
Proceedings of the ASME 2020 Dynamic Systems and Control Conference
DSCC 2020

October 4-7, 2020, Pittsburgh, Pennsylvania, USA

DSCC2020-23518

EXPERIMENTAL AND ANALYTICAL NONZERO-SUM DIFFERENTIAL GAME-BASED
CONTROL OF A 7-DOF ROBOTIC MANIPULATOR

Mostafa Bagheri
Senior Research Engineer

Dynamic Systems and Control Lab.
Dept. of Mechanical and Aero. Eng.
UC San Diego & San Diego State

La Jolla, California 92093
Email: mstfbagheri@ucsd.edu

mbagheri@sdsu.edu

Alexander Bertino
Research Assistant

Dynamic Systems and Control Lab.
Dept. of Mechanical Eng.

San Diego State University
San Diego, California 92182

Email: abertino6245@sdsu.edu

Peiman Naseradinmousavi
Associate Professor

Dynamic Systems and Control Lab.
Dept. of Mechanical Eng.

San Diego State University
San Diego, California 92182

Email: pnaseradinmousavi@sdsu.edu

ABSTRACT
We formulate a Nash-based feedback control law for an

Euler-Lagrange system to yield a solution to non-cooperative
differential game. The robot manipulators are broadly utilized
in industrial units on the account of their reliable, fast, and pre-
cise motions, while consuming a significant lumped amount of
energy. Therefore, an optimal control strategy needs to be imple-
mented in addressing efficiency issues, while delivering accuracy
obligation. As a case study, we here focus on a 7-DOF robot ma-
nipulator through formulating a two-player feedback nonzero-
sum differential game. First, coupled Euler-Lagrangian dynamic
equations of the manipulator are briefly presented. Then, we
formulate the feedback Nash equilibrium solution in order to
achieve perfect trajectory tracking. Finally, the performance of
the Nash-based feedback controller is analytically and experi-
mentally examined. Simulation and experimental results reveal
that the control law yields almost perfect tracking and achieves
closed-loop stability.

1 Introduction
The robot manipulators are broadly utilized in industrial

units on the account of their reliable, fast, and precise motions
[1], while consuming a significant lumped amount of energy.
Therefore, optimization schemes need to be employed to address
efficiency issues, while delivering accuracy obligation. For a dy-

namically interconnected robotic system, there can be multiple
players having different criteria whereas all players intend to ex-
ecute a task specified. In the so-called “cooperative” game, play-
ers are subject to an agreement leading to a best feasible solution
for the game, whereas for a “non-cooperative” game [2], each
player pursues its own individual interests, which may result in
conflict with the other ones. Note that a solution to the non-
cooperative game is an equilibrium since it represents a control
strategy providing a balance between interests of players. Al-
though the players work to reach the same goal, each player has
its own cost function leading to a multi-objective optimization
problem to be dealt with.

The optimal control theory was developed as an efficient ap-
proach to determine optimal input parameters maximizing per-
formance criteria defined, while satisfying physical constraints.
The game theory [3] is an effective approach to address the con-
cerns of having multiple players for complex dynamical systems.

Finding the Nash equilibria has received substantial atten-
tion in various disciplines including, but not limited to, mathe-
matics, computer science, economics, and system engineering.
Through the Nash strategy, the cost function, for each player,
cannot unilaterally be minimized by changing the strategy. The
game theory deals with strategic interactions among multiple
players making simultaneous decisions, while each player tries
to minimize its own cost function. The control of a high-DOF
robot manipulator, with N-player, is an example of nonzero-sum
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non-cooperative differential game. In this problem, each player
has its own criterion through minimizing its own control inputs
and tracking errors, while all players intend to complete the task
specified; tracking desirable joint-space trajectories. Note that
a zero-sum game [4] is a mathematical representation of a sit-
uation in which gain or loss of each participant is balanced by
the other ones. The players’ objective functions cannot be eas-
ily optimized by ignoring the other ones’ choices, since each
player affects the actions of the other players. Therefore, it is
crucial to achieve the goal of finding the feedback Nash equilib-
rium solution minimizing all players’ cost functions, while com-
pleting the task. [5] provided a solution for a class of general
N-player non-cooperative games. In 1960s, [6] investigated the
multi-player extension of the dynamic programming solution for
the differential games. [7] proposed a fuzzy-linear quadratic reg-
ulator (LQR) game-based control scheme to simultaneously en-
hance vehicle stability while compensating driver’s inappropri-
ate steering reaction in emergency avoidance. [8] presented the
application of advanced optimization techniques to unmanned
aerial system mission path planning system (MPPS) using multi-
objective evolutionary algorithms (MOEAs). [9] studied a decen-
tralized scheme for active noise control (ANC) from a game-
theoretical perspective. They formalized the Nash equilibrium
(i.e., the simultaneous best strategy) in the interaction between
the controllers. [10] presented a game-theoretic analysis of a
visibility-based pursuit—evasion game in a planar environment
containing obstacles. In their work, the pursuer and the evader
are assumed to be holonomic having bounded speeds. [11] in-
vestigated a method to analyze and select time-optimal coordina-
tion strategies for n robots whose configurations are constrained
to lie on a C-space roadmap (which could, for instance, repre-
sent a Voronoi diagram). [12] proposed a framework to analyze
the interactive behaviors of human and robot in physical inter-
actions. They employed game theory in describing the system
under study, and policy iteration was adopted to provide a so-
lution of Nash equilibrium. [13] tried to achieve a superior per-
formance with fuzzy Markov game based control by hybridizing
two game theory based approaches of “fictitious play” and “min-
imax”. They formulated a controller for a two link robot and
compared its performance against fuzzy Markov game control
and fuzzy Q control. [14] utilized the game theory approach, as
a generalized form of nonlinear optimum control, in designing a
closed-loop controller for a fixed-base two-link manipulator. [15]
provided insight into the solution of difficult problems specific
to N versus 1 games. To illustrate further N versus 1 game prob-
lems, a nonoptimal scalar case was presented in which the de-
centralized structure is proven superior. [16] considered a novel
coupled state-dependent Riccati equation (SDRE) approach for
systematically designing nonlinear quadratic regulator (NLQR)
and H∞ control of mechatronics systems. [17] derived set of nec-
essary optimality conditions, which not only enable the determi-
nation of the saddle-point strategies for both participating play-

ers, but also the optimal parameters. Based on these conditions
an iterative numerical algorithm of gradient type was suggested.
More case studies can be found in [18–30].

The amount of cooperation between players resulted in dif-
ferent branches of game theory problems. The Nash optimal
control scheme is progressed when players have additional in-
formation about the other ones. Therefore, it is assumed that
the players can observe the actions of the other ones. Motivated
by finding the feedback Nash equilibrium solution, we explore
the use of differential game theory in formulating a controller
to yield a stable Euler-Lagrangian dynamic system, here a robot
manipulator, in order to follow the desired joint-space trajecto-
ries. Therefore, we employ an approach to solve the nonzero-
sum non-cooperative differential game controlling a nonlinear
system. Like other classical game theory algorithms, we assume
that the players can observe the actions of each other and also
know the model information of the game. Then, we formulate
the feedback Nash equilibrium solution in order to achieve the
perfect tracking. A stability analysis is then carried out to prove
that all solutions asymptotically converge to desired trajectories
using the Nash-based strategy. Finally, the simulation and exper-
imental results are presented and discussed.

2 Mathematical Modeling
The redundant manipulator, which is being studied here,

has 7-DOF as shown in Fig. 1. The manipulator’s Denavit-
Hartenberg parameters are shown in Table 1 provided by the
manufacturer. The robot manipulator is modeled as follows,

M(q)q̈+C(q, q̇)q̇+φ(q) = τ (1)

where, q, q̇, and q̈ ∈R7 are angles, angular velocities, and accel-
erations of joints, respectively, and τ ∈ R7 indicates the vector
of joints’ driving torques. Also, M(q) ∈ R7×7, C(q, q̇) ∈ R7×7,
and φ(q) ∈ R7 are the mass, Coriolis, and gravitational matri-
ces, respectively, which are symbolically derived using the Euler-
Lagrange equation [31–39]. The inertia matrix M(q) is symmet-
ric, positive definite, and consequently invertible. This property
is exploited in the subsequent development based on the follow-
ing assumptions: 1) M(q),C(q, q̇), and φ(q) matrices are known
and 2) q(t) and q̇(t) are measurable.

3 Designing the Nash Optimal Controller
Through the game theory, the Nash equilibrium is a solu-

tion of a non-cooperative game involving two or more players, in
which, each player is assumed to know the equilibrium strategies
of the other ones, and no player has anything to gain by chang-
ing only its own strategy. The players are committed to follow
a predetermined strategy based on the knowledge of initial state,
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FIGURE 1. The 7-DOF Baxter’s arm: (a) The joints’ configurations;
(b) sagittal view; (c) top view

system model, and cost function to be minimized. Note that so-
lution techniques for the Nash equilibrium can be classified in
various ways depending on the amount of information available
to the players.

3.1 Error System Development
The control objective includes converging tracking errors to

zero such that the generalized coordinates track the desired time-
varying joints’ trajectories (qdes(t) ∈ R7) as well as performance
index. Consider the following assumption for the desired joint-

TABLE 1. Baxter’s Denavit-Hartenberg Parameters

Link ai di αi θi

1 0.069 0.27035 −π/2 θ1

2 0 0 π/2 θ2 +π/2

3 0.069 0.36435 −π/2 θ3

4 0 0 π/2 θ4

5 0.010 0.37429 −π/2 θ5

6 0 0 π/2 θ6

7 0 0.3945 0 θ7

space trajectories:

Assumption 1. The desired joint-space trajectories,
qdes(t), q̇des(t), and q̈des(t) ∈ R7, exist and are bounded for
all t ≥ 0.

To quantify the tracking performance, the angular (e1) and
combined (e2) tracking errors are defined as

e1 = qdes−q (2)

e2 = ė1 +αe1 (3)

where e1, e2 ∈ R7 and α ∈ R7×7 is a constant positive definite
matrix. A state-space model can be developed based on the track-
ing errors of Eqs. (2) and (3). According to this model, a con-
troller is derived to improve tracking performance indices subject
to the assumption of knowing dynamics of the system, as men-
tioned earlier. The control term is then established as the solution
to the nonzero-sum Nash differential game.

A state-space model, based on the tracking error, is for-
mulated through premultiplying the inertia matrix by the time
derivative of Eq. (3),

Mė2 = Mq̈des +Cq̇des +(Mα−C)e2

+(−Mα
2 +Cα)e1 +G− τ

→ ė2 = q̈des +M−1Cq̇des +(α−M−1C)e2

+(−α
2 +M−1Cα)e1 +M−1G−M−1

τ (4)

which yields,

ė2 = αe2−α
2e1 +h−M−1

τ (5)
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where h ∈ R7 is a nonlinear function defined as

h = q̈des +M−1(Cq̇des +G+Cαe1−Ce2) (6)

and the state-space model of error dynamics becomes,

ė = f (e,τ) =

[
e2−αe1

αe2−α2e1 +h−M−1τ

]
(7)

Since the dynamics of system (1) is known, the controller,
based on Eq. (5), is designed as

τ7×1 =M(h− (u1 +u2 + · · ·+uN)) (8)

where N is the number of players and u1(t), · · · ,uN ∈R7 are aux-
iliary players’ control inputs, which are formulated to minimize
their own cost functions including the tracking errors. For two
players having a feasible computation cost in real-time opera-
tion, substituting Eq. (8) into Eq. (5) results in the closed-loop
error signal for e2(t) as

ė2 =−α
2e1 +αe2 +u1 +u2 (9)

Finally, the state-space model for error dynamics is derived
as follows,

ė = Ae+B1u1 +B2u2 (10)

where e = [eT
1 ,e

T
2 ]

T ∈ R14, and A ∈ R14×14 and Bi ∈ R14×7 (i =
1,2) are defined as

A =

[
−α I7×7

−α2 α

]
(11)

Bi = [07×7 I7×7]
T i = 1,2 (12)

where I7×7 and 07×7 are identity and zero matrices, respectively.

Note that through the Nash equilibrium solution, the perfor-
mance of each player cannot be improved by a unilateral change
of strategy. To determine the two-player feedback Nash nonzero-
sum differential game solution, we define the following cost

functions J1(e,u1,u2) and J2(e,u1,u2) ∈ R as

J1 =
1
2

∫
∞

t0

(
eT Qe+uT

1 R11u1 +uT
2 R12u2

)
dt (13)

J2 =
1
2

∫
∞

t0

(
eT Le+uT

2 R22u2 +uT
1 R21u1

)
dt (14)

where t0 ∈R is the initial time and Q, L ∈R14×14 are symmetric
semi-definite constant matrices defined as

Q =

[
Q11 Q12

QT
12 Q22

]
, L =

[
L11 L12

LT
12 L22

]
(15)

where Q and L impose penalties on the tracking errors. Also,
Ri j ∈ R7×7 is a constant positive definite matrix. Note that we
here focus on a game with memoryless perfect state informa-
tion. Therefore, the controller’s information set contains the ini-
tial conditions e0 as well as the current state estimates e(t) at time
t. The actions of the players are completely determined by the re-
lations (u1,u2) = (γ1(e0,e),γ2(e0,e)), where (γ1(e0,e),γ2(e0,e))
is the pair of strategies [40].

Definition 1. A pair of strategies (γ∗1 ,γ
∗
2 ) is a Nash equilibrium

for the differential game, if for all strategies (γ1,γ2) the following
inequalities hold,

J1(γ
∗
1 ,γ
∗
2 )≤ J1(γ1,γ

∗
2 ) (16)

J2(γ
∗
1 ,γ
∗
2 )≤ J2(γ

∗
1 ,γ2) (17)

Using the minimum principle [41], we define the Hamilto-
nians H1(e,u1,u2) and H2(e,u1,u2) of the control inputs u1 and
u2, respectively, as

H1 =
1
2

eT Qe+uT
1 R11u1 +uT

2 R12u2

+λ
T
1 (Ae+B1u1 +B2u2) (18)

H2 =
1
2

eT Le+uT
2 R22u2 +uT

1 R21u1

+λ
T
2 (Ae+B1u1 +B2u2) (19)

Based on the results of [2,42] provided for this information struc-
ture and using the following Theorems, the feedback Nash solu-
tion for nonzero-sum differential game is obtained.

Theorem 1. Let the strategies (γ∗1 ,γ
∗
2 ) be such that there exist
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solutions (λ1,λ2) to the following differential equations,

λ̇1 =−
∂H1

∂e
(e,γ∗1 ,γ

∗
2 ,λ1)

− ∂H1

∂u2
(e,γ∗1 ,γ

∗
2 ,λ1)×

∂γ∗2
∂e

(e0,e) (20)

λ̇2 =−
∂H2

∂e
(e,γ∗1 ,γ

∗
2 ,λ2)

− ∂H2

∂u1
(e,γ∗1 ,γ

∗
2 ,λ2)×

∂γ∗1
∂e

(e0,e) (21)

where H1 and H2 are defined in Eq. (18) and Eq. (19), respec-
tively, satisfying

∂Hi

∂ui
(e,γ∗1 ,γ

∗
2 ,λi) = 0 i = 1,2 (22)

and e satisfies

ė = Ae+B1γ
∗
1 +B2γ

∗
2 (23)

Then, (γ∗1 ,γ
∗
2 ) is a Nash equilibrium with respect to the memory-

less perfect state information structure, and the following equal-
ities hold:

u∗1 = γ
∗
1 =−R−1

11 BT
1 λ1 (24)

u∗2 = γ
∗
2 =−R−1

22 BT
2 λ2 (25)

Theorem 2. Suppose (P,S) satisfy the coupled differential Ric-
cati equations (DRE), given by

Ṗ =−AT P−PA−Q+PB1R−1
11 BT

1 P

+PB2R−1
22 BT

2 S+SB2R−1
22 BT

2 P

−SB2R−1
22 R12R−1

22 BT
2 S (26)

Ṡ =−AT S−SA−L+SB2R−1
22 BT

2 S

+SB1R−1
11 BT

1 P+PB1R−1
11 BT

1 S

−PB1R−1
11 R21R−1

11 BT
1 P (27)

with the following boundary conditions,

P(T ) = 0 (28)

S(T ) = 0 (29)

Then, the following pair of strategy

(γ∗1 ,γ∗2) =
(
−R−1

11 BT
1 P(t)e,−R−1

22 BT
2 S(t)e

)
(30)

is a feedback Nash equilibrium law, and the solutions to the
equations of (20) and (21) are as follows,

λ1 = Pe (31)

λ2 = Se (32)

We can simultaneously solve differential Riccati equations
(DRE) defined in (26) and (27) using boundary conditions (28)
and (29). Substituting Eqs. (31) and (32) into Eqs. (24) and (25),
respectively, yields the following Nash-based controllers for two
players,

u∗1 =−R−1
11 BT

1 Pe (33)

u∗2 =−R−1
22 BT

2 Se (34)

Based on the feedback Nash strategy, the cost functions de-
fined in Eqs. (13) and (14) are minimized by the control inputs
Eqs. (33) and (34), respectively.

4 Experimental Results
We implement the two-player Nash-based feedback con-

troller for the 7-DOF Baxter manipulator through a pick-and-
place task, while each player tries to minimize its own cost func-
tion. We take the advantage of this controller, using the Theo-
rems 1 and 2, in order to globally asymptotically stabilize the
manipulator due to the fact that all the assumptions are valid for
the robot’s dynamics. Then, we thoroughly investigate the per-
formance of this controller through simulations and experiments.

The initial conditions are selected based on the accuracy of
the joints’ sensors,

q0 = qd0 +0.05[rand(0,1), · · · , rand(0,1)]T

q̇0 = 07×1
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FIGURE 2. The experimental (blue line), simulated (green line), and
desired joint-space trajectories (red dash line) for (a) S0, (b) S1, (c) E0,
(d) E1, (e) W0, (f) W1, and (g) W2 joints

The weighting matrices L and Q, and the Nash gains R11, R12,
R21, and R22 are selected as follows:

Q11 = diag{7.0,9.0,7.0,10.0,5.0,8.0,5.0}

Q12 = 6× I7×7, Q22 = 0.5×Q11

L11 = diag{7.0,9.0,70,15,25,80,25}

L12 =−6× I7×7, L21 = 10× I7×7

R11 = 10× I7×7, R12 = R21 = I7×7, R22 = 7.5× I7×7

Figs. 2 and 3 present the experimental and simulated joint-
space trajectories and tracking errors, respectively. As can be
observed, the simulation results reveal that the manipulator per-
fectly tracks the desired trajectories, while the experimental ones
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FIGURE 3. The experimental (blue line) and simulated (green line)
Nash-based tracking errors for (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f)
W1, and (g) W2 joints

present a highly acceptable tracking process. The negligible ex-
perimental tracking errors mainly root on the inaccuracy of sen-
sors and actuators.

The simulation results, shown in Fig. 3, indicate that the
tracking errors asymptotically converge to zero, as expected.
However, the tracking errors of the experimental work do not
necessarily converge to zero due to the lack of sufficient accura-
cies of sensors and actuators as well as the joints’ backlash.

The joints’ torques, shown in Fig. 4, reveal that the incre-
mental tracking errors expectedly demand more control torques
to be applied. Therefore, it is straightforward to conclude that the
experimental torques are higher than those of the simulated ones,
since the experimental tracking errors are higher than the simu-
lated ones, as shown in Fig. 3. It is worth mentioning that, in
addition to the control torques, the gravity compensation torques
need to be applied in order to overcome the effect of gravity;
this is a basic mode which is, by default, active for the onset of
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FIGURE 4. The experimental (blue line) and simulated (green line)
Nash-based torques for (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f) W1, and
(g) W2 joints

manipulator operation.

The simulated and experimental minimization and conver-
gence processes of the cost functions for the two players are
shown in Figs. 5 and 6, respectively. Shown in Fig. 5 reveals
that both the cost functions asymptotically converge to the op-
timal values, as expected, although the experimental ones do
not converge to optimal values perfectly (Fig. 6). These hap-
pen due to the fact that the experimental tracking process cannot
be perfectly achieved, while the errors do not converge to abso-
lute zero. However, the robot manipulator is stabilized using the
Nash-based feedback control law and has an acceptable tracking
process. Fig. 7 presents the experimental work carried out at
our Dynamic Systems and Control Laboratory (DSCL) to exam-
ine the Nash-based control law for a simple obstacle avoidance
pick-and-place task defined.
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FIGURE 5. The simulated cost functions for u1 and u2

0 1 2 3 4 5
Time (sec)

0

0.1

0.2

0.3

C
os
t
F
u
n
ct
io
n

Player 1
Player 2

FIGURE 6. The experimental cost functions for u1 and u2

FIGURE 7. A stable obstacle avoidance pick-and-place task using the
Nash-based feedback control law

5 Conclusions
Throughout this effort, we presented the formulation of

the two-player Nash-based feedback control law for an Euler-
Lagrangian system, and then the controller was experimentally
implemented for the 7-DOF Baxter manipulator. Toward formu-
lating the controller, we assumed and then validated some prop-
erties for the robot’s operation. We formulated the Nash-based
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feedback controller using the Theorems 1 and 2, and then inves-
tigated its performance. The experimental results revealed the
stable operation of the manipulator, and the robot could expect-
edly track the desired joint-space trajectories.

We also presented that the simulated tracking errors, using
the Nash-based feedback controller, asymptotically converge to
zero guaranteed through the Theorems 1 and 2. Although, the ex-
perimental results revealed an acceptable tracking process, which
is due to the inaccuracy involved with sensors and actuators in
addition to the joints’ backlash. The simulated and experimen-
tal torques were shown for all joints along with both the players’
cost functions. The simulation results indicate the asymptotic
convergence of the cost functions of players. However, since
the errors of the experimental work did not converge to abso-
lute zero, the experimental torques and cost functions did not
converge to M(q)h and optimal values, respectively. Note that
the experiment revealed the stable operation of the manipulator,
while the robot tracked the desired joint-space trajectory in an
acceptable fashion.
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