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ABSTRACT
In this paper, we present the CET-LATS (Compressing Evolution
of TINs from Location Aware Time Series) system, which enables
testing the impacts of various compression approaches on evolving
Triangulated Irregular Networks (TINs). Specifically, we consider
the settings in which values measured in distinct locations and at
different time instants, are represented as time series of the corre-
sponding measurements, generating a sequence of TINs. Different
compression techniques applied to location-specific time series may
have different impacts on the representation of the global evolution
of TINs – depending on the distance functions used to evaluate the
distortion. CET-LATS users can view and analyze compression vs.
(im)precision trade-offs over multiple compression methods and
distance functions, and decide which method works best for their
application. We also provide an option to investigate the impact of
the choice of a compression method on the quality of prediction.
Our prototype is a web-based system using Flask, a lightweight
Python framework, relying on Apache Spark for data management
and JSON files to communicate with the front-end, enabling exten-
sibility in terms of adding new data sources as well as compression
techniques, distance functions and prediction methods.
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plications.
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1 INTRODUCTION AND MOTIVATION
The advances in sensing technologies and the proliferation of
location-aware IoT devices have enabled generation of large vol-
umes of spatial data, augmented with semantic contexts such as
type of data, measurement frequencies, etc. One of the major con-
cerns when dealing with big data is its sheer size, affecting the
efficiency of scientific explorations [8], which became a part of the
motivation for this work. The typical way of dealing with large
datasets is to apply compression techniques, yielding benefits not
only in terms of storage, but also in the efficiency of algorithms
processing time as well as transmission [13].

Among the most popular data types in geo-spatial applications
are TINs (Triangulated Irregular Networks), which approximate
a continuous surface representing the distribution of a phenome-
non of interest by using triangular facets. The 2D projections of
vertices of the triangles typically correspond to locations in which
measurements are taken, and the height of each vertex in the TIN
corresponds to a value taken at a particular location.

In this paper we focus on specific settings in which measure-
ments in particular locations are taken continuously over time (i.e.,
with some sampling frequency). Thus, the collection of measure-
ments at a given location can be perceived as a time series. Much
work has been done in terms of investigating different represen-
tation methods and distance functions for evaluating similarity of
time series [14], and the impact of compression in such settings [6].
The trade-offs between different compression techniques and dis-
tance functions in terms of similarity of location-bound time series
have been investigated in [12].

In this paper, we focus on investigating how different compres-
sion methods applied to location-bound time series affect the accu-
racy of the TIN-based representation of the evolving shapes repre-
senting the distribution of the (coverage of the) certain phenomena
over a geographic region [11]. To this end, we developed the CET-
LATS (Compressing Evolution of TINs from Location Aware Time
Series) system which we demonstrate here. CET-LATS enables the
users to test the impact of different compression methods on differ-
ent shape-distance functions, thereby providing a tool for domain
experts to compare and select a particular methodology that best
serves their application needs. In addition to visualization capabil-
ity, it also gives the option to compare the impact of compression
methods on the quality of prediction.

In the rest of this paper, we overview the preliminary background
in Sec. 2. Next, we discuss the overall architecture of CET-LATS
in Sec. 3. The details of the steps of the demo experience for the
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users are presented in Sec. 4. We conclude the paper and outline
directions for future work in Sec. 5.

2 PRELIMINARIES
Before describing the details of CET-LATS, we now present the
necessary background.

A time series is sequence of values {𝑣1, 𝑣2, . . . , 𝑣𝑛} where each
𝑣𝑖 can be perceived as the measurement of a (value of a) partic-
ular phenomenon of interest at time 𝑡 = 𝑡𝑖 , for a given base sta-
tion. A group of {𝑇1,𝑇2, . . . ,𝑇𝑘 } where each 𝑇𝑗 is a time series –
𝑇𝑗 = {𝑣 𝑗1, 𝑣 𝑗2, . . . , 𝑣 𝑗𝑛} is a time series database. The values in each
time series sequence, in most cases, are recorded in periodically,
at regular intervals [11]. Specifically, each 𝑇𝑖 is bound to a unique
location 𝐿(𝑇𝑖 ).

TIN is a collection of triangular facets used to represent (approx-
imation of) surfaces [7], possibly in different resolutions. In our
settings, we have a collection of TINs, each obtained by the values
read at locations {𝐿(𝑇 1), . . . , 𝐿(𝑇𝑘 )} for a particular time-instant.
Compression Methods and Surface Distances. We implement-
ed different compression techniques to reduce the size of raw mea-
surements in each location and analyzed the effects Multiple com-
pression error tolerance/ratios and the out-turn of the compression
was studied Linear interpolation to impute the data that is miss-
ing in particular time points (i.e., was eliminated during compres-
sion). The specific compression techniques that we implemented
belong to two broad categories: (1) Dimensionality reduction tech-
niques: Discrete Fourier Transform (DFT), Piecewise aggregate
Approximation (PAA); and (2) Native space compression methods:
Visvalingam-Whyatt Algorithm (VW), (Adapted) Optimal Algo-
rithm (OP), (Adapted) Douglas-Peucker Algorithm (DP). The reason
behind choosing these compression methods was based on their
popularity and flexibility [11].

Analyzing the consequences of compression is equally impor-
tant; therefore, distance metrics were chosen that can highlight the
difference between raw TINS and compressed TINs in a descriptive
way by comparing their surfaces. The distance functions that we
implemented are Volume-based distance, Hausdorff distance, and
Angular difference.
Hausdorff distance is a widely used min-max distance methods for
assessing similarity between two surfaces based on their positions
in terms of resemblance between two objects [5].
Volume based distance – this metric compares the volume of raw
TINS with the volumes obtained using interpolated TINS from the
compressed time series. It is also widely used as a technique to
measure the similarity between segments based on volume preser-
vation property [9]. In our case, each triangle in TIN is considered
as a truncated prism, as shown in Figure 1. The volume of both raw
truncated prism and interpolated prism constructed by interpolated
data points are calculated and compared.
Angular distance – The inverse of the cosine similarity, is used as
another distance metric in CET-LATS [1]. The broad use of cosine
similarity in measuring 3d surface similarity between the perpen-
dicular vectors of two corresponding triangles makes it easier to
pick Angular distance to compare the TIN surfaces in CET-LATS.
Prediction Presently, we implemented Prophet, Autoregression (AR),
and Autoregressive Integrated Moving Average (ARIMA).

Figure 1: Truncated triangular prism

3 SYSTEM ARCHITECTURE
The Basic Architecture of CET-LATS is depicted in Figure 2, show-
ing the three main components: backend, frontend, and the com-
municators – RESTful services, and the data layer (Apache Spark)
communicating via SQL queries.

Figure 2: Architecture of the Application

Backend: Flask. The reason for choosing this python framework
is because of its the most common web handling tasks such as
mapping URLs, Template rendering, session management, flexible
HTTP request and response handling, as well as easy to use and
flexible application management [2].

Backend: Apache spark. AS a general-purpose cluster computing
environment that supports SQL queries, it much faster than Hadoop
and disk in terms of accessing the data. In addition, it provides a
high-level API that supports different programming languages such
as Java, Python, R, etc.

Frontend. This part uses HTML, CSS, and JavaScript to interact
with the end-users. HTML provides the basic framework of the sites,
which is then and JavaScript is is used to control and handle the pre-
sentations and behavior of different elements in web applications.
CET-LATS frontend utilizes one of the libraries of Javascript, D3.js,
to generate an interactive graph in the web browser. D3.js brings
the data back to life with the help of SVG, HTML and CSS. The
returned queries from the backend as JSON are then reconstructed
into interactive visualizations in the Webpage with the help of D3
charts. The reason behind choosing D3 is its capability to customize
the mapping values into graphics such as display, color [3].

We note that Flask has its own built-in template feature, Jinga,
for web application, which is utilized in this system. Alongside
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JSON we have used Jinga template to handle some of the backend
tasks.
Information Parsing/Passing. Transmission of structured data be-
tween the server and web application needs a format of communica-
tion. A number of such formats exist and among them, two widely
used messaging passing formats are XML and JSON (JavaScript
Object Notation); we picked JSON because

4 DEMONSTRATION STEPS
CET-LATS features and internals are demonstrated using the dataset
that incorporates daily temperature of the whole world in 2019 [4].
The final format of the data is as follows: Latitude (of the station),
Longitude (of the station), and the rest of the columns are the mea-
sured temperature values for a corresponding date.

We note that the dataset, the code used for the implementa-
tion CET-LATS, as well as the code used for the different com-
pression methods and distance function, is publicly available at:
https://github.com/Prabingiri/CET-LATS

In the sequel, we present in detail the steps of the demo scenarios,
illustrating the functionalities of the CET-LATS available for the
users.

STEP 1: Selecting a region of interest. CET-LATS gives
the flexibility for the end user to focus on a particular spatial range.
The user can select the range of latitudes and longitudes values,
creating a subset of the dataset available in the system. This feature
allows the users to create a scenario for a more focused spatial
investigation.

The User Interface (UI) of CET-LATS is shown in Figure 4, which
also depicts the selection of the spatial range of interest.

Step 2: Selecting a compression method and dis-
tance function. CET-LATS offers the users to specify one of
the presently available compression methods. Subsequently, for the
chosen compression method, the user is given an option to spec-
ify the compression ratio (i.e., the desired size of the compressed
version of the data), or the error tolerance. We note that a specific
error tolerance may yield different output compression ratios on
different input data.

Upon completion of this request, the backend systems checks the
dataset in its Apache module and proceeds with the basic activities
– e.g., construction of TINS and compression of the time series
data in the qualified location (cf. Step 1). Next, the interpolation is
applied for the values in time instants in which the original data
was eliminated during the compression.

When the user selects a particular distance function to exam-
ine the impact of the chosen compression method and parameters,
CET-LATS proceeds with generating the data and preparing the
graphs for visual comparison. At present, the output for visually
comparing the result, provide the values of min and max – in terms
of which time instants generate the smallest and the largest dis-
crepancy between the TIN from the original data and the TIN from
the compressed data (for the chosen distance function). Users will
also see the mean discrepancy, averaged over all the time instants.

An illustration of a possible output for the user from this step is
shown in Figure 3.

Figure 3: Visualization of the errors with different surface
distance for PAA with compression ratio 0.5

Step 3: Grouped comparisons. This additional feature of
the system allows users to conduct another kind of comparative
analysis for the multiple compression techniques and distance func-
tions at once. More specifically, the user can select more than one
compression method and select multiple values for the parameters
(i.e., error tolerance and compression ratio). Upon receiving the
entire collection, the backend system will execute all the compar-
isons and returns the compared results grouped around the distant
functions. Those are subsequently sent to the frontend as JSON
format, which is manipulated by frontend part to enable the user
to view the multiple comparisons. The lower part of Figure 4 illus-
trates this functionality – i.e., the user can check the boxes of the
desired compression methods, after which the system will ask for
specification of parameters and the selection of distance functions.

Figure 4: UI for the comparison

https://github.com/Prabingiri/CET-LATS
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Step 4: Visualizing the TIN instances. Another feature
of CET-LATS is that it gives the opportunity to visualize the TIN
– both with the original and the compressed data – at a particular
time instant. This option expects that the user will provide the
value of interest for the temporal domain, and select the spatial
subset of interest. An example of the output – i.e., a comparative
visualization of TINS constructed before and after compression of
the selected dataset is depicted in Figure 5.

Figure 5: 3D plot of TINs before and after compression

Step 5: Compression impact on predictions.
Another feature of the proposed application is the prediction

tab. AT present, we have AR, ARIMA and Prophet [10] available in
CET-LATS. In the prediction part for Prophet, for both the original
and the compressed datasets, in the current version we used the
daily temperature of the first eleven months (January-November) of
2019 as the training data and the last month (December) as the test
data. User can get the prediction values of a station by providing
the latitude and longitude of the station’s location. The predicted
values of one of the measuring stations (latitude: 78.250, longitude:
22.817) are shown in Figure 6.
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Figure 6: Predicted value versus real data of one of the mea-
suring stations. The lower and upper bound of the predic-
tion are shown in the figure.

We close this section with a note that the users also have the
option to upload their own datasets. The only constraint is that
presently the format of each record is expected to be: {lon, lat,
𝑣𝑎𝑙𝑡1, 𝑣𝑎𝑙𝑡2, . . . , 𝑣𝑎𝑙𝑡𝑛}

5 CONCLUSION AND FUTUREWORK
We presented CET-LATS, a prototype system that allows the users
to explore the impact of different time series compression methods
on (the evolution of) TINs. Specifically, we considered the settings
in which each time series is associated with a spatial location, and
at each time instant, a TIN is constructed using the coordinates of
the locations and the values from the corresponding time series.

At present, there are five compression methods readily available,
and three different distance metrics. For each paired combination,
the user can provide compression parameters, and examine the
discrepancy between the original and compressed datasets in terms
of a particular distance function. The system also provides visualiza-
tion options for comparing TINs at a particular time instant, as well
as comparison of the compression on three prediction methods.

Part of the future work incorporates extending the functionality
of CET-LATS to include compression in the spatial dimension (i.e.,
eliminating some of the locations, when the density of points is high
enough in a given region), as well as incorporating multivariate
time series data.
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