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a b s t r a c t 

We present a novel generative Session-Based Recommendation (SBR) framework, called VAriational 

SEssion-based Recommendation (VASER) – a non-linear probabilistic methodology allowing Bayesian in- 

ference for flexible parameter estimation of sequential recommendations. Instead of directly applying ex- 

tended Variational AutoEncoders (VAE) to SBR, the proposed method introduces normalizing flows to 

estimate the probabilistic posterior, which is more effective than the agnostic presumed prior approxi- 

mation used in existing deep generative recommendation approaches. We also combine the effectiveness 

of both stochastic and amortized variational inference to reduce the inference gaps and to alleviate the 

underfitting problem of variational recommendation. We propose two specific implementations of VASER, 

both of which explore soft attention mechanism to upweight the important clicks in a session and show 

that one of them, treating the attention vector as an auxiliary latent factor, can make the variational 

distribution more expressive, and thus improves the recommendation accuracy over the widely used de- 

terministic attention approaches. Empirically, we show that the proposed models significantly outperform 

several state-of-the-art baselines, including the recently-proposed RNN/VAE-based approaches, on several 

real-world datasets. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Session-based recommendation (SBR) [23,47] aims at predict-

ng user’s next action based on recent series of actions. It is a kind

f sequence learning/recommendation task where longer-term user

istorical activities are usually unavailable and the recommenda-

ions need to be made in accordance with the assumed short-term

nterests of the (anonymous) user. 

Recent advances in deep learning have spurred the use of

ecurrent neural networks (RNNs) based methods to model

BR [22,23,36,41] , achieving significant improvement on recom-

endation accuracy over traditional sequence-based models such

s factorizing personalized Markov chains (FPMC) [21,50] and

eature-based matrix factorization (MF) [6,73] . Specifically,

RU4Rec [23] – a first application of augmented gated recur-

ent units (GRUs) [9] – was developed to address SBR by encoding

ser’s preference and learning it for next-click prediction. Subse-

uently, a few improvements to GRU4Rec have been proposed –

.g., incorporating attention mechanism [36] ; employing hierar-
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hical recurrent networks [36] ; augmenting data with additional

eatures associated with items [24] ; prioritizing short atten-

ion/memory [41] ; and introducing more sophisticated ranking

lgorithms [22] . 

The existing RNNs-like SBR methods often predict the next click

n a session based on the hidden state learned so far. They cap-

ure the information entropy in the observed session by condi-

ional next-click (output) distributions on previous clicks for ev-

ry timestep – typically a simple parametric form being chosen,

.e. unimodal or mixtures of unimodal. Such an inherent nature of

NNs [17] may be insufficient for SBR due to highly structured nat-

ral sequences in user-click sessions, where different output vari-

bles might interplay within a timestep, and complex dependen-

ies exist between variables across timesteps. In addition, estima-

ions at click level only consider immediate “short-term reward”,

nd ignore the global browsing/purchasing consistency, even when

ombined with powerful attention mechanisms [1] . Furthermore,

s the session grows, they could deviate from the original intents,

.g., existing models predict next clicks well for short sequences,

ut often fail for long sessions [36,41] . 

Complementary to these works, many augmented RNNs based

ethods have been developed by exploring multimodal out-

ut distributions and uncertainty estimation. For example, recent
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Table 1 

Notations. 

Symbol Description 

s a user session. 

x i an item. 

y j and ˆ y j true and predicted score for item x j . 

N the length of a session. 

M the number of all items. 

z and p ( z ) latent factor and its prior. 

d dimension of z . 

π ( z ) probability distribution over items. 

p θ ( s | z ) or p ( s | z ) generative model parameterized by θ . 

q φ ( z | s ) or q ( z | s ) inference model parameterized by φ. 

L (s ; θ, φ) Evidence lower bound (ELBO). 

h t hidden state of the t -th step. 

f k invertible transformation function. 

K the number of transformations 

c or c i attention vector. 
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effort s on incorporating stochastic latent variables trained by deep

generative models (e.g.,variational autoencoders (VAE) [33,52] )

have enabled significant progress in many natural language pro-

cessing tasks (e.g., dialogue generation and machine transla-

tion [2,4,12,17,27] ); Various generative models including VAEs have

demonstrated potential for learning effective non-linear represen-

tations of user-item interactions [8,29,35,38,40] in the collabora-

tive filtering settings. They either model the generation process

of auxiliary information (e.g., content and ratings) [8,35,38] or

build a probabilistic latent-variable framework that shares statis-

tical strength among users and items [8,29,40] . 

Despite the improvements over conventional item recommen-

dation, the aforementioned models (e.g., collaborative VAE) can-

not be directly generalized to SBR due to the following reasons.

(1) Data availability : the lack of users’ profile information and

long-term interaction data makes these models not work well

in SBR settings. (2) Bypassing issue : autoregressive models (e.g.,

LSTM [25] and GRU [9] ) combined with the soft attention mecha-

nisms [1] have capabilities of reconstructing an encoded session on

their own. This (particularly deterministic attention) may weaken

the effects of the incorporated latent factors [4] , which can poten-

tially reduce the performance of the VAE-based models. (3) Biased

inference : VAE based models usually assume a predefined prior

for latent factors [32] , e.g., multivariate Gaussian which, as we will

show, (i) is too restrictive for models to learn the true distribution;

(ii) might result in the inferred approximate posterior greatly de-

viating from the true distribution. 

We extend VAEs to model implicit feedbacks of user-item in-

teractions in a session, and present the VAriational SEssion-based

Recommendation (VASER) . While retaining the Bayesian inference of

VAEs and enabling exploration of non-linear probabilistic latent-

variable models, the VASER model: (1) effectively addresses the

problem of unimodal and simple parametric problems of existing

SBR methods; and (2) largely ameliorates the bias inference prob-

lem of existing VAE based recommendation methods. Specifically,

we make the following contributions: 

• VASER augments the RNNs based SBR models with stochastic

latent variables trained by both stochastic and amortized varia-

tional inference, enabling stable and effective approximate in-

ference of a high-level “objective” of an entire session from the

observed clicks. By modeling and quantifying the stochastic la-

tent variables in sessions, VASER is expected to discover and

disentangle causal factors to interpret the user-click data. 

• To encode more useful information into the latent variables, we

introduce an auxiliary factor that leverages the variational at-

tention on user clicks. Unlike the deterministic attention used

in existing works, the proposed novel attention mechanism can

accurately model click sessions, without overpowering the la-

tent representation. 

• We exploit the normalizing flows [51] to approximate the real

posterior of stochastic latent factors, which can largely allevi-

ate the inference bias in existing VAE based recommendation

models and improve the next click prediction accuracy. 

• We demonstrate that VASER achieves improvements in SBR per-

formance on several real-world datasets. We also show that our

model, slightly modified, can outperform state-of-the-art col-

laborative recommendation methods on conventional user-item

interaction datasets. 

The rest of the paper is arranged as follows. We define the

problem and introduce basic background in Section 2 . The de-

tails of our models are presented in Section 3 . Experimental re-

sults demonstrating the superiority of our model are discussed in

Section 4 , followed by reviewing relevant works in Section 5 . We

conclude this work and point out the future directions in Section 6 .
. Preliminaries 

We now formalize the SBR problem and describe limitations of

he recent RNN based methods. 

Problem Definition. Formally, we have a set of sessions S , and

ach session s i ∈ S , consists of a sequence of user actions (e.g.,

lick, purchase, etc.). s i = [ x i, 1 , · · · , x i,N ] (interchangeably denoted

y x i ,(1: N ) ), where x i, j ∈ R (1 ≤ j ≤ N, N is the length of the ses-

ion.) is an interaction with item j in the session, assumed to be

apped to the domain R . When no ambiguity arises, we will omit

he index of the session – thus, given the prefix s ′ = [ x 1 , · · · , x N−1 ]

f a session s , the SBR model predicts the label(s) of the next ac-

ion x N by learning a classification distribution y = [ ̂  y 1 , . · · · , ̂  y M 
]

ver M items, where ˆ y j refers to a (predicted) probability or a

anking score for the N 
th interaction with item j . 

The notations used in this work are detailed in Table 1 , with

 note that in practice, usually more than one recommendation is

ade, which is often referred to top-k session-based recommenda-

ion [36,74] . 

SBR with RNNs – why do they work? Existing RNN based

odels, with or without attention, train the sessions in a seq2seq

anner. The main differences among them are how to decode

he latent factors (or more precisely the last hidden state of the

NN) and how to embed the items. In “vanilla” GRU based models

22–24] , decoding reconstructs the session and embedding is a

eparate layer of training. In attentive RNN-based models [38,41] ,

owever, the encoder acts as an embedding layer – i.e., they train

tem embedding along with calculating loss of training sessions.

herefore, this type of supervised training may indeed “memorize”

he sequential information of a given session, which may be “con-

ucted” in the testing phase as the items in testing sessions would

ook-up the embedding matrix. As observed in the experiments

n [38] , this dynamic embedding method may significantly improve

he performance. 

An important observation is that all these works train the

odel in an explicit autoregressive fashion, i.e., they split the ses-

ions (both training and testing) into a set of sub-sessions. Thus, a

ession s = [ x 1 , · · · , x N ] would be divided into N − 1 sub-sessions:

 
1 = [ x 1 , · · · , x N−1 ] , s 

2 = [ x 1 , · · · , x N−2 ] , ���, s 
N−1 = [ x 1 , x 2 ] and the

riginal session s – all of which would be fed into the models

or training or testing. Although not explicitly specified, this kind

f autoregressive training improves the overall performance of the

odels, since a longer session actually contains (and thus “mem-

rizes”) the sub-sessions. We note that this autoregressive train-

ng trick has also been explored in recent CNN based SBR mod-

ls [61,74] . 

In Table 2 , we list the main SBR approaches. In particular, we

ummarize the methods used in modeling the sessions and their
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Table 2 

Summary of Session-based recommendation approaches. 

Approch User 

Profiles 

Generative 

Model 

Sequential 

Information 

Attention 

Mechanism 

Autoregressive 

Training 

Ranking 

Loss 

Model 

Item-KNN [54] � × × × × × KNN 

FPMC [50] � × � × × × Markov 

Chains 

BPR [49] � × × × × � MF 

GRU4Rec [23] × × � × × � GRU 

GRU4Rec + [60] × × � × � � GRU 

GRU4Rec ++ [22] × × � × � � GRU 

HRNN [48] � × � × � � GRU 

NARM [36] × × � � � × GRU 

EDRec [42] × × � � × × GRU 

STAMP [41] × × � � � × LSTM 

BINN [39] � × � × × × LSTM 

3D-CNN [62] × × � × � × 3D-CNN 

NextItNet [74] × � � × � × 1D-CNN 

SR-GNN [70] × × � � × × GNN 

ReLaVaR [5] × � � × × × GRU + VAE 

VRM [69] × � � � � × GRU + VAE 

VASER × � � � � � GRU + Flow 
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Fig. 1. Overview of VASER-DA and VASER-VA. Recommendation is made based on the posterior q ( z K ) of the last hidden state and the attention vector ( c for deterministic 

and q ( c K ) for variational). Items are represented by embedding vectors. 
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ain components. The learning mechanisms in these works may

ave some subtle differences, which will be thoroughly discussed

n Section 5 . 

Limitations : There are at least two kinds of drawbacks that the

xisting RNN based SBR models may suffer: (1) They are limited

o the shallow prediction process – i.e., they will have problems

f recommending meaningful and diverse user clicks. This is due

o the flat sequential generation process followed by RNNs, where

ach sampled click is only conditioned on the previous ones. Such

 process is problematic from a probabilistic perspective, because

he model is forced to generate all high-level structures locally on

 step-by-step basis in a deterministic way – thereby being con-

trained with exploring inter-session click dependencies. (2) Al-

hough effective in modeling sequential click patterns, they have

o stochastic variables at all. The decoding/predicting layer in RNN

odels the click distribution with autoregressive dependency, i.e.,
 

i p ( x i | x 1: i ). In theory, it allows complete autoregressive factoriza-

ion and could approximate any probability distributions of clicks.

owever, limited to the capability of real implementation (i.e.,

STM and GRU), the existing works have to resort to explicit au-

oregressive splitting of data to remedy the inadequate capabilities

f their models which could largely improve the performance (in

omparison to relying on the autoregressive nature of RNNs only). 

. Main methodologies 

We propose two VASER models: (1) VASER with determinis-

ic attention (VASER-DA); and (2) VASER with variational atten-
ion (VASER-VA) – both illustrated in Fig. 1 . Each model consists of

wo main components, namely GRU module and attention module.

he GRU module captures sequential preferences, and the hidden

tate can exploit the non-linear preferences. The attention mod-

le is used to enhance the GRU network by dynamically select-

ng and linearly combining different parts of the input sequence.

ASER-DA employs a deterministic attention mechanism; whereas

ASER-VA leverages attention vector as a stochastic latent factor

o overcome the bypassing phenomena caused by RNN and de-

erministic attention mechanism. Both models incorporate the nor-

alizing flows for flexible posterior approximation. In the sequel,

e present the general framework of VASER with theoretical back-

round and training procedure, followed by the details of VASER-

A and VASER-VA. 

.1. Session generative model 

We consider a click session generative process as follows. For

ach session s = [ x 1 , · · · , x N ] , the model samples d−dimensional

atent representation from an appropriate prior distribution p ( z ).

he latent factor z is then transformed via a non-linear function

 θ ( z ) – a suitable likelihood function parameterized by θ – to pro-

uce a probability distribution π ( z ) (e.g., a multinomial distribu-

ion) over M candidate items, from which a session s is assumed

o have been drawn ( z ~ p ( z ); π ( z ) ∝ exp { f θ ( z )}): 

 ∼ f θ (z ) = p θ (s | z ) = 

N ∏ 

t=2 

p θ (x t | x 1: t−1 , z ) , (1) 
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w K K 
where x 1: t−1 indicates the prefix click sequence preceding current

click x t , and f θ ( z ) is a deep neural network such as a multilayer

perceptron (MLP). Thus, the session generation involves making

a sequence of discrete decisions, each of which samples an item

from a multinomial distribution with a softmax function, to pro-

duce a probability vector π ( z ) over the entire item set. The multi-

nomial distribution has been demonstrated to model click data

well (cf. [34,40] , although these work were originally designed for

CF based recommendation). 

This generative process is similar to the sentence generation

in [27] and trajectory generation in [76] , except that we do not

take side-information (e.g., item category, click time, etc.) into ac-

count. However, it is straightforward to add additional latent fac-

tors to capture various item features, if available, for disentangling

the representation. 

3.2. Variational session inference 

In general, the marginal log-likelihood of a session s log p θ (s ) =
log 

∫ 
z p θ (s | z ) p(z )d z is intractable to compute or differentiate

directly for flexible generative models, especially for high-

dimensional latent variables. Instead, one usually resorts to vari-

ational inference by defining a simple parametric distribution over

the latent variables (e.g, a factorized Gaussian) q φ( z | s ), and max-

imizing the evidence lower bound (ELBO) on the marginal log-

likelihood of each observation: 

log p θ (s ) = E q φ (z | s ) log 
[
p θ (s , z ) 

q φ(z | s ) 
]

+ KL 

[
q φ(z | s ) || p θ (z | s ) 

]
≥ E q φ (z | s ) 

[
log p θ (s , z ) − log q φ(z | s ) ] � L (s ; θ, φ) . (2)

There are numerous ways to optimize the ELBO, among which

VAEs [33] use a parametric inference network and reparameteriza-

tion of q φ( z | s ) to alternatively maximize following reformulation: 

L VAE (s ; θ, φ) = E q φ (z | s ) [ log p θ (s ) + log p θ (z | s ) − log q φ(z | s )] 
= E q φ (z | s ) [ log p θ (s )] − KL 

[
q φ(z | s ) || p θ (z | s ) 

]
, (3)

Since the first term is a constant, then the objective of maxi-

mizing ELOB L VAE (s ; θ, φ)) of log p θ ( s ) becomes to minimize the

Kullback-Leibler (KL) divergence between q φ( z | s ) and the true dis-

tribution p θ ( z | s ) (which is always ≥ 0). For brevity, we will some-

times omit the parameters φ and θ in subsequent formulae. 

– Stochastic Variational Inference : Expectation Maximization

(EM) algorithm [11] can be used to optimize the variational in-

ference and learning procedure, where the E-step and M-Step al-

ternate until convergence. This type of mean-field variational in-

ference is restricted to the strong assumption that each latent

variable is independent and governed by its own parameters. An-

other popular choice is to find optimal φ∗ with iterative gradient

ascent by performing stochastic variational inference (SVI) [26] in

the batched settings. This optimization is computationally expen-

sive since it requires a running iterative inference for each sam-

ple. More importantly, inference parameters φ are updated inde-

pendently from generative parameters θ , making it difficult for θ
to adapt to optima [30] . 

– Amortized variational inference : Instead of stochastic inference,

VAEs [33,52] proposed training generative model and inference

model with neural networks (e.g., MLPs) to optimize variational

parameters φ for a given sample s . To expedite training, VAEs

amortize the computational cost of variational inference by an in-

ference network q φ( z | s ) (a.k.a encoder ). This amortized variational

inference (AVI) is trained with the reparameterization trick [33] to

propagate stochastic gradients from the generative model (a.k.a de-

coder ) to the encoder, both of which are learned with the same loss

function. Despite that it is much cheaper to compute q φ( z | s ) than
o obtain an optimal φ∗ using SVI, there is no guarantee that infer-

nce network produces sufficiently good parameters, which in turn

ay yield a much looser ELBO [34] . 

– Inference Gaps & Underfitting : There are two sources of infer-

nce suboptimality in above variational parameter estimation with

he inference networks. The first one is the approximation gap

APG), i.e., minimizing KL [ q φ(z | s ) || p θ (z | s )] is done by learning
ith a tractable-but-approximate proposal q φ( z | s ) instead of the

rue posterior p θ ( z | s ). The second gap is amortization gap (AMG)

f VAEs, which is caused by updating φ in an amortizing manner

ver the entire training set rather than optimizing for each sample

ndividually as in SVI. The total inference gap G can be described

ith: 

G = log p(s ) − L (s ; θ, φ) 

 ( log p(s ) − L 
∗(s ; θ, φ) ) APG + ( L 

∗(s ; θ, φ) − L (s ; θ, φ) ) AMG 

 

(
KL [ q φ(z | s ) || p θ (z | s )] − KL [ q ∗φ(z | s ) || p θ (z | s )] 

)
AMG 

+ 

(
KL [ q ∗φ(z | s ) || p θ (z | s )] 

)
APG 

, (4)

here q ∗
φ
(z | s ) and L 

∗(s ; θ, φ) refer to the ideal approximation and

orresponding ELBO, albeit they are not easy to obtain in practice. 

The two inference gaps inherent in VAEs would result in model

nderfitting [10,34] . and AMG has been found to be a more promi-

ent cause of inference gap than APG in image datasets (e.g.,

NIST and CIFAR) [10] . This would be further exacerbated for

igh-dimensional and sparse data – which is exactly what is en-

ountered in SBR. Recall that maximizing the ELBO in Eq. (3) re-

uires minimizing the KL term, where the prior p ( z ) is usually as-

umed to be independent Gaussian. However, the posterior p θ ( z | s )

s much more complicated than Gaussian in real case – i.e., in SBR

ettings it is unreasonable to assume the posterior of a session is

 Gaussian, since it may further increase the inference gaps. 

.3. Inference with normalizing flows 

It is desirable to reduce the (non-negligible) inference gaps,

nd various improved posterior approximations have been effec-

ive in improving variational inference. Although none of the ex-

sting methods is able to completely close the gap between ap-

roximate posterior and true posterior [7] , employing richer pos-

erior/prior distributions can effectively reduce it. The approxima-

ion gap, caused by the encoding cost KL 

[
q φ(z | s ) || p θ (z | s ) ], is

argely due to the improper assumption of the probabilistic dis-

ribution [10,32] . 

We leverage the flow method [51] to construct more accurate

osterior approximation of the session distributions, rather than

imple Gaussian assumption in existing works [5,69] . Normalizing

lows (NF) [51] is a powerful framework for building flexible pos-

erior distributions through an iterative procedure. The main idea

s to transform a simple distribution into a complex one through

 series of invertible mappings which, in theory, can approximate

ny complex distribution. Given a variable z 0 with known probabil-

ty distribution p 0 ( z 0 ) (e.g., Gaussian here) and a chain of invertible

ransformations f = [ f 1 , · · · , f K ] , then z k can be calculated by com-

osing the transformations from f as: 

 K = f K (z K−1 ) = f K (f K−1 (z K−2 )) 

= f K (f K−1 ( · · · f 1 (z 0 ))) . (5)

Given that each f k ∈ f is invertible (i.e., z k −1 = f −1 
k 

(z k ) ),

nd according to the definition of probability 
∫ 
p k (z k ) dz k =

 

p k −1 (z k −1 ) dz k −1 = 1 , for a collection of variables z = [ z 0 , . . . , z K ] ,

e can obtain the distributions p ( z ) more flexibly: 
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p K (z K ) = p K−1 (z K−1 ) 
∣∣det dz K−1 

dz K 

∣∣
= p K−1 (z K−1 ) 

∣∣∣∣det df −1 
K 

(z K ) 

dz K 

∣∣∣∣ (6) 

 p K−1 (z K−1 ) 

∣∣∣∣det (df k (z K−1 ) 

dz K−1 

)
−1 

∣∣∣∣ (7) 

 p 0 (z 0 ) 

∣∣∣∣det dz 1 dz 0 

∣∣∣∣
−1 

· · ·
∣∣∣∣det dz K 

dz K−1 

∣∣∣∣
−1 

(8) 

 p 0 (z 0 ) 

∣∣∣∣det dz K dz 0 

∣∣∣∣
−1 

, (9)

here det df 
dz 

is the Jacobian determinant of f . Eq. (7) is ob-

ained with the inverse function theorem and the application of

roperty det (A −1 ) = ( det (A )) −1 for matrices. Moreover, due to de-

omposability of determinants ( det (AB ) = det (A ) det (B ) ), we ob-

ain Eq. (8) . 

The path traversed by the random variables z k = f k (z k −1 ) with

nitial distribution p 0 ( z 0 ) is called the flow , and the whole path

ormed by the successive distributions p K ( z K ) refers to a normal-

zing flow . To ensure Eq. (9) is tractable, it should satisfy that (a)

he transformation f k must be easy to invert, and (2) the determi-

ant of its Jacobian is easy to compute [51] . The two constraints

llow the transformation to be made deeper by composing multi-

le instances of it, and the result will still be a valid normalizing

ow. Now the log-likelihood of approximate posterior q K ( z K | s ) can

e computed iterativelly by using the log on both sides of Eq. (9) 

og q K (z K | s ) = log q K−1 (z K−1 | s ) − log 

∣∣∣∣det dz K 
dz K−1 

∣∣∣∣
= log q 0 (z 0 | s ) −

K ∑ 

k =1 

log det 

∣∣∣∣ dz k 
dz k −1 

∣∣∣∣, (10) 

here the base distribution z 0 ~ q φ( z 0 | s ) is a Gaussian in our im-

lementation. 

One of the flow transformations is the planar flow introduced in

51] , given by: 

 (z ) = z + u σ (w T
 z + b) , (11) 

here u , w ∈ R 
d and b ∈ R are parameters, and σ is a suitable

mooth non-linear activation function (e.g., tanh ). According to the

atrix determinant lemma , the Jacobian of this transformation is: 

det 
∂f 

∂z 

∣∣∣∣ = 

∣∣det (I + u [ σ ′ (w T
 z + b) w ] T  

)∣∣
= 

∣∣1 + u T
 σ ′ (w T

 z + b) w 

∣∣, (12) 

here σ ′ is the derivative activation and can be computed in O ( d )

ime – d is the dimension of z . 

In this paper, we use the planar flow as the invertible transfor-

ation for its simplicity and efficiency. The number of parameters

 u, u and b ) using planar flow with K flow transformations is equal

o (2 d + 1) IK, where I is the number of output units of the infer-

nce network q φ( z K | s ). 

– Alternative flows : There exist several alternative choices, such

s Autoregressive Flows (IAF [32] and MAF [46] ), real NVP [14] and

low [31] . These flows emphasize different aspects of improving

osterior approximation. For example, MAF is more efficient than

AF on density estimation but less efficient on data generation,

hich, in contrary, can be easily parallelized in IAF. Recent Glow

odel [31] achieves very high quality of data generation but is

ery expensive on training – e.g., a week on 40 GPUs for 256

256 images – and is not suitable for our case. 

Next, we discuss the two specific implementations of VASER. 
.4. VASER with deterministic attention 

Attention mechanism, originally used for dynamically aligning

he input and output sequences [1] , is an effective and robust

ethod, and has been successfully applied in various learning

asks such as machine translation [1] , dialogue generation [4] and

ecommendation [68] . In the case of session-based recommenda-

ion, existing works [36,41,42] encode the session intent with a de-

erministic attention mechanism by computing a probabilistic dis-

ribution: 

it = 

exp (h 
dec 
i 

W T
 h 

enc 
t ) ∑ N 

t ′ =1 exp (h 
dec 
i 

W T
 h 

enc 
t ′ ) 

, (13) 

here h 
enc 
t and h 

dec 
i 

denote the t th and i th hidden state of the en-

oder and decoder, respectively, and W is the parameter matrix

eeded to be learned. The probability distribution αit indeed de-

ermines the weight of each item in the input session. Then, the

ttention vector c i is calculated by summing the weighted input:

 i = 

N ∑ 

t=1 

αit h 
enc 
t (14) 

hich is fed into the decoder at the i th step and we will denote the

ttention vector c i as c for simplicity. By incorporating the VAEs

nto RNN based model, VASER-DA allows Bayesian inference, com-

ared to previous SBR models [22,23,38,41] . 

In VASER-DA, we parameterize the approximation posterior

 φ( z | s ) with a flow, i.e., q φ( z | s ) := q ( z K ), the ELBO of Eq. (2) can

e modified as 

 DAF (s ; θ,φ) = E q φ (z | s ) 
[
log p θ (s , z ) − log q φ(z | s ) ]

= E q (z 0 ) [ log p θ (s , z K ) − log q (z K ) ] 

= E q (z 0 ) [ log p θ (s | z K ) ] − E q (z 0 ) [ log q (z 0 ) ] 

+ βE q (z 0 ) [ log p θ (z K ) ] 

+ βE q (z 0 ) 

[ 

K ∑ 

k =1 

log det 

∣∣∣∣ dz k 
dz k −1 

∣∣∣∣
−1 

] 

, (15) 

here the first term is trained to reconstruct the sessions; the sec-

nd term is a constant; and the last two terms are the flows. The

oefficient β is a regularizer of the flows, which is very similar to

he annealing factor for regularizing KL-divergence [4] . We call this

mplementation deterministic attention flow (DAF). 

.5. VASER with variational attention 

If we directly use the above attention vector c , the determinis-

ic attention may be powerful enough to reconstruct the input ses-

ion and eliminate the influence of the VAE. This phenomenon is

lso known as the “bypassing” problem in combining VAE and RNN

odels [4] , mainly because of the autoregressive factorization of

NN which, in theory, represents any probability distribution even

ithout dependence on z . 

To alleviate this problem, we introduce a variational attention

ethod inspired by recent works on machine translation [2,12] (cf.

ig. 1 (b)). More specifically, we treat the attention vector c as an-

ther latent factor in addition to z , both of which are combined to

econstruct the input data by maximizing the following new vari-

tional attention flow (VAF) ELBO: 

L VAF (s ; θ, φ) = E z , c ∼q φ (z , c | s ) 
[
log p θ (s , z , c ) − log q φ(z , c | s ) ]

= E z ∼q φ (z | s ) , c ∼q φ (c | s ) 
[
log p θ (s , z , c ) − log q φ(z | s ) − log q φ(c | s ) ]

(16) 
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Algorithm 1: Parameter estimation in VASER-VA. 

Input : session set: S , encoder: q φ(z , c | s ) , decoder: p θ (s | z , c ) , 
number of iterations: I, learning rates: ηφ , ηξ and ηθ , 

loss function of ELBO: −L VAF (s ; θ, ξ (s )) . 

Output : Variational and generative parameters φ and θ . 

1 for i = 1 , · · · , I : do 

2 Sample s ∼ S ; 

3 Set ξ0 = ξ (s ) ; 

4 z 0 ∼ (z 0 | s ) , c 0 ∼ (c 0 | s ) ; 
5 z K = f k (f k −1 ( · · · f 1 (z 0 ))) ; c K = f k (f k −1 ( · · · f 1 (c 0 ))) ; 
6 Approximate ξJ with SVI: 

7 for j = 0 , · · · , J − 1 : do 

8 ξ j+1 = ξ j − ηξ
∂L VAF (s ;θi ,ξ j ) 

∂ξ j 
; 

9 end 

10 Optimize (θ, φ) with AVI: 

11 Update θ : θi +1 = θi − ηθ� θi 
L VAF (s ; θi , ξJ ) ; 

12 Update φ: φi +1 = φi − ηφ� φi 
L VAF (s ; θi +1 , ξ (s )) ; 

13 end 
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p

= E q (z 0 ) ,q (c 0 ) [ log p θ (s , z K , c K ) − log q (z K ) − log q (c K ) ] 

= E q (z 0 ) ,q (c 0 ) [ log p θ (s | z K , c K ) ] 
−E q (z 0 ) [ log q (z 0 ) ] − E q (c 0 ) [ log q (c 0 ) ] 

+ β
(
E q (z 0 ) [ log p θ (z K ) ] + E q (c 0 ) [ log p θ (c K ) ] 

)
+ βE q (z 0 ) ,q (c 0 ) 

[ 

K ∑ 

k =1 

log det 

∣∣∣∣ ∂z k c k 
∂z k −1 c k −1 

∣∣∣∣
−1 

] 

, (17)

which is derived based on the fact that c and z are marginally

independent given s ( Eq. (16) ), and with two independent flows

q φ( z | s ) := q ( z K ) and q φ( c | s ) := q ( c K ) ( Eq. (17) ). Similar to Eq. (15) ,

β is used to regularize the flows. 

By treating attention vector as another stochastic factor, VASER-

A does not employ the power of attention directly and, to an ex-

tent, regularizes the learning capability of RNNs. Namely, VASER-

A forces the decoder to condition more on both latent variables z

and c – otherwise, the RNN decoder may totally overlook them. 

3.6. Implementation details 

– Training Objective : Since recommendation means predicting

the next item in a given session, the loss function used is the

cross-entropy of the prediction probability: 

L rec = −
M ∑ 

j=1 

[
y j log ̂  y j + (1 − y j ) log (1 − ˆ y j ) 

]
, (18)

where the binary value y j refers to the label of item x j . 

Combined with the loss of ELBO, we have the following training

objectives of the proposed models: 

L = L rec + (−L (s ; θ,φ)) , (19)

where L (s ; θ,φ) is either Eq. (15) or Eq. (17) depending on which

VASER model is used. 

– Parameter estimation : As we explained earlier, there exist in-

ference gaps which may result in bias posterior approximation. A

recent popular way of alleviating the inference gaps is the com-

bination of the effectiveness of SVI and AVI. The two inference

methodologies for parameter optimization are blended in [34] ,

where the encoder’s output initiates the SVI-style optimization.

In a similar way, the iterative amortized inference [43] learns to

perform inference optimization via repeatedly encoding gradients

from SVI, while semi-amortized variational inference [30] initiates

variational parameters with an AVI and subsequently updates them

with SVI. A most recent work in [57] proposes to regularize the AVI

so as to smooth the inference model, aiming at simultaneously im-

proving inference and generative performance. 

In this work, we leverage the effectiveness of both AVI and

SVI to train our VASER models towards reducing amortization gap.

Algorithm 1 illustrates the process of parameter updating for

VASER-VA. We first initialize the local variational parameters ξ
with ξ ( s ), which is predicted by the inference network with pa-

rameters φ. Then, ξ is iteratively updated to approximate the op-

timal variational parameters ξ ∗ of SVI. Subsequently, θ is updated

under L VAF (s ; θi , ξJ ) and the inference network is updated with θ
fixed. Note that Algorithm 1 is also applicable for VASER-DA since

it only requires one latent factor z . 

Discussion : We have proposed two variational session-based

models that are very similar in addition to the way of dealing with

attention vector. The two VASER models share some preliminary

architecture with existing works. We shortly discuss the relations

and discriminate our works. 

– Attentive RNN based SBR models : We share the main architec-

ture with existing works except introducing Bayesian inference for

session-based recommendation. For example, we also employ GRU
or both encoder and decoder. Following previous work [36] , we

se a dynamic embedding for item representation. The only dif-

erence is that instead of random initialization, we use a unsuper-

ised skip-gram model (e.g., word2vec [45] ) to initialize the item

epresentation. The two VASER models may degrade to existing

NN based methods by removing the stochastic inference models.

n addition, the presented two latent factor models do not rely on

pecific underlying architectures, which means we can easily alter-

ate the GRUs with CNN based models [61,62,75,74] that could im-

rove the training efficiency – which is a topic of our future work.

– Variational recommendation models : The proposed VASER

odels share the main idea of incorporating deep gen-

rative models into recommender systems with existing

orks [5,8,29,35,38,40,69] . However, these VAE based models

re either non-applicable for the SBR scenario or inaccurate on

tochastic inference. They usually presume a prior of latent vari-

bles and minimize the KL terms in Eq. (3) , which is the main

ause of approximate inference gap and thus cannot accurately

odel the complicated ground-truth distribution. On the contrary,

e will show that the approaches of applying NF on posterior

pproximation and variational attention can indeed enhance these

ollaborative and sequential VAE models. 

.7. Computational complexity 

The time complexity of the GRU module is O (N s (H 
2 + HN o )) ,

here N s is the number of items in all sessions, H is the num-

er of hidden units, and N o is the number of outputs. The atten-

ion mechanism in VASER leads to the time complexity of O ( rHN ),

here r is the number of attention vectors, and N denotes the

ength of the input and output sessions. Compared to previous

ork [23,36,41] , the only overhead of VASER is the invertible trans-

ormations in normalizing flows. In particular, it needs to compute

he log(det)-Jacobian term which requires in O ( Kd ) time based on

he matrix determinant lemma [19] , where d is the dimension of

idden layers and K is the number of transformations. We will in-

estigate the efficiency of the proposed model in next section. 

. Experimental observations 

We now describe the experimental settings and report the em-

irical evaluation results for the following questions: 
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Table 3 

Statistics of the datasets. 

Datasets YOOCHOOSE 1/64 YOOCHOOSE 1/4 DIGINETICA 

#clicks 557,248 832,6407 982,961 

#train sessions 355,385 621,6184 719,470 

#test sessions 52,956 56,616 60,858 

#items 17,626 30,903 43,097 

avg. session length 6.27 5.83 5.12 
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• Q1 How does VASER perform compared with the state-of-the-

art session-based recommendation methods? 

• Q2 Is the modeling of variational inference and variational at-

tention helpful for learning more desirable sequential interac-

tions for session-based recommendation? 

• Q3 How do the key hyper-parameters affect VASER’s perfor-

mance? 

• Q4 Can we extend VASER to conventional collaborative recom-

mendation and how does it perform? 

.1. Datasets, baselines, metrics and settings 

Datasets. For fair comparison, we evaluate different methods on

wo real-world transaction datasets, YOOCHOOSE 1 and DIGINET-

CA 
2 , which have been widely used for evaluating SBR approaches.

ollowing previous works [36,41,60] , we preprocess the primary

ata as follows: (1) We filter out sessions of length 1 and items

hat appear less than 5 times for the two datasets; (2) For YOO-

HOOSE and DIGINETICA, we respectively use the sessions of sub-

equent day and subsequent week for testing, and then filter out

licks from the test set where the clicked items did not appear in

he training set; and (3) We sort the training sequences of YOO-

HOOSE by time and train all models on more recent fractions (i.e.,

/64 and 1/4) of training sessions. Table 3 shows the statistics of

he datasets. 

Baselines. To demonstrate the effectiveness of our model, we

onduct extensive comparisons to the following state-of-the-art

ethods: 

(1) Traditional sequence-based recommendation methods: 

• POP : It simply recommends the items with the largest number

of interactions in the training set. 

• Item-KNN [54] : It is an item-to-item model that recommends

items that are similar to previously visited items based on co-

sine similarity. 

• FPMC [50] : It is a sequential recommendation approach com-

bining factorized Markov chains with the factorization of the

user-item matrix. We adapt it into session-based recommenda-

tion scenario by omitting the user latent representations when

computing recommendation scores. 

• BPR [49] : It is one of widely used matrix factorization (MF)

methods, which optimizes a pairwise ranking objective function

via stochastic gradient descent. Since MF can not be directly ap-

plied to session-based recommendation, we compute the sim-

ilarity scores between a candidate item and the items within

the session to make recommendations. 

(2) RNN-based SBR methods: 

• GRU4Rec 3 [23] : It is an RNN-based deep learning model for

session-based recommendation. It employs GRU units to cap-

ture sequential patterns and utilizes session-parallel minibatch-

ing trick and ranking-based loss functions during the training. 
1 http://2015.recsyschallenge.com/challenge.html 
2 http://cikm2016.cs.iupui.edu/cikm-cup 
3 https://github.com/hidasib/GRU4Rec 

b  

i  
• GRU4Rec + [60] : It is an improved version of GRU4Rec that

adopts data augmentation and accounts for shifts in the input

data distribution to improve the performance of GRU4Rec. 

• NARM 
4 [36] : It is an RNN-based model employing (determin-

istic) attention mechanism to capture main purpose from the

hidden states and combines it with the sequential behavior as

the final representation to generate recommendations. 

• STAMP [41] : It is a priority model which captures users’ general

interests from the long-term memory of a session context, and

current interests from the short-term memory of recent clicks. 

• GRU4Rec ++ [22] : It is a most recent method that extends the

GRU4Rec by introducing an improved sampling strategy. 

ince our main focus is not on the combination of various fea-

ures, we omit the comparison with the content-based sequential

ecommendation models such as [24,39,48,59] . We also note that

ur contribution is not the model efficiency (CNN based models

ike [61,62,74] are not considered in our experiments). 

(3) VAE-based recommendation methods: 

• ReLaVaR [5] : It is a Bayesian version of GRU4Rec which treats

the network recurrent units as stochastic latent variables with

some prior distributions and infers the corresponding posteri-

ors for prediction and recommendation generation. This is an

item-level variational inference based SBR method which uses

independent Gaussian as the prior for items. 

• VRM [69] : It is a recent proposed method directly applying VAE

on session-based recommendation. Unlike ReLaVaR, an item-

level variational method, VRM models the stochastic inference

on the session-level. 

Metrics. Following previous works [21,22,36,41] , the primary

valuation metric is Recall@20 – i.e., the proportion of cases hav-

ng the desired item falling into the top-20 predicted items in all

est cases. Note that the Recall score is equal to the Hit-Precision

core used in [41] . The second metric is MRR@20 (Mean Reciprocal

ank) – i.e., the average of reciprocal ranks of the desired items.

he reciprocal rank is set to zero if the rank is lower than top-20.

RR takes into account the rank of the item, which is important

hen the order of recommendations matters. Note that the higher

he Recall@20 and MRR@20, the better the performance. 

Settings. For all methods, the embedding size of items is set

o 50. The number of hidden units in GRU layer is set to 100. All

odels are trained with Adam and the mini-batch size is fixed at

12. Following [36,41] , we truncated BPTT using a fixed window of

9 time-steps for DIGNETICA and 30 time-steps for the two YOO-

HOOSE datasets. Also following [36,41] , 10% of the training data

re used as the validation set. For the two VASER models, parame-

ers d, K and β are respectively 100, 16 and 0.2, if not specified. 

.2. Overall performance (Q1 & Q2) 

.2.1. Comparison against SBR baselines (Q1) 

Table 5 shows the results of comparison to the existing state-of-

he-art SBR methods, from which we can clearly observe that the

roposed two models perform the best on two metrics throughout

hree datasets. 

Overall, the RNN based methods, including ours, consistently

utperform the traditional baselines, which demonstrates that au-

oregressive models are good at learning sequential user click be-

aviors. Nevertheless, RNN models alone cannot deal with com-

licate user-click sessions which usually have unintended clicks

nd/or contain one or more browse themes. This problem can

e largely overcome by incorporating the attention mechanism

n recent methods like NARM and STAMP. The most recent
4 https://github.com/lijingsdu/sessionRec _ NARM 

http://2015.recsyschallenge.com/challenge.html
http://cikm2016.cs.iupui.edu/cikm-cup
https://github.com/hidasib/GRU4Rec
https://github.com/lijingsdu/sessionRec_NARM
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(a) NARM. (b) VASER-VA.

Fig. 2. Visualization of the encoding space obtained via NARM and VASER-VA on YOOCHOOSE 1/64. For better viewing, we randomly select 2,048 test sessions and plot the 

encoding space using t-SNE. 

Fig. 3. Impact of session length (YOOCHOOSE 1/64). 
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work GRU4Rec ++ does not exhibit expected results on the three

datasets, regardless that it can improve their original method

(GRU4Rec) with the sampling trick. This result also proves one of

our motivations that autoregressive models are constrained with

their capability of modeling sparse and high-dimensional data. 

By modeling session generation in a probabilistic generative

latent variable framework, our two models outperform the best

baseline (either NARM or STAMP) by a significant margin. Take the

DIGINETICA dataset for example, VASER-VA achieves 2.2% and 3.6%

boost over NARM on Recall@20 and MRR@20, respectively – de-

spite that they are relatively small values, we note that they can

be considered as statistically significant ( p-value < 0.01 of paired

t-test) on SBR task over the three datasets that are originally used

for CIKM and RecSys challenges. Note that in our reimplementa-

tion, the two baselines (NARM or STAMP) exhibit higher scores

than their original reporting on two YOOCHOOSE datasets. 

The benefit of VASER can be visualized in Fig. 2 , where the en-

coding space of NARM and VASER-VA is plotted with t-SNE. Recall

that both methods predict the last item x N based on the learned

representation of prefix session s ′ = [ x 1 , · · · , x N−1 ] . The main dif-

ference is that the encoding space of NARM is the concatenation

of deterministic attention c and the last hidden state h N−1 of GRU,

while the encoding space of VASER-VA is the combination of the

posterior of hidden state q ( z K ) and the posterior of variational at-

tention q ( c k ). Apparently, VASER-VA explores more space for en-

coding the sessions and exhibits more scattered distribution. The

benefits of such encoding can be understood intuitively, i.e., the

more inseparable the sessions, the more difficult for the models

to discriminate the spatial adjacent ones, which, consequently, are

more prone to making wrong predictions. 

We also investigated the impact of session length on the rec-

ommendation performance. Intuitively, the longer the sessions, the

worse the prediction performance on average. The results on YOO-

CHOOSE 1/64 are shown in Fig. 3 (results on DIGINETICA and YOO-

CHOOSE 1/4 are consistent, but omitted due to the lack of space),

T  
hereby we compared to the two best baselines. Our models

lightly improve the recommendation performance over the base-

ines. However, we argue that due to the vanishing gradient prob-

em of autoregressive model, it is hard for RNNs-based methods

o further improve the performance on modeling extremely long-

erm dependencies. 

.2.2. Effect of components in VASER (Q2) 

By comparing to the methods directly applying VAE on SBR,

oth item-level and session-level, we can clearly see the impor-

ance of the flow based posterior approximation used in VASER.

n the other hand, the only difference between the proposed two

odels is the way of treating attention vector. In Table 5 , we

nd that VASER-VA always performs better than VASER-DA, which

roves the effectiveness of the variational attention mechanism. By

reating attention vector as an auxiliary vector, we can success-

ully weaken the effectiveness of deterministic attention network

t the beginning of training, and enforce more useful information

o be encoded into the latent space, which is an effective way

f alleviating the bypassing problem in modeling sequence data

2,12] . 

Another important observation is that directly applying VAE on

odeling items or sessions is not competitive. ReLaVaR, operat-

ng stochastic inference on item-level, is less effective than VRM,

hich models sessions in a variational seq2seq manner. Note that

e omit comparison with CVRM, a variant of VRM, which takes the

ategory information into account, due to no category information

ssociated with items for the DIGNETICA dataset. In fact, the cate-

ory information plays a less important role in improving the rec-

mmendation performance according to the results in [69] , largely

ue to the extremely sparse category labels on the YOOCHOOSE

ataset. Although allowing Bayesian inference, the two models may

ncur larger inference gaps and underfitting problem due to the

mortized inference alone used for posterior approximation [10] .

his is in accordance with the findings in modeling language with
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Fig. 4. Average runtime of one training epoch. 

(a) YOOCHOOSE 1/64.

(b) DIGINETICA.

Fig. 5. The impact of β . 
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anilla VAEs [4,27] , i.e., the autoregressive models are powerful

nough to decode the entire sequence, resulting in uselessness of

tochastic latent factors. More importantly, these methods approx-

mate an improper assumed distribution q φ( z | s ), e.g., the choice

f diagonal-covariance Gaussian in [4,27] , and thus are subjected

o heavy bias inference problem, as explained in Section 3.2 . In

ontrast, our two VASER models can largely alleviate this problem

enefiting from the normalizing flows with flexible posterior ap-

roximation. 

As mentioned before, the main computational overhead

f VASER compared to previous attention-based RNN mod-

ls [36,41] is from computing the invertible transformations. The

omparison of average runtime for one training epoch (as shown in

ig. 4 ) for our models against NARM – we omitted other methods

e.g., STAMP and GRU4Rec ++ ) becasue their computational com-

lexity is similar to NARM – show that our two models require

lightly more time compared to NARM. On the other hand, VASER-

A needs more time than VASER-DA since it consists of an ex-

ra flow transformation, which, is negligible especially on larger

atasets (e.g., YOOCHOOSE 1/4). 
.3. Impact of parameters (Q3) 

There are two important factors affecting the performance of

he two VASER models, i.e., the coefficient β regularizing the flows

nd the determinant of Jacobian matrix, and K , the number of in-

ertible transformations. 

Fig. 5 shows the impact of β on VASER-VA, where β is gradu-

lly annealed to the value of 0.1, 0.2, 0.5 and 1. We observe in our

xperiments that the flow terms (cf. Eq. (17) ) are usually ordered

arger than the reconstruction term. Without annealing or anneal-

ng to a larger value, the performance of VASER models are not

ppealing, and even experience overfitting problem. On the con-

rary, if the value of β is too small (e.g., below 0.2), the flows does

ot take effect as the decoder RNN will make the model converge,

hen the models rely less on the latent factors. As a consequence,

here is a significant performance decline. As we explained earlier,

his is caused by the overpower performance of RNN decoder. In

ddition to cost annealing, another possible way of alleviating this

roblem is to replace RNN with the dilated CNN suggested by Hu

t al. [27] . 
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(a) YOOCHOOSE 1/64. (b) DIGINETICA.

Fig. 6. The impact of K . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

The performance comparison on citeulike-a. P@k, R@k, MAP@k and 

nDCG@k is the precision, recall, mean average precision, and normalized 

discounted gain for top k recommendation. 

P@5 P@10 R@5 R@10 MAP@10 nDCG@10 

CVAE 0.146 0.122 0.129 0.191 0.328 0.375 

CLVAE 0.144 0.119 0.122 0.188 0.321 0.372 

MVAE 0.154 0.122 0.137 0.202 0.343 0.362 

CNF 0.167 0.143 0.152 0.215 0.381 0.435 
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Fig. 6 investigates the impact of K on two datasets. The planar

flows used in VASER modifies the initial density by applying a se-

ries of contractions and expansions in the original space. Although,

in theory, more transformations could approximate more compli-

cated distribution, a smaller value is enough for the two models.

Since the RHS of Eq. (11) can be interpreted as a single-neuron MLP,

it may result in the information going through a single bottleneck.

As the volume of the space grows exponentially with the number

of dimensions d , it requires many coupling layers to transform a

simple base distribution into a complex one [32] . This is demon-

strated by the results on YOOCHOOSE 1/64 dataset in Fig. 6 (a),

where the models require more transformations to obtain higher

performance. Yet, it is not the case for DIGINETICA in Fig. 6 (b),

on which too many transformations may result in overfitting prob-

lem (we note that in both Fig. 6 (b) and (a) the X-axes are in log 2 
scales – i.e., the values are 2, 4, 8, 16, and 32). We hypothesize

that the reason is that the planar flows need more coupling layer

to approximate the distribution of latent factors for smaller/sparser

datasets – recall that only 1/64 of sessions are used for training for

YOOCHOOSE 1/64 dataset. This result is in accordance the recent

discovery of augmenting normalizing flows for density estimation

on image data [3] . 

4.4. Comparison against CF-based VAEs (Q4) 

Finally, we would like to investigate whether the proposed

models, or more specifically, the normalizing flows, can be used

to improve the recommendation performance on collaborative set-

tings compared to CF-based VAE methods. 

To adapt VASER to collaborative recommendation scenario, we

simply replace the RNNs in VASER with the MLPs, resulting in the

method called Collaborative Normalizing Flows (CNF). The evalua-

tion is conducted on the citeulike-a dataset used in [38] , which

contains 5,551 users and 16,980 articles with 204,986 observed

user-item pairs. We compare CNF with the following three collab-

orative VAE models: 

• CVAE [38] is the first collaborative VAE based item recommen-

dation method, which uses vanilla VAE for item representation.

• CLVAE [35] is a conditional ladder VAE [58] based recommen-

dation method which extends the CVAE with hierarchical VAE

structure. 

• MVAE [40] is very similar to CVAE except that it uses multino-

mial conditional likelihood as the prior. 

We follow all the experimental settings in [38] but do not con-

sider the side information such as ratings and comments. In the

same spirit, we exclude the comparison with other VAE based

methods that mainly leverage side information for recommenda-

tion, such as the work in [8,29,72] . 

Table 4 shows that CNF, by leveraging normalizing flows for

posterior approximation, significantly outperforms the baselines.
his, again, proves our motivation that flexible approximation tech-

iques such as normalizing flows should be considered in deep

enerative recommender systems. Among the baselines, we ob-

erve that: (1) modeling with multinomial conditional likelihood

ay slightly improve the performance, which conforms to the ob-

ervation in [40] ; and (2) modeling hierarchical VAE on items is

ot effective on this dataset – we conjecture that CLVAE may suf-

er overfitting without the side information used in [35] . 

. Related work 

We now review the relevant literatures from two basic perspec-

ives, and position our work in that context. 

.1. Sequential recommendation 

Session-based recommendation [67] is essentially a sequence

earning problem [47] including typical scenarios such as

lick/purchase recommendation in e-commerce, music/video rec-

mmendation, news items etc. Since only short-term interaction

ata are available and there is lack of user profile, CF based la-

ent factor models fail to work in these scenarios. Nonparametric

ethods, such as k-Nearest Neighbor (KNN) and context tree can

e used to estimate the user/item similarity for recommending the

ost similar items to the ones that have been visited/clicked by a

ser [13,28,54,18,44] . Naturally, other sophisticated sequence learn-

ng approaches can also be adapted to solve the session-based rec-

mmendation problem, which incurs MC based models [66] and

ybrid CF models like FPMF [21,50] , etc. 

RNN models such as LSTM [25] and GRU [9] have been success-

ully applied in many sequence learning tasks, such as machine

ranslation [1] , human mobility learning [15] , and session-based

ecommendation [22,23,36,39,41,48] . GRU4Rec [23] is a representa-

ive RNN based method for SBR, which embeds the clicks into the

nal hidden state of GRU to represent the current preference. This

ethod has achieved significant improvement against previous se-

uence learning approaches like FPMC and item similarity based

NN. Several works have been proposed to improve GRU4Rec with

arious models. For example, NARM and EDRec [36,42] employ soft

ttention mechanism [1] to capture the user’s main purpose in the

urrent session, which is combined with the last hidden state of

RU to compute the recommendation scores for each candidate

tem. STAMP [41] distinguished user interests drift caused by unin-

ended clicks with a priority model to capture users’ general in-

erests from the long-term memory of a session context, while

aking into account users’ current interests from the short-term

emory of the last-clicks. Another work [39] combined users’ his-

ory preference and short-term preference for SBR, which requires

he knowledge of long-term user behavior and models the sequen-

ial behavior with LSTM. Most recently, Hidasi et al. [22] improved

heir GRU4Rec model by introducing tailored ranking loss func-

ions. A hierarchical RNN model is used for SBR in [48] , which

odels both inter-session and intra-session patterns with a hierar-

hical RNN. However, it requires the knowledge about the session

sers to construct hierarchical RNN models [67] . Although achiev-

ng current state-of-the-art performance on SBR task, the sampling
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Table 5 

Performance comparison among all session-based recommendation methods over three datasets. 

YOOCHOOSE 1/64 YOOCHOOSE 1/4 DIGINETICA 

Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) 

POP 8.48 3.52 1.36 0.31 0.91 0.23 

item-KNN 53.12 22.13 52.43 21.75 28.35 9.45 

FPMC 47.39 19.28 - - 33.07 8.92 

BPR 33.11 13.79 3.43 1.57 15.19 8.68 

GRU4Rec 62.40 25.36 59.58 22.62 43.82 15.46 

GRU4Rec + 69.35 28.70 69.16 29.23 57.95 24.93 

GRU4Rec ++ 68.43 28.55 68.97 28.41 57.74 26.23 

NARM 70.13 29.38 69.75 29.30 62.58 27.35 

STAMP 70.21 29.22 70.45 29.47 62.03 27.28 

ReLaVaR 64.31 25.26 60.53 22.76 54.95 23.76 

CRM 69.32 28.75 68.22 28.35 60.06 26.07 

VASER-DA 71.85 30.05 70.74 29.75 63.67 28.27 

VASER-VA 72.12 30.33 70.96 29.90 63.99 28.34 
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ricks and loss functions used are inherently popularity-based and

hus may not be easily generalized to all datasets, as argued by the

uthors in [22] . 

Existing RNN based methods are limited to the shallow gener-

tion process, i.e., having problems of generating meaningful and

iverse user clicks. This is caused by the flat sequential genera-

ion process followed by RNNs, where each token is sampled con-

itioned only on previous ones. This process is problematic from a

robabilistic perspective, because the model is forced to generate

ll high-level structure locally on a step-by-step basis, which has

een investigated in dialogue generation [56] and mobility behav-

or generation [76] . 

We note that there are several works [61,62,75,74] emerged

ecently to capture sequential patterns with Convolutional Neu-

al Networks (CNNs), largely inspired by recent advances in ma-

hine translation [16] using CNNs to replace RNNs – the latter

as dominated this area in the last decade. The main motivation

f these work is to overcome the parallelization problem of RNN

odels, namely RNNs depend on a hidden state of the entire past

nput that cannot fully utilize parallel computation within a se-

uence. Caser [61] , for example, embeds the previous t items into

 −dimensional vectors and forming a t × k matrix like an im-

ge, which can be successfully convoluted with various CNN based

odels. In addition to computational efficiency, Caser is capable

f capturing both “skip” and “union-level” behaviors compared to

revious sequential models. Another joint model [75] learns fea-

ures associated with a session with residual CNN and the sequen-

ial behavior with LSTM. A most recent work [74] improves Caser

y introducing a more complicated network NextItNet with dilated

onvolution [74] and residual blocks [20] . 

Table 2 summarized the main SBR models in the literature. 

.2. Deep generative recommendation 

Although there exist many deep recommendation models as

entioned above, relatively few works in the literature focus on

pplying generative models in the recommendation systems. Previ-

us autoencoder based models [37,53,55,64,65,71] show promising

erformance but are restricted to learning representation of items,

nd thus are difficult for Bayesian inference due to lack of Bayesian

ature or high computational cost. The first Bayesian deep genera-

ive model called collaborative variational autoencoder (CVAE) was

roposed in [38] , which jointly models the generation of content

nd the rating information using vanilla VAE [33] in a collabora-

ive filtering (CF) setting. Lee et al. [35] augmented CF with ladder

AE [58] and leveraged generative adversarial nets (GAN) to reg-

larize the proposed collaborative recommendation models. Liang

t al. [40] found that VAE model suffers from underfitting when
odeling large, sparse, high-dimensional data [34] , and presented

 multinomial conditional likelihood based VAE framework [40] .

everal recent works extend the ideas of applying VAEs to CF-

ased recommendation but mainly focus on combining various

uxiliary features [8,29] . It is worthwhile to mention that a most

ecent work [63] leverages VAE to learn users’ latent interest space

nd generate plausible appealing new items that do not exist in

he training set, although its main topic is out of the scope of this

ork. The most related work are ReLaVaR [5] and VRM/CVRM [69] ,

oth of which apply VAE on the SBR tasks. ReLaVaR is an item-

evel stochastic inference method while VRM/CVRM are modeling

ession in a stochastic seq2seq manner. As sequential VAE models,

hey can be considered as directly applying VAEs in the SBR sce-

ario. 

Key differences : Our work differs from the above mentioned

orks in several ways. Compared to existing sequential recommen-

ation approaches, we model the problem within a probabilistic

ecommendation setting which allows our model for Bayesian in-

erence. In addition to learning sequential behavior of users, our

odel is capable of capturing non-linear user-item interactions. On

he other hand, prior collaborative VAE approaches either model

uxiliary information with VAEs or exploit VAEs for richer repre-

entations where user profile and long-term preference is avail-

ble. Thus, these methods are not suitable for SBR task as the lat-

er is restricted to short-term sequence learning: neither allow-

ng long-term preference learning nor scrutinizing user profiles.

urthermore, our proposed models at least have three differences

ver the existing collaborative and session-based VAE recommen-

ation methods, i.e., (1) we derive novel flow-based ELBOs tailored

or SBR task with the flexible posterior approximation, rather than

resumed Gaussian distribution in previous work; (2) we introduce

 training method combining the effectiveness of both stochastic

nd amortized variational inference for addressing the inference

ap problem in the settings of session-based recommendation; and

3) we explore the way of treating attention vector as latent fac-

or to enhance variational session-based inference and to overcome

he KL vanishing problem inherent in combining VAEs with autore-

ressive models. 

. Conclusions and future work 

We presented VASER, a normalizing flow based generative

ramework for learning sequential click patterns. The proposed

wo models implementing VASER enable learning non-linear in-

eractions between user-clicks while allowing Bayesian inference,

chieving significant improvements for the session-based recom-

endation problem in comparison to existing methods. There are

wo important observations in this work: (1) instead of using



140 T. Zhong, Z. Wen and F. Zhou et al. / Neurocomputing 391 (2020) 129–141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

amortized inference as in existing collaborative/sequential varia-

tional recommendation methods, flow based techniques could ef-

fectively improve the density approximation and deserve more at-

tention in the recommendation community; (2) attention mecha-

nism, widely used in existing works, should be carefully treated

in the variational recommendation models, for example, consider-

ing it as an another latent factor in VASER. In our future work, we

are planning to focus on augmenting VASER to consider auxiliary

information – e.g., coupling sequential information with other re-

lated contexts (category, price and click time), and on tackling the

overall efficiency (e.g., using CNNs). 
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