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ABSTRACT
Hydropower is the largest renewable energy source for electricity
generation in the world, with numerous benefits in terms of: envi-
ronment protection (near-zero air pollution and climate impact),
cost-effectiveness (long-term use, without significant impacts of
market fluctuation), and reliability (quickly respond to surge in de-
mand). However, the effectiveness of hydropower plants is affected
by multiple factors such as reservoir capacity, rainfall, temperature
and fluctuating electricity demand, and particularly their compli-
cated relationships, which make the prediction/recommendation
of station operational output a difficult challenge. In this paper, we
present DeepHydro, a novel stochastic method for modeling multi-
variate time series (e.g., water inflow/outflow and temperature) and
forecasting power generation of hydropower stations. DeepHydro
captures temporal dependencies in co-evolving time series with a
new conditioned latent recurrent neural networks, which not only
considers the hidden states of observations but also preserves the
uncertainty of latent variables. We introduce a generative network
parameterized on a continuous normalizing flow to approximate
the complex posterior distribution of multivariate time series data,
and further use neural ordinary differential equations to estimate
the continuous-time dynamics of the latent variables constituting
the observable data. This allows our model to deal with the dis-
crete observations in the context of continuous dynamic systems,
while being robust to the noise. We conduct extensive experiments
on real-world datasets from a large power generation company
consisting of cascade hydropower stations. The experimental re-
sults demonstrate that the proposed method can effectively predict
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the power production and significantly outperform the possible
candidate baseline approaches.
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1 INTRODUCTION
One major consequence of the increase of the world’s population
is a growing consumption of (and high demand for) energy – in
particular, electricity. An important ramification of dealing with
the energy crisis in the context of electrical energy is the negative
environmental impacts – most notably, the air pollution because of
the power plants that burn fossil fuels, such as coal or natural gas.
Renewable energy – e.g., sunlight, wind, water, tides – that can be
naturally replenished, has become a viable approach towards ad-
dressing the energy crisis, and with much smaller adverse impacts.
Hydropower, as the largest single source of the renewable power,
derives energy from rivers and/or large reservoirs, and has played
an increasingly important role in supplying electricity, especially in
countries that are deficient in other resources. Compared to unreli-
able and intermittent power such as wind and solar, hydropower
can provide sustainable and controllable energy, capable of quickly
responding to surges of demand in the grid. Hydropower plants
utilize river/reservoir waters that have a height differential – typi-
cally using a dam to provide slopes – to drive turbine generators,
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converting the kinetic energy to electricity. In 2018, hydroelectric-
ity accounted for about 7% and 16% of total utility-scale electricity
generation in U.S. and China1, respectively.

Notwithstanding the multiple advantages, the output of a hy-
dropower station or a cascade of stations is affected by many fac-
tors, such as river/reservoir inflows, temperature, seasonal demand,
abrupt demands, gross domestic product (GDP), electricity price,
etc. As an example, in general, the hydroelectricity generation in
the summer is significantly higher than in the winter due to the
abundant precipitation in summer. Complementary to this, the in-
creased water inflow in rainy seasons is not fully leveraged for
power generation because of the water level regulation function
of dams – i.e., the reservoirs need to abandon surplus water to
make sure that water level is within certain safety limits, to prevent
disasters such as flood and landslide. Similarly, when the water
inflow decreases, the generation capacity of stations are not fully
utilized, e.g., only part of water turbines are running in the winter
due to lack of liquid water in conjunction with the minimum water
level that needs to be maintained to ensure the reservoir ecology.
However, a significant factor in these complex interactions is that
the power generation companies need to maximize their profits
which, in turn, requires coordinating the power generation of their
hydropower plants. Put it simply, the amount of generated power
multiplied with the electricity price is something that needs to be
considered jointly with maintaining water storage for future use
and ensuring ecological safety.
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Figure 1: Power stations distribution.

Application Domain & Challenges. Our actual application do-
main is illustrated in Figure 1 –which shows themap of hydropower
stations on the Dadu River, a tributary of the Yangtze River in
Sichuan Province. The total length of the mainstream of the Dadu
River is 1,062km, along which 28 cascade hydropower stations are
distributed with a total installed power generation capacity of about
27.08 gigawatts. The annual power generation of these stations is
115.8 billion kWh, which accounts for about 10% of hydropower
in China. The details of the current status of the deployment are
discussed in the Appendix.

Modeling the electricity generation of hydropower stations while
taking into account a variety of factors has been considered as an im-
portant research topic with high societal impact. It can benefit both
electricity generation enterprises and smart grid [2, 3, 11, 24, 28]. If
power stations can foresee the demand and combine it with their
generating capabilities, they would be able to balance the genera-
tion among stations and maximize the profit. Concomitantly, state
grid could learn to better allocate load requirements and improve
the efficiency and security of power delivery. Previous research
1https://www.hydropower.org/statusreport

has mainly focused on macroscopic analysis to model and predict
the power consumption demand of smart grid [3, 11, 28]. Much
fewer studies have been conducted on fine-grained power plants
generation prediction. This, however, can enable higher resource
utilization efficiency and, in turn, improve load balance of smart
grid – which is at the heart of the motivation for our work. Due to
the interplay of various uncertain factors, modeling and forecasting
the hydropower generation is a nontrivial task, and it needs to
effectively consider several contexts.

Hydropower data can be both high-volume and received in real
time, and its representation is often composed of multivariate time-
series. In addition to the directly-related contexts such as grid de-
mands, on-grid power, water level along with inflow/outflow –
there are certain natural and societal factors that affect the models
of hydropower generation. For instance, weather conditions and
seasons determine how much water can be used for generating
electricity. To provide a stable output, regular and abundant supply
of high-quality water is required, often happening in precipitation
abundant seasons (e.g., summer). In contrast, water level and flow
can be lower due to morainal or ice-scoured soil in winter – as dams
are typically built in rural areas with the presence of lakes and/or
falls, generally located in rugged mountain regions or glaciated
areas. Furthermore, social factors such as electricity price and eco-
nomic activities have influential impact on the power generation.
For example, the on-grid price of different plants is not the same,
which is determined by the construction cost and the capital cost.
In practice, the older the dam, the lower the cost and, consequently,
the price – e.g., the sale price of electricity in Pu Bu Gou (built in
2000s) is quite higher than that of Gong Zui Dam (built in 1970s; cf.
Figure 1). Also, the sale price is not constant but changes within
a certain range, e.g., the price in December is higher than in Au-
gust – which is a natural outcome of seasonal changes and can be
understood by a game between state grid and power generation
enterprise, both of which aim to maximize their profit. These eco-
nomical factors are often mixed up with other factors – e.g., the
distance between the dam and industrial/commercial centers and
the cost of transmission – all of which are confounding factors for
modeling and predicting the hydropower generation.
Our contributions. To address the aforementioned challenges, we
present DeepHydro – a novel framework modeling the stochastic
multivariate time series and the temporal dependencies of latent
variables for predicting the power generation of a hydro-plant.
Specifically, we design a novel conditioned latent recurrent neural
networks model – CL-RNN – to capture the sequential patterns,
while maintaining both temporal dependencies and stochasticity
of latent variables. We further present a network with continu-
ous normalizing flow to approximate the complex distribution of
latent variables, allowing efficient variational inference and den-
sity estimation. Rather than performing discrete transformation as
in [22, 29, 34], we borrow the idea of instantaneous transforma-
tion [4] to avoid computationally intensive determinant computa-
tion by solving ordinary differential equations (ODEs). This not
only improves the accuracy of posterior approximation with more
multi-modal and flexible distribution, but also significantly reduces
the number of parameters required. To generalize the probabilis-
tic latent variables to continuous-time dynamics that is natural
in power generation, we introduce an ODE extrapolation decoder
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parameterized on another network, which defines a continuous
generative process of state transition and bridges the time gaps
between discrete observations. The latter enables our method to
handle the scenarios when asymmetric measurements happen, e.g.,
due to transmission delay or sensor failure in a hydro-plant. By
incorporating external factors with a fusion network, DeepHydro
accounts for both co-evolving patterns of time series (e.g., temper-
ature and water inflow/outflow) and the implicit knowledge (e.g.,
electricity price) for forecasting the power generation. In sum, our
main contributions are as follows:

• We present a novel deep Bayesian learning based model,
DeepHydro, to predict the power generation of large-scale
hydro-plants. To enable modeling and forecasting, Deep-
Hydro explicitly handles the temporal dependence among
stochastic variables, as well as hidden states – to learn accu-
rate and robust representations of multivariate time series
corresponding to industrial hydropower generation data.

• We propose to learn the evolution of latent representa-
tion with continuous normalizing flow, which preserves the
continuous-time characteristics of time series data with un-
biased stochastic estimate of the density. By solving the ODE
initial-value problem for variable extrapolation, we can op-
timize our model using variational inference, while better
reflecting the continuous dynamical system of hydropower
generation.

• We conduct experiments on real-world datasets from a large
hydropower generation company demonstrating that Deep-
Hydro improves the power generation prediction perfor-
mance compared to the state-of-the-art time series learning
approaches. To foster enthusiasm on industrial power data
mining and efficient renewable energy use, and enable repro-
ducibility, our code and datasets of experiments are publicly
available2.

2 RELATED WORK
Recent advances in deep neural networks, especially recurrent
neural networks (RNNs) and their variants [5, 10], have facilitate
many deep learning models on classifying and forecasting time
series [8, 13, 18, 21, 25, 31]. RNNs such as Long Short-Term Mem-
ory (LSTM) [10] and Gated Recurrent Unit (GRU) [5] are dominant
building blocks for modeling time series data, owing to the ability
of RNNs on modeling non-linear temporal patterns. However, most
of these models have focused on different applications, such as traf-
fic prediction [18], sequential recommendation [17] and anomaly
detection [13], by capturing long-short term dependency among
time series.

There exist efforts that focused on using temporal convolutions
for time-series forecasting [1, 25], which are easier to train and
more efficient. However, these models are naturally deterministic
and unable to effectively model the uncertainty of latent variables.
To address this issue, stochastic methods have been incorporated in
recent research [9, 29, 32, 34]. All these works capture stochastic la-
tent states using Variational AutoEncoder (VAE), while maintaining
uncertainty in the underlying space and allowing posterior infer-
ence and sampling conditioned on observations. Nevertheless, they
2https://github.com/Anewnoob/DeepHydro

either suffer from biased inference inherent in vanilla VAE [9, 32],
or are confronted with high computational cost [29, 34].

As a special kind of (multivariate) time series, electricity gen-
eration/demand mining has received significant attention due to
its practical value in industry and social consumption. Most of the
existing works [3, 11, 19, 24, 28] focus on smart grid load prediction,
however, few efforts exist that have focused on hydropower genera-
tion. The most related work to this paper is [2], which uses dynamic
Bayesian network, combined with a multi-time-scale coupling op-
eration, to model the correlations among time series and predict the
hydropower generation. However, their model is limited to small-
scale dataset due to the computational bottleneck of probabilistic
graphical models. In addition, the proposed methods are evaluated
on a smaller hydro-plant (Tankeng Dam) with an installed capacity
of 600 megawatts (MW). By contrast, Dagangshan Dam, one of the
hydro-plants in our cascade stations, has a total installed capacity
of 2,600 MW.

What separates our model is that it is built upon two key tech-
niques: normalizing flow [22] and neural ODEs [4]. Normalizing
flows (NF) refer to a family of generative models (see [20] for a
comprehensive review) for probabilistic modeling and posterior In-
ference. Instead of directly applying NF, we introduce a continuous
NF to fit the dynamic systems of hydropower. This is inspired by
recent works [4, 23] which treat neural networks as dynamic mod-
els with a continuum of hidden states, and reformulate the forward
pass of neural networks as the solution of the initial value problem
in ODE. In addition, to model the time series data as in [4, 23],
we also equip our model with the ability to learn the influence of
factors, the temporal dependence of latent variables, as well as the
decoder of the hidden states of RNN, by solving different ODEs. In
this vein, our model initiates the attempt to mine temporal knowl-
edge and the data fusion in an ODE solving manner. In addition to
providing a new perspective of forecasting time series, our model
is more robust on data representation and can dynamically balance
the computational overhead and efficiency, based on the different
components.

3 PRELIMINARIES
We now discuss the settings and define the problem more formally,
followed by a discussion of the basic background.

3.1 Contexts and Problem Definition
The electricity generated by hydropower plants is not fully on-grid
– i.e., typically there are two outlets of water-turbine generator: on-
grid power and the auxiliary power for plant self-use. In practice,
on-grid power is allocated by the state grid and is more irregular,
while self-usage power is relatively stable. A strong indicator of the
power generation is the reservoir water level changes. As shown
in Figure 2, the water inflow volume roughly equals the sum of
the generation flow and the discarded (outflow) water. Also, the
hydro-plants are not independent but are cascaded and need to be
coordinated together – recall that there are 28 plants in the Dadu
River (cf. Figure 1). Moreover, the inflow of a particular reservoir
is determined by both the precipitation and the upper stream of
previous plants, as well as other small creeks. As mentioned in Sec-
tion 1, there are many other time-series data, such as temperature
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Figure 2: An example of 7-metric multivariate time series in
one-month (April 8, 2018 – May 8, 2018) from Dagangshan
Dam (not normalized, for better visualization)

(affecting the residential electricity consumption), gross industrial
output value, etc. that can affect the power demand – all of which
should be properly considered in modeling hydropower generation.

Our core data consists of a sequence of multivariate hydropower
observations X. Each observation x𝑡 at time 𝑡 consists of electricity
power v𝑡 and water flow w𝑡 . As illustrated in Figure 2, the elec-
tricity, defined as v𝑡 = {𝑣1𝑡 , 𝑣2𝑡 , 𝑣3𝑡 }, contains total power generation,
on-grid power and auxiliary power. The water flow, defined as
w𝑡 = {𝑤1

𝑡 ,𝑤
2
𝑡 ,𝑤

3
𝑡 }, is composed of water inflow, outflow and gen-

eration flow. Thus, each observation x𝑡 ∈ R𝑃 at time 𝑡 is a vector
with a dimension of 𝑃 = 6.

We also consider three broader factors: (1) The temporal factor 𝜏 ,
as one of ancillary information, consists of HourOfDay, DayOfWeek
andWeekdayOrWeekend. (2) The natural factor includes water flow
and temperature. (3) The social factor that we incorporate is the
electricity price. Each of them can significantly affect the robustness
of the model and, consequently, the prediction performance. We
use e to denote these three external factors.

Definition 3.1. Hydropower generation forecasting. Given a
series of 𝑁 past observations X𝑡−1 = {x𝑡−𝑁 , x𝑡−𝑁+1, · · · , x𝑡−1} ∈
R𝑁×𝑃 , as well as external factors e𝑡 at time 𝑡 , the task of hydropower
generation forecasting (HGF) is to learn a model F to predict the
volume of hydropower generation v̂𝑡 at time t (𝑡 > 𝑁 ), formally
defined as:

v̂𝑡 = F (X𝑡−1 |e𝑡 ;Ω) (1)

where Ω denotes the parameters.

3.2 Background
3.2.1 Latent Variable Models. Variational Autoencoder (VAE) [15]
combined with RNN models [5, 10], provides a possibility of learn-
ing the internal dependence of sequential data while preserving the
distribution of latent variables z. It has beenwidely used inmodeling
various time series data in the literature [9, 29, 32, 34]. Though facil-
itating coherent latent space learning, the learned representation of
time series data is limited to the last hidden state h of the RNN en-
coder. In addition, these models usually make a strong assumption

that the posterior can be decomposed into multiple independent
factors. Since the variational inference needs to search the optimal
posterior approximation within a parametric family of distributions,
the models are not flexible enough to match the true posterior. This
issue inspired normalizing flows [22], which learns an accurate
posterior density 𝑞𝜙 (z|X) of latent variables by stacking a series of
invertible transformations as z𝑘 = 𝛽𝑘

(
𝛽𝑘−1

(
. . . 𝛽1

(
z0
) ) )

, where
each 𝛽 is an invertible transformation and 𝜙 are parameters.

3.2.2 Neural Ordinary Differential Equations. A recent work [4]
considered the parameter updating in neural networks – which was
previously done by backpropagation – as the process of solving
ODEs. From the perspective of numerical methods, the discrete
layers of neural networks (e.g., the hidden states h𝑡 of the RNNs)
can be regarded as an Euler discretization of a differential equation:

𝑑h(𝑡)
𝑑𝑡

= 𝑓𝜔 (h(𝑡), 𝑡), where h(𝑡) = h𝑡 ,

h(𝑡1) = h(𝑡0) +
∫ 𝑡1

𝑡0

𝑓𝜔 (h(𝑡), 𝑡)𝑑𝑡, (2)

where neural network 𝑓𝜔 is parameterized by 𝜔 specifying the con-
tinuous dynamics of the hidden states. By regarding the parameter
update process of the neural ODE block as solving ODEs with nu-
merical methods such as Euler, Runge–Kutta and adjoint method,
it is possible for us to obtain the hidden states h(𝑡) at any desired
moment.

4 ARCHITECTURE & METHODOLOGY
Figure 3 overviews the architecture of our proposed method: Deep-
Hydro. Due to the specifics of the hydropower flow data, e.g., large
fluctuation range (from zero to full-load) and multivariate time
series, we first pre-process the data to obtain the model inputs, de-
noted asX. Overall, DeepHydro consists of three main components:
(a) hydropower inference network; (b) external feature extraction
network; and (c) multi-feature fusion predictor. Among them, (a)
hydropower inference network is based on an encoder-decoder
framework, which learns the latent representation of X based on
variational inference. In the encoder, conditioned latent RNN (CL-
RNN) is designed to transform the input X𝑡−1 from observations
to high-level representations including hidden states and latent
variables in the 𝑧-space. Subsequently, we exploit a continuous
normalizing flow to transform the latent variable z𝑡−1 obtained
by CL-RNN to a more accurate non-Gaussian posterior density
𝑞𝜙 (z𝑡−1 |X𝑡−1, z𝑡−2). In the decoder, we first restructure X𝑡−1 from
z𝑡−1 and then leverage an ODE network to extrapolate the latent
variable z𝑡 which generalizes the stochastic representation in pre-
vious steps to infer the latent variables at time 𝑡 . For the external
factor extraction network (EFEN), the natural and social factors
such as water flow, temperature and electricity price are extracted
with another ODE network. Finally, the multivariate hydropower
is predicted by the predictor which is a simple MLP performing
regression task combining the information output by CL-RNN g𝑡−1,
external factors e𝑡 and ODE decoder z𝑡 . In the following, we detail
the DeepHydro, while highlighting the advantages of our method
compared to related models.
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Figure 3: Overall architecture of the proposed DeepHydro.

4.1 Hydropower Inference Network
One of the major challenges of hydropower generation forecast-
ing is how to capture the informative temporal correlations and
establish inherent relationship between various time series data.
Towards that, we design a hydropower inference network based on
an encoder-decoder framework, to learn both hidden states of obser-
vations and uncertainty regarding the hidden states. The inference
network is composed by three modules, i.e., a Conditioned Latent
RNN (CL-RNN) encoder, a continuous normalizing flow network,
and an extrapolation ODE decoder.

4.1.1 Conditioned Latent RNN. CL-RNN acts as the hydropower
data encoder. As shown in the lower left corner of Figure 3, CL-RNN
feeds the inputs from discrete data space to obtain a continuous
z-space representation. Different from traditional RNN encoders in
which the latent variable z only relies on the last hidden state h, CL-
RNN captures the temporal dependencies among latent variables
Z𝑡−1 = {z𝑡−𝑁 , z𝑡−𝑁+1, · · · , z𝑡−1}, as well as the discrete h-space
learned by GRU cells. In addition, we use numerical ODE solver to
update the parameters inherent in RNNs.
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Figure 4: Detailed architecture of one-timestep in CL-RNN.

Figure 4 depicts the detailed structure of CL-RNN within one-
time step. With the previous mean and variance

(
𝜇h
𝑡−2, 𝜎

h
𝑡−2

)
of

hidden state h𝑡−2 and hydropower input x𝑡−1 at time 𝑡 − 1, we
first feed them into the GRU cell to generate

(
𝜇h
𝑡−1, 𝜎

h
𝑡−1

)
, as well

as the hidden state h𝑡−1 at time 𝑡 − 1. Then, in order to study the
inherent relationships ofmultivariate hydropower flow data, we add
another GRU cell, which takes

(
𝜇z
𝑡−2, 𝜎

z
𝑡−2

)
and h𝑡−1 as the inputs,

for latent representation learning. Subsequently, the second GRU
cell output 𝜇z

𝑡−2 is taken as the initial value passing by a numerical
ODE solver – where we use Euler method as its numerical solution –
to produce the latent variable 𝜇z

𝑡−1 at time 𝑡−1. As a result, CL-RNN

completes a continuous latent representation learning conditioned
on previous latent variables and hidden states, which is expected
to capture stochastic temporal dependencies among observations
while solving the problem of discrete recurrent networks from a
dynamic system view. The above process is summarized as follows:

𝜇h𝑡−1, 𝜎
h
𝑡−1 = GRUCell

(
𝜇h𝑡−2, 𝜎

h
𝑡−2, x𝑡−1

)
,

h𝑡−1 = 𝜇h𝑡−1,

𝜇z𝑡−2, �̂�
z
𝑡−2 = GRUCell

(
𝜇z𝑡−2, 𝜎

z
𝑡−2, h𝑡−1

)
,

𝜇z𝑡−1 = ODESolve
(
𝑓𝜔 , 𝜇

z
𝑡−2, 𝑡 − 2, 𝑡 − 1

)
,

𝜎z𝑡−1 = �̂�
z
𝑡−2,

z𝑡−1 = 𝜇z𝑡−1, (3)

where the ODE solver in CL-RNN is Euler; 𝑡 − 2 and 𝑡 − 1 denote
the start time and end time of integration; and for GRU cell, we
have the following formula (for the first GRU cell in Figure 4):

i =
[
𝜇h𝑡−2, 𝜎

h
𝑡−2, x𝑡−1

]
,

o =

[
𝜇h𝑡−2R (i), 𝜎h𝑡−2R (i), x𝑡−1

]
,

𝜇, �̂� = tanh (woo + bo) ,

𝜇h𝑡−1 = (1 − U (i)) 𝜇 + U (i)𝜇h𝑡−2,

𝜎h𝑡−1 =
���(1 − U (i)) |�̂� | + U (i)𝜎h𝑡−2

��� , (4)

where R and U denote reset gate (determining which important
information of current inputs should be remembered) and update
gate (deciding how much previous information to save), respec-
tively; w𝑜 and b𝑜 denote the learnable parameters and bias. To-
wards reproducibility, we provide a pseudo-code for the CL-RNN
in Algorithm 1.

Until now, the mean 𝜇z
𝑡−1 and the variance 𝜎z

𝑡−1 of latent vari-
able z𝑡−1 are available – which means that we can directly sample
z𝑡−1 from the learned distribution 𝑞𝜙 (z𝑡−1 |X𝑡−1, z𝑡−2) using the
reparameterization trick [15]: z𝑡−1 = 𝜇z

𝑡−1 + 𝜎
z
𝑡−1 ∗ 𝜖 , where 𝜖 are

samples from a standard Gaussian 𝜖 ∼ N(0, 𝐼 ).

4.1.2 Continuous Normalizing Flow. However, the real posterior
distribution 𝑞𝜙 (z𝑡−1 |X𝑡−1, z𝑡−2) may not follow a typical Gaussian,
which means we may impose a strong regulation of the latent
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variables from CL-RNN. To let our model approximate the true
posterior distribution, we introduce a continuous normalizing flow
(CNF) inspired by [3], which simplifies the computation of the
change in z and its log densities to transform 𝑞𝜙 (z𝑡−1 |X𝑡−1, z𝑡−2)
in a continuous way. Let z𝑡−1 (0) = z𝑡−1 be the initial value, and
differential function 𝛽𝜓 , parameterized by𝜓 , be uniformly Lipschitz
continuous in both z and time 𝑘 :

𝑑z𝑡−1 (𝑘)
𝑑𝑘

= 𝛽𝜓 (z(𝑘), 𝑘), (5)

which describes a continuous-in-time transformation of z(𝑘). Ac-
cording to the theorem of instantaneous change of variables [4],
the change in log densities log𝑞𝜙 (z𝑡−1 (𝐾)) |X𝑡−1) also follows a
differential equation:

𝑑 log𝑞𝜙 (z𝑡−1 (𝑘) |X𝑡−1)
𝑑𝑘

= − tr
(
𝜕𝛽𝜓

𝜕z(𝑘)

)
, (6)

where tr denotes the trace operation – which replaces the intensive
determinant computation in normalizing flows [22].

Then, the latent variables z𝑡−1 (𝐾) after time-length 𝐾 and its
log densities log𝑞𝜙 (z𝑡−1 (𝐾) |X𝑡−1) can be computed as:

z𝑡−1 (𝐾) = z𝑡−1 (0) +
∫ 𝐾

0
𝛽𝜓 (z𝑡−1 (𝑘), 𝑘)𝑑𝑘, (7)

log𝑞𝜙 (z𝑡−1 (𝐾) |X𝑡−1) = log𝑞𝜙 (z𝑡−1 (0) |X𝑡−1) −
∫ 𝐾

0
tr
(
𝜕𝛽𝜓

𝜕z(𝑘)

)
, (8)

where we let 𝐾 = 1 in DeepHydro – which, however, can be arbi-
trarily set as 𝐾 > 1 for more transformations. Now, we can train
the hydropower inference network by maximizing the evidence
lower bound (ELBO) as follows:

ELBO (𝜃, 𝜙) =
E𝑞𝜙 log [𝑝𝜃 (X𝑡−1 |z𝑡−1 (𝐾))] + E𝑞𝜙 log [𝑝𝜃 (z𝑡−1 (𝐾))]

− E𝑞𝜙
[
𝑞𝜙 (z𝑡−1 (0) |X𝑡−1)

]
+
∫ 𝐾

0
tr
(
𝜕𝛽𝜓

𝜕z(𝑘)

)
. (9)

After CNF, a more accurate non-Gaussian posterior density
𝑞𝜙 (z𝑡−1 (𝐾) |X𝑡−1) can be obtained, resulting in a more informative
latent representation z𝑡−1 at time 𝑡 − 1.

4.1.3 Extrapolation Decoder. At this point, we have obtained prob-
ability density regarding z𝑡−1 at time 𝑡 − 1, which generalizes the
latent variables from previous observations X𝑡−1. To predict the
power at 𝑡 , the latent representation at 𝑡 is desirable. Furthermore,
we would like to endow the inference network with the capability
of autoregressively capturing conditioned dependencies and infer-
ring future density of stochastic variables. Towards this goal, we
propose an extrapolation network as the decoder, which infers the
future latent variable z𝑡 at time 𝑡 by solving the ODEs:

z𝑡 = ODESolve (𝑔𝜈 , z𝑡−1 (𝐾), 𝑡 − 1, 𝑡) (10)

where 𝑔𝜈 denotes the differentiable neural network in ODE blocks
with parameters 𝜈 . Here we use Dopris method [7] as the numerical
solution in the extrapolation decoder.

4.2 External Factors Extraction Network
Recall that in addition to the hydropower generation data itself,
the natural and social factors provide key information that influ-
ences power generation. As mentioned, the generation is strongly

correlated to electricity demand and power consumption, which is
highly seasonal and periodical in time of day (e.g., working hours
vs. family hours), week and weekend, months/seasons (e.g., win-
ter vs. summer). Similarly, the water flows (e.g., water inflow and
water outflow) are always associated with generating power or
water level adjustment. Moreover, the hotter (colder) the summer
(winter), the more electricity people use, which directly determines
the amount of electricity generated. Lastly, the social/economic
factors such as the electricity price can also potentially affect the
hydropower generation, i.e., the higher the price, the more profit
that is driving hydro-plants to generate more electricity. In this
work, we collectively refer to these influences as external features
and design an external factor extraction network (EFEN), as shown
in the lower middle part of Figure 3, for feature extraction and
fusion.

In EFEN, we first embed the categorical temporal features
(HourofDay and DayofWeek) to a low-level dimension. Then we
let all external factors e pass by a 2-layer fully connected network
(FCN), which gives an output with 128 dimensions at time 𝑡 – and
ELU [6] is used as the non-linear activation function. Rather than
simply concatenating different types of feature vectors as most of
existing works [16, 18], we append an ODE block to extract the
different types of features that are usually entangled with each
other (e.g., temporal, sequential and categorical features should be
merged). The rationale behind this choice lies in the observation
that FCN alone is too shallow to capture the non-liner interactions
among different features. In contrast, the factors that pass our EFEN
– an infinite deep network structure – can effectively impose real
impacts on the prediction. Here we use fixed-adams as the ODE
solver. We now obtain the learned external factor representation e𝑡
that could be used for generated power prediction.

4.3 Hydropower Generation Predictor
Now, forecasting the generated hydropower is straightforward.
Specifically, we combine the external factors features e𝑡 extracted
by EFEN, global temporal features g𝑡−1 captured via CL-RNN, and
latent representations z𝑡 output by extrapolation decoder, for pre-
diction. For g𝑡−1, we first concatenate the sequence of Z𝑡−1 =

{z𝑡−𝑁 , z𝑡−𝑁+1, · · · , z𝑡−1} and H𝑡−1 = {h𝑡−𝑁 , h𝑡−𝑁+1, · · · , h𝑡−1},
which are outputs of CL-RNN. Then, the intermediate variables are
fed into a Bi-GRU network for global temporal dependencies extrac-
tion. Finally, we use a simple MLP to predict the final hydropower
generation prediction v̂𝑡 with three major representations:

v̂𝑡 = MLP ( [z𝑡 , e𝑡 , g𝑡−1]) (11)

Objective: In this work, we aim to predict the hydropower gener-
ation at time 𝑡 with proposed DeepHydro by minimizing the mean
squared error between the real hydropower generation v𝑡 and the
predicted value v̂𝑡 while maximizing the ELBO in Eq.(9). Therefore,
the loss function is defined as:

L(Ω) = ∥v𝑡 − v̂𝑡 ∥22 − ELBO (𝜃, 𝜙) . (12)

The details of the training procedure of DeepHydro are summa-
rized in Algorithm 2 in the Appendix.
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5 EXPERIMENTS
We now present the results from our empirical evaluations of Deep-
Hydro against several state-of-the-art baselines on time series fore-
casting, to demonstrate its superiority in terms of prediction per-
formance. We also investigate the effectiveness of different com-
ponents of DeepHydro and present intuitive explanations of the
model performance.

5.1 Experimental Settings

Table 1: Statistics of datasets. Some social/economic infor-
mation such as sale price are masked.

Dataset DGS PDS
Time span P1:1/1/2017–12/31/2017 P1:1/1/2017–12/31/2017

P2:1/1/2018–12/31/2018 P2:1/1/2018–12/31/2018
Data type Multivariate time series Multivariate time series
Time interval 1 hour 1 hour
power generation (kwh) [0.0, 2591.2] [0.0, 668.0]
Water flow
Water inflow [0.0, 4640.0] [0.0, 11579.0]
Water outflow [55.1, 5220.0] [53.8, 6490.0]
Generation flow [55.1, 1730.0] [55.1, 2480.0]
External Factors (meteorology, time and sale price)
temperature/◦C [-24.4 21.7] [-24.4 21.7]
HourOfDay [0.0, 24.0] [0.0, 24.0]
DayOfWeek [1, 7] [1, 7]
WeekdayOrWeekend [0,1] [0,1]

5.1.1 Datasets. To compare the performance of different methods,
we conduct experiments on datasets from two large hydropower
generation stations, i.e., Dagangshan Dam and Shenxigou Dam.

Recall that Figure 1 showed the map of hydropower stations on
the Dadu River, a tributary of the Yangtze River in Sichuan Province,
and that the basic cartographic properties and statistics of power
generation were discussed in Section 3.1. The detailed description
of the complete datasets that we used is shown in Table 1. One can
observe that each dataset contains two types of multivariate time
series data – hydropower flow generation and water flow informa-
tion. As mentioned, the temporal dimension and some additional
external factors that profoundly influence the hydropower genera-
tion (e.g., temperature and electricity price) are also modeled in our
method. We split each dataset into two different periods (P1 and
P2), both spanning one year. We use the first 41 weeks for training
and the last 11 weeks for testing.
• DGS is collected from the Dagangshan Dam – an arch dam on
the Dadu River in Shimian County, which houses a hydroelectric
power station with 4 x 650 MW generators for a total installed
capacity of 2,600 MW. This data contains the power generation
spanning two years.

• PDS is gathered from the Shenxigou Hydropower plant in
Hanyuan County, which has a total of 660 MW (4 x 165 MW)
installed capacity. This data also contains the hydropower gener-
ation for two years.

5.1.2 Baselines. We compare DeepHydro with the following 9
benchmarks that are typically used for time series forecasting:

• Historical Average (HA): models historical data average of
a certain time period𝑇 to predict the hydropower generation
in the next time step. In this paper, we set 𝑇 = 7.

• ARIMA: is a well-known time series model that combines
autogressive (AR) and moving average (MA) for prediction.

• SARIMA: is formed by including additional seasonal terms
in the ARIMA model, which has been widely used in grid
load prediction [3, 28].

• LSTM: is a RNN-based model, capturing the information
of long-short term dependency with a vanilla LSTM, which
has been commonly used for time series forecasting in the
literature [27, 30, 31].

• Bi-GRU: is a bidirectional GRU model that concatenates the
forward and backward hidden states for prediction.

• Bi-GRU-ATT: incorporates attention mechanism into the
Bi-GRU network [5] which can selectively weight the im-
portant information and dependency, and has been used
as building blocks for time series prediction and sequential
recommendation models [17, 33, 35].

• GRU-VAE: aims at reconstructing the input from the latent
variable of observations by VAE, which employs GRU as its
encoder and decoder. This method has been used for time
series modeling in [26, 32].

• PlanarVAE: learns the non-Gaussian posterior density with
planar NF [22] to obtain more robust latent representation
than vanilla VAE. The main architecture of modeling time
series follows the GRU-VAE. This method has been used for
sequential recommendation [34] and time series anomaly
detection [29].

• LatentODE [23]: generalizes RNNs to have continuous-time
hidden dynamics defined by ODEs. It considers latent repre-
sentation z as a time series variable in RNN, and therefore
can handle arbitrary time gaps between observations, and
explicitly model the irregular sampled time series.

5.1.3 Variants. We implemented three variants of DeepHydro to
investigate the effect of its different components:

• DeepHydro-NF: replaces Continuous NF with a planar NF
in DeepHydro to learn the latent space distribution.

• DeepHydro-RNN: uses classic RNN such as LSTM as en-
coder instead of CL-RNN.

• DeepHydro-NE: removes external factor extraction net-
work, i.e., it makes prediction purely based on the multi-
variate time series data.

5.1.4 Metrics. We evaluate all methods with three widely usedmet-
rics for time series prediction: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) and Mean Absolute Percentage Er-

ror (MAPE), defined as: RMSE =

√
1
𝑀

∑𝑀
𝑖=1 (v̂𝑡 − v𝑡 )2, MAE =

1
𝑀

∑𝑀
𝑖=1 |v̂𝑡 − v𝑡 |, MAPE = 1

𝑀

∑𝑀
𝑖=1 |

v̂𝑡−x𝑡
v𝑡 |, where v̂𝑡 and v𝑡 are

predicted and ground-truth hydropower generation volume at time
𝑡 , and𝑀 is the collection of testing samples.

5.2 Experimental Results
The details of our evaluation follow.

5.2.1 Performance Comparison. Table 2 reports the performance of
all methods on the two datasets, from which we have the following
observations. First, traditional methods such as HA, ARIMA and
SARIMA perform poorly because they cannot capture nonlinear
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Table 2: Performance comparisons on DGS and PDS over two different time spans. Pair t-test was performed for statistical
significance of the results (p < 0.005).

Datasets DGS PDS
Time span P1 P2 P1 P2

Method
Metrics RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 491.8 390.1 0.823 533.8 434.9 0.963 139.3 113.6 0.590 139.3 114.6 0.446
ARIMA 242.5 165.4 0.733 278.7 227.6 0.882 72.1 59.5 0.322 74.8 63.6 0.283
SARIMA 239.4 161.8 0.735 273.3 220.5 0.884 71.3 58.1 0.318 73.4 62.8 0.273
LSTM 200.3 143.9 0.631 235.4 182.3 0.839 51.6 35.8 0.208 53.3 37.2 0.182
Bi-GRU 197.8 137.6 0.605 233.2 174.6 0.702 50.8 35.5 0.201 52.6 36.7 0.179

Bi-GRU-ATT 193.8 136.7 0.580 232.0 172.2 0.643 50.1 34.4 0.204 51.9 36.6 0.177
GRU-VAE 195.3 138.6 0.621 232.1 173.2 0.669 50.2 34.2 0.201 52.1 36.4 0.178
PlanarVAE 192.6 135.5 0.578 230.7 170.4 0.630 49.1 33.9 0.198 50.8 35.5 0.173
LatentODE 190.3 134.3 0.581 227.1 167.5 0.634 48.6 33.1 0.201 50.3 35.1 0.171
DeepHydro 144.1 106.4 0.412 182.2 133.4 0.537 35.2 25.9 0.169 38.8 28.7 0.153

temporal dependencies among multivariate power generation and
fail to leverage useful external factors.

Second, modeling electricity power with simply deep recurrent
networks, e.g., LSTM, Bi-GRU, Bi-GRU-ATT, does not yield good
prediction performance, due to the incapability of modeling stochas-
ticity of electricity power.

Third, the effect of other stochastic approaches such as GRU-
VAE and PlanarVAE are limited because the autoregressive models
(LSTM or GRU) are powerful enough to decode the entire time
series, resulting in uselessness of stochastic latent factors, as being
observed in other sequence modeling tasks [12, 34]. LatentODE,
which usually performs the second best, is capable of defining
a generative process over time series. However, it is originally
designed for irregularly-sampled datawith time decay factors which
are not the case for electricity power – the generated power is
uniformly and timely measured in modern hydropower stations.

Fourth, DeepHydro significantly outperforms all baselines on
all metrics in both datasets, demonstrating the effectiveness of
DeepHydro in dealing with multivariate time series data. For exam-
ple, DeepHydro yields 27.6%, 21.8%, and 15.9% improvement over
the second best approach in terms of RMSE, MAE, and MAPE on
PDS-P1, respectively.

Finally, it is worthwhile to note that our method can adapt to
hydro-plants of different scales and possibly reapmore performance
gain on data with larger ranges. For example, the performance gain
of DeepHydro on larger scale hydro-plant DGS (P1) increases by
29.1% in terms of MAPE.

5.2.2 Ablation Study. Figure 5 shows the effect of the different
building blocks of DeepHydro. Clearly, external factors play an
important role on power prediction, which is verified by the sig-
nificant drop of performance of DeepHydro-NE. The advantage of
our latent model CL-RNN can be observed by the reduced perfor-
mance of DeepHydro-RNN. This result indicates that modeling the
temporal dependence among latent variables (in addition to hidden
states) benefits model expressiveness, i.e., capturing more informa-
tive signals from historical stochastic variables. Moreover, replacing
continuous NF with planar NF causes performance degradation.
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Figure 5: The ablation analysis on two datasets.

This reveals the effect of continuous transformation of stochastic
variables, which, arguably, better reflects the natural continuous-
time dynamics of industrial time series data of electricity power.

Table 3: Influence of external factors.
External Factors RMSE (%) MAE(%) MAPE(%)

Water flow 18.3 14.9 15.2
Temporal information 11.1 4.6 5.0

Temperature 8.2 4.2 4.8
Electricity price 6.5 3.2 4.3

5.2.3 Influence of Different Factors. We investigated the influence
of different factors by individually removing them from DeepHydro
and present the results in Table 3 – each value indicating the per-
formance gain (i.e., reduced errors) if incorporating corresponding
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factor back into DeepHydro. The water flow (both inflow and out-
flow) is the strongest indicator of power generation prediction – as
expected, since the hydropower electricity is generated by the wa-
ter. Furthermore, temporal information, temperature and electricity
price are also correlated to hydropower generation, e.g., seasonal
fluctuation, residential and industrial demand, etc., all of which
should be taken into account for fine-grained power forecasting.

6 CONCLUSION
We presented DeepHydro – a novel framework for power gener-
ation forecasting. Our model is built upon a new designed RNN
that captures the temporal dependencies among latent variables
reflecting the distribution of observations. DeepHydro is a normal-
izing flow based generative approach capable of alleviating the
agnostic posterior estimation problem. We also provide an alter-
native view of optimizing time series models through treating the
discrete layers of neural networks as solving ODEs, which could
better approximate the dynamics system and continuous indus-
trial data such as hydropower electricity. Experiments conducted
on real-world hydro-plant datasets prove the effectiveness of our
method. Our DeepHydro model has been successfully deployed on
the hydropower data mining platform, and is continuously learning
with new hydropower data. Currently, we are exploring better op-
timization methods to improve power forecasting for a series of
cascaded hydro-plants in the company, which is more challenging
since we need to globally coordinate the data among stations. In
addition, generalizing our method to other time series tasks such
as electricity price movement prediction and precipitation/water
flow forecasting are topics of particular interest that could further
improve the power generation forecasting and marketing manage-
ment.
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A ALGORITHMS
Algorithm 1 describes the details of CL-RNN while the training
procedure of DeepHydro is outlined in Algorithm 2.

Algorithm 1: CL-RNN

Input: multivariate hydropower data: X𝑡−1, means 𝜇h
𝑡−𝑁−1

and 𝜇z
𝑡−𝑁−1, variances 𝜎

h
𝑡−𝑁−1 and 𝜎

z
𝑡−𝑁−1,

differential function 𝑓𝜔 .
Output: Z𝑡−1 = {z𝑡−𝑁 , z𝑡−𝑁+1, · · · , z𝑡−1},

H𝑡−1 = {h𝑡−𝑁 , h𝑡−𝑁+1, · · · , h𝑡−1} and
(
𝜇z
𝑡−1, 𝜎

z
𝑡−1

)
.

1 Initialize 𝜇h
𝑡−𝑁−1 = 0, 𝜎h

𝑡−𝑁−1 = 0, 𝜇z
𝑡−𝑁−1 = 0, 𝜎z

𝑡−𝑁−1 = 0;
foreach 𝑖 in [𝑡 − 𝑁, · · · , 𝑡 − 1] do

2 𝜇h
𝑖
, 𝜎h
𝑖
, h𝑖 = GRUCell

(
𝜇h
𝑖−1, 𝜎

h
𝑖−1, x𝑖

)
;

3 𝜇z
𝑖−1, �̂�

z
𝑖−1, z𝑖−1 = GRUCell

(
𝜇z
𝑖−1, 𝜎

z
𝑖−1, h𝑖

)
;

4 z𝑖 = ODESolve (𝑓𝜔 , z𝑖−1, 𝑖 − 1, 𝑖);
5 𝜇z

𝑖
= z𝑖 , 𝜎z𝑖 = �̂�z

𝑖−1;
6 Save hidden state h𝑖 and latent variable z𝑖 ;
7 end
8 Concatenate all hidden states h𝑡−𝑁 :𝑡−1 to H𝑡−1;
9 Concatenate all latent variables z𝑡−𝑁 :𝑡−1 to Z𝑡−1;

10 return Z𝑡−1, H𝑡−1 and
(
𝜇z
𝑡−1, 𝜎

z
𝑡−1

)
.

Algorithm 2: DeepHydro

Input: multivaraiate hydropower data X𝑡−1; external
factors e𝑡 ;

Output: predicted hydropower generation v̂𝑡 .

1 Initialize all parameters Ω of DeepHydro;
2 while not converged do
3 Obtain Z𝑡−1, H𝑡−1 and (𝜇z

𝑡−1, 𝜎
z
𝑡−1) by Algorithm 1;

4 Sample z𝑡−1 (0) = 𝜇𝑧𝑡−1 + 𝜎
𝑧
𝑡−1 × 𝜖 , 𝜖 ∼ N(0, 𝐼 );

5 Obtain z𝑡−1 (𝐾) using CNF by maximizing ELBO (Eq.(9));
6 Reconstruct X𝑡−1 with latent variable z𝑡−1 (𝐾);
7 Obtain z𝑡 with extrapolation decoder, cf. Eq.(10);
8 Obtain g𝑡−1 via a Bi-GRU with input [Z𝑡−1,H𝑡−1];
9 Obtain external features e𝑡 with EFEN;

10 Predict hydropower generation v̂𝑡 with Eq.(11);
11 Update Ω by maximizing the objective in Eq.(12).
12 end

B DATA PREPROCESSING
The range of hydropower generation and water flow value are
wide (cf. Table 1). A straightforward method is to utilize the Min-
Max normalization to regularize the value into a range of [0, 1]
during training stage and re-scale the predicted value back to the
real value during testing. We segment the time series into fixed-
length sequences with length 𝑁 (𝑁 = 1 × 24 × 7), i.e., a sequence
consists of the power generated in 1 week with observation interval
of 1 hour. Therefore, each batch of training data has the shape

X𝑡−1 ∈ R𝐵×𝑁×𝑃 , where 𝐵 denotes the batch size. In addition, we
adopt Lagrange interpolation polynomial method to interpolate the
anomalous/missing value appeared in the data. Moreover, some
temporal feature (e.g., HourOfDay and DayOfweek) are embedded
into the low-dimensional vectors for training.

C IMPLEMENTATION NOTES
We implement DeepHydro and baselines using PyTorch1.1.0 and
Python3.6 on Ubuntu 16.04 OS with a single NVIDIA GeForce GTX
2080ti GPU. The batch size is by default set to 128. The learning
rate is set to 0.0001 at the beginning, and then decayed 50% every
20 epochs. ADAM optimizer [14] is used with the setting of 𝛽1 =
0.9 and 𝛽2 = 0.999. For all methods, we run 150 epochs in total for
training the model and then verify the model on testing data.

The ODE solvers in CL-RNN was implemented by the Euler
method, while in Continuous NF and extrapolation decoder we
used Dopris solver [7]. In the external factor extraction network,
fixed-adams is employed to solve the ODEs. These choices are based
on the compromises between computational precision and model ef-
ficiency, which means other sophisticated numerical methods such
as adjoint method, Runge–Kutta, midpoint, tsit5 and adaptive-heun
can be easily used to replace the methods used in our experiments.
All of these ODE solvers can be easily implemented with the open
source package3.

3https://github.com/rtqichen/torchdiffeq
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