
ORIGINAL RESEARCH
published: 19 June 2020

doi: 10.3389/fdata.2020.00020

Frontiers in Big Data | www.frontiersin.org 1 June 2020 | Volume 3 | Article 20

Edited by:

Liyue Fan,

University at Albany, United States

Reviewed by:

Budhitama Subagdja,

Nanyang Technological University,

Singapore

Kyoung-Sook Kim,

National Institute of Advanced

Industrial Science and Technology,

Japan

*Correspondence:

Muhammed Mas-ud Hussain

mas-ud@u.northwestern.edu

Specialty section:

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

Received: 10 December 2020

Accepted: 11 May 2020

Published: 19 June 2020

Citation:

Mas-ud Hussain M, Mostafiz MI,

Mahmud SMF, Trajcevski G and Eunus

Ali M (2020) Conditional MaxRS Query

for Evolving Spatial Data.

Front. Big Data 3:20.

doi: 10.3389/fdata.2020.00020

Conditional MaxRS Query for
Evolving Spatial Data

Muhammed Mas-ud Hussain 1*, Mir Imtiaz Mostafiz 2, S. M. Farabi Mahmud 2,

Goce Trajcevski 3 and Mohammed Eunus Ali 2

1Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, United States,
2Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka,

Bangladesh, 3Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States

We address the problem of maintaining the correct answer-sets to a novel

query—Conditional Maximizing Range-Sum (C-MaxRS)—for spatial data. Given a set

of 2D point objects, possibly with associated weights, the traditional MaxRS problem

determines an optimal placement for an axes-parallel rectangle r so that the

number—or, the weighted sum—of the objects in its interior is maximized. The

peculiarities of C-MaxRS is that in many practical settings, the objects from a

particular set—e.g., restaurants—can be of different types—e.g., fast-food, Asian,

etc. The C-MaxRS problem deals with maximizing the overall sum—however, it also

incorporates class-based constraints, i.e., placement of r such that a lower bound on

the count/weighted-sum of objects of interests from particular classes is ensured. We

first propose an efficient algorithm to handle the static C-MaxRS query and then extend

the solution to handle dynamic settings, where new data may be inserted or some of

the existing data deleted. Subsequently we focus on the specific case of bulk-updates,

which is common in many applications—i.e., multiple data points being simultaneously

inserted or deleted. We show that dealing with events one by one is not efficient when

processing bulk updates and present a novel technique to cater to such scenarios, by

creating an index over the bursty data on-the-fly and processing the collection of events in

an aggregate manner. Our experiments over datasets of up to 100,000 objects show that

the proposed solutions provide significant efficiency benefits over the naïve approaches.

Keywords: maximizing range sum query, constrained query processing, conditional MaxRS, C-MaxRS, bulk data

updates, bursty streams, spatial data streams, spatial indexing

1. INTRODUCTION

Rapid advances in accuracy and miniaturization of location-aware devices, such as GPS-enabled
smartphones, and increased use of social networks services (e.g., check-in updates) have enabled a
generation of large volumes of spatial data(e.g., Manyika et al., 2011). In addition to the (location,
time) values, that data is often associated with other contextual attributes. Numerous methods for
effective processing of various queries of interest in such settings—e.g., range, (k) nearest neighbor,
reverse nearest-neighbor, skyline, etc.—have been proposed in the literature(cf., Zhang et al., 2003;
Zhou et al., 2011; Issa and Damiani, 2016).

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.00020
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.00020&domain=pdf&date_stamp=2020-06-19
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mas-ud@u.northwestern.edu
https://doi.org/10.3389/fdata.2020.00020
https://www.frontiersin.org/articles/10.3389/fdata.2020.00020/full
http://loop.frontiersin.org/people/735726/overview
http://loop.frontiersin.org/people/866802/overview
http://loop.frontiersin.org/people/993678/overview
http://loop.frontiersin.org/people/944927/overview
http://loop.frontiersin.org/people/944152/overview

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

One particular spatial query that has received recent attention
is the, so called, Maximizing Range-Sum (MaxRS) (Choi et al.,
2014), which can be specified as follows: given a set of weighted
spatial-point objects O and a rectangle r with fixed dimensions
(i.e., a × b), MaxRS retrieves a location of r that maximizes
the sum of the weights of the objects in its interior. Due to
diverse applications of interest, variants of MaxRS (e.g., Phan
et al., 2014; Amagata and Hara, 2016; Feng et al., 2016; Hussain
et al., 2017a,b; Wongse-ammat et al., 2017; Liu et al., 2019, etc.)
have been recently addressed by the spatial database and sensor
network communities.

What motivates this work is the observation that in many
practical scenarios, the members of the given set O of objects
can be of different types, e.g., if O is a set of restaurants,
then a given oi ∈ O can belong to a different class from
among fast-food, Asian, French, etc. Similarly, a vehicle can be
a car, a truck, a motorcycle, and so on. In the settings where
data can be classified in different (sub)categories, there might
be class-based participation constraints when querying for the
optimum region—i.e., a desired/minimum number of objects
from particular classes inside r. However, due to updates in
spatial databases—i.e., objects appearing and disappearing at
different times—one needs to accommodate such dynamics too.
Following two examples illustrate the problem:
Example 1: Consider a campaign scenario where a mobile
headquarters has limited amount of staff and needs to be
positioned for a period of time in a particular area. The US
Census Bureau has multiple surveys on geographic distributions
of income categories1 and, for effective outreach purposes,
the campaign managers would like to ensure that within the
limited reachability from the headquarters, the staff has covered
a maximum amount of voters—with the constraint that a
minimum amount of representative from different categories are
included. This would correspond to the following query:
Q1: “What should be the position of the headquarters at time t
so that at least κi residents from each income Categoryi can be
reached, while maximizing the number of voters reached, during
that campaign date.”
Example 2: Consider the scenario of X’s Loon Project2, where
there are different types of users—premium (class A), regular
(class B), and free (class C), and users can disconnect or reconnect
anytime. In this context, consider the following query:
Q2: “What should be the position of an Internet-providing balloon
at time t to ensure that there are at least 2i users from each Classi
inside the balloon-coverage and the number of users in its coverage
is maximized?”.

It is not hard to adapt Q1 and Q2 to many other applications
settings:—environmental tracking (e.g., optimizing a range-
bounded continuous monitoring of different herds of animals
with both highest density and diversity inside the region);—
traffic monitoring (e.g., detecting ranges with densest trucks);—
video-games (e.g., determining a position of maximal coverage in

1cf. https://www.census.gov/topics/income-poverty/income.html.
2 The Loon project (formerly Google X goo, 2016) aims at providing internet access
to remote/rural areas via a collection of high-altitude balloons providing wireless
networks with up to 4G LTE speeds.

dynamic scenarios involving change of locations of players and
different constraints).

We call such queries Conditional Maximizing Range-Sum (C-
MaxRS) queries, a variant of the traditional MaxRS problem.
For dynamic settings, where the objects can be inserted and/or
deleted, we have Conditional Maximizing Range-Sum with Data
Updates (C-MaxRS-DU) query.

An illustration for C-MaxRS query in a setting of 7 users
grouped into 3 classes (i.e., A, B, and C), and with a query
rectangle size a × b (i.e., height a and width b) is shown in
Figure 1. Assume that the participation constraint is that the
positioning of r must be such that at least 1 user is included
from each of the classes A, B, and C, respectively. There are two
rectangles r1 and r2, with dimension a × b, that are candidates
for the solution. However, upon closer inspection it turns out that
although r2 contains most users (corresponding to the traditional
MaxRS solution), it is r1 that is the sought-for solution for the
C-MaxRS problem. Namely, r2 does not satisfy the participation
constraints (see Figure 1i).

Now, suppose that at time t2, user o6 disconnects and a new
user o8 joins the system. Then the C-MaxRS solution will need to
be changed to r2 from r1 (see Figure 1ii).

Our key idea for efficient C-MaxRS processing is to partition
the space and apply effective pruning rules for each partition
to quickly update the result(s). The basic processing scheme
follows the technique of spatial subdivision from Feng et al.
(2016), dividing the space into a certain number of slices,
whose local maximum points construct the candidate solution
point set. In each slice, the subspace was divided into slabs
which helps in reducing the solution space. To handle dynamic
data stream scenarios, i.e., appearances and disappearances
of objects, we propose two algorithms, C-MaxRS+ and C-
MaxRS−, respectively, which works as a backbone for solving
the constrained maximum range sum queries in the dynamic
insertions/deletions settings (C-MaxRS-DU). Our novelty is in
incorporating heuristics to reduce redundant calculations for the
newly appeared or disappeared points, relying on two trees: a
quadtree and a balanced binary search tree. Experiments over a
wide range of parameters show that our approach outperforms
the baseline algorithm by a factor of three to four, for both
Gaussian and Uniform distribution of datasets.

The above idea for the C-MaxRS-DU algorithm takes
an event-based approach, in the sense that C-MaxRS
is evaluated (maintained) every time an event occurs,
i.e., new point appears (e+) or an old point disappears
(e−). This approach works efficiently when events are
distributed fairly uniformly in the temporal domain and
occur at different time instants that are enough apart for
reevaluation to complete. However, the recent technological
advancements and the availability of hand-held devices
have enabled a large increase (or decrease) of the number
of active/mobile users in multitude of location-aware
applications in relatively short time-spans. In the context
of Examples 1 and 2, this would correspond to the
following scenarios:
Example 1: If the area involves businesses, then one would want
to exploit the fact that many individuals may: (a) come (or leave)

Frontiers in Big Data | www.frontiersin.org 2 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

FIGURE 1 | An example of C-MaxRS problem in spatial data updates at time (i) t1 and (ii) t2.

their place of work in the morning (or evening); (b) enter (or
leave) restaurants during lunch-time; etc.
Example 2: In the settings of X’s Loon Project, there can be
multiple users disconnecting from the service simultaneously
(within a short time span), or new users may request connections.

There are many other scenarios from different domains—
e.g., Facebook has on average 2 billion daily active users—
approximately 23,000 users per second. These Facebook users
can be divided into many groups (classes), and C-MaxRS can
be used to retrieve the most interesting regions (with respect to
particular requirements) among the active daily users. In this
scenario, a large number of users can become online (e+), or
go offline (e−) at almost-same time instant. Similarly, flocks of
different kinds of animals may be approaching the water/food
source; the containment of the diseases across the population and
regions may vary; etc.

To address the efficiency of processing in such settings, we
propose a novel technique, namely C-MaxRS-Bursty. The key
idea of our approach is as follows: instead of processing every
single update, we assume that the update streams are gathered
for a period of time. Then, we create a modified slice-based index
for the entire batch of the new events, and then snap the new
data over the existing slice structure in a single pass. Finally, we
perform the pruning conditions for each slice only once in an
aggregated manner. Experimental results show that C-MaxRS-
Bursty outperforms our one-at-a-time approach, C-MaxRS-DU,
by a speed-up factor of 5–10.

The main contributions of this work can be summarized
as follows:

• We formally define the C-MaxRS and C-MaxRS-DU problems
(for both weighted and non-weighted versions) and provide a
baseline solution using spatial subdivision (slices).

• We extend the solution to deal with spatial data streams
(appearing and disappearing objects) for which we
utilize effective pruning schemes for both appearing and
disappearing events, capitalizing on a self-balancing binary
search tree (e.g., AVL-tree) and a quad-tree.

• We propose an efficient methodology to handle bulk updates
of data (i.e., updates with large data-volumes) along with
the appropriate extensions of the data structures to cater to
such settings.

• We demonstrate the benefits of our proposed method via
experiments over a large dataset. Experiments over a wide
range of parameters show that our approaches outperform the
baseline algorithms by a factor of three to four. Moreover,
experiments with bulk updates demonstrate the effectiveness
and scalability of C-MaxRS-Bursty over other techniques (e.g.,
C-MaxRS-DU).

A preliminary version of this paper has appeared in Mostafiz
et al. (2017), where we focused on non-weighted version of the
C-MaxRS problem, i.e., we only count the number of objects
inside the query window. We proposed two algorithms, C-
MaxRS+ and C-MaxRS− to efficiently solve C-MaxRS for data
updates appearing and disappearing one at a time. The current
article provides the following modifications and extensions
to Mostafiz et al. (2017): (1) we provide the modified version
of our algorithms from Mostafiz et al. (2017) to explicitly
incorporate weighted version of the C-MaxRS problem, where
each object and/or class can have different weights denoting its
importance in the MaxRS computation. As it turns out (and
demonstrated in the corresponding experiments) the weighted
variant enables an increased pruning power; (2) we extend the
work to consider novel settings of bulk updates handling of
objects’ appearance and disappearance and propose techniques

Frontiers in Big Data | www.frontiersin.org 3 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

for efficient computation of the C-MaxRS in those settings; (3) we
conducted an extensive set of additional experiments to evaluate
the benefits of our approaches.

In the rest of this paper, section 2 positions the work with
respect to the existing literature, and section 3 formalizes the C-
MaxRS problem. Section 4 describes the necessary properties of
the conditional count functions and lays out the basic solution.
Section 5 presents the details of our pruning strategies, along with
the data structures and algorithms for incorporating dynamic
data, while section 6 presents an extension of the C-MaxRS
problem to include weights of objects (or, classes). Section 7
discusses the challenges of processing bursty inputs, and offers
additional data structures and algorithms to deal with them.
Section 8 presents the quantitative experimental analysis and
Section 9 summarizes and outlines directions for future work.

2. RELATED WORKS

The Range Aggregation and Maximum Range Sum (MaxRS)
queries, and their variants have been extensively studied in
the recent years (e.g., Lazaridis and Mehrotra, 2001; Tao and
Papadias, 2004; Cho and Chung, 2007; Sheng and Tao, 2011; Choi
et al., 2014). A Range Aggregation Query, returning the aggregate
result from a set of points, was solved for both 1-dimensional
space—i.e., calculating result from set of values in given interval
by Tao et al. (2014) and for 2 dimensional point space, i.e.,
calculating result from a given rectangle with fixed location
by Papadias et al. (2001). To calculate the aggregate result, an
Aggregate Index, storing the summarized result for specific region
referenced by that index is used in Cho and Chung (2007).
Different data structures are introduced to store the aggregate
index—e.g., Lazaridis and Mehrotra (2001) proposed Multi-
Resolution Aggregate tree (MRA-tree) to reduce the complexity.
Although closely related, the MaxRS problem itself differs from
these range aggregation queries.

The MaxRS problem was first addressed by researchers in
the computational geometry community—e.g., Imai and Asano
(1983) used a technique that finds connected components and
a maximum clique of an intersection graph of rectangles in the
plane. A solution based on plane sweep strategy was presented
in Nandy and Bhattacharya (1995), where the input point-objects
were “dualized” into rectangles (centered at the points and with
dimensions equivalent to the query rectangle r). Then an interval
tree was used to record the regions (a.k.a. windows) with highest
number of intersecting (dual) rectangles along the sweep—
denoting the possible locations for placing the (center of the)
query rectangle, yieldingO(n log n) time complexity (n = number
of points). However these solutions are not scalable, and Choi
et al. (2014) proposed scalable extensions suited for LBS-
applications—e.g., retrieve best location for a new franchise store
with a specified delivery range. Subsequently, different variants
of the MaxRS problem have been investigated:—constraining to
underlying road networks (Phan et al., 2014; Zhou and Wang,
2016);—processing MaxRS queries in wireless sensor networks
(Hussain et al., 2015; Wongse-ammat et al., 2017);—considering
rotating MaxRS problem (Chen et al., 2015), where rectangles

do not need to be axes parallel, i.e., allowing much more
flexibility. A rather complementary work, tackling the problem of
approximate solution to the MaxRS query was presented in Tao
et al. (2013), using randomized sampling to bound the error
with higher probability, with increasing number of objects in
question. A more recent work, Liu et al. (2019) has proposed
a novel solution PMaxRS to deal with the inherent location
uncertainty of objects, and used smart candidate generation
process (pruning) and sampling-based approximation algorithm
(refinement) to efficiently solve the problem.

Monitoring MaxRS for dynamic settings, where objects can
be inserted and/or deleted was first addressed in Amagata and
Hara (2016). To efficiently detect the new locations for placing
the query rectangle, Amagata and Hara (2016) exploited the
aggregate graph aG2 in a grid index and devised a branch-and-
bound algorithm (cf. Narendra and Fukunaga, 1977) over that
aG2 graph for efficient approximation. We note that our work
is complementary to Amagata and Hara (2016), in the sense that
we addressed the settings of having different classes of objects and
participation constraints based on them—whereas Amagata and
Hara (2016) solves the basicMaxRS problem.Moreover, Amagata
and Hara (2016) considered a sliding-window based model in the
problem settings (i.e., ifm new objects appear, thenm old objects
disappear in a time-window T), which is completely different
to our event-based model. Additionally, we used contrasting
approaches (and different data structures) in this work—dividing
the 2D space into slices and slabs.

An interesting variant of MaxRS is addressed in Feng
et al. (2016)—the, so called, Best Region Search problem,
which generalizes the MaxRS problem in the sense that the
goal of placing the query rectangle is to maximize a broader
class of aggregate functions3. Our work adapts the concepts
from Feng et al. (2016) (slices and pruning)—however, we
tackle a different context: class-based participation constraints
and dynamic/streaming data updates and, toward that, we
also incorporated additional data structures (see section 5).
As a summary, our methodology (as well as the actual
implementation) is based on the idea of event driven approach
for monitoring appearing and disappearing cases of objects, and
we included a self-balancing binary tree (i.e., AVL-tree) to reduce
the processing time that is needed for computing the MaxRS as
per the event queue needs.

The issue of real-time query processing and indexing over
spatio-temporal streaming data have been addressed extensively
in prior literature, e.g., Hart et al., 2005; Mokbel et al., 2005;
Dallachiesa et al., 2015, etc. For real-time computation, it is
necessary to restrict the set of inspected data points at any time
using techniques such as punctuation (embedded annotations),
synopses (data summaries), windows (e.g., sliding windows—
only items received in past tminutes), etc. InMokbel et al. (2005),
the authors implemented a continuous query processor designed
specifically for highly dynamic environments. The proposed
system utilized the idea of predicate-based sliding windows, and
employed an incremental evaluation paradigm by continuously

3More specifically, Feng et al. (2016) was considering submodular monotonic
functions as aggregates.

Frontiers in Big Data | www.frontiersin.org 4 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

updating the query answer over a window. Dallachiesa et al.
(2015) proposed both exact and approximate algorithms to
manage count-based uncertain sliding windows for uncertain
data streams (e.g., tuples can have both value and existential
uncertainty). In contrast to these traditional window-based
settings, we process C-MaxRS query in an event-based manner
using all the data points received so far. This is necessary to
maintain accurate answers for C-MaxRS over the whole dataset,
i.e., trading off real-time processing power for accuracy.

On the other hand, both tree-based (cf. Hart et al., 2005)
and grid-based (cf. Amini et al., 2011) indexing schemes have
been proposed previously to deal with traditional streaming data.
Dynamic Cascade Tree (DCT) is used in Hart et al. (2005)
to index spatio-temporal query regions, ensuring optimized
query processing for Remotely- Sensed Imagery (RSI) streaming
data. Additionally, researchers such as Amini et al. (2011) have
devised many hybrid clustering algorithms for data streams,
using both density-based methods and grid-based indexing. In
these density-based clustering algorithms, each point in a data-
stream maps to a grid and grids are subsequently clustered
based on their density. In our approach, we used slice-based (a
specialized version of grid) indexing schemes to compute the
range and class constrained optimal density clustering of data
points (i.e., C-MaxRS).

Finally, as mentioned in section 1, a preliminary version
of this work has been presented in Mostafiz et al. (2017).
However, we note that the techniques for processing continuous
monitoring queries over data streams (i.e., dynamic settings)
must be adaptive, as data updates are often bursty and input
characteristics may vary over time. Many previous works
have demonstrated the tendency of bursty streams in various
applications, and proposed general solutions such as Kleinberg
(2003), Babcock et al. (2004), and Cervino et al. (2012), etc.
For example, Babcock et al. (2004) utilized “load shedding”
technique for aggregation queries over data updates, i.e.,
gracefully degrading performance when load is unmanageable;
while Cervino et al. (2012) offered distributed stream processing
systems to handle unpredictable changes in update rates. In
this work, we address specifically the “algorithmic” part of
the problem, i.e., presenting an optimal processing technique
for C-MaxRS during bursty inputs. We conclude this section
with a note that our proposed technique is implementation-
independent, and can be augmented by existing distributed and
parallel schemes seamlessly (cf. section 7).

3. PRELIMINARIES

We now introduce the C-MaxRS problem and extend the
definition for appearance of new objects, and disappearance of
existing ones. Additionally, we discuss the concept of submodular
monotone functions.
C-MaxRS & C-MaxRS-DU: Let us define a set of POIClass K =
{k1, k2, . . . , km}, where each ki ∈ K refers to a class (alternatively,
tag and/or type) of the objects, a.k.a. points of interest (POI). In
this setting, each object oi ∈ O is represented as a (location, class)
tuple at any time instant t. We denote a set X= {x1, x2, . . . , xm} as
MinConditionSet, where |X| =|K| and each xi ∈ Z+ denotes the
desired lower bound of the number of objects of class ki in the

interior of the query rectangle r—i.e., the optimal region must
have at least xi number of objects of class ki. Let us assume li as
the number of objects of type ki in the interior of r centered at a
point p. A utility function f (O) :P(O) → N0, mapping a subset
of spatial objects to a non-negative integer is defined as below,

f (O) =

{

(
∑|K|

i=1 li), if ∀i ∈ {1, 2, 3, ..., |K|}, li >= xi

0, if ∃i ∈ {1, 2, 3, ..., |K|}, li < xi

Additionally, we mark Orp as the set of spatial objects in
the interior of rectangle r centered at any point p. Formally,
Conditional-MaxRS (C-MaxRS): Given a rectangular spatial
field F, a set of objects of interest O (bounded by F), a query
rectangle r (of size a × b), a set of POIClass K = {k1, k2, . . . , km}
and a MinConditionSet X = {x1, x2, . . . , xm}, the C-MaxRS query
returns an optimal location (point) p∗ for r such that:

p∗ = argmaxp∈Ff (Orp)

where Orp ⊆ O.
Note that, in the case that there is no placement p for which all

the conditions ofMinConditionSet is met, the query will return an
empty answer—indicating to the user to either increase the size
of R or decrease the lower bounds for some classes.

In a spatial data stream environment, old points of interest
may disappear and new ones may appear at any time instant. We
can deal with this in two-ways:

• Time-based: C-MaxRS is computed on a regular time-
interval δ.

• Event-based: C-MaxRS is computed on an event, where C-
MaxRS is maintained (evaluated) every time a new point
appears or an old point disappears.

Although faster algorithms can be developed in time-based
settings, the solutions provided would be inherently erroneous
for time between t and t + δ. On the other hand, event-based
processing ensures that a correct answer-set is maintained all
the time. Thus, we deal with the streaming data in event-based
manner, for which we denote e+ as the new point appearance
and e− as the old point disappearance event. We note that, most
of the settings for basic C-MaxRS remains same, except that the
set of objects O is altered at each event. We define the set of
points of interest in this data stream for any event ei over an
object oei as:

Oei =

{

Oei−1 ∪ {oei}, if ei.type = e+

Oei−1 \ {oei}, if ei.type = e−

Formally, Conditional-MaxRS for Data Stream/Updates (C-
MaxRS-DU) definition is an extension of the above definition
of C-MaxRS, for which we additionally have a sequence of
events E={e1, e2, e3, . . .} where each ei denotes the appearance or
disappearance of a point of interest.
Submodular Monotone Function: Feng et al. (2016) devised
solutions to a variant of the MaxRS problem (best region search)
where the utility function for the given POIs is a submodular
monotone function—which is defined as: [Submodular

Frontiers in Big Data | www.frontiersin.org 5 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

Monotone Function] If � is a finite set, a submodular function
is a set function f :P(�) → R if ∀X,Y ⊂ �, with X ⊆ Y and
x ∈ � \Y we have (1) f (X ∪ {x})− f (X) ≥ f (Y ∪ {x})− f (Y) and
(2) f (X) ≤ f (Y).

In the above definition, (1) represents the condition of
submodularity, while (2) presents the condition of monotonicity
of the function. In section 4, we will discuss these properties of
our introduced utility function f (O) :P(O) → N0.
Discussion:Note that, for the sake of simplicity, initially we have
considered only the counts of POIs when defining the utility
function or conditions in X. In section 6, we show that they
can be extended to incorporate different non-negative weights
for objects with only minor modifications. Similarly, although in
our provided examples, for brevity, we’ve only depicted one class
per object, the techniques proposed in this work extends to the
objects of multiple classes (or tags), e.g., objects can be considered
as (location, classes) tuple.

4. BASIC C-MAXRS

In this section, we first convert the C-MaxRS problem to its dual
variant and then discuss important properties of the conditional
weight function f (.), showing how we can utilize them to devise
an efficient solution to process C-MaxRS.

4.1. C-MaxRS → Dual Problem
A naive approach to solve C-MaxRS is to choose each discrete
point p iteratively from the rectangular spatial field F and
compute the value of f (Orp) for the set of spatial objects covered
by the query rectangle r. As there can be infinite number of points
in F, this approach is too costly to be practical. Existing works
(see Nandy and Bhattacharya, 1995; Feng et al., 2016; Hussain
et al., 2017a) have demonstrated that feasible solutions can be
derived for MaxRS (and related problems) by transforming it
into its dual problem—rectangle intersection problem. A similar
conversion is possible for C-MaxRS as well, enabling efficient
solutions. In this regards, let R={r1, r2, . . . , rn} be a set of
rectangles of user-defined size a × b. Each rectangle ri ∈ R
is centered at each point of interest oi ∈ O, i.e., |R|=|O|. We
define ri as the dual rectangle of oi. Let us consider a function
g :P(R) → N0 that maps a set of dual rectangles to a non-
negative integer. For a set of rectangles Rk = {r1, r2, . . . , rk}, let
g(Rk) = f ({o1, o2, . . . , ok}). Note that, a rectangle is affected by a
point p if it is in the interior of that rectangle. Let A(p) be the sets
of rectangle affected by p ∈ F. Now, we can redefine C-MaxRS as
the following equivalent problem:
Given a rectangular spatial field F, a set of rectangles
R={r1, r2, . . . , rn} (with centers bounded by F) where each ri is
of a given size a × b, a set of POIClass K={k1, k2, . . . , km} and a
MinConditionSet X={x1, x2, . . . , xm}, retrieve an optimal location
(point) p∗ such that:

p∗ = argmaxp∈Pg(A(p)),

where A(p) ⊆ R.
The bijection is illustrated with the help of Figure 2 using
the same example (and conditions) of Figure 1, i.e., the

FIGURE 2 | C-MaxRS → dual problem.

positioning of r must be such that at least 1 user is included
from each of the classes A, B, and C, respectively. Suppose,
rectangles {r1, r2, r3, . . . , r7} are the dual rectangles of given
objects {o1, o2, o3, . . . , o7} in Figure 2, and p1 and p2 are two
points within the given space. p1 affects rectangles r1, r2, r3
and p2 affects r4, r5, r6, r7, i.e., A(p1) = {r1, r2, r3} and
A(p2) = {r4, r5, r6, r7}. Thus, g(A(p1))=f ({o1, o2, o3}) = 3
as the points conform to the constraints mentioned
above, while g(A(p2))=f ({o4, o5, o6, o7}) = 0 as
they do not.

Similarly, C-MaxRS-DU can be redefined as follows:
Given a rectangular spatial field F, a set of rectangles
R={r1, r2, . . . , rn} (with centers bounded by F) where
each ri is of a given size a × b, a set of POIClass
K={k1, k2, . . . , km}, a MinConditionSet X={x1, x2, . . . , xm},
and an event e (appearance/disappearance of a
rectangle re), update the optimal location (point) p∗

such that:

p∗ = argmaxp∈Pg(A(p)),

where

A(p) ⊆

{

R ∪ {re}, if e.type = e+

R \ {re}, if e.type = e−

Frontiers in Big Data | www.frontiersin.org 6 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

4.2. Properties of f and g
A method to solve an instance of Best Region Search (BRS)
problem was devised in Feng et al. (2016), where the
weight function f :P(O) → R is a submodular monotone
function (cf. defined in section 3). In Feng et al. (2016), the
problem is first converted to the dual Submodular Weighted
Rectangle Intersection (SIRI) problem, and then optimization
techniques are applied based on these properties of f (.). We
now proceed to discuss submodularity and monotonicity of
functions f (O) :P(O) → N0 and g(R) :P(R) → N0 in our
problem settings. We establish two important results for f and
g as follows:

Lemma 1. Both f and g are monotone functions.

Proof: For a set of spatial objects O,

f (O) =

{

(
∑|K|

i=1 li), if ∀i ∈ {1, 2, 3, ..., |K|}, li >= xi

0, if ∃i ∈ {1, 2, 3, ..., |K|}, li < xi

For any of the classes, if the given lower-bound condition is not
met, i.e. ∃i ∈ {1, 2, 3, ..., |K|}, li < xi, then f (O)=0 for the spatial
object set O. However, if all of the conditions are satisfied—i.e.,
∀i ∈ {1, 2, 3, ..., |K|}, li ≥ xi, then the utility value is equal to the
number of spatial objects in O.
Let Oi ⊆ Oj. If Oi = Oj, f (Oi) = f (Oj), otherwise if Oi ⊂ Oj,
there are three possible cases:
Case (a): Both Oi and Oj fail to conform to the MinConditionSet
X—then f (Oi) = f (Oj) = 0.
Case (b): Oj conforms to X, but Oi does not—then f (Oi) = 0 and
f (Oj) = |Oj|. Thus, f (Oi) < f (Oj).
Case (c): Both Oi and Oj conform to X, then f (Oi) = |Oi| and
f (Oj) = |Oj|. As Oi ⊂ Oj, |Oi| < |Oj|, implying, f (Oi) < f (Oj).
We note that there are no possible cases where Oi conforms to X,
but Oj does not. Thus, f is a monotone function. Let Ri and Rj
be two sets of dual rectangles generated from the aforementioned
two sets of spatial objects—Oi andOj, respectively. Here,Oi ⊆ Oj

→ Ri ⊆ Rj. According to the definition of g, g(Ri) = f (Oi) and
g(Rj) = f (Oj). As f (Oi) ≤ f (Oj), then g(Ri) ≤ g(Rj). Thus, g is a
monotone function too.

Lemma 2. None of f and g is a submodular function.

Proof: Let us consider the settings of the preceding proof, i.e.,
two sets of spatial objects Oi and Oj (where Oi ⊆ Oj), and
corresponding sets of dual rectangles Ri and Rj. Suppose, O and
R are the set of all objects and dual rectangles, respectively. Let
us consider a spatial object ok ∈ O \ Oj and its associated dual
rectangle rk ∈ R \ Rj. Then there is a possible case where Oj

conforms to X, but neither Oi nor Oi ∪ {ok} conform to X. As
Oj conforms to X, Oj ∪ {ok} will conform too. Thus, f (Oi) = 0,
f (Oj) = |Oj|, f (Oi∪{ok}) = 0, f (Oj∪{ok}) = |Oj∪{ok}| = |Oj|+1.
Interestingly, we obtain: f (Oi ∪ {ok}) − f (Oi) = 0 − 0 = 0
and f (Oj ∪ {ok}) − f (Oj) = |Oj| + 1 − |Oj| = 1; that means
f (Oi∪{ok})− f (Oi) < f (Oj∪{ok})− f (Oj) violating the condition
of submodularity. Hence, f is not submodular.

On the other hand, g(Ri∪{rk})−g(Ri) = f (Oi∪{ok})−f (Oi) =
0−0 = 0 and g(Rj∪{rk})−g(Rj) = f (Oj∪{ok})− f (Oj) = |Oj|+

1−|Oj| = 1; whichmeans g(Ri∪{rk})−g(Ri) < g(Rj∪{r})−g(Rj).
Thus, g is not submodular too.

Let us consider the example of Figure 2—suppose
Oi={o4, o5, o6, o7} and two new POIs o8 and o9 arrive
from class A and C, respectively. let Oj=Oi ∪ {o8} (i.e.,
Oi ⊆ Oj). Now, considering constraints for class A, B, and
C, respectively, we have f (Oi)=(0 + 2 + 2)(0)(1)(1)=0 and
f (Oj)=(1 + 2 + 2)(1)(1)(1)=5, i.e., f (Oi) ≤ f (Oj), proving
monotonicity of f . But f (Oi ∪ {o9})=(0 + 3 + 2)(0)(1)(1)=0 and
f (Oj∪{o9})=(1+3+2)(1)(1)(1)=6. Thus, (f (Oi∪{o9})− f (Oi) =
0 − 0 = 0) < (f (Oj ∪ {o9}) − f (Oj) = 6 − 5 = 1), proving
non-submodularity of f . Similar examples can be shown for
g too.

4.3. Processing of C-MaxRS
Although f and g are not submodular functions, we show that
their monotonicity property can be utilized to derive efficient
processing and optimization strategies, similar to the ideas
presented in Feng et al. (2016). For the rest of this section, let
us denote n = |O| = |R|.

4.3.1. Disjoint and Maximal Regions
The edges of the dual rectangles divide the given spatial field into
disjoint regions where each disjoint region Fdi is an intersection
of a set of rectangles. Consider the examples shown in Figure 3i.
Rectangles {r1, r2, ..., r7} divided the space into distinct regions
numbered 0−19, e.g., region 0 is the region outside all rectangles,
and region 14 is the intersection of rectangles {r4, r5, r6, r7}.
Intuitively, all points in a single disjoint region Fdi affects the
same set of rectangles, i.e., A(p) is same for all p ∈ Fdi . There
could be at most O(n2) disjoint regions (shown in Feng et al.,
2016). To compute C-MaxRS, a straightforward approach can be
to iterate over all theO(n2) disjoint regions (one point from each
region) and choose the optimal one—thus reducing the search
space into a finite point set. For example, we only need to evaluate
20 points for the settings of Figure 3i.

A disjoint region Fdi is termed as a maximal region Fmi if:
(1) it is rectangular, and (2) its left, right, bottom, top edges are
(respectively) the parts of the left, right, bottom and top edges
of some dual rectangles of R. In Figure 3ii, region 5 and 14 are
maximal regions. For example, the left, right, bottom, and top
edges of region 5 is a part of the corresponding edges r2, r1, r1, r3
respectively. Feng et al. (2016) showed that for each distinct
region Fdi , there exists a maximal region Fmi such that A(Fdi) ⊆
A(Fmi). Using this idea, and the fact that g(.) is monotonic, we
can shrink the possible search space to only the set of all maximal
regions. As an example (see Figure 3), region 4 and 5 are affected
by R1 = {r1, r3} and R2 = {r1, r2, r3}, respectively. As R1 ⊂ R2,
so by the monotonicity of g, g(R1) ≤ g(R2). So, only evaluating
g(R2) is sufficient instead of evaluating both g(R1) and g(R2).
Though there could still be O(n2) maximal regions in the worst
case, the actual number in practice is much lower (compared to
disjoint regions).

4.3.2. Maximal Slabs and Slices
A maximal slab is the area between two horizontal lines in the
space where the top line passes along the top edge of a dual

Frontiers in Big Data | www.frontiersin.org 7 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

FIGURE 3 | (i) Disjoint, (ii) Maximal regions, (iii) Maximal Slabs, and (iv) Slices.

rectangle and bottom one passes along the bottom edge of a dual
rectangle, and the area between two horizontal lines contains no
top or bottom edge of any other dual rectangles. In Figure 3iii,
there are three maximal slabs, enclosed by the top and bottom
edges of rectangles {r3, r1}, {r4, r3}, and {r6, r5} (top edges are
solid line, and bottom edges are dotted lines). According to Feng
et al. (2016), each maximal region intersects at least one maximal
slab—i.e., the solution space can be reduced to the interior of all

the maximal slabs only. As maximal slabs are defined based on
one top and one bottom edge of dual rectangles, there could be at
mostO(n) maximal slabs.

All the maximal slabs can be retrieved using a horizontal
sweep line algorithm in a bottom-up manner. A set is maintained
to keep track of the rectangles intersecting the current slab, and
a flag to indicate the type of the last horizontal edge processed.
When the sweep line is at the bottom (top) edge of a rectangle,

Frontiers in Big Data | www.frontiersin.org 8 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

it is inserted into (deleted from) the set and flag is set to bottom
(top). Additionally, when processing a top edge of a rectangle,
the algorithm checks whether a maximal slab is encountered (i.e.,
currently flag=bottom). We can compute the upper bound for a
slab by applying g(.) on the rectangles intersecting that slab, i.e.,
if Rsi is the set of rectangles that intersects slab Fsi , then the upper
bound of g(p) for any point p ∈ Fsi is g(Rsi). For example, in
Figure 3iii, {r4, r5, r6, r7} intersect the bottommost slab. So, the
upper bound for that slab is g({r4, r5, r6, r7}) = 0 (as no members
of class A present—not conforming to the introduced constraints
in section 1).

Finally, the monotonicity of g allows us to adapt another
optimization technique introduced in Feng et al. (2016)—slices
(see Figure 3iv). The idea is to divide the whole space into vertical
slices (along x-axis). The width of the slices is query-dependent,
i.e., θ × b, where θ is a real positive constant value (θ > 1
and optimal value can be tuned empirically) and b is the width
of the query rectangle r. After dividing the space into slices, we
retrieve the slabs within each slice using the horizontal sweep-
line algorithm described above and obtain upper-bound of a slice
by computing the maximum upper-bound among all the slabs
within that slice. We can then process the slices in a greedy
manner—sort them in order of their upper-bounds and process
one by one until the currently obtained result is greater than the
upper-bounds of the remaining slices. Similar greedy approach
can be adopted to process the maximal slabs within each slice. As
an example, suppose there are four slices {s1, s2, s3, s4} with upper
bounds {8, 3, 5, 2}, respectively. The order in which the slices will
be processed is: {s1, s3, s2, s4}. Assume that after processing s1,
current optimal g value is 3. So there is a possibility the optimal
solution within s3 might exceed the current overall optimal
solution of 3. After processing s3, if the result is 4, then processing
s2 and s4 is unnecessary. Slices allowmore pruning than slabs, and
also O(n) maximal slabs is processed in all the slices (see Feng
et al., 2016).

5. C-MAXRS IN DATA UPDATES

We now proceed with introducing novel techniques to deal with
more realistic scenarios, i.e., data arriving in streams with the
possibility of objects appearing and disappearing at different time
instants. Using the approach of the basic C-MaxRS problem
presented in previous section as a foundation, we augment the
solution with compact data-structures and pruning strategies that
enable effective handling of data streams environment.

5.1. Data Structures
Before proceeding with the details of the algorithms and pruning
schemes, we describe the data structures used. We introduce
two necessary data structures: quadtree (denoted QTree) and a
self-balanced binary search tree (denoted SliceUpperBoundBST),
and describe the details of our representation of slices. We
re-iterate that while Feng et al. (2016) tackled the problem
of best-placement with respect to an aggregate function, we
are considering different constraints—class membership. In
addition, we do not confine to a limited time-window. This is
why, in addition to the quadtree used in Feng et al. (2016), we

needed self-balancing binary tree to be invoked as dictated by the
dynamics of the modifications.

5.1.1. QTree
We need to process a large number of (variants of) range
queries when computing f for any point, i.e., finding intersecting
rectangles for a given rectangle. To ensure this is processed
efficiently, we use quadtree (Samet, 1990)—a tree-based structure
ensuring fast (O(log n)) insertion, deletion, retrieval and
aggregate operations in 2D space. QTree recursively partitions
F into four equal sized rectangular regions until each leaf only
contains one POI.

5.1.2. SliceUpperBoundBST
Recall that the algorithm proposed in section 4.3 iterates through
the slices in decreasing order of their maximum possible utility
values (upper-bounds). Let us assume there are total s number
of slices. To achieve this for basic C-MaxRS, sorting the slices
in order is sufficient (O(s log s) operation). However, given the
possibility of appearance (e+) and disappearance (e−) events
in dynamic streaming scenarios, the upper-bounds of slices
(and their respective order) may change frequently with time.
To deal with these efficiently, we introduce a balanced binary
search tree (SliceUpperBoundBST, see Nievergelt and Reingold,
1973) in our data structures instead of maintaining a sorted
list whenever an event occurs. Different kinds of self-balancing
binary search tree (e.g., AVL tree, Red-black tree, Splay tree,
etc.) can be used for this purpose. We used AVL tree in our
implementation. If there are ǫ number of dynamic events
and s number of slices, sorting them on each event would
incur a total of O((ǫ + 1)s log s) time-complexity. Whereas
we can build a balanced BST SliceUpperBoundBST initially
in O(s log s), and update the tree at each event in O(log s)
time. Thus the total cost of maintaining the sorted slices via
SliceUpperBoundBST isO(s log s+ ǫ log s) time. As in real-world
applications running for a long time, we would incur large values
of both ǫ and s, in which case, using SliceUpperBoundBST is much
more efficient.

To traverse the slices in decreasing order via
SliceUpperBoundBST, an in-order traversal from left to right
order is needed (assuming, higher values are stored on the
left children), and vice versa. SliceUpperBoundBST arranges
the slices based on their upper bounds of g. In Figure 4,
a sample slice structure (of 7 slices) and their respective
maximum utility upper bounds (dummy values) are shown
for two events at different times t1 and t2. The corresponding
SliceUpperBoundBST structure for both cases is shown as well.
The process of accessing the slices in decreasing order (an
in-order traversal) is demonstrated in Figure 4ii.

5.1.3. List of Slices
We use a list Sslice (where |Sslice| = s) to maintain the slices and
their related information. Each slice si ∈ Sslice is represented as
a 6−tuple (id,R, Sslabs, pc, lazy,maxregsearched). These fields are
described as follows:

• id: A numeric identification number for the slice.

Frontiers in Big Data | www.frontiersin.org 9 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

FIGURE 4 | SliceUpperBoundBST at time (i) t1 and (ii) t2.

• R: The set of rectangles currently intersecting with the
corresponding slice.

• Sslabs: The set of maximal slabs in the interior of the slice.
• pc: The local optimum point within the slice.
• lazy: This field is used to reduce computational overhead

in certain scenarios. While processing streaming data,
there are cases when an e+ or e− event may alter
the local solution (optimal point) for a particular slice,
but overall, the global solution is guaranteed to remain
unchanged. In those cases, we will not re-evaluate the
local processing of that slice (i.e., pruning)—rather will
set the lazy field to true. Later, when the possibility of a
global solution change arises—local optimal points are re-
processed for all the lazy marked slices to sync with the
up-to-date state. Initially, lazy fields for all slices are set
to false.

• maxregsearched: This field is used to indicate whether the
slice’s local solution is up-to-date or not.maxregsearched is set
to true when the corresponding slice is evaluated and its local
maximal point is stored in pc. Initially,maxregsearched is set to
false for all the slices. While processing C-MaxRS by iterating
through the slices, all the slices with this field set to true are not
re-evaluated (skipped).

5.2. Base Method
In this section, we start by introducing two related functions
(sub-methods), and then proceed with describing the details of
the base method to process C-MaxRS.

5.2.1. PrepareSlices(Sslice)
Function 1 takes Sslice as input and sets up different fields of each
slice accordingly. For each slice si ∈ Sslice, their respective R and
Sslabs are computed (lines 2–3), and other variables are properly
initialized (lines 4–6). In line 3, the maximum upper bounds
of g (denoted gmaxub) among all the slices is retrieved as well,
while ScanSlab is the horizontal sweep-line procedure discussed
in section 4.3.2. SliceUpperBoundBST is also build via line 7.

Time-Complexity
While analyzing time-complexities, we will denote |Sslice| = s and
number of rectangles (and objects too) as n. Suppose all of the
slices in Sslice is passed to Function 1 for processing. In worst
case scenario, line 2 takes O(n) time. Feng et al. (2016) shows
Scanslab() (i.e., line 3) aggregately takes at most O(n) time for
all the slices together. Any SliceUpperBoundBST operations (cf.,
line 4) need O(log s) time. Thus, the overall time-complexity of
Function 1 isO(s(n+ log s)+ n)—or,O(sn) (as typically, n > s).

5.2.2. SliceSearchMR(p∗
c)

Function 2 takes the current global maximal point p∗c as input and
returns the updated solution. The function iterates through all
the slices via in-order traversal of SliceUpperBoundBST from the
root (lines 1–2). The process is terminated if gmaxub of the current
slice is ≤ of current maximum utility value g(A(p∗c)) (lines 3–4),
or when all the slices are evaluated. At each iteration, we check
whether there exists an already computed solution (unchanged)
for the slice. If so, we avoid recomputing it (lines 6–7), otherwise
we retrieve the current optimal solution for the slice and update
related variables accordingly (lines 9–11). Finally, we update the

Frontiers in Big Data | www.frontiersin.org 10 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

Function 1 | PrepareSlices(Sslice)

Input : A set of slices Sslice

1 for each si in Sslice do
2 si.R ← the set of rectangles currently intersecting with

s.i;
3 (si.Sslabs, gmaxub) ← ScanSlab(si.R);
4 SliceUpperBoundBST.update(si.id, gmaxub);
5 si.pc ← null;
6 si.lazy ← false;
7 si.maxregsearched ← false;

global optimal point by comparing it with the local solution
(lines 12–13).

Time-Complexity
In the worst case scenario, all the nodes in SliceUpperBoundBST
are traversed in Function 2. A stack based implementation of in-
order traversal takes O(s) time, and computing the g() function
can take up toO(n) time. Thus, the overall worst-case complexity
for Function 2 isO(sn).

Function 2 | SliceSearchMR(p∗c)

Input : Global maximal point p∗c
Output: Updated global maximal point p∗c

1 cnode ← SliceUpperBoundBST.root;
2 while inorder traversal of SliceUpperBoundBST from cnode is
not done do

3 if cnode.gmaxub ≤ g(A(p∗c)) then
4 break;

5 else
6 if Sslice[cnode.sliceid].maxregsearched = true then
7 p∗

local
← Sslice[cnode.sliceid].pc

8 else
9 p∗

local
← Compute local optimal point ;

10 Sslice[cnode.sliceid].pc ← p∗
local

;
11 Sslice[cnode.sliceid].maxregsearched ← true;

12 if g(A(p∗
local

)) > g(A(p∗c)) then
13 p∗c ← p∗

local
;

14 return p∗c

5.2.3. SolveCMaxRS
Algorithm 1 presents the base method SolveCMaxRS that
retrieves the optimal point p∗c from a snapshot of the database.
p∗c , QTree and SliceUpperBoundBST are initialized, and the dual
rectangles of the given POIs O is computed in lines 1–4. In lines
5–6, we update the QTree by inserting all the dual rectangles in
the structure. Line 7 retrieves the list of slices using the given
width θb. Finally, the method uses Function 1 to initialize the

fields of slices properly in line 8, and computes the C-MaxRS
solution using Function 2 in line 9.

Time-Complexity
Initializing and inserting all the rectangles in the quadtree
takes O(n log n) time along with a random initialization of
SliceUpperBoundBST in O(s). Listing all the slices (line 7) also
takes O(s) time. Using the complexities of PrepareSlices() and
SliceSearchMR() from previous discussion, we can conclude that
worst-case time complexity of Algorithm 1 isO(n log n+ sn).

Algorithm 1 | SolveCMaxRS(O, a, b)

Input : A set of objects O, query size a× b
Output: An optimal point p∗c

1 p∗c ← null;
2 QTree.init();
3 SliceUpperBoundBST.init();
4 R ← the set of a× b rectangles centered at each o ∈ O;
5 for each r ∈ R do
6 QTree.insert(new Node(r));

7 Sslice ← list of slices of width θb;
8 PrepareSlices(Sslice);
9 p∗c ← SliceSearchMR(p∗c);
10 return p∗c

5.3. Event-Based Pruning
Recall that, to cope with the challenges of real-time dynamic
updates of the point space via data streams, we opted for the
event-driven approach rather than the time-driven approach.
Our goal is to maintain correct solution by performing instant
updates during an event. In case of spatial data updates,
a straightforward approach is to use Algorithm 1 whenever
an event occurs. We now proceed to identify specific
properties/states of events (both e+ and e−) that allow us to
prune unnecessary computations while processing them. Note
that, in this settings, a bunch of e+ and e− events can occur at
the same time.

5.3.1. Pruning in e−

To derive an optimization technique for e− events, let us first
establish few related important results.

Lemma 3. Removal of a rectangle re (object oe) from the point
space F never increases the value of g(A(p)) (correspondingly
f (A(p))), ∀p ∈ P.

Proof: Denote the removed rectangle as re. We consider
two cases:

• re ∈ A(p): After the removal of re, the set of rectangles affected
by p becomesA(p)\{re}. Now,A(p)\{re} ⊂ A(p). Hence, from
Theorem 1, g(A(p) \ {re}) ≤ g(A(p)). Thus, the removal in this
case does not increase g(A(p)).

Frontiers in Big Data | www.frontiersin.org 11 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

• re /∈ A(p)): After removal of re, the set of rectangles affected by
p is still A(p). Hence, g(A(p)) remains unchanged. In this case
as well, the removal does not increase g(A(p)).

Similarly, we can show a proof for removing an object—i.e., oe
from F.

Lemma 3 paves the way for the pruning of slices from being
considered a solution at e− events.

Lemma 4. The maximum utility point (global solution) p∗c is
unchanged after the removal of a rectangle re from the space F if
re /∈ A(p∗c).

Proof: Here, re /∈ A(p∗c). Suppose, after removing re, A′(p∗c)
rectangles are affected by p∗c . Note that, A′(p∗c)=A(p

∗
c) (as re /∈

A(p∗c)), implying g(A′(p∗c)) = g(A(p∗c)). Thus, the utility values
of p∗c remains the same. By Lemma 3, the removal of re does
not increase the utility value of p,∀p ∈ P. Suppose, the
utility value of a point p, (p ∈ P and p 6= pc), are g(A(p))
and g′(A(p)), respectively before and after the removal of re,
then g′(A(p)) ≤ g(A(p)). Again, p∗c being the maximal point,
g(A(p)) ≤ g(A(p∗c)), ∀p ∈ P, p 6= p∗c . Above mentioned
inequalities imply that g′(A(p)) ≤ g(A′(p∗c)), ∀p ∈ P, p 6= p∗c ,
meaning p∗c remains unchanged.

Using Lemma 4, we can prune local slice processing at an e−

event, if re /∈ A(p∗c), i.e., we need to only updateQTree in this case.

Lemma 5. The utility value of the maximal point p∗c is changed
after the removal of a rectangle re if re ∈ A(p∗c).

Proof: If p∗c is returned as the maximal point, then g(A(p∗c)) > 0
(i.e., we have a solution). After the removal of re, the set of
rectangles affected by p∗c becomes A(p∗c) − {re}. There are two
possible cases:

• A(p∗c) − {re} conforms to X: In this scenario, g(A(p∗c)) −

g(A(p∗c)− {re}) = |A(p∗c)| − (|A(p∗c)| − 1) = 1.
• A(p∗c)−{re} does not conform toX: Here, g(A(p∗c))−g(A(p∗c)−

{re}) = |A(p∗c)| − 0 = |A(p∗c)|.

In both cases, g(A(p∗c)) is changed.

Lemma 5 implies that, if a rectangle removed at an e− event is
in A(p∗c), we need to re-evaluate local solutions for the respective
slice(s), and update global maximal point if necessary.

Lemma 6. Suppose a point space P is divided into a set of slices
Sslice, and the slice containing the maximum utility point p∗c is smax.
Let, Ss be another set of slices, where Ss ⊂ Sslice and smax /∈ Ss.
Subsequently, the removal of a rectangle re spanning through only
the slices in Ss, i.e., affecting only the local maximum utility values
of si, ∀si ∈ Ss, does not have any effect on the global maximum
utility point p∗c .

Proof: Let p∗
local

be the maximum utility point of a slice si ∈ Ss.
∀p ∈ si where si ∈ Ss, g(A(p∗c)) ≥ g(A(p∗

local
)) and g(A(p∗

local
)) ≥

g(A(p)). According to Lemma 3, after the removal of re, for
any si ∈ Ss, g(A(p − {re})) ≤ g(A(p)). From the above three

inequalities, we can deduce: ∀p ∈ si where si ∈ Ss, g(A(p) −
{re}) ≤ g(A(p∗c)). This holds true ∀si ∈ Ss. Thus, p∗c still remains
the maximum utility point (as smax is not altered), and smax is still
the slice containing p∗c .

Lemma 6 implies that, if the slice containing global maximal
point p∗c is unchanged while some other slices are altered, then
following the update of QTree, we can delay the processing of
altered slices at that time instance as it is not going to affect the
global maximal answer anyway. For this reason, we incorporated
the lazy field in each slice. In this case, we set lazy to true for
each of these altered slices, indicating that they should be re-
evaluated later only when the slice containing global maximal
point is altered.

5.3.2. Pruning in e+

During an e+ event, a rectangle (object) appears in the given
space F. We now present two lemmas, based on which we derive
pruning strategies at e+ events.

Lemma 7. Addition of a rectangle re (object oe) in the given space
F never decreases the value of g(A(p)) (correspondingly f (A(p))),
∀p ∈ P.

Proof: Let the added rectangle be re. We consider two cases:

• re ∈ A(p): After the addition of re, the set of rectangles affected
by p becomesA(p)∪{re}. Now,A(p) ⊂ A(p)∪{re}. Hence, from
Theorem 1, g(A(p) ∪ {re}) ≥ g(A(p)). So, in this case g(A(p))
does not decrease.

• re /∈ A(p)): After addition of re, the set of rectangles affected
by p still remains A(p). Hence, g(A(p)) does not change
as well. Thus, g(A(p)) does not decrease in this scenario
as well.

Similarly, we can show a proof for adding an object—i.e.,
oe to F.

For e− events, we leveraged on ideas like Lemma 3—i.e.,
removal of a rectangle never increases utility value of a point, to
devise clever pruning schemes depending on the fact that local or
global maximal points are guaranteed to be unchanged in certain
scenarios. But, for e+ events, those are not applicable as addition
of a rectanglemay increase utility of affected points. Interestingly,
though, there are scenarios when the utility values are unchanged,
e.g., when A(p) does not conform to X. Also, as shown in the
2nd case of the proof of Lemma 7—we only process a slice if its
affected by the addition of re.

Lemma 8. Suppose, we have a set of classes K = {k1, k2, . . . , km},
and are given corresponding MinConditionSet X =
{x1, x2, . . . , xm}. Let R be the set of rectangles overlapping with a
slice si ∈ Sslice, and let li be the number of rectangles of class ki in
R. Then, addition of a rectangle re of class ki has no effect on the
local maximal solution of si if:
(1) xi − li ≥ 2, or
(2) (∃lj 6= li) xj − lj ≥ 1

Proof: (1) In this settings, the maximum possible utility value of
si before addition of re is 0. Because, even if for a point p ∈ si,

Frontiers in Big Data | www.frontiersin.org 12 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

A(p) = R, then g(A(p))=0 as li < xi and R does not conform to X.
After the addition of re, suppose the number of class ki objects in
R is l′i, i.e., l

′
i=li + 1. As given xi − li ≥ 2, then l′i < xi. Thus, R still

does not conform to X, and maximum possible utility value of si
remains 0.
(2) Similarly, the maximum possible utility value of si before
addition of re is 0. Because, even if for a point p ∈ si, A(p) = R,
then g(A(p))=0 as lj < xi for ∃lj 6= li, and R does not conform to
X. After the addition of re of class ki, lj remains unchanged. Thus,
R still does not conform toX, andmaximum possible utility value
of si remains 0.

Lemma 8 lays out the process of pruning during an e+ event.
For each slice, we maintain an integer value diff (i.e., xi − li)
per class in K denoting whether the corresponding upper-bound
for that class has been met or not. When adding a rectangle of
class ki, for each affected slices, we first check whether diffi ≥ 2,
and if so—we just update diffi and skip processing that slice.
Similarly, if diffi ≤ 1, but for ∃diffj ≥ 1, we can skip the slice.
For example, suppose we have a setting of three classes A, B,
C where X={2, 3, 5}. Suppose a slice contains {2, 1, 4} members
of respective classes. In this case, arrival of a rectangle of class
B or C has no effect on that slice. We incorporate these ideas
in our Algorithm 3 (although, for brevity, we skip details of
implementing and maintaining diff in algorithms).

5.4. Algorithmic Details
We now proceed to augment the ideas from the previous section
in our base solution. We provide the details of two algorithms
SolveCMaxRS− and SolveCMaxRS+, implementing the ideas of
pruning in e− and e+ events, respectively.

Algorithm 2 | SolveCMaxRS− (e−(oe), a, b, p∗c)

Input : An e−(oe) event, query size a× b, and current
maximal point p∗c

Output: Updated maximal point p∗c

1 re ← the a× b rectangle centered at oe;
2 QTree.delete(re);
3 Se ← set of slices intersecting re;
4 Slazy ← set of slices marked lazy;
5 for each si ∈ Se do
6 if before the removal re ∈ A(si.p∗c) then
7 si.lazy ← true;
8 Slazy ← Slazy ∪ {si};

9 smax ←slice containg global p∗c ;
10 if smax.lazy = true then
11 PrepareSlices(Slazy);
12 p∗c ← SliceSearchMR(p∗c);

13 return p∗c

5.4.1. SolveCMaxRS−

In Algorithm 2, we present the detailed method for maintaining
C-MaxRS result during an e− event using the ideas introduced

in section 5.3.1. Firstly, re is retrieved (from oe) and then
deleted from then QTree is updated accordingly (cf. lines 1–2).
Subsequently, in lines 3–4, all the slices intersecting with re is
retrieved and the set of slices marked lazy (Slazy) is initialized.
Lines 5-8 iterate through all the affected slices one by one and
check for each of them to see if the local maximal point si.p∗c is
affected by re—if so, it marks them as lazy for future update and
also adds them to Slazy. If the slice containing global maximal
point i(i.e., smax) is not affected, then the processing of slices in
Slazyi skipped (pruning) in lines 9–12. Otherwise, if pruning is not
possible, necessary computations are carried out in lines 11–12.

Time-Complexity
Deleting from a quadtree takes O(log n) time (line 2). Listing all
the intersecting and lazy slices in worst cases will generate O(s)
computations (lines 3–4). Iterating over all the overlapped slices
and computing g() takes upO(sn) times in worst case (lines 5–8).
If pruning is not possible, the complexities of PrepareSlices() and
SliceSearchMR() adds up too (lines 10-12). The overall worst-case
time complexity of Algorithm 2 isO(sn+ s+ log n+ sn+ sn)—or,
in short,O(sn).

5.4.2. SolveCMaxRS+

In Algorithm 3, we initially retrieve the dual rectangle re
associated with the event and update QTree by inserting re as a
new node in lines 1–2. Then, the set of slices affected by re is
computed and Slazy is initialized in lines 3–4. We introduce a
Boolean variable isPrunable in line 5 to track whether Lemma 8
can be applied or not. Lines 6-10 iterate through all the affected
slices one by one, an checks: if si.R now conforms to X and makes
change accordingly (modifies isPrunable), and sets up si.lazy and
list Slazy properly. Lines 11–12 prunes the event if conditions of
Lemma 8 is satisfied, i.e., if isPrunable = true then the global
maximal p∗c needs no update. Otherwise, it processes C-MaxRS
on the snapshot (lines 13–14).

Time-Complexity
The analysis of lines 1–4 here is similar to Algorithm 2. Iterating
over all the intersecting slices and checking the constraints takes
up O(s × |X|) times in worst case. So, if pruning is possible,
the time-complexity of Algorithm 3 is O(s × |X| + s + log n)
time (faster than pre-pruning stage of Algorithm 2). But, in worst
case, if pruning is not possible, then the complexity will beO(sn)
(similar to Algorithm 2).

6. WEIGHTED C-MAXRS

In the discussions so far, we only considered the counting variant
of the C-MaxRS problem, i.e., the weights of each participating
object are all equal to 1.While we have noted the portability of the
results, in this section, we explicitly show how the algorithms and
pruning schemes proposed thus far should be modified to cater
to the case when the objects can have different weights. Firstly,
we appropriately revise the definitions of f , g, and C-MaxRS-DU
to allow different weights, and show that it does not affect the
monotonicity and non-submodularity of f and g. Subsequently,
we outline the modifications for the pruning schemes for the

Frontiers in Big Data | www.frontiersin.org 13 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

Algorithm 3 | SolveCMaxRS+ (e+(oe), a, b, p∗c)

Input : An e+(oe) event, query size a× b, and current
maximal point p∗c

Output: Updated maximal point p∗c

1 re ← the a× b rectangle centered at oe;
2 QTree.insert(new Node(re));
3 Se ← set of slices intersecting re;
4 Slazy ← set of slices marked lazy;
5 isPrunable ← true;
6 for each si ∈ Se do
7 if after the addition R ∪ re conforms to X then
8 si.lazy ← true;
9 isPrunable ← false;
10 Slazy ← Slazy ∪ {si};

11 if isPrunable = true then
12 return p∗c

13 PrepareSlices(Slazy);
14 pc ← SliceSearchMR(p∗c);
15 return p∗c

weighted version. While there are no major changes incurred in
the fundamental algorithmic aspects, we note that weights may
have impact on the pruning effects, as illustrated in section 8.

6.1. Redefining f, g, and C-MaxRS-DU
f w: Let us define a set of POIClass K = {k1, k2, . . . , km}, where each
ki ∈ K refers to a class of objects. Suppose, O = {o1, o2, . . . , on} is
the set of objects (POIs), and the setW = {w1,w2, . . . ,wn}, where
wi > 0, ∀wi ∈ W, contains the weight values of all POIs, i.e., the
weight of an object oi is wi. In this setting, each object oi ∈ O is
represented as a (location, class, wi) tuple at any time instant t.
We denote a set X= {x1, x2, . . . , xm} as MinConditionSet, where
|X| =|K| and each xi ∈ R+ denotes the desired lower bound
of the weighted-sum of the objects of class ki in the interior of
the query rectangle r, i.e.,

∑∀oi
oi∈r∧oi.class=ki

wi. Thus, the optimal
region must have objects of class ki whose weights add up to at
least xi. Let us define lwi , a non-negative real number, for a given
set of objects O as follows:

lwi =

∀oj
∑

oj∈O∧oj .class=ki

wj.

Subsequently, we can define a utility function f w(O) :P(O) →

N0, mapping a subset of spatial objects to a non-negative real
number as below,

f w(O) =

{

(
∑|K|

i=1 l
w
i), if ∀i ∈ {1, 2, 3, ..., |K|}, lwi >= xi

0, if ∃i ∈ {1, 2, 3, ..., |K|}, lwi < xi.

C-MaxRS-DU: Let us denote the rectangle r centered at point p
as rp, and Orp as the set of spatial objects in the interior of rp. We
can now define C-MaxRS-DU as follows (including the weights):

Conditional-MaxRS for Data Updates (C-MaxRS-DU): Given
a rectangular spatial field F, a set of objects of interests O
(bounded by F) and their corresponding set of weight values
W, a query rectangle r (of size a × b), a set of POIClass K
= {k1, k2, . . . , km}, a MinConditionSet X = {x1, x2, . . . , xm}, and
a sequence of events E={e1, e2, e3, . . .} (where each ei denotes
the appearance or disappearance of a point of interest), the C-
MaxRS-DU query maintains the optimal location (point) p∗ for r
such that:

p∗ = argmaxp∈Ff
w(Orp)

where Orp ⊆ Oe for every event e in E of the data stream.
gw: Similar to the function g, we can introduce gw as a bijection
of f w, i.e., for a set of rectangles Rk = {r1, r2, . . . , rk}, let g

w(Rk) =
f w({o1, o2, . . . , ok}). g

w
:P(R) → R0 maps a set of dual rectangles

to a non-negative real number (weighted-sum).

6.2. Monotonicity and Non-submodularity
of fw and gw

As we definewi ∈ W as a positive real number, the weighted-sum
of a set of objects—

∑

oi
wi, is also a positive real number. This is

similar to the counting variant of the problem. Thus, using the
similar logic as Lemma 1 and Lemma 2, we derive the following:

Lemma 9. Both f w and gw are monotone functions.

Lemma 10. None of f w and gw is a submodular function.

The proofs follow the similar intuition as the corresponding
proofs of Lemma 1 and Lemma 2 and are omitted –however,
we proceed with discussing their implication in a more detailed
manner next.

6.3. Discussion
Lemma 9 and Lemma 10 show that the properties of the utlity
functions remain same, for both counting and weighted version.
Subsequently, we can derive the following:

Lemma 11. Removal of a rectangle re (object oe) from the point
space F never increases the value of gw(A(p)) (correspondingly
f w(A(p))), ∀p ∈ P.

Lemma 11 can be proved in similar way as the proof of Lemma 3,
as f w and gw are also monotonous. Thus, Lemma 11 validates the
other necessary lemmas (i.e., Lemma 4, 5, and 6) related to the
e− pruning scheme. This shows that we can solve the problem of
an e− event, for an object oe (rectangle re) and its weight we, by
using the same algorithm SolveCMaxRS−. For the e+ event, we
present the following lemmas: (skipping proof for brevity)

Lemma 12. Addition of a rectangle re (object oe) in the given
space F never decreases the value of gw(A(p)) (correspondingly
f w(A(p))), ∀p ∈ P.

Lemma 13. Suppose, we have a set of classes K = {k1, k2, . . . , km},
and are given corresponding MinConditionSet X =
{x1, x2, . . . , xm}. Let R be the set of rectangles overlapping with a
slice si ∈ Sslice, and let l

w
i be the weighted-sum of rectangles of class

Frontiers in Big Data | www.frontiersin.org 14 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

ki in R. Then, addition of a rectangle re of class ki has no effect on
the local maximal solution of si if:
(1) xi − lwi > we, or
(2) (∃lj 6= li) xj − lwj > 0

Lemmas 12 and 13 demonstrates that an e+ event, for an object
oe (rectangle re) and its weight we, can be processed similarly via
SolveCMaxRS+ algorithm.

7. C-MAXRS IN BURSTY UPDATES

In many spatial applications, the data streaming rate often varies
wildly depending on various external factors—e.g., the time of
the day, the need of the users, etc. A peculiar phenomenon in
such cases is the, so called, bursty streaming updates—which is,
the streaming rate becomes unusually high and a large number
of objects appearing or disappearing in a very short interval.
In such scenarios, instead of processing every single update, we
assume that the update streams are gathered for a period of time.
The C-MaxRS-DU algorithm is based on sequential processing
of events, and thus, its efficiency is particularly sensitive to the
bursty input scenario. In this section, we first briefly discuss the
challenges of processing bulk of events via Algorithm 2 and 3,
and argue that a different technique is necessary. Subsequently,
we propose additional data-structures and a new algorithm, C-
MaxRS-Bursty, to maintain C-MaxRS during bursty streaming
updates scenarios. Finally, we briefly discuss how our proposed
scheme can be utilized in a distributed manner, for the purpose
of further improvements in scalability.

7.1. Challenges
As per the algorithms presented in section 5, Algorithm 2
(SolveCMaxRS−) and Algorithm 3 (SolveCMaxRS+) are used to
deal with any new e− and e+ event, respectively. The worst
case time complexity of both the algorithms is O(sn). Let us
denote γ as the average streaming (a.k.a. bulk-updates) rate
during a bursty stream scenario, i.e., γ events (both e+ and
e−) occur simultaneously per time instance. In this setting,
the worst-case complexity of processing these events using C-
MaxRS-DU is O(γ sn). We note that, due to the effectiveness of
the pruning schemes, the average processing time is considerably
faster than the worst case complexity presented here (details in
section 8). However, the overhead of performing Algorithm 2 and
Algorithm 3 γ times is still significant, specially when fast and
accurate responses are required. For example, line 3 of Algorithm
2 takes O(s) time to find the slices Se that intersect with the
new event rectangle re. Instead of computing this γ times (i.e.,
γ × O(s)), it would be better if we scan the list of slices only
once, and retrieve all the slices that are affected by the new γ

events in one pass. Moreover, if the slice containing global p∗c ,
i.e., smax, is affected by multiple events, then PrepareSlices() and
SliceSearchMR() would be redundantly processed multiple times.
Hence, the intuition is that we can get rid of these overheads by
dealing with the bursty events aggregately.

To this end, we propose an additional data structure (e.g.,
a spatial index) and devise an efficient algorithmic solution. In
section 8, we demonstrate via experimental observations that,

for a sufficiently large value of γ , C-MaxRS-Bursty outperforms
the event-based processing scheme by an order of magnitude.
The basic idea is as follows: we first create a modified slice-
based index, Sindex for newly occurring γ events (appearing or
disappearing objects). Then, we directly add/remove these new
events over the existing slice structure Sslice in one iteration,
and check the pruning conditions for each slice only once. We
describe these ideas in the following section.

7.2. Additional Data Structures
The first step, when handling bursty data updates, is to index the
new events based on the locations of their related objects. This
allows us later to efficiently retrieve all the new events related to
each slice si ∈ Sslice. Any well-known indexing scheme may be
used, e.g., R-tree, Quad-tree, Grid indexing (cf. Ooi et al., 1993;
Šidlauskas et al., 2009), etc. To take advantage of the already
introduced slice data structure, we propose to use slice-based
indexing for the new data. Slice indexing is, basically, a special
version of the p × q grid-indexing—where q = 1. Suppose, Sindex
represents the slice index of new appearing/disappearing objects.
Then, we can create Sindex as a duplicate of Sslice, i.e., width of
each slice in Sindex is also θ × b (where, θ > 1) and |Sindex| =
|Sslice| = s. An example of the proposed slice indexing is given
in Figure 5. Suppose, there are 10 new events occurring at the
same time—7 e+ and 3 e−, and there are three slices which
enclose these event locations. Note that, by event location, we
mean the location of the appearing/disappearing object related
to the event. In Figure 5i, Slice1, Slice2, Slice3 has, respectively, 3,
4, 3 new events falling within their boundary.

As described in section 5, each of the slices in Sslice track the
corresponding rectangles intersecting with them, in addition to
the list of maximal slabs, local optimum points and the other
attributes. Sindex, in turn, indexes new events over the slices. An
event e, corresponding an object oe, is exclusively enclosed by
exactly one slice in Sindex, although the rectangle re can overlap
withmultiple slices. This is illustrated in Figure 5ii. Based on this,
we can divide the interior of each slice into three regions:

• Left-overlapping Region (lr): Rectangles of events in this
region overlaps with the left neighboring slice. Width of lr is
b
2 . In Figure 5ii, events in lr of Slice2 impact the processing of
Slice1 too.

• Non-overlapping Region (nr): Rectangles of events in this
region are fully enclosed within the slice itself. nr is (θ − 1) × b
wide, i.e., always non-empty as θ > 1.

• Right-overlapping Region (rr): Rectangles of events in this
region overlaps with the right neighboring slice. Width of rr,
similar to lr, is b

2 . In Figure 5ii, events in rr of Slice2 is also a part
of the processing of Slice3.

Based on the discussion above, each slice si ∈ Sindex is
represented as a 4−tuple (seq_num, Elr ,Enr ,Err). The role of each
attribute is as follows:

• seq_num: An integer value assigned to the slice. This encodes
the boundary of the slice. For a slice si, the horizontal extent of
si is represented by [(seq_numi − 1)× θb, seq_numi × θb).

• Elr : The set of new events in the lr region of the slice.
• Enr : The set of new events in the nr region of the slice.

Frontiers in Big Data | www.frontiersin.org 15 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

FIGURE 5 | (i) Slice indexing over new data and (ii) Regions within a slice.

• Err : The set of new events in the rr region of the slice.

Note that, both Sindex and Sslice can be merged into one giant
slice data structure during implementation. We present them as
separate structures here, so that the background motivation and
complexity analysis can be clearly demonstrated in the text, i.e.,
the objective of these two structures are different—Sslice divides
the space and overall computation in small slices, while Sindex is
used only to efficiently index a set of new events.

7.3. Processing Bursty Updates
When a collection of new e+ and e− events occur at a time
instant, the first step is to initialize and built the slice index
Sindex. Function 3 shows the steps used to build the index
from scratch over the new data. In line 1, Sindex and seq_num
of its slices are initialized. The other attributes of each slice
si ∈ Sindex is initialized in lines 2–3, i.e., all event lists (based
on the region) are set to an empty list. Lines 4–11 iterate
though each new events from Enew and set the index attributes
accordingly. In line 5, the function retrieves the slice to which
oe belongs, which can be computed in O(1) time. Lines 6–11
find which region oe is in, and add the corresponding event to
the appropriate list. Finally, the newly created index Sindex is
returned in line 12. The operations from lines 1–3 takes O(s)
time, and lines 4–11 takes O(γ) time, where γ is the bursty
updates rate. The processing cost of Function 3 is O(γ) +

O(s). If we assume γ > s, then the overall time-complexity
isO(γ).

Algorithm 4 shows the steps of our approach for handling a
set of new bursty events Enew, where |Enew| = γ . We combine the
pruning ideas of Algorithm 2 and 3, and ensure that PrepareSlices
and SliceSearchMR functions are only called once for these γ

new events. In line 1, we use the BuildIndex function to prepare
the slice index over the new data in O(γ) time. We initialize

Function 3 | BuildIndex(Enew, θ , b)

Input : A set of new events Enew, slice-width constant θ ,
and query width b

Output: Newly build index Sindex

1 Sindex ← initialize a list of slices and their seq_num (width =
θb);

2 for each si in Sindex do
3 si.Elr , si.Enr , si.Err ← { };

4 for each e in Enew do
5 se ← the slice oe is in;
6 if oe ∈ se.lr then
7 se.Elr ← se.Elr ∪ e;

8 else if oe ∈ se.rr then
9 se.Err ← se.Err ∪ e;

10 else
11 se.Enr ← se.Enr ∪ e;

12 return Sindex

Slazy, isPrunable, and prev in lines 2–4. The idea is to traverse
the slices from Sslice in one direction, e.g., from left to right. The
main idea is that for each slice si of Sslice, we retrieve the required
information of new events from the slice-index Sindex. The goal is
to make sure that we query information of each slice from Sindex
only once throughout the process. In this regard, we maintain
3 variables—prev, cur, and next—representing the seq_num − 1,
seq_num, and seq_num + 1 slices from Sindex (new information)
any time. Initially, in lines 4–6, cur is set to the left-most slice, and
prev is set to null as there is no slice before that value of cur.

Frontiers in Big Data | www.frontiersin.org 16 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

Lines 7–29 iterate though each of the slices si from Sslice in
order (e.g., left to right). At first, information for the (i + 1)-th
slice index is retrieved into next. In line 9, all the related new
events of si is stored in Ecurslice, which is the union of new objects
in cur region, and prev.rr and next.lr region (cf. Figure 5ii). In
line 10, we check if there are any new events that overlap with
the current slice si—otherwise we move on to the next slice.

Algorithm 4 | SolveCMaxRSBursty (Enew, a, b, θ , p∗c)

Input : A set of new events Enew, query size a× b,
slice-width constant θ , and current maximal point
p∗c

Output: Updated maximal point p∗c

1 Sindex ← BuildIndex(Enew, θ , b);
2 Slazy ← set of slices marked lazy;
3 isPrunable ← true;
4 prev ← NULL;
5 /* retrieve the leftmost slice in Sindex

into cur */
6 cur ← Sindex.get(1);
7 for each si ∈ Sslice from left to right (i = 1, 2, . . .) do
8 next ← Sindex.get(i+ 1);
9 Ecur_slice ← prev.Err∪next.Elr∪cur.Elr∪cur.Enr∪cur.Err ;
10 if |Ecur_slice| > 0 then
11 /* processing the e+ events of the

current slice */
12 for each e+ ∈ Ecur_slice do
13 re ← the a× b rectangle centered at oe;
14 QTree.insert(re);
15 si.R ← si.R ∪ re

16 /* processing the e− events of the
current slice */

17 for each e− ∈ Ecur_slice do
18 re ← the a× b rectangle centered at oe;
19 QTree.delete(re);
20 if before the removal re ∈ A(si.p∗c) then
21 si.lazy ← true;
22 Slazy ← Slazy ∪ {si};

23 si.R ← si.R− re;

24 if atleast one e+ in Ecur_slice and si.R conforms to X
then

25 isPrunable ← false;
26 si.lazy ← true;
27 Slazy ← Slazy ∪ {si};

28 prev ← cur;
29 cur ← next;

30 smax ←slice containg global p∗c ;
31 if smax.lazy = true or isPrunable = false then
32 PrepareSlices(Slazy);
33 p∗c ← SliceSearchMR(p∗c);

34 return p∗c

In lines 12–15, we iterate through the e+ events of si—retrieve
re, insert re in the QTree and add re to si.R for each of them.
Similarly, lines 16–23 iterate over the e− events of si, although
re is deleted from QTree and si.R in this case. Also, lines 20–22
ensure that si.lazy is set to true and si is added to Slazy if re overlaps
with the local optimum solution. Lines 28 and 29 updates the
prev and cur variables appropriately, and line 30 retrieves the
slice smax containing the global solution. We need to recompute
global solution whenever smax.lazy = true or isPrunable = false
(cf. lines 31 - 33). Finally, the newly computed (or, if pruned,
the old) p∗c is returned in line 34. In Algorithm 4, each new
event is only processed at most 2 times, because θ > 1 and a
rectangle re can only overlap with at most two slices. Thus, the
overall time-complexity of lines 1–30 of Algorithm 4 is O(γ).
Also, PrepareSlices and SliceSearchMR is only processed once for
all the new events, instead of worst case γ times via Algorithms
2 and 3. For large values of N, the overall processing time of
Algorithm 4 is consumed by the execution time of PrepareSlices
and SliceSearchMR.

7.4. Discussion
We presented a slice-based simplified indexing scheme in this
section to process a set of bursty events. As slice-indexes are
a specialized grid-indexing (see Ooi et al., 1993), they can
be implemented both as main-memory or external-memory
based. We implemented the proposed slice-indexing in main
memory for our experiments. The reason is two- fold. (1)
Many recent works such as Kipf et al. (2020) and Šidlauskas
et al. (2009) have shown that main-memory indexes are usually
necessary to provide high update and build performance—
which is paramount in dealing with bursty updates scenarios;
and (2) In our experiments, we vary γ from 100 to 100k —
which can be stored in-memory. Although, we note that, in
extreme scenarios (e.g., Facebook users) where the number of
total objects as well as bursty objects surpass the main memory
storage capacity of servers, external memory implementations
and parallel processing of indexes would be necessary. Many
works such as Kamel and Faloutsos (1992) and Kim et al.

TABLE 1 | Parameters.

Parameter name and

symbol

Possible values Default value

Object distribution Uniform, Gaussian Gaussian

Number of objects, N 10k, 20k, 30k, 40k, 50k, 60k,

70k, 80k, 90k, 100k, 200k

50k

Number of POIClass, β 3, 4, 5, 6, 7 5

Min count (per class), µ 1, 2, 3, 4, 5 3

Query area, λ (in m2) 100, 225, 400, 625, 900 400

Theta (θ) 1, 2, 3, 4, 5 3

Shape of R, b : a 0.25,0.5,1,2,4 1

Weight, wi [1, 10] 1

Bursty updates rate, γ 100, 250, 500, 1k, 2.5k, 5k, 10k,

20k,

1k

30k, 40k, 50k, 60k, 70k, 80k,

90k, 100k

Frontiers in Big Data | www.frontiersin.org 17 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

(2013) presented parallel processing techniques for R-trees
and range queries. Kamel and Faloutsos (1992) developed
a simple hardware architecture consisting of one processor
with several disks to parallelize R-tree processing, where R-
tree code is identical to the one for a single-disk R-tree with
minimal modifications. Zhong et al. (2012) proposed a novel
architecture named VegaGiStore, to enable efficient spatial query
processing over big spatial data and concurrent access, via
distributed indexing and map-reduce (cf. Dean and Ghemawat,
2008) technique. Recently, SpatialHadoop (Eldawy and Mokbel,
2015) provides a library to perform map-reduce based parallel
processing for many spatial operations, including R-tree and
grid indexing. We can modify the grid indexing parameters
for SpatialHadoop to convert it into a slice-indexing in a
straightforward manner. In this way SpatialHadoop can be useful

for static scenarios (e.g., Basic C-MaxRS), though the extension
to handle dynamic or bursty scenarios is not straight-forward.
We note that, Hadoop (Shvachko et al., 2010) and map reduce
procedure has a significant overhead, i.e., these will be only be
useful if there are a huge number of bursty events, as well as a lot
of resources (Hadoop nodes) available.

8. EXPERIMENTAL STUDY

In this section, we evaluate the performance of our algorithms.
Since there are no existing solutions, to evaluate our solutions
to the C-MaxRS-DU problem, we extended the best known
MaxRS solution to cater to C-MaxRS-DU (see section 5.2—i.e.,
processing the C-MaxRS at each event without any pruning)
and used it as a baseline. For bursty streams, we compare

FIGURE 6 | (i) Varying N for Gaussian. (ii) Varying N for Uniform. (iii) Varying θ for Gaussian. (iv) Varying θ for Uniform.

Frontiers in Big Data | www.frontiersin.org 18 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

the performance of C-MaxRS-Bursty and C-MaxRS-DU, i.e.,
C-MaxRS-DU becomes the baseline then.
Dataset: Due to user privacy concerns and data sharing
restrictions, very few (if any) authentic large categorical
streaming data (with accurate time information) is publicly
available. Thus, we used synthetic datasets in our experiments to
simulate spatial data streams. Data points are generated by using
both Uniform and Gaussian distributions in a two-dimensional
data space of size 1, 000 × 1, 000m = 1km2. To simulate the
behavior of spatial data streams from these static data points,
we use exponential distribution with mean inter-arrival time of
10s and mean service time of 10s. Initially, we assume that 60%
of all data points have already arrived in the system, and use
this dataset for static part of evaluation. The remaining 40% of
the data points arrive in the system by following exponential

distribution as stated earlier. Any data point that is currently
in the system, can depart after being served by the system. For
experiments related to C-MaxRS-Bursty, we select γ number of
events (either in Gaussian or uniform distribution) at any time
instant to emulate bursty inputs.
Parameters: The list of parameters with their ranges, default
values and symbols are shown in Table 1.
Settings: We have used Python 3.5 programming language to
implement our algorithms. All the experiments were conducted
in a PC equipped with intel core i5 6500 processor and 16 GB
of RAM. We measure the average processing time of monitoring
C-MaxRS in various settings. We also compute the performance
of Static C-MaxRS computation. In the default settings, the
processing time for Static C-MaxRS is 85.86 s. Note that, we
exclude the processing time for static C-MaxRS computation

FIGURE 7 | (i) Varying λ for Gaussian. (ii) Varying λ for Gaussian. (iii) Varying β for Gaussian. (iv) Varying β for Uniform.

Frontiers in Big Data | www.frontiersin.org 19 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

in further analysis as this part is similar for both baseline and
our approach.

8.1. Performance Evaluation: Event-Based
Scenario
We now present our detailed observations over different
combinations of the parameters for non-bursty scenario
(i.e., C-MaxRS-DU).

8.1.1. Varying Number of Objects, N
In this set of experiments, we vary the number of objects,
N, from 10K to 100K (denoted 1–10, respectively, in Figure 6
for brevity, i.e., each label of x-axis needs to be multiplied
by 10k), and compare our algorithm with the baseline for
different N using both Gaussian and Uniform distributions.
Figure 6i shows that for Gaussian distribution, the average
processing time for our approach (in seconds) increases
quadratically (semi-linearly) with the number of objects, whereas

the processing time of baseline increases exponentially with
the increase of N. For Gaussian distribution, on average our
approach runs 3.08 times faster than the baseline algorithm.
For Uniform distribution, on an average our approach runs
3.23 times faster than the baseline algorithm (Figure 6ii).
We also observe that our approach outperforms the baseline
in a greater margin for a large number of objects as
processing time of our approach increases linearly with N for
Uniform distribution.

8.1.2. Varying Theta (θ)
Figures 6iii,iv compare the performance of our approach with
the baseline by varying theta (θ) for Gaussian and Uniform
distributions, respectively. We observe that for both distributions
the processing time of baseline algorithm increases at a higher
rate than our algorithm, with the increase of θ . Moreover,
in all the cases, our approach significantly outperforms the
baseline algorithm in the absolute scale/sense. On the average,

FIGURE 8 | (i) Varying µ for Gaussian. (ii) Varying µ for Uniform. (iii) Varying b:a for Gaussian. (iv) Varying b:a for Uniform.

Frontiers in Big Data | www.frontiersin.org 20 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

our approach runs 3.37 and 3.31 times faster than the baseline
in Gaussian and Uniform distributions, respectively.

8.1.3. Varying λ - the Area of the Query Rectangle
The impact of varying the area of the query rectangle on the
average processing times of our approach and baseline algorithm,
is shown in Figures 7i,ii. For Gaussian distribution, on an
average our approach shows 2.22 times better performance than
the baseline approach. Similarly, in Uniform distribution, our
approach runs 2.25 times (on average) faster than the baseline.
Additionally, note that, as the area of query rectangle increases,
corresponding processing time increases as well—due to the
possibility of a dual rectangle intersecting with more slices (and
other dual rectangles).

8.1.4. Varying POIClass Count, β

The average processing time of our approach and the baseline
for varying POIClass Count, β is shown in Figure 7 [Gaussian
(iii) and Uniform (iv)]. We observe that the processing time
is maximum for the initial case where POIClass Count, β is
minimum. Also, we can see that for the both distributions,
the processing time decreases with increasing value of β—i.e.,
handling larger number of classes is faster. On an average our
approach runs 3.45 times faster than the baseline algorithm for
Gaussian distribution of dataset. In case of Uniform distribution
of data, our approach runs 3.06 times faster than the baseline.

8.1.5. Varying Min Class Count, µ

Figures 8i,ii show the average processing time of our approach
and the baseline by varying Min Class Count, µ. Figures show
that for both Gaussian and Uniform distributions, our approach
outperforms the baseline significantly. We observe that on an
average our approach runs 3.09 and 3.21 times faster than the
baseline for Gaussian and Uniform distributions of dataset,
respectively. We also note that, the processing time for our
approach is largely unaffected by the varying µ values.

8.1.6. Varying Shape of R, b:a
By default, we have used b : a = 1 in other experiments, i.e.,
R is square-shaped. In this experiment, we investigate whether
varying the shape of R, i.e., changing the ratio between its
width and height, has any effects on the processing time of C-
MaxRS-DU. In Figure 8iii for Gaussian distribution, as width
(b) of R is increased, the processing time increases too. This is
because, we use θ × b as the slice width and as b increases,
number of slices s decreases—reducing the benefits of spatial
subdivision. Interestingly, similar trend is not observed in the
uniform settings. We note that, in all cases, our approach runs
faster than the baseline. In case of Uniform distribution (see
Figure 8iv), our approach outruns the baseline approach by 2.99
times on average. In case of Gaussian distribution, our approach
outruns the baseline approach by 2.82 times on average.

8.1.7. Comparing Pruning Rules
In this set of experiments, we compare the performance of the
different components of our approach. First, we have extended
the static C-MaxRS algorithm to handle spatial data streams,
which we call the baseline. Then we introduce two pruning
rules, one for the appearance event, e+-Pruning and the other
for disappearance event, e−-Pruning. Finally, we combine both
pruning rules to design our approach.

From Figure 9, we can see that e+-Pruning scheme gives
8.25% performance gain from the baseline algorithm for
Gaussian distribution and gives 8.56% performance gain from
the baseline algorithm for Uniform distribution of data. The e−-
Pruning scheme provides almost 62.49% performance gain from
the baseline for Uniform distribution and 63.01% performance
gain from the baseline algorithm for Gaussian distribution.

We also perform this experiment using weighted objects,
where each object is assigned with a random weight. We vary
the weights of the objects from 1 to 10. In Figure 10, we see
similar trends among the evaluated algorithms. Also, we note

FIGURE 9 | Comparing pruning rules (Unweighted Objects) (i) Gaussian and (ii) Uniform.

Frontiers in Big Data | www.frontiersin.org 21 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

that, the processing time is faster for the weighted experiments.
It is because, due to the variance in the weights of objects, more
events can be pruned easily. This experiment also validates our
analysis in section 6.

8.2. Performance Evaluation: Bursty
Streaming Updates
We now present our detailed observations over different
combinations of the parameters for bursty updates (i.e., C-
MaxRS-Bursty vs. C-MaxRS-DU).

8.2.1. C-MaxRS-Bursty vs. C-MaxRS-DU
We present the performance comparison (over both distribution
of data) for C-MaxRS-DU and C-MaxRS-Bursty in Figure 11 in
default settings (i.e., γ = 1000). We can see that C-MaxRS-Bursty
is way more efficient than C-MaxRS-DU in handling bursty
streams in both distributions, i.e., C-MaxRS-Bursty is almost 5
and 10 times faster than C-MaxRS-DU in the default settings for
uniform and Gaussian distribution of data, respectively.

8.2.2. Varying γ

We change the value of the bursty streaming rate, γ , from 100 to
5,000. Figure 12 shows the total processing time (in seconds) of
γ events together. In Figure 12i (uniform distribution), initially
when γ = 100, C-MaxRS-DU (2.99 s) performs better than
C-MaxRS-Bursty (3.51s). But, for γ = 250, C-MaxRS-Bursty
performs faster, i.e., 7.4 vs. 4.88 s. Thus, for this setting, there
is a value of γ in-between 100 and 250, after which C-MaxRS-
Bursty starts out-performing C-MaxRS-DU. This aligns with our
intuition that for cases where γ is not too high, C-MaxRS-DU
gives us the optimal performance, whereas, C-MaxRS-Bursty is
more efficient as γ increases.

In Figure 12, as the value of γ increases, the processing
time for C-MaxRS-DU increases exponentially, but the increase

in C-MaxRS-Bursty is linear. C-MaxRS-Bursty outperforms C-
MaxRS-DU by 5.89 times on average for uniform distribution of
data, and by 10.94 times in case of Gaussian distribution of data.
This experiment shows the effectiveness of C-MaxRS-Bursty for
high streaming data.

8.2.3. Varying N

Subsequently, we vary the value of N, i.e., number of objects,
and preset the results in Figure 13. Processing times of both
the algorithms increase with the increasing cardinality, although,
we note that the increase in C-MaxRS-Bursty is much slower.

FIGURE 11 | Comparing C-MaxRS-DU and C-MaxRS-Bursty for

default settings.

FIGURE 10 | Comparing pruning rules (Weighted Objects) (i) Gaussian and (ii) Uniform.

Frontiers in Big Data | www.frontiersin.org 22 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

FIGURE 12 | Varying γ (i) Gaussian and (ii) Uniform.

FIGURE 13 | Varying N (i) Gaussian and (ii) Uniform.

C-MaxRS-Bursty outperforms C-MaxRS-DU by 5.60 times
on average for uniform distribution of data. For Gaussian
distribution, C-MaxRS-Bursty outperforms C-MaxRS-DU by
11.34 times on average.

8.2.4. Scalability of C-MaxRS-Bursty
In the final experiment, we show the effect of larger γ values
on C-MaxRS-Bursty in Figure 14. We also use a larger value
of N for this experiment–i.e., the value of γ is varied from
10, 000 to 100, 000, and the total number of objects N is
set to 200, 000. We omit the performance of C-MaxRS-DU
for this experiment as the processing time for large γ values
is exponentially high (to avoid skewing the graph). We can
see that, the results in Figure 14 illustrate similar trend as

Figure 12, even though we used significantly larger values of
γ and N. For both distributions, processing time increases
only slightly as the value of γ increases. For example, in
Figure 14i, for a 10 times increase of γ value (from 10 k to
100k), the processing time only increases by 1.4 times (from
124.2 to 174.3 s). Same is true for uniform distribution (cf.
Figure 14i), where this increase is even less (1.27 times, i.e.,
from 95.1 to 124.8 s). We also note that, the bulk of the
processing time of C-MaxRS-Bursty is consumed by lines 32–
33 of Algorithm 4–i.e., executing the function PrepareSlices and
SliceSearchMR. These results demonstrate the scalability of C-
MaxRS-Bursty – where it is ensured that recomputation (i.e.,
lines 32–33) is performed only once (in worst case) instead
of γ times.

Frontiers in Big Data | www.frontiersin.org 23 June 2020 | Volume 3 | Article 20

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

FIGURE 14 | Varying γ in larger scale (i) Gaussian and (ii) Uniform.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new variant of MaxRS query,
namely Conditional Maximizing Range-Sum (C-MaxRS) query
in spatial data streaming updates for both non-weighted and
weighted objects. Initially, we simply adapted the traditional
MaxRS settings to incorporate conditional constraints of
different class of objects. However, to handle data updates (i.e.,
appearance and disappearance of objects) with class-awareness,
we needed additional spatial data structures, quadtree and a
variant of self-balancing binary tree (e.g., we used AVL-tree),
which enabled our algorithm to efficiently compute the changes
in the result for different partitions (or slices) of the dataspace.
To further improve the overall time-efficiency, we developed two
pruning rules: one to handle the appearance of an object and the
other to handle disappearance of an object while updating C-
MaxRS results. Additionally, to accommodate a different kind of
applications settings where a bursty stream of data updates occur
in a short time interval, we have proposed a novel technique,
C-MaxRS-Bursty to efficiently compute the C-MaxRS results via
bulk updates handling. We considered a large parameters space
and conducted extensive set of experiments. In sequential spatial
data stream scenario, our approach, C-MaxRS-DU yields three
to four times improvements (on average) in terms of processing
time, when compared to the baseline algorithm. We have also
observed that in a bursty scenario, our approach C-MaxRS-
Bursty outperforms our one-at-a-time approach, C-MaxRS-DU,
by 5–10 times.

There are several immediate extensions to our work. Firstly,
we would like to investigate the trade-offs arising when there
is a constraint between the time-instant of a particular update
and the update of the answer. This, in some sense, may require

a new approach where the bulk update algorithms and data
structures proposed in this work will need to be adapted to
handle dynamic invocations (e.g., when the buffer of new data
reaches certain capacity). Complementary to this, we plan to
investigate the C-MaxRS inmore traditional streaming settings—
i.e., when there is a constraint on the memory and the arrival rate
is explicitly taken in consideration. In such cases, relying on data
sketches may be inevitable (similar to Cormode, 2017). Lastly,
we are investigating the variations of C-MaxRS where different
kinds of mobility may need to be incorporated—for both the
users (cf. Hussain et al., 2017a) and the query rectangle (e.g., in
the Loon Project settings), as well as the mutual dependencies
of both.

DATA AVAILABILITY STATEMENT

The datasets and the code used in the experiments are publicly
available at: https://users.cs.northwestern.edu/~mmh683/
project-works/Conditional-MaxRS-Streams/.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This research was supported by the NSF Grants III 1213038 and
CNS 1646107.

Frontiers in Big Data | www.frontiersin.org 24 June 2020 | Volume 3 | Article 20

https://users.cs.northwestern.edu/~mmh683/project-works/Conditional-MaxRS-Streams/
https://users.cs.northwestern.edu/~mmh683/project-works/Conditional-MaxRS-Streams/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

ACKNOWLEDGMENTS

We acknowledge that a preliminary version of this
paper has appeared in Mostafiz et al. (2017), where

we focused on non-weighted version of the C-MaxRS
problem only, and in section 1, we briefly listed
modifications and extensions to Mostafiz et al. (2017) in the
current article.

REFERENCES

(2016). Google X Loon Project. Available online at: https://x.company/loon/
(accessed January 31, 2017).

Amagata, D., and Hara, T. (2016). “Monitoring MaxRS in spatial data streams,” in
19th International Conference on Extending Database Technology (Bordeaux).

Amini, A., Wah, T. Y., Saybani, M. R., and Yazdi, S. R. A. S. (2011). “A study
of density-grid based clustering algorithms on data streams,” in 2011 Eighth

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
Vol. 3 (Shanghai: IEEE), 1652–1656. doi: 10.1109/FSKD.2011.6019867

Babcock, B., Datar, M., and Motwani, R. (2004). “Load shedding
for aggregation queries over data streams,” in 20th International

Conference on Data Engineering, 2004 (Boston, MA: IEEE), 350–361.
doi: 10.1109/ICDE.2004.1320010

Cervino, J., Kalyvianaki, E., Salvachua, J., and Pietzuch, P. (2012). “Adaptive
provisioning of stream processing systems in the cloud,” in 2012 IEEE

28th International Conference on Data Engineering Workshops (ICDEW)

(Arlington, VA: IEEE), 295–301. doi: 10.1109/ICDEW.2012.40
Chen, Z., Liu, Y., Wong, R. C.-W., Xiong, J., Cheng, X., and Chen,

P. (2015). Rotating MaxRS queries. Inform. Sci. 305, 110–129.
doi: 10.1016/j.ins.2015.02.009

Cho, H.-J., and Chung, C.-W. (2007). Indexing range sum queries
in spatio-temporal databases. Inform. Softw. Technol. 49, 324–331.
doi: 10.1016/j.infsof.2006.05.005

Choi, D.W., Chung, C.W., and Tao, Y. (2014). Maximizing Range Sum in external
memory. ACM Trans. Database Syst. 39, 21:1–21:44. doi: 10.1145/2629477

Cormode, G. (2017). Data sketching. ACM Queue 15:60. doi: 10.1145/
3080008

Dallachiesa, M., Jacques-Silva, G., Gedik, B., Wu, K.-L., and Palpanas, T. (2015).
Sliding windows over uncertain data streams. Knowl. Inform. Syst. 45, 159–190.
doi: 10.1007/s10115-014-0804-5

Dean, J., and Ghemawat, S. (2008). Mapreduce: simplified data processing
on large clusters. Commun. ACM 51, 107–113. doi: 10.1145/1327452.
1327492

Eldawy, A., and Mokbel, M. F. (2015). “Spatialhadoop: a mapreduce framework
for spatial data,” in 2015 IEEE 31st International Conference on Data

Engineering (ICDE) (Seoul: IEEE), 1352–1363. doi: 10.1109/ICDE.2015.71
13382

Feng, K., Cong, G., Bhowmick, S. S., Peng, W., and Miao, C. (2016). “Towards
best region search for data exploration,” in ACM SIGMOD International

Conference onManagement of Data (San Francisco, CA). doi: 10.1145/2882903.
2882960

Hart, Q., Gertz, M., and Zhang, J. (2005). “Evaluation of a dynamic tree structure
for indexing query regions on streaming geospatial data,” in International

Symposium on Spatial and Temporal Databases (Angra dos Reis: Springer),
145–162. doi: 10.1007/11535331_9

Hussain, M. M., Islam, K. A., Trajcevski, G., and Ali, M. E. (2017a). “Towards
efficient maintenance of continuous MaxRs query for trajectories,” in 20th

International Conference on Extending Database Technology (Venice: EDBT).
Hussain, M. M., Trajcevski, G., Islam, K. A., and Ali, M. E. (2017b). “Visualization

of range-constrained optimal density clustering of trajectories,” in International
Symposium on Spatial and Temporal Databases (Arlington, VA: Springer),
427–432. doi: 10.1007/978-3-319-64367-0_29

Hussain, M. M., Wongse-ammat, P., and Trajcevski, G. (2015). “Demo:
distributed MaxRS in wireless sensor networks,” in ACM Conference

on Embedded Networked Sensor Systems (SenSys) (Seoul: ACM).
doi: 10.1145/2809695.2817863

Imai, H., and Asano, T. (1983). Finding the connected components and a
maximum clique of an intersection graph of rectangles in the plane. J. Algor.
4, 310–323. doi: 10.1016/0196-6774(83)90012-3

Issa, H., and Damiani, M. L. (2016). “Efficient access to temporally overlaying
spatial and textual trajectories,” in IEEE 17th International Conference onMobile

Data Management, MDM 2016 (Porto), 262–271. doi: 10.1109/MDM.2016.47
Kamel, I., and Faloutsos, C. (1992). Parallel R-Trees. Vol. 21. ACM.

doi: 10.1145/141484.130315
Kim, J., Kim, S.-G., and Nam, B. (2013). Parallel multi-dimensional range query

processing with R-trees on GPU. J. Parallel Distrib. Comput. 73, 1195–1207.
doi: 10.1016/j.jpdc.2013.03.015

Kipf, A., Lang, H., Pandey, V., Alexandru Persa, R., Anneser, C., Tzirita Zacharatou,
E., et al. (2020). “Adaptivemain-memory indexing for high-performance point-
polygon joins,” in Proceedings of the 23nd International Conference on Extending
Database Technology, EDBT 2020 (Copenhagen), 347–358.

Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining

Knowl. Discov. 7, 373–397. doi: 10.1023/A:1024940629314
Lazaridis, I., and Mehrotra, S. (2001). “Progressive approximate aggregate queries

with a multi-resolution tree structure,” in ACM SIGMOD Record (Santa
Barbara, CA). doi: 10.1145/376284.375718

Liu, Q., Lian, X., and Chen, L. (2019). “Probabilistic maximum range-sum queries
on spatial database,” in Proceedings of the 27th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems (Chicago, IL),
159–168. doi: 10.1145/3347146.3359376

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al. (2011).
Big Data: The Next Frontier for Innovation, Competition, and Productivity.

Available online at: https://www.mckinsey.com/business-functions/mckinsey-
digital/our-insights/big-data-the-next-frontier-for-innovation

Mokbel, M. F., Xiong, X., Hammad, M. A., and Aref, W. G. (2005). Continuous
query processing of spatio-temporal data streams in place. GeoInformatica 9,
343–365. doi: 10.1007/s10707-005-4576-7

Mostafiz, M. I., Mahmud, S., Hussain, M. M., Ali, M. E., and Trajcevski, G.
(2017). “Class-based conditional MaxRs query in spatial data streams,” in
Proceedings of the 29th International Conference on Scientific and Statistical

Database Management (Chicago, IL: ACM), 13. doi: 10.1145/3085504.3085517
Nandy, S. C., and Bhattacharya, B. B. (1995). A unified algorithm for finding

maximum and minimum object enclosing rectangles and cuboids. Comput.

Math. Appl. 29, 45–61. doi: 10.1016/0898-1221(95)00029-X
Narendra, P. M., and Fukunaga, K. (1977). A branch and bound algorithm

for feature subset selection. IEEE Trans. Comput. 26, 917–922.
doi: 10.1109/TC.1977.1674939

Nievergelt, J., and Reingold, E. M. (1973). Binary search trees of bounded balance.
SIAM J. Comput. 2, 33–43. doi: 10.1137/0202005

Ooi, B., Sacks-Davis, R., and Han, J. (1993). Indexing in Spatial Databases.
Unpublished/Technical Papers.

Papadias, D., Kalnis, P., Zhang, J., and Tao, Y. (2001). “Efficient OLAP
operations in spatial data warehouses,” in International Symposium on

Spatial and Temporal Databases (Redondo Beach, CA: Springer), 443–459.
doi: 10.1007/3-540-47724-1_23

Phan, T.-K., Jung, H., and Kim, U.-M. (2014). An efficient algorithm for
Maximizing Range Sum queries in a road network. Sci. World J. 2014:541602.
doi: 10.1155/2014/541602

Samet, H. (1990). Applications of Spatial Data Structures: Computer Graphics,

Image Processing, and GIS. Boston, MA: Addison-Wesley Longman Publishing
Co., Inc. doi: 10.1007/3-540-52208-5_28

Sheng, C., and Tao, Y. (2011). “New results on two-dimensional orthogonal
range aggregation in external memory,” in Proceedings of the Thirtieth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems

(Athens). doi: 10.1145/1989284.1989297
Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). “The Hadoop

distributed file system,” in 2010 IEEE 26th symposium on Mass Storage

Systems and Technologies (MSST) (Incline Village, NV: IEEE), 1–10.
doi: 10.1109/MSST.2010.5496972

Frontiers in Big Data | www.frontiersin.org 25 June 2020 | Volume 3 | Article 20

https://x.company/loon/
https://doi.org/10.1109/FSKD.2011.6019867
https://doi.org/10.1109/ICDE.2004.1320010
https://doi.org/10.1109/ICDEW.2012.40
https://doi.org/10.1016/j.ins.2015.02.009
https://doi.org/10.1016/j.infsof.2006.05.005
https://doi.org/10.1145/2629477
https://doi.org/10.1145/3080008
https://doi.org/10.1007/s10115-014-0804-5
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1145/2882903.2882960
https://doi.org/10.1007/11535331_9
https://doi.org/10.1007/978-3-319-64367-0_29
https://doi.org/10.1145/2809695.2817863
https://doi.org/10.1016/0196-6774(83)90012-3
https://doi.org/10.1109/MDM.2016.47
https://doi.org/10.1145/141484.130315
https://doi.org/10.1016/j.jpdc.2013.03.015
https://doi.org/10.1023/A:1024940629314
https://doi.org/10.1145/376284.375718
https://doi.org/10.1145/3347146.3359376
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
https://doi.org/10.1007/s10707-005-4576-7
https://doi.org/10.1145/3085504.3085517
https://doi.org/10.1016/0898-1221(95)00029-X
https://doi.org/10.1109/TC.1977.1674939
https://doi.org/10.1137/0202005
https://doi.org/10.1007/3-540-47724-1_23
https://doi.org/10.1155/2014/541602
https://doi.org/10.1007/3-540-52208-5_28
https://doi.org/10.1145/1989284.1989297
https://doi.org/10.1109/MSST.2010.5496972
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mas-ud Hussain et al. C-MaxRS for Evolving Spatial Data

Šidlauskas, D., Šaltenis, S., Christiansen, C. W., Johansen, J. M., and Šaulys,
D. (2009). “Trees or grids?: indexing moving objects in main memory,”
in Proceedings of the 17th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems (Redondo Beach, CA: ACM),
236–245. doi: 10.1145/1653771.1653805

Tao, Y., Hu, X., Choi, D.-W., and Chung, C.-W. (2013). Approximate
MaxRs in spatial databases. Proc. VLDB Endow. 6, 1546–1557.
doi: 10.14778/2536258.2536266

Tao, Y., and Papadias, D. (2004). Range aggregate processing in spatial databases.
IEEE Trans. Knowl. Data Eng. 16, 1555–1570. doi: 10.1109/TKDE.2004.93

Tao, Y., Sheng, C., Chung, C.-W., and Lee, J.-R. (2014). Range aggregation
with set selection. IEEE Trans. Knowl. Data Eng. 26, 1240–1252.
doi: 10.1109/TKDE.2013.125

Wongse-ammat, P., Hussain, M. M., Trajcevski, G., Avci, B., and Khokhar, A.
(2017). “Distributed in-network processing of K-MaxRs in wireless sensor
networks,” in 7th International Conference on Sensor Networks, SENSORNETS

(Funchal). doi: 10.5220/0006210701080117
Zhang, J., Zhu, M., Papadias, D., Tao, Y., and Lee, D. L. (2003). “Location-based

spatial queries,” in Proceedings of the 2003 ACM SIGMOD (San Diego, CA).
doi: 10.1145/872757.872812

Zhong, Y., Han, J., Zhang, T., Li, Z., Fang, J., and Chen, G. (2012).
“Towards parallel spatial query processing for big spatial data,” in 2012

IEEE 26th International Conference on Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW) (IEEE), 2085–2094.
doi: 10.1109/IPDPSW.2012.245

Zhou, X., and Wang, W. (2016). “An index-based method for efficient
maximizing range sum queries in road network,” in Australasian Database

Conference (Sydney, NSW: Springer), 95–109. doi: 10.1007/978-3-319-46
922-5_8

Zhou, Z., Wu, W., Li, X., Lee, M. L., and Hsu, W. (2011). “MaxFirst for
MaxBRkNN,” in Proceedings of the 27th IEEE ICDE 2011 (Hannover), 828–839.
doi: 10.1109/ICDE.2011.5767892

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Mas-ud Hussain, Mostafiz, Mahmud, Trajcevski and Eunus Ali.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Big Data | www.frontiersin.org 26 June 2020 | Volume 3 | Article 20

https://doi.org/10.1145/1653771.1653805
https://doi.org/10.14778/2536258.2536266
https://doi.org/10.1109/TKDE.2004.93
https://doi.org/10.1109/TKDE.2013.125
https://doi.org/10.5220/0006210701080117
https://doi.org/10.1145/872757.872812
https://doi.org/10.1109/IPDPSW.2012.245
https://doi.org/10.1007/978-3-319-46922-5_8
https://doi.org/10.1109/ICDE.2011.5767892
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Conditional MaxRS Query for Evolving Spatial Data
	1. Introduction
	2. Related Works
	3. Preliminaries
	4. Basic C-MaxRS
	4.1. C-MaxRS → Dual Problem
	4.2. Properties of f and g
	4.3. Processing of C-MaxRS
	4.3.1. Disjoint and Maximal Regions
	4.3.2. Maximal Slabs and Slices

	5. C-MaxRS in Data Updates
	5.1. Data Structures
	5.1.1. QTree
	5.1.2. SliceUpperBoundBST
	5.1.3. List of Slices

	5.2. Base Method
	5.2.1. PrepareSlices(Sslice)
	Time-Complexity

	5.2.2. SliceSearchMR(p*c)
	Time-Complexity

	5.2.3. SolveCMaxRS
	Time-Complexity

	5.3. Event-Based Pruning
	5.3.1. Pruning in e-
	5.3.2. Pruning in e+

	5.4. Algorithmic Details
	5.4.1. SolveCMaxRS-
	Time-Complexity

	5.4.2. SolveCMaxRS+
	Time-Complexity

	6. Weighted C-MaxRS
	6.1. Redefining f, g, and C-MaxRS-DU
	6.2. Monotonicity and Non-submodularity of fw and gw
	6.3. Discussion

	7. C-MaxRS in Bursty Updates
	7.1. Challenges
	7.2. Additional Data Structures
	7.3. Processing Bursty Updates
	7.4. Discussion

	8. Experimental Study
	8.1. Performance Evaluation: Event-Based Scenario
	8.1.1. Varying Number of Objects, N
	8.1.2. Varying Theta (θ)
	8.1.3. Varying λ - the Area of the Query Rectangle
	8.1.4. Varying POIClass Count, β
	8.1.5. Varying Min Class Count, μ
	8.1.6. Varying Shape of R, b:a
	8.1.7. Comparing Pruning Rules

	8.2. Performance Evaluation: Bursty Streaming Updates
	8.2.1. C-MaxRS-Bursty vs. C-MaxRS-DU
	8.2.2. Varying γ
	8.2.3. Varying N
	8.2.4. Scalability of C-MaxRS-Bursty

	9. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

