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Abstract—Location-Based Services are often used to find
proximal Points of Interest (PoI) – e.g., nearby restaurants
and museums, police stations, hospitals, etc. – in a plethora of
applications. An important recently addressed variant of the
problem not only considers the distance/proximity aspect, but
also desires semantically diverse locations in the answer-set.
For instance, rather than picking several close-by attractions
with similar features – e.g., restaurants with similar menus;
museums with similar art exhibitions – a tourist may be
more interested in a result set that could potentially provide
more diverse types of experiences, for as long as they are
within an acceptable distance from a given (current) location.
Towards that goal, in this work we propose a novel approach
to efficiently retrieve a path that will maximize the semantic
diversity of the visited PoIs that are within distance limits
along a given road network. We introduce a novel indexing
structure – the Diversity Aggregated R-tree, based on which we
devise efficient algorithms to generate the answer-set – i.e., the
recommended locations among a set of given PoIs – relying
on a greedy search strategy. Our experimental evaluations
conducted on real datasets demonstrate the benefits of proposed
methodology over the baseline alternative approaches.
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I. INTRODUCTION
Since the late 1990s, many applications relying on

Location-Based Services (LBS) have targeted the search
for Points of Interest (PoIs) – e.g., tourist attractions and
restaurants – in the vicinity of their users. Since traveling cost,
in terms of distance or travel-time, is an important factor when
selecting PoIs, significant amount of research efforts have
been invested into distance-oriented queries such as range
queries and k-Nearest Neighbor (kNN) queries [24, 5, 4].
However, in addition to the proximity, the semantics of PoI
is often an influential factor when planning one’s motion and
activities [30].

While modelling and querying of the, so called, semantic
or activity trajectories, has been a subject of intense research
in the past decade [2, 22, 30], the semantic aspect was
typically used to augment the traditional searches used in
typical spatial and spatio-temporal queries (range, kNN, etc).

In this work we are taking up a novel variant of the problem
– namely, coupling the proximity constraints (with respect
to the the querying user’s location) with the diversity of the
semantic descriptors of the PoI, in a manner that considers
the cost of the travel.

Figure 1. Running Example of Diverse Path Search

Example 1. Consider the scenario depicted in Figure 1,
illustrating a user at location Q who is searching for three
tourist attractions to visit. The user specifies a maximum
distance, indicated by the dashed circle, that he is willing to
travel.

Processing this query would return the answer set T1 =
{S1, S2, S3}, consisting of 3 nearest PoIs as the user
indicated that k = 3 is a limit of the number of PoIs. However,
one can readily see that in this case, all three returned PoIs
are monuments/statues. If the user would like a more diverse
experience, recommending these three sites would likely not
be satisfactory. To cater to situations described by the above
example, recent works introduced the concept of diversity
in the spatial queries [9, 26, 10]. We note that due to the
hardness of the problem, the works propose approximated
solutions (with slightly different variations of the constraint).
As a concrete illustration, in the context of Ex. 1, the user
may have a preference for the answer set T2 = {M1, P1, S4},
which includes a statue (S4), a museum (M1) and a park
(P1) – within the desired distance bound.

What motivates this work is the observation that the
existing approaches assume that the user will choose only
one of the results, aiming at maximizing the diversity of the
options of the user. However, no guarantee is provided that
there exists a path between all the PoIs that satisfies the range
constraints as path. In this example, it is clear that, while all
three PoIs in T2 are within the spatial range, visiting all three
of them relying on the existing road network (cf. Figure 1)
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will exceed the distance limitation in terms of total travel.
Although answers like T2 may be useful to provide diverse
options such as different types of restaurants, they do not
properly consider the traveling cost between the PoIs.

To remedy this limitation, this paper introduces a new
query type, the k-Diverse Path Query (kDPQ). The goal of
kDPQ is to find a path that maximizes diversity of PoIs along
it, subject to the constraint that the length of the whole path is
within user-specified limits. Towards processing the kDPQs,
we propose three algorithms. While one can always construct
a straightforward baseline based on Dijsktra’s algorithm, in
this work we propose an index structure, called Diversity
Aggregated R-tree (DAR-tree), devised to improve the
efficiency of the kDPQ processing. Specifically, the DAR-tree
enables the two algorithms that we propose, which are able to
navigate the space of possible paths more efficiently, while
maximize diversity of PoIs. Our experimental evaluation,
where real-world road network and PoI data from Open Street
Map are used to generate applicable scenarios, demonstrates
that our proposed algorithms can provide highly-diverse paths,
while being efficient in terms of running time. We also
provide a discussion, illustrating how each of our algorithms
has advantages in specific scenarios.

The remainder of this paper is organized as follows. We
survey state-of-the-art methods related to diverse nearest PoI
search in Section II. Our proposed problem – processing of
kDPQ is formally defined in Section III. Section IV presents
our solutions in detail, including the DAR-tree and query
processing algorithm that leverage this index structure. Our
experimental evaluation is presented in Section V, and we
conclude this work in Section VI.

II. RELATED WORK

Coupling motion and semantics has already been consid-
ered in the literature, bringing about the concepts of semantic
and activity trajectories. Both the modelling aspects [22, 2]
and the query processing aspects [30, 15] combining spatial,
temporal and descriptor contexts of the PoIs, along with
transition mode (e.g., walk, drive) have been tackled. What
separates the present work from the aforementioned ones
is that we are focusing on constructing a path that will be
limited in its length, be it travel-time or distance along a
road network, and will visit a collection of PoIS with highest
diversity in terms of their semantic descriptors.

The concept of incorporating diversity into queries answers
has its origins in the information retrieval – specifically, in
similarity search among documents. The Maximal Marginal
Relevance (MMR) model [8] is one of the earliest proposals
to consider diversity to re-rank documents in the answer set,
where at each step, the element with higher marginal rele-
vance is selected. A document has high marginal relevance
if it is both relevant to the query and has minimal similarity
to previously selected documents.

Several approaches have been proposed for coupling
spatial and diversity contexts. Finding the kNNs to a given
query point q such that the distance between any two
points is greater than a predefined minimum diversity was
introduced in [16], and selecting the most diverse set within a
predefined radius in Hamming space is addressed in [1]. A k-
similar diversification set which optimizes a linear functions
combining the similarity (i.e., closeness) and diversity for
a given trade-off between them has been studied in [28].
Monitoring the most diverse k-sized set over distributed sets
was proposed in [3]. All these works have in common that
their goal is to find a k-cardinality subset of size k, among
a set of candidates PoIs, that maximizes diversity. However,
these works do not consider the constrained travel along road
networks, and thus, cannot return a any path that allows to
visit the resulting PoIs.

Other recent works that have combined the diversity and
spatial contexts are presented in [9] and [10] in the context of
NN queries, tackling the settings of optimizing the weighted
sums of the constraints. Our previous work [26] introduced a
k-Diversified Range Query (kDRQ) on road networks, which
maximizes the semantic diversity of the answer set from
spatial range queries on road network. While this work does
consider road networks, it selects a diverse set within a
network range regardless of the length of the path between
the PoIs. the rationalé is to give users merely a set of diverse
options, from which the user is expected to choose one,
however, it is restricted within a path from a query location
to a single PoI. The main difference with the present work
is that kDP queries generate a path that connects multiple
PoIs that, ensuring high diversity. More distantly related
approaches to spatial diversification include angular diversity
[18] – which defines the nearest Surrounder Query to find the
nearest objects from a query point from different angles; and
the angular similarity – which have been used for diversified
kNN problem in [17].

Relying on the Skyline paradigm [6], finding the set
of all optimal solutions for a given linear combination of
two diversity notions, spatial and categorical, is presented
in [9]. The categorical diversity is modeled by the difference
between categories of data points – e.g., two restaurants are
diverse if they are from different ethnicities. The idea of
using keywords, i.e., a finer granularity in order to distinguish
categories, to find diverse kNNs has been explored in [29]. In
that work the keywords are used for filtering data points, i.e.,
only points that contain all query keywords are considered.
We, on the other hand, use the concept of Latent Dirichlet
Allocation in order to consider a more sophisticated notion
of diversity based on the set of keywords that describe
each object. Moreover, differently from the works above,
we propose an indexing structure to speedup the processing
of kDRQs.
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III. BACKGROUND AND PROBLEM DEFINITION

In this section, we introduce the basic terminology and the
settings, after which we proceed with the formal definition of
the kDPQ problem. We firstly define the problem of finding
the k most-diverse path for an abstract diversity metric, and
then introduced the diversity function employed in this study.

A. Preliminaries

Definition 1 (Road Network). A Road Network G =
(V,E,W ) is a weighted directed graph, where V is a set
of nodes and each node v ∈ V is associated with location-
attribute v.L; E ⊆ V ×V represents the set of edges between
pairs of nodes (vi, vj) (vi, vj ∈ V ); W : E 7→ R+ is a
function which maps each edge e ∈ E to a positive real
value representing the cost of traversing e.

Nodes on a road network may contain Points of Interest
(PoIs). Each PoI is associated with two attributes: location
(such as latitude and longitude) and descriptors (such as
keywords, categories, and etc.), formally defined as follows:

Definition 2 (PoI Network). Let G = (V,E,W ) be a road
network. A PoI p is represented as a pair p = (L, I) , where
p.L ∈ {v.L|v ∈ V } is the spatial location of p on the road
network, and p.I is the semantic information of p. A PoI
Database P = {p1, ..., p|P|} is a collection of PoIs and for
any node v ∈ V , we let v.P denote the (possibly empty)
set of PoIs located at node v. We denote the road network
enriched with the PoI information as G = (V,E,W,P), and
call it a PoI network.

We note that in practice, a particular PoI p may not be
directly located at a node of the road network. In such case,
we apply map-matching to project the PoI to the nearest
point on an edge of the road network [7]. The projected
point becomes a new (virtual) node of the network that
corresponds to the p.L.

The process of constructing a PoI network from a given
road network graph G and a set of PoIs P is formalized in
Algorithm 1. Note that we leverage an R-tree [25] to store
the road network (Lines 3-6) to efficiently retrieve the nearest
neighbor edge to a PoI (Line 9). The update in Line 11 adds
a new node to the network, and replaces the corresponding
edge (i.e., nearest edge) with two new edges connecting the
new (virtual location) node to the nodes of nearest edge,
and replicating the original weight of the nearest edge to
both new edges.

Fig. 2 presents a small-scale example of a PoI network,
having five PoIs P = {p1, p2, p3, p4, p5, p6} (shown as
purple circles) and a road network having |V | = 7 nodes
(shown as green rectangles), several bidirectional edges E
connecting nodes (shown as solid black lines) and a weight
function W mapping edges to annotated weights. PoIs p3
and p5 are trivially mapped to nodes at the same location.
Using Algorithm 1, three new nodes – v8, v9, v10 – are added

Algorithm 1: PoI Network Construction
Input: G = (V,E,W ), P

1 Copy G as initial G with v.S = ∅ foreach v in V
2 tree←R-tree()
3 foreach e in E do
4 rect← rectangle whose diagonal is e
5 tree.insert(rect)
6 end
7 foreach p in P do
8 if p.L = v.L where v ∈ G then v.P.add(p) ;
9 nearest edge← tree.nearest neighbor(p.L)

10 v.L← Project p onto nearest edge which minimizes
distance to p.L

11 Update G with new node (v.L, {p})
12 end
13 return G

Attractions Types Descriptors
p1 Museum {Historical, Cultural, Art}
p2 Park {Fountain, Forest, Playground}
p3 Aquarium {Seal, Fish, Sea}
p4 Park {Green, Fish, Monument}
p5 Zoo {Turtle, Tiger, Safari}
p6 Museum {Literature, Art, Painting}

Figure 2. Example of PoI Network

into the PoI network, as well as the related edges and the
updated corresponding weights. Note that Algorithm 1 will
also map p6 to v8, thus yielding v8.P = {p1, p6}.

B. The k-Most Diverse Path Query

Definition 3 (Semantic Path). Let G = (V,E,W,P) be a
PoI network. A semantic path sp = (sp1, ..., sp|sp|) is a
sequence of adjacent nodes in G, i.e., ∀i (1 ≤ i ≤ |sp|) :
spi ∈ V and ∀i (1 ≤ i < |sp|) : (spi, spi+1) ∈ E. The cost
of a given path sp is defined as sum of edge edges weight
sp.cost :=

∑|sp|−1
i=1 W (spi, spi+1). The attribute collection

of a given path sp is defined as sp.collection =
⋃|sp|

i=1 spi.P
– i.e., the union of all the PoIs contained in the nodes along
sp (ones for which spi.P 6= ∅).

In Fig. 2, sp = (v8, v1, v2, v9, v5, v10) is a semantic path
having cost sp.cost = 9+10+8+8+10 = 45 that includes
the set of PoIs sp.collection = {p1, p6, p2, p4}.

Definition 4 (Range Path Search Query). Let G =
(V,E,W,P) be a PoI network and Q ∈ V be a query
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location. Given a positive value ε ∈ R+, a network range
path search query RPS(G, Q, ε) returns all semantic paths
starting at Q having a cost no greater than ε Formally:

RPS(G, Q, ε) = {sp | sp[1] = Q ∧ sp.cost ≤ ε}

We note that the assumption that Q ∈ V comes without
loss of generality, as we can project any query location to a
(potentially new) network node using Algorithm 1.

The concepts introduced so far are illustrated in Fig. 2,
showing the query point Q (red cross) located at v2.
Given a distance range ε = 30, answers to RPS include
(Q, v1, v8, v1), (Q, v9, v5, v10), (Q, v3, v4, v7, v6). We note
that Def. 3 does not require a path to be simple, i.e., it
allows a path to have cycles and visit the same node more
than once. This is necessary in order to enable a path to
collect PoIs located in dead ends – which is, nodes of degree
1 – and still continue collecting additional PoIs.

In addition to limiting the distance for a user to travel on a
path, we further assume that a user may have other kinds of
constraints (e.g., a limited spending budget, or limited stay-
time) which, in turn, may impose a limit on the maximum
number of PoIs along a semantic path. Let k denote that limit.
For a set of PoIs collected by a path, the following definition
finds the most diverse subset of PoIs of cardinality k:

Definition 5 (k-Diverse Subset of Semantic Path). Let sp
be a semantic path, and div : P 7→ R+

0 be a function that
maps a set of PoIs to a non-negative diversity score. The k-
diverse subset of sp, kDSdiv(sp, k), is defined as the subset
of sp.collection with cardinality at most k, maximizing the
diversity score, i.e.,

kDSdiv(sp, k) = argmax[P⊆sp.collection,|P |≤k]div(P )

We note that the specification of a diversity function
div(P ) that maps a set of PoIs P to a diversity score is left
abstract in Def. 5, and multiple definitions of diversity have
been used in the literature [9, 26]. In this work, we employ
the topic-based probabilistic diversity proposed in [26], which
is reviewed in detail in Section III-C.

Example 2. Returning to the scenario in Fig. 2, consider
the semantic path (v2, v3, v2, v9, v5, v10), which collects the
set of three PoIs {p2, p3, p4}. Assume that a user only has
time/budget to visit two PoIs, thus setting k = 2. In this
case, we see that both PoIs p2 and p4 are a park, having
similar textual descriptors. Intuitively, to maximize diversity,
p3 should be chosen as the only non-park PoI, and it should
be chosen together with p2, as p4 shares keyword similarity
(i.e., Fish) with p3.

Given a measure of diversity of a semantic path in
Definition 5, we can now proceed to define our proposed k
diverse path query as finding the semantic path that starts
at a specified query location and maximizes the diversity of
collected paths subject to maximum length of the path and

a maximum number of PoIs to be collected. This query is
formally defined as follows.

Definition 6 (k-Diverse Path Query). Let G = (V,E,W,P)
be a PoI network and Q ∈ V be a query location.
Furthermore, let div : P 7→ R+

0 be a function that maps
a set of PoIs to a non-negative diversity score, let k be a
positive integer, and let ε ∈ R+ be a cost constraint. Then,
a k-diverse path query (kDPQ) is defined as

kDPQ(G, Q, div, ε, k)
= argmaxsp∈RPS(G,Q,ε)div(kDSdiv(sp, k)),

where RPS(G, Q, ε) is the set of all semantic paths starting
at Q having a cost no greater than ε as defined in Definition 4,
and kDSdiv(sp, k) returns the k-subset of PoIs among all
PoIs collected by path sp that maximizes the diversity function
div as defined in Definition 5.

Example 3. Given the PoI network in Figure 2, let
ε = 35 and k = 2, two possible paths are be sp1 =
(Q, v2, v9, v5, v10) with sp1.collection = {p2, p4} and
sp2 = (Q, v2, v3, v4, v7, v6, v10) with sp2.collection =
{p3, p5, p4}. Since both p2 and p4 are parks and most textual
descriptors are semantically similar, a k-diverse path query
returns path kDPQ(G, Q, div, ε, k) = sp2 and recommends
to visit PoIs p3 and p4 on this path.

Regardless of the diversity function div (cf. Section III-C),
we observe the following hardness result:

Lemma 1. The problem of finding the most diverse path
kDPQ(G, Q, div, ε, k) is NP-hard.

Proof: Let tsp be solution to the traveling salesman
problem (TSP) on an arbitrary graph G starting at an
arbitrary node Q, that is, the shortest path that collects
all PoIs. Let tsp.cost denote the cost of this path. Let
div be any strictly monotonic diversity function, that is,
adding additional PoIs to a set will increase the diversity of
the set. Since div is strictly monotonic, the set P , which
contains all PoIs, maximizes div. Then, by Definition 6,
kDPQ(G, Q, div, tsp.cost,∞) = tsp. This is evident, as a
kDPQ query starting at Q, having a range of ε = tsp.cost,
will return the most diverse path (collecting all PoIs due to
a strictly monotonic diversity function) having a length of
at most tsp.cost. By definition, this path exists and is the
solution to the TSP on G starting at Q. Thus, any instance of
TSP can be written as an instance of kDPQ, implying that
answering kDPQ queries is at least as hard as TSP, which
is known to be NP-hard [21].

Due to the complexity of kDPQ, we resort to heuristics
to find (approximate) solutions that return high, but not
necessarily optimal, diversity. Next, we briefly explain the
diversity function div that we employ.
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C. Topic-Based Diversity

In this work, we leverage the topic-based diversity pro-
posed in [26] which extracts K latent topics from textual
context of each PoI, where K is a user-specified parameter.
Based on textual description pi.I of a PoI pi ∈ P , pi is
mapped to a topic distribution θi that maps each topic to the
probability θi,j that pi covers the topic 1 ≤ j ≤ K. Then,
the diversity of a set P of PoIs is defined as the expected
number of topics that is covered by any PoI in P .

Based on the attached descriptive items, the semantic
description of each PoI pi is illustrated by a vector of
probability (topic) distribution θi whose length is the number
of latent topics K. θi,j (1 ≤ j ≤ n) represents the
probability of pi belonging to topic j. For a set of PoIs
P = {p1, ..., p|P |}, we define a vector ProbDiv(P ) that
stores, for each topic j, the probability that it is covered by
P as ProbDiv(P )j := 1−

∏
pi∈P (1− θi,j), which is then

aggregated into a diversity score via expected number of
topics covered: div(P ) =

∑K
j=1 ProbDiv(P )j .

Intuitively, the probability 1− θi,j is the probability that
PoI pi does not cover topic j. Exploiting that PoIs are
stochastically independent,

∏
pi∈P (1−θi,j) is the probability

that none of the PoIs in P covers topic j. We define
ProbDiv(P )j as the counter-probability, i.e., the probability
of the complementary event that at least one PoI in P covers
topic j. Finally, these probabilities are aggregated into the
expected number of topics covered by P via div(P ).

Example 4. Let P = {p1, p2, p3}, and each pi allo-
cated a topic distribution having K = 3 topics, e.g,
θ1 = (0.1, 0.0, 0.9), θ2 = (0.4, 0.3, 0.3), θ3 = (1.0, 0.0, 0.0),
respectively. One can observe that p1 is very likely to
cover the third category and p3 is guaranteed to belong
to the first category, while p2 obtains a high uncertainty
since its distribution among different categories is close to
uniform. To compute ProbDiv(P ) using above equations,
we get ProbDiv(P )1 = 1 − (1 − 0.1) × (1 − 0.4) × (1 −
1.0) = 1.0 since p3 is certain to cover the first category;
ProbDiv(P )2 = 1− (1−0.0)× (1−0.3)× (1−0.0) = 0.3
indicating a 30% likelihood that P can cover the second
category; and ProbDiv(P )3 = 1− (1− 0.9)× (1− 0.3)×
(1 − 0.0) = 0.93 showing a high probability that the third
category is covered due to the probability distribution of p1.
In sum, div(P ) = 1.0 + 0.3 + 0.93 = 2.23 implies that an
expected 2.23 topics are covered by P .

IV. METHODOLOGY

To efficiently answer kDPQ, we adopt informed
search [23] which, in general, can be considered as greedy
algorithm, whereby a node is selected for exploration based
on the priority from evaluation function. The evaluation
function for solving kDPQ is constructed as the estimated
gain of probabilistic diversity, thus the node with the greatest

Algorithm 2: Swap Algorithm
Input: Set of PoIs P , Integer k

1 res ← ∅
2 foreach p ∈ P do
3 if |res| < k then res← res ∪ p ;
4 else
5 C ← res ∪ p
6 worst site ← argmaxp′∈C div(C \ p′)
7 res← C \ worst site

8 return res

evaluation would be explored first. The quality of the
evaluation function is critical for the searching procedure.

We firstly introduce the heuristic function, which is
an important component of the evaluation along with the
proposed supporting index structure: Diversity Aggregated R-
Tree, to efficiently compute the result from heuristic function.
Subsequently, the informed search algorithm is presented.

A. Heuristic and Evaluation Function

For a PoI network G = (V,E,W,P), node v ∈ V , and
value ε ≥ 0, let P [v, ε] denote the set of all PoIs in P having
a network distance from v of at most ε. Furthermore, let
PE [v, ε] denote the set of all PoIs in P having Euclidean
distance from v of at most ε. To conservatively bound the
category-wise diversity vector ProbDiv(P [v, ε]), we propose
the following heuristic function:

h(v, ε) := ProbDiv(PE [v, ε]),

where PE [v, ε] = {p | ‖v.L, p.L‖2 ≤ ε} (1)

Note that Euclidean distance, which is used in heuristic
function, is always less or equal to the road-network distance,
thus P [v, ε] ⊆ PE [v, ε] holds. We can leverage this relation
to obtain an upper bound of the diversity div(P [v, ε]) using
the following lemma:

Lemma 2. For any topic 1 ≤ j ≤ K it holds that:
div(PE [v, ε]) ≥ div(P [v, ε])

Proof: Because of 0 ≤ θi,j ≤ 1 for any PoI pi and
category j, we also have 0 ≤ 1− θi,j ≤ 1. Due to P [v, ε] ⊆
PE [v, ε], it holds that

∏
pi∈PE [v,ε](1−θi,j) ≤

∏
pi∈P [v,ε](1−

θi,j) and thus 1−
∏

pi∈PE [v,ε](1−θi,j) ≥ 1−
∏

pi∈P [v,ε](1−
θi,j). Summarizing over all categories j, this implies that∑K

i=1 1−
∏

pi∈PE [v,ε](1− θi,j) ≥
∑K

i=1 1−
∏

pi∈P [v,ε](1−
θi,j) i.e., div(PE [v, ε]) ≥ div(P [v, ε]).

According to Lemma 2, the Euclidean forward estimation
using all PoIs PE [v, ε] in the Euclidean range allows to
derive an upper bound of ProbDiv(P [v, ε]) without having
to consider the network topology of graph G.

B. Informed Search

Starting at Q, the idea of our proposed algorithm is
to iteratively expand paths that yield the highest potential
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diversity using the heuristic of Equation 1. In a nutshell, if
we reach a node v on a path of cost δ, then we have at
most a distance of ε− δ left to explore from v. If the path
leading to v has already collected the set of PoIs res, then
the maximum diversity of exploring v can be upper-bounded
by computing the maximum k-diversity of any k-subset of
the set res

⋃
PE(v, ε − δ) – that is, via extending res by

all PoIs still reachable from v using Euclidean distance. Our
algorithm greedily processes nodes using a priority queue
sorted by this upper bound. Once the currently most diverse
result exceeds the diversity of the largest unexplored upper
bound, we can terminate computation.

Formally, let res ⊆ V be the set of nodes explored by a
path and let δ be the cost of this path. For any adjacent node
to extend the path, we evaluate the following function:

f(res, v, ε− δ, k)

= div(Swap(res
⋃
ProbDiv(PE(v, ε− δ) \ res), k))

The rationale of f(res, v, ε − δ, k) is to consider the set
of all PoIs PE(v, ε − δ) \ res reachable from v at a
Euclidean distance of ε− δ, except the nodes in res which
are already collected. Then, the result of the heuristic
function ProbDiv(PE(v, ε − δ) \ res) is treated as the
topic distribution of a single PoI. Because of the limit on
cardinality, to estimate the potential gain of following a
specific direction to extend a semantic path, we employ the
Swap Algorithm, (cf. Alg. 2, proposed in [28]) to heuristically
find k subset obtaining greatest diversity among its k-diverse
subset res and PE(v, ε − δ) \ res. We note that Lemma 2
ensures that the diversity of PoIs inside the Euclidean range
is ≥ to the diversity of the PoIs in the network range,
thus that f(res, v, ε − δ, k) provides an upper bound of
the diversity obtainable by extending an existing path by
node v. Our algorithm will exploit the evaluation function
f(res, v, ε− δ, k) to direct the searching process to the node
having the highest upper bound diversity.

C. Diversity Aggregated R-Tree

The main point of utilizing Euclidean distance in heuristic
function is to leverage an R-Tree [13] to efficiently obtain the
set PE(v, ε) of PoIs within a Euclidean range around node
v while avoiding expensive network exploration to obtain
the set P (v, ε) using, for example, Dijkstra’s algorithm. To
help our search for diverse paths, we introduce a Diversity
Aggregated R-Tree (DAR-Tree) to accelerate the computation
of heuristic function div(PE [v, ε]). DAR-Tree is a kind of
aggregated R-Tree (aR-Tree) [20], storing the information
related to probabilistic diversity of each Minimum Bounding
Rectangle (MBR) in both leaf and inner nodes.

Fig. 3 presents a example of DAR-Tree with 12 PoIs.
Each leaf node stores a PoI and its corresponding topic
distribution. Besides of the pointer(s) to the child node(s)
and the coordinates of MBR, every non-leaf node keeps

Figure 3. Example of Diversity Aggregated R-Tree

the diversity-related information – a vector representing the
probability of each category not being covered – of all its
children, i.e., ζm,j =

∏
pi∈m(1−θi,j) – where m is an MBR

and 1 ≤ j ≤ K. Furthermore, each MBR m memorizes
the set P of PoIs inside m, e.g., P1 = {p1, p2, p3} and
P3 = {p7, p8, p9}.

Since the DAR-Tree inherits the structure of an aR-
Tree [20], we omit details on construction and maintenance
of DAR-Tree. However, the benefits of the DAR-Tree, to
speed the computation of the heuristic function, are illustrated
by Alg. 3. Abstractly speaking, instead of always recursively
iterating all the way down to the leaf node, we can terminate
the search if an MBR of some non-leaf node has already
been fully contained by the searching region. For a set of
approximated PoIs, Line 4 and Line 6 calculate the probability
of each category being uncovered, thus Line 20 returns the
complementary probability.

D. Efficient kDPQ Processing – Greedy Best-First Search

Alg. 4 and Alg. 5 are two searching strategies that we
propose, utilizing the heuristic function (Equation 1) and
DAR-Tree. The main idea is to greedily explore the network,
while two different variations are introduced to balance the
efficiency and diversity.

Specifically, Alg. 4 prunes the search space by only
considering simple paths, i.e., paths that do not visit the same
node twice. While this constraint yields gains in efficiency,
it must be noted that the most diverse path may very well be
non-simple, for example if the path visits a PoI located in
a dead end (a node of degree one). Imposing simple paths,
this search algorithm can only visit such a PoI if the path
ends there. Alg. 5, in turn, allows to re-visit the nodes but
does not allow visiting directed edges more than once.

1) Node-constrained Searching Strategy (NSS-kDPQ):
Alg. 4 remembers all the explored nodes to avoid exploring
the network redundantly. That is to say, newly generated
nodes that match previously explored ones would be dis-
carded so that each node can be visited at most once.
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Algorithm 3: DAR-Tree Range Query
Input: PoIs network G = (V,E,W,P), DAR-Tree R,

Node v ∈ V , Range ε, k-diverse subset res
1 h val← (1, ..., 1)

// |h val| = the number of categories
2 Function range-search (region, child, res)
3 if child is a leaf and child /∈ res then
4 h val← h val

⊙
(1− θchild)

//
⊙

is entrywise product
5 else if region.contains(MBRchild) then
6 h val← h val

⊙
ζchild

7 dup← res
⋂
Pchild

8 if dup 6= ∅ then
9 h val← h val�

∏
pi∈dup(1− θi)

// � is entrywise division
10 end
11 else
12 foreach gchild of child do
13 if region.intersects(MBRgchild) then
14 range-search(region, gchild, res)
15 end
16 end
17 end
18 end
19 range-search(circle(v, ε), R.root, res)
20 return (1, ..., 1)− h val // Entrywise subtraction

At the beginning, the priority queue that contains all nodes
available for exploration (Line 2) is initialized, and a set for
remembering every expanded node (Line 4). For each node
in the priority queue, we use a data structure composed of
five components: id – the unique identification of the node;
priority – the potential/approximate diversity measured by
evaluation function (Equation 1) if choosing this node to
explore; dist – the road-network distance from query point
Q to this node, res – the k-diversified results among the
path so far, parent – the node in the path that generated this
node. Note that parent information enables us to retrieve
the whole path from Q to any given point via backtracking.

Our goal is to find the path with greatest diversity, thus
an intuitive way to expand first is the node with the highest
value from evaluation function h(v, ε) (Equation 1). The
priority queue is sorted by the priority of each nodes in
descending order. When a node is popped out for expansion,
stop computation if the highest diversity result found so
far exceeds the upper bound diversity in the priority queue
(Line 8). If a better solution might still exist, the searching
procedure will continue and add the adjacent nodes of the
expanded one into priority queue. As mentioned, the explored
nodes (recorded in explored set) are not inserted into priority
queue again, to avoid duplication. Line 21 is executed when
better path is discovered to a node currently in the queue.

However, while the searching procedure by Alg. 4 is
efficient, as each node must be visited at most once – the
diversity of the result may be low, especially in sparse
network where an optimal path may need to backtrack to

Algorithm 4: kDPQ Simple Path (node variant)
Input: PoIs network G = (V,E,W,P), Query point

Q ∈ G, integer k, range ε
1 sp, max div ← None, 0
2 queue ← PriorityQueue()

// Each node e in queue has 5 components –
// e.id, e.priority, e.dist, e.res, e.parent

3 queue ← Insert((Q, 0, 0, {Q.P},None), queue)
4 explored ← ∅
5 while queue 6= ∅ do
6 node← POP(queue)
7 div score← div(node.res)

// n is the number of categories
8 if node.priority ≤ max div then return sp ;
9 else if div score > max div then

10 sp, max div ← node, div score
11 end
12 explored.add(node.id)
13 foreach adj n adjacent to node.id do
14 next dist← node.dist+W (node.id, adj n)
15 if next dist ≤ ε then
16 adj res← Swap(node.res

⋃
adj n.P, k)

17 adj prior ←
f(node.res, adj n, ε− next dist, k)

18 next n←
(adj n, adj prior, next dist, adj res, node)

19 if adj n is not in explored or queue then
20 queue ← Insert(next n, queue)
21 else if adj n is in queue with lower Priority

then
22 replace that queue element with adj n
23 end
24 end
25 end
26 end
27 return sp

previously visited nodes.
2) Edge-constrained Searching Strategy (ESS-kDPQ):

Alg. 5 is proposed to prioritize diversity rather than efficiency.
To achieve that, instead of recording the expanded node
globally, we remember the explored directed edges for each
path individually. To enforce that capability, a new component
– explored set – is added for each node in priority queue,
and a test (Line 13) takes place to avoid visiting an edges
twice. We note that the assumption of visiting each edge at
most once does not exclude the optimal solution from the
search space, as the cost-minimizing path between a set of
PoIs is a Hamilton cycle, which does not visit any edge more
than once [19, 12]. However, Alg. 5 is not guaranteed to find
this optimal path. While it eventually explores all possible
paths, and thus the optimal path, the greedy Swap algorithm
(Alg. 2) may discard a PoI that is part of the optimal path.

3) Analysis: In both algorithms, the searching procedure
runs until either termination condition is satisfied: all the
paths have been explored or no more path with greater
diversity exists. For Algorithm 4, we can guarantee that
all paths have been explored after at most |V | iterations –
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Algorithm 5: kDPQ Path Search (edge variant)
Input: PoIs network G = (V,E,W,P), Query point

Q ∈ G, integer k, range ε
1 sp, max div ← None, 0
2 queue ← PriorityQueue()

// Each node e in queue has 6 components –
// e.id, e.priority, e.dist, e.res, e.parent, e.explored

3 queue ← Insert((Q, 0, 0, {Q.P},None, ∅), queue)
4 while queue 6= ∅ do
5 node← POP(queue)
6 div score← div(node.res)

// n is the number of categories
7 if node.priority ≤ max div then
8 return sp
9 else if div score > max div then

10 sp, max div ← node, div score
11 end
12 foreach adj n adjacent to node.id do
13 if (node.id, adj n) /∈ node.explored then
14 next dist← node.dist+W (node.id, adj n)
15 if next dist ≤ ε then
16 adj res←

Swap(node.res
⋃
adj n.P, k)

17 adj prior ←
f(node.res, adj n, ε− next dist, k)

18 next n←
(adj n, adj prior, next dist, adj res,
node, node.explored.add(node.id, adj n))

19 if adj n is not in queue then
20 queue ← Insert(next n, queue)
21 else if adj n is in queue with lower

Priority then
22 replace that queue element with

adj n
23 end
24 end
25 end
26 end
27 end
28 return sp

each issuing a ε-range query at a node v for the informed
search forward estimation. Assuming that ε is small, and
assume that an R-Tree can support range queries on two-
dimensional data in O(log(n)) in the average case [14], this
algorithm has a run-time complexity of O(n · log(n)).

For Algorithm 5, we can not guarantee a polynomial run-
time. This algorithm explores the set of all possible simple
paths, which is exponential in the range ε. In the worst-case,
where the network is a single clique connecting all nodes at
the same cost, the early termination criterion using Equation 1
cannot hold, such that all paths must be explored. Despite
the exponential worst-case complexity, our experiments show
that this algorithm terminates early in real-world settings.

V. EXPERIMENTAL EVALUATION

We now present a comparative study of our proposed
algorithms against two baseline approaches, using real-world
datasets. The datasets used for constructing the PoI Network
consist of two main components: (1). Road network obtained
from OpenStreetMap; (2). Attractions as well the related
reviews crawled from TripAdvisor. Obtaining this data for
Manhattan, New York City, USA, yields a road network
having 55, 686 nodes, 140, 983 edges and 622 attractions.
On average, each PoI is associated with 27.25 reviews and
each reviews contains an average of 29.42 words. To show
that our algorithms are generally applicable, 150 nodes are
picked uniformly at random.

To demonstrate the effectiveness we use Dijkstra algo-
rithm [11] and Random Walk with Restart (RWR) [27] as
the alternative baselines. In order to fairly compare the
performances of each algorithms, we set the timer for RWR as
the maximum computation time of the other three algorithms
under the same experiment settings.

The experiments are conducted on a PC with Intel(R)
Xeon(R) CPU E3-1240 v6 @3.70GHz, 32 GB RAM and
512 GB disk storage. Windows 10 Enterprise 64-bit is the
operating system, and all the algorithms are implemented
by Python 3.5. Both the datasets and code are available at
https://github.com/XTRunner/MDM2020.

A. Latent Topic Model

The dataset used for training latent topic-based diversity
model is as well from TripAdvisor, which includes 1, 626
attractions in four cities across the U.S. – Chicago, Miami,
Washington D.C. and San Diego. Each of them, on average,
is associated with 18.54 reviews and each reviews contains
30.68 words. To demonstrate the validity of our trained model,
Tab I shows the ten largest probability values of each topic.

Intuitively, we can observe that the six topics clustered
by our learning model are reasonable, which, based on the
keywords in each topic, correspond to memorial building,
beach park, theater, shop & restaurant, bar, and museum.
Some keywords appear in most topics, such as “great” and
“see”, but with distinct frequencies. Moreover, there are many
discriminative and informative keywords, e.g. “memorial”,
“theater” and “museum”, appearing with relatively high
probability in specific topic only. Furthermore, in each topic,
all the keywords are holding a close relationship between
each others, such like “memorial”, “monument” and “war”
in topic 1, as well “museum”, “art” and “history” in topic 6.

B. Comparison of Searching Strategies

Fig. 4 presents the results when the distance range
ε is relatively limited, i.e., 500 and 1, 000. The x-axis
shows the computation time in seconds and the y-axis is
the diversity score. For brevity, we show the results for
k = 2 and k = 5. As can be clearly observed, RWR
(dotted blue line) is always able to find some good paths
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Table I
TOP-10 MOST PROBABLY KEYWORDS FOR 6 LATENT TOPICS (FROM TRIPADVISOR, WITH NATURAL LANGUAGE TOOKIT).

Topic Top-10 most probably Keywords (Probabilities in %)
1 ‘memorial’(1.8), ‘see’(1.7), ‘visit’(1.1), ‘statue’(1.1), ‘walk’(0.9), ‘monument’(0.8), ‘Lincoln’(0.8), ‘take’(0.8), ‘war’(0.7), ‘great’(0.7)
2 ‘park’(2.2), ‘beach’(1.9), ‘walk’(1.7), ‘place’(1.6), ‘great’(1.5), ‘nice’(1.4), ‘view’(1.2), ‘beautiful’(1.2), ‘area’(1.0), ‘go’(1.0)
3 ‘great’(1.5), ‘show’(1.4), ‘see’(1.3), ‘go’(1.2), ‘good’(1.2), ‘get’(1.1), ‘seat’(1.0), ‘theater’(1.0), ‘time’(0.7), ‘would’(0.7)
4 ‘shop’(2.3), ‘place’(2.0), ‘restaurant’(1.9), ‘great’(1.7), ‘food’(1.5), ‘area’(1.4), ‘good’(1.3), ‘nice’(1.1), ‘lot’(1.1), ‘go’(1.0)
5 ‘dog’(5.7), ‘beer’(4.1), ‘great’(2.0), ‘good’(1.6), ‘brewery’(1.5), ‘place’(1.4),‘friendly’(1.0), ‘taste’(1.0), ‘food’(0.9), ‘fun’(0.9)
6 ‘museum’(1.7), ‘tour’(1.5), ‘visit’(1.4), ‘see’(1.2), ‘house’(1.1), ‘art’(0.9), ‘history’(0.9), ‘beautiful’(0.9), ‘interest’(0.9), ‘building’(0.8)

Figure 4. Experimental result of short distance range Figure 5. Experimental result of long distance range

in a short time at the very beginning due to its cheap
computational complexity. However, our proposed algorithms,
either NSS-kDPQ (Algorithm 4, black solid line) or ESS-
kDPQ (Algorithm 5, red dashed line), outperform RWR in
terms of diversity of the result after a few seconds. Dijkstra’s
algorithm (green dash-dot line), as a breadth-first searching
strategy, always achieves the lowest diversity, as it explores
parts of the network that may have few (or not) points of
interest. Specifically, for ε = 500m, we observe that for both
k = 2 and k = 5, NSS-kDPQ and ESS-kDPQ terminate in
an average of two and three seconds, respectively. Note that
in Fig. 4, we discontinue drawing the achieved diversity of
an algorithm once it has terminated.

We further observe that for the case of ε = 500m, the
random walk approach is able to achieve the highest diversity.
This is due to relatively low number of possible paths having
this cost, allowing RWR to converge on any of them. While
ESS-kDPQ is also guaranteed to find the best path (as it
explores all possible paths), the order in which it processes
PoIs may lead to discard PoIs that are part of the optimal
solution in the Swap heuristic used to select the k-most
diverse subset (Algorithm 2). The RWR baseline suffers
from the same problem (as it also uses the Swap heuristic to
select PoIs), but RWR is able to restart to possibly find the
same PoIs in a different order to correct the Swap heuristic.

For a range of ε = 1000m, we see that the much large set
of possible paths prevents RWR from finding better solutions
than our proposed approaches. In this case, we see that
NSS-kDPQ finds a solution in about 8 seconds, whereas

ESS-kDPQ takes about 20 seconds. We also note that in
this case, all competitor approaches yield the approximately
same diversity among the 150 queries.

For large query ranges ε, our results are shown in
Figure 5. We observe that our proposed solutions more clearly
outperform the baselines when we enlarge the distance range
to 1, 500m or 3, 000m. Note that when ε = 3, 000m and
k = 5, the computation time for ESS-kDPQ is around 600s.
Yet, we observe that the result of the ESS-kDPQ outperforms
all other approaches in terms of result diversity after about
200s, yielding even more diversity beyond that.

We further observe that for the case of k = 2, the RWR
approach yields the highest diversity (approaching a diversity
of 2.0) in the least amount of time. This is because there
may be many combinations of attractions that are perfectly
diverse, i.e., have (near-) zero overlap among their topics.
RWR is able to randomly find any such pair of attractions
quickly. However, for k = 5, we observe that RWR has a
much harder time, i.e., it requires more time to randomly
run into a good combination of five PoIs. Yet, the random
walk does converge such that, given infinite time, RWR with
almost certainly (i.e., with a probability approach 1) find the
optimal path, but for large search ranges and k > 2, this
may take a very long time.

In addition to comparing wall-clock time, we analyzed the
number of network edges explored by each algorithm as a
system-independent measure of I/O operation. Figure 6 shows
the number of explored edges for each algorithm, averaged
for k ∈ {2, 3, 4, 5}. We observe similar behavior as for the
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Figure 6. Comparison result regarding of the number of explored edges

run-time experiments: The RWR baseline aimlessly explores
edges hoping to accidentally find PoIs of complementary
diversity; NSS-kDPQ quickly yields high diversity results,
but gets outperformed by ESS-kDPQ after a large number
of explored edges. Both approaches the Dijksta baseline.

In sum, NSS-kDPQ consistently obtains high-diversity
results in just a few seconds in all settings. Although
NSS-kDPQ outperforms the competitors during its whole
running time, it eventually terminates not finding any more
diverse results. ESS-kDPQ continues searching and is able
to discover more diverse results given longer time. Thus,
it is fair to state that NSS-kDPQ is our best choice if fast
response time is required, while ESS-kDPQ retrieves a better
path with greater diversity given enough time. We note that
RWR is a good choice for very small ranges or k ≤ 2, while
the Dijkstra’s baseline is dominated by other solutions.

VI. CONCLUSIONS

We proposed kDPQ – a novel k diverse path query, which
yields a path to visit PoIs with high diversity. Unlike previous
works, we can limit the length of the path, thus allowing to
satisfy the users mobility constraints. To process kDPQ we
leverage the DAR-Tree that stores, in each directory node,
upper-bounds of diversity achievable by all PoIs inside the
node. Our proposed algorithms quickly retrieve high-diversity
paths in an A∗-like way, by greedily exploring network
nodes that promise the highest potential gain using a forward
estimation using the maximum possible diversity retrieved
from the index. Our experimental evaluation using real-world
data from OpenStreetMap demonstrated that the proposed
algorithms outperform the baseline based on a breadth-first
search and random walks, and provide a trade-off between
run-time and path diversity. Our future work investigates
efficient updates to the active paths when traffic conditions
change or PoI descriptors (e.g., different lunch/dinner menu;
special exhibits) are updated.
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