t)dt +λ2r(t)q̈r(t)

(21)

Now that we have successfully derived the decentralized adap-
tive gains, we make the following notes of its structure. First
of all, the auxiliary signal can be interpreted as a decentralized
PID signal, acting to guide the system towards the desired trajec-
tory in a generalized approach. Second of all, each adaptive gain
is updated based on the performance of the signal it multiplies
in (4), as well as the weighted error. This update law is purely
performance based, and does not rely on a model of the system.
Finally, the update of each parameter is a simple computation,
where a trapezoidal approximation can be used to estimate the

value of the integral at each time step.

4 Simulation Results
In order to assess the performance of this decentralized

adaptive controller, we first apply the control law described in
Section 3 to the Baxter’s dynamic model (1). We apply our
control methodology to a tracking problem where the desired
tracking trajectories for the joints were created for a specific end-
effector maneuver in [36]. While the maneuver was a pick-and-
place task in [36] in which the desired joint trajectories were
generated online, for our problem our interest is in using these
previously generated trajectories as a reference for tracking. In
this simulation, we introduce a sampling rate of 100 Hz in or-
der to effectively model the effect of discrete sampling on the
continuous-time controller. Furthermore, the controller param-
eters we used during this simulation, can be observed in Table
2.

TABLE 2. Controller Parameters for Simulation and Experiment

Joint 1 2 3 4 5 6 7

pi2 1 1 1 1 1 1 1

pi3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

δi 30 60 40 30 7 40 2

ρi 30 60 40 30 7 6 2

αi1 6000 6000 6000 6000 10200 102000 1200

βi1 600 600 600 600 1020 10200 120

αi2 6 6 6 6 6 6 6

βi2 0.6 0.6 0.6 0.6 0.6 0.6 0.6

γi1 60 60 60 60 60 60 60

λi1 6 6 6 6 6 6 6

γi2 60 60 60 60 60 60 60

λi2 6 6 6 6 6 6 6

The simulated joint trajectories, along with the desired joint
trajectories can be observed in Figure 3. From these graphs, it
can be seen that the decentralized adaptive controller achieves
close tracking of the desired trajectories. Although the effects of
the simulated frictional torque and gravity negligibly impact the
tracking performance during the beginning of motion, as can be
seen in the performance of joints 3, 5, and 6, these effects are
quickly accounted for by the adaptive controller. Furthermore,
despite large changes in the joint configuration throughout the
course of the operation, the performance based control scheme
remains effective at consistently driving each joint towards the
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(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 3. The experimental (blue line), simulated (green line), and
desired (red dashed line) joint trajectories of Baxter

desired trajectory. These behaviors can also be observed in Fig-
ure 6, as the tracking error remains less than 1.5 degrees for all
joints after 1.5 seconds of operation.

The torques generated by the decentralized adaptive con-
troller can be observed in Figure 4. It is important to note that
these torques are significantly lower than the maximum torque
output of Baxter’s joints, which are 50 Nm for joints 1-4, and
15 Nm for joints 5-7, meaning that saturation of torque is not
an issue for this decentralized adaptive scheme. Furthermore,
this demonstrates energy efficiency of this control scheme, as
the torques generated are consistently small in magnitude. Addi-

(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 4. The experimental (blue line) and simulated (red dashed
line) joint torques of Baxter

tionally, it can be observed that the torques generated are smooth
throughout the operation, which is potentially beneficial to the
motors that are used to generate these torques in practice.

Finally, we observe the tuning of adaptive gains k1 through
the simulation, as seen in Figure 5. Each of these gains appear
to adjust in 2 stages (0s < t < 3s and 3s < t < 6s). These phases
correspond to the picking up and placing down motion of the end
manipulator, signifying that a different set of gains is necessary
for each task. Thus, the tuning of these parameters coincide with
our expectations of their performance. It is also important to note

6 Copyright © 2020 by ASME



(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 5. The tuning of adaptive gain k1 during experimentation
(blue line) and simulation (red dashed line) of Baxter

that these gains are of a significant magnitude when compared to
the auxiliary parameters δi and ρi, meaning that tunings were
necessary in order to achieve the desired tracking performance.
Furthermore, the joints 3, 5, and 6 with significantly tuned gains
experienced the largest frictional torques and gravitational load.
These results demonstrate the ability of the decentralized adap-
tive controller to adjust to different operating conditions. This
beneficial quality of this scheme is of key importance when the
robot manipulator is expected to reliably perform in a changing
environment. From these results, it is evident that the decentral-

FIGURE 6. Simulated tracking error

ized adaptive controller is effective in simulation.

5 Experimental Results
Due to promising results during simulation, we now imple-

ment the control law described in Section 3 to Baxter in an ex-
perimental study. We utilize the same desired trajectories as in
Section 4 with the same 100 Hz sampling rate. Note that sev-
eral differences remain between the simulated and experimental
study, which include measurement noise in the joint positions
and velocities, differences between the idealistic Coulomb Fric-
tion model and the actual friction dynamics, small potential in-
accuracies in model parameters, and the actuator dynamics of
each joint. These factors can lead to results slightly different
than those experienced in simulation. For the experimental pick-
and-place task, the controller parameters we used are the same
as that of the simulation, and can be observed in Table 2.

From Figure 7(a), it can be observed that the decentralized
adaptive controller is successful at executing the pick-and-place
task in practice. The experimental joint trajectories, along with
the desired joint trajectories can be observed in Figure 3. From
these graphs, it can be seen that the decentralized adaptive con-
troller exhibits close tracking of the desired trajectory, that is al-
most identical to that experienced during simulation. Similar to
the Experiment, it can be observed from the graphs that errors ex-
perienced in the beginning of the operation are quickly accounted
for, and the controller returns to near perfect tracking. This be-
havior can also be observed in Figure 8, as the tracking error
remains less than 1.5 degrees after 1.5 seconds of operation.

The torques generated by the decentralized adaptive con-
troller can be observed in Figure 4. While the presence of
noise in measurements has caused similar variations in the joint
torques, the torques still exhibit moderate continuity, as well as
a magnitude much less than the saturation torque of each joint.

7 Copyright © 2020 by ASME



DSCL

FIGURE 7. Baxter tracking a desired trajectory under (a) the de-
centralized adaptive and (b) model-based centralized adaptive control
schemes at Dynamic Systems and Control Laboratory (DSCL); see
peimannm.sdsu.edu

It can be seen from these graphs that the overall shape and mag-
nitude of the experimental torque of each joint matches closely
to that of the corresponding simulated torques. Thus, the dif-
ferences in system dynamics between the simulation and exper-
iment do not significantly affect the performance of the decen-
tralized control algorithm.

Finally, we observe the tuning of the adaptive gains k1i
through the experiment, as seen in Figure 5. The behavior of
these graphs is similar to that of the simulation in regards to both
the stages of tuning, as well as the magnitude of the gains. Slight
differences can be observed between the evolution of the gains
in the simulation and experiment, which can reasonably be at-
tributed to the small differences in dynamics between the simu-
lated and actual system, such as the difference between the ide-
alistic Coulomb Friction model from the friction experienced in
the real system. While these differences lead to the selection of
different gains from simulation, the overall performance of the
decentralized adaptive controller is not significantly affected by
this difference in dynamics, as can be seen in Figures 3 and 4.
Thus, these adaptive gains are effective at maintaining desirable
performance outside of the conditions in which the decentralized
adaptive controller was designed. From these results, it is evident
that the decentralized adaptive scheme performs well in experi-

FIGURE 8. Experimental tracking error

ments as well as in simulation.

Another crucial point to consider is the computational effi-
ciency of the decentralized adaptive scheme compared to cen-
tralized ones. We previously carried out experimental work
for a simple centralized model-based adaptive scheme to carry
an unknown mass avoiding an obstacle, shown in Fig. 7(b).
The mass of the end-effector was the only unknown parame-
ter to be estimated and we again employed the Damped Least
Squares method to calculate desirable joint-space trajectories.
The immediate challenge was the computation time of the con-
trol scheme in each loop, even when dealing with only one un-
certainty, which was incompatible with the minimum time step
(∆tb = 0.001s or fb = 1kHz) of Baxter. The computation time
of the centralized model-based adaptive scheme was in the range
of 0.005s≤ tc ≤ 0.007s leading to the time delay in each control
loop. Therefore, we had to address a critical trade-off between
the accuracy required and computational cost. To resolve this
problem, we increased the Baxter’s time step to ∆tb = 0.01s or
fb = 0.1kHz, along with the sleep command of Python, in order
to avoid such a time delay by sacrificing the accuracy needed.
Shown in Fig. 7(b) is the experimental implementation of the
centralized adaptive control of Baxter carried out at the DSC lab-
oratory. We noticed that the estimation of even one uncertainty,
without any external disturbance, caused at least three small op-
erational interruptions. Please check the DSCL YouTube Chan-
nel, at https://youtu.be/4XWldAXpJ2I, for the AVI file. Note
that the decentralized adaptive scheme examined here reveals a
significantly lower computation time of ∆tb = 1.02 ms compared
to the centralized one. Therefore, we did not observe the opera-
tional interruptions discussed for the centralized method whereas
the decentralized scheme is at least five times faster than the cen-
tralized one. This would be highly beneficial for when we intend
to control large-scale (high-DOF) systems.
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6 Conclusion
In this paper, we investigated the performance of a model-

free decentralized adaptive controller on a 7-DOF redundant ma-
nipulator. We first formulated the theory behind the controller,
demonstrating the global asymptotic stability of each local con-
troller, as well as revealing the computationally efficient method
of adapting each control parameter. Then, through the results of
both our simulation and experiment of the decentralized adaptive
controller implemented on Baxter, we demonstrated the follow-
ing beneficial properties of the control scheme:

1. The algorithm is highly computationally efficient and at least
five times faster than the centralized adaptive method exam-
ined here.

2. Close tracking of the desired trajectory is achieved through-
out operation.

3. Large changes in the joint configuration throughout the pro-
cedure do not significantly affect the operation.

4. The generated torques are energy efficient, and do not pose
the risk of torque saturation.

5. The control scheme can adapt to, and is effective outside of
the conditions in which it was designed for.

Thus, we verified the effectiveness of the model-free decentral-
ized adaptive control scheme, and noted its promising potential
for a wide variety of applications.
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