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Trip planning/recommendation is an important task for a plethora of applications in urban settings (e.g.,

tourism, transportation, social outings), relying on services provided by Location-Based Social Networks

(LBSN). To provide greater context-awareness in trajectory planning, LBSNs combine historical trajectories

of users for generating various hand-crafted features—e.g., geo-tags of photos taken by tourists and textual

characteristics derived from reviews. Those features are used to learn tourists’ preferences, which are then

used to generate a travel plan recommendation. However, many such features are extracted based on prior

knowledge or empirical analysis specific to particular datasets, rendering the corresponding solutions not

to be generalizable to diverse data sources. Thus, one important question for managing mobility is how to

learn an accurate tour planning model based solely on POI visits or user check-ins and without the efforts

of hand-crafted feature engineering. Inspired by recent successes of deep learning in sequence learning, we

develop a solution to the tour planning problem based on the semi-supervised learning paradigm. An impor-

tant aspect of our solution is that it does not involve any feature engineering. Specifically, we propose the

Trip Recommendation method via trajectory Encoder and Decoder—a novel end-to-end approach encoding

historical trajectories into vectors, while capturing both the intrinsic characteristics of individual POIs and

the transition patterns among POIs. We also incorporate historical attention mechanism in our sequence-to-

sequence trip recommendation task to improve the effectiveness. Experiments conducted onmultiple publicly

available LBSN datasets demonstrate significantly superior performance of our method.
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1 INTRODUCTION

Location Based Social Networks (LBSN), e.g., Twitter, Instagram, and Foursquare, generate mas-
sive amounts of user mobility data with time-stamped geo-tagging on a daily basis. Mining and
learning useful spatio-temporal information from such data is desirable in many applications of
Location-Based Services (LBS) [63] that are of high relevance in urban mobility management. But
few examples are identifying human moving patterns [46, 74], urban traffic management [85],
crime prediction [24], vibrant community identification [70], and trajectory-based queries [4].
Location-based data generated by various other sources, such as sensors, GPS, IoT devices, and
so on, are also widely used in several LBS applications, such as traffic flow pattern detection [88].
Even the “transactional trajectories” formed by historical activities (e.g., ATM withdrawals, in-
store or online purchases, etc.) are also valuable in understanding human behaviors in the context
of identifying similar mobility behaviors among an evolving group of customers or groups of em-
ployees that have similar careers [19].
Trajectory recommendation [8] or tour planning [41] is one of the most popular and com-

putationally challenging tasks in LBS [40]. The majority of the existing works that also involve
semantic-based contexts in addition to the mere location-in-time data focus on deriving (i.e., hand-
crafted) various specific features for trip recommendation, such as user trajectory patterns, pop-
ularity of POIs, preferences of individuals, trip constraints, and so on. For example, Lu et al. [48]
leverage travel clues recovered from on-line geo-tagged photos to suggest customized travel route
plans. Lim et al. [41] build a personalized tour recommendation using POI popularity and user in-
terest/preferences extracted from geo-tagged photos of visited scenery. Chen et al. [8] recommend
a sequence of POIs with a probabilistic transition model using various features learned from user
past behavior and statistics with respect to POIs, including POI ranking, category, and popularity.
More recently, Wen et al. [72] propose a travel recommendation method by extracting keywords
representing POIs from user historical mobility records and social interactions.
Modeling relationships among POIs and users is a difficult task and has been a major cause

for various deficiencies inherent in the existing trajectory planning approaches. There are several
reasons that are at the core of such deficiencies: (1) To our knowledge, there exist no systematic
guides as to how to select and extract features from heterogeneous data, much less to consider their
various combinations—for instance, how to choose between geo-tagged photos and social texts
for trip planning. Even if one could measure their performance before making the choice, how
can we decide which feature extraction algorithms to use from the multitude of available ones?
(2) Different features have different impact on the performance, sometimes even leading to effects
completely opposite from the expectations based on similar use-cases. (3) Combining multiple
features may potentially improve the accuracy of trip planning—however, it is not straightforward
to quantify the contribution of various features nor to generalize a particular approach.
Traditional trip recommendation systems often model the POI transition relying on Markov

Chains (MC)—a promising foundation that adequately captures temporal relations in data—as ex-
emplified by the Factorizing Personalized Markov Chains (FPMC) [11, 57] and ranking-based MC
transition [8]. However, these models are built upon a strong assumption of independence among
non-adjacent POIs—which, in turn, limits their performance on capturing long-term dependen-
cies of POIs. As an example, consider a description of a semantic trajectory (cf. Reference [53])
given by: museum → cafe → historical_site → · · · → park → culture_center. In it, the long-term
visiting pattern such as museum→ cafe → historical_cite cannot be straightforwardly captured
by MC-based methods when generating the next POI of culture_center. In addition, for some pat-
terns (e.g., repeated check-ins) that could be important in particular application settings, it is also
not straightforward how to capture them by the use of MC-based methods.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 2, Article 13. Publication date: February 2020.



Semi-supervised Trajectory Understanding with POI Attention 13:3

To overcome the kinds of deficiencies outlined above, we propose a novel recurrent neural
networks-based tour/trajectory planning approach—Trip Recommendation via trajectory Encoder

and Decoder (TRED). The encoder network encodes the trajectory features to a hidden represen-
tation, and the decoder network takes the representation and sequentially predicts the trajectory
pattern. The proposed solution works in an end-to-end manner without additional overheads of
feature engineering (i.e., requiring domain knowledge to extract important features) for the POI
and user profile and adapts to learn long-term dependencies and possible regular moving patterns
in POIs. By leveraging unlabeled data via the autoencoder network training, TRED also efficiently
alleviates the data sparsity issue when only using labeled data. In addition, the performance of
TRED is improved by introducing: (1) a trajectory attention mechanism—i.e., augmenting the de-
coder to properly incorporate more influential POIs (cf. Section 3.2) and (2) a reconstruction oper-
ation in the final beam search inferring step (cf. Section 4.2) to further increase the efficiency.
The main contributions of this work are summarized as follows:

• We propose a data-driven method to address the trip recommendation problem, where a
semi-supervised trajectory-to-trajectory learning model is developed to capture the latent
semantics of moving patterns in the LBSN data.

• We propose a deep learning–based approach for trip recommendation in an end-to-end
manner that does not require hand-crafted features of POIs and user activities. Our method
can be easily generalized to different LBSN applications and is especially suitable for the
datasets without additional features, e.g., POI popularity, POI category, queuing time, and
so on. This property also eases the burden of computation in various feature-based matrix
factorizing and multiplication.

• Our proposedmethod can preserve both previous and subsequent transition patterns among
POIs and thus overcome the long-term dependency problem. By introducing the idea of
attention on historical trajectory, our model significantly improves the prediction perfor-
mance when generating planned POI sequences.

• We have conducted extensive experimental evaluations on several real-world as well as
synthetic datasets, and the results demonstrate that our proposed method is effective and
efficient. It achieves more correct recommendation (on the average, 22% in terms of F1 score)
andmore accurate orderness (on the average, 38% in terms of pairs-F1 score) when compared
to the state-of-the-art baselines [8, 41].

We note that certain aspects (i.e., trajectory embedding and autoencoders) have been used in
our earlier works [21, 92]—addressing the problem of trajectory to user linkage (TUL) and over-
coming the data sparsity issue. This article, however, has qualitatively novel contributions: Rather
than identifying human mobility patterns from spatio-temporal data, we address the trip planning
problem with a unique approach for capturing semantic aspects of the trajectories while avoid-
ing feature(s) engineering. Specifically, we address the trip recommendation problem by learning
the trajectory context in a sequence to sequence manner with an added novelty of proposing a
trajectory attention model for learning the transition patterns and the importance of historical
check-ins, as well as an efficient way for alleviating the suboptimality problem when inferring the
trip.
In the rest of this article, we review the related work in Section 2, and in Section 3 we for-

malize the problem of trajectory modeling and trip recommendation along with its mapping on
neural networks, and we also describe the overall processing framework (encoding/decoding and
attention). In Section 4, we present the details of the learning methodology and trip planning with
trajectory attention. Experimental evaluations illustrating the accuracy and efficiency of our pro-
posed method are presented in Section 5, and Section 6 concludes the article.
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2 RELATEDWORK

There is a large body of works addressing location recommendation and trip planning problems
and, in the following, we overview the three most related categories.

2.1 POI Recommendation

Collaborative Filtering (CF) is widely used for recommending POIs, including user-based CF [80],
time-aware CF [82], social influence-based CF [79], geographical CF [20], and information
coverage-based CF [9]. Matrix Factorization (MF) is another line of CF method that factorizes
a user-POI interest matrix to explore user preferences. Cheng et al. fuse MF with geographical
and social influence for POI recommendation in LBSNs [10]. Lian et al. [38] augment users’ and
POIs’ latent factors in the factorization model with activity area vectors of users and influence
area vectors of POIs to deal with the challenge of matrix sparsity. Liu et al. [42] propose a ge-
ographical probabilistic factor analysis model leveraging the Bayesian non-negative matrix fac-
torization. Users’ interest [36, 37], check-in behavior [81], user preference rankings [13], metric
embedding [18], POI categories [28], and POI characteristics [30] are also exploited for POI rec-
ommendation. However, these methods require a number of hand-crafted features to construct
the preference matrix. They are rather inefficient due to frequently involving matrix factoriza-
tion operation. Sequential influence among POIs has been incorporated into POI recommendation,
mainly using MC for quantifying POI transition and predicting the next location. FPMC [57] ex-
tends MC via factorization of the probability transition matrix. Cheng et al. [11] take into account
user movement constraints and propose a location constrained FPMC method for location predic-
tion. However, MC-based models make a strong independence assumption among POIs except the
adjacent two, which fails to capture long-term dependencies of POIs. An experimental evaluation
[44] has been conducted to evaluate 12 representative POI recommendation models and reports
many interesting findings, including geographical information [37, 38] and implicit feedback of
user preference [45], which are the most important factors for improving the performance of POI
recommendation. Recently, deep learning has been widely leveraged for POI recommendation.
For example, Yang et al. [77] develop a context embedding framework combined with CF for POI
recommendation. Zhao et al. [89] present a geo-temporal sequential embedding rank model for
POI recommendation. In addition, while most of the existing works focus on recommendations
for individual users, techniques to provide recommendations to groups of users are scarce. Ayala-
Gomez et al. [2] propose a GeoGroup-Recommender (GGR), a class of hybrid recommender sys-
tems that combine the group geographical preferences using Kernel Density Estimation, category
and location features, and group check-ins outperforming a large number of other recommender
systems [2]. As the availability of social information (e.g., friendships), Allison et al. [6] proposed
social Poisson factorization, a Bayesian model that incorporates the users latent preferences for
items with the latent influences of their friends for personalized recommendation. Our approach
provides a unique way to entangle the intrinsic POI-related attributes with the transitions of the
locations among (i.e., the sequence of visiting of) the POIs.

2.2 Trip Planning

Trip planning [22, 23] leverages the spatio-temporal check-in data for recommending a sequence of
POIs, and most of the existing works use heuristic combination of location and route [47, 48, 90] to
model the planning problem. Wei et al. construct popular routes from uncertain trajectories [71].
Kurashima et al. [34] plan trips based on user interest and frequently traveled routes using the
Markov model. Yuan et al. [82] exploit time-aware CF to recommend POIs for a given user at a
specified time in a day. TripBuilder [5] is a framework for personalized tour planning, modeled as
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an instance of the generalized maximum coverage problem. TripRouter [30] is a heuristic approach
that guides the search toward the destination location and uses a backward checking mechanism
to boost the constructed time-sensitive routes, where popularity, visiting order, visiting time and
transit time are combined to model the POIs. TripPlanner [7] combines LBSN and taxi GPS foot-
prints for interactive and traffic-aware trip planning. Existing trip planning algorithms are feature
based that require carefully selecting and comparing feature combinations and thus are hard to
generalize to different scenarios.
Recently, Lim et al. [41] derived a relative measure of time-based user interest using duration

of a visit. The tour recommendation was formulated as an orienteering problem [27] that maxi-
mizes a global reward based on POI popularity and users’ interests, while adhering to the budget
constrained by the travel-time and personalized visit duration. Zhang et al. [83, 84] tailor personal
preference from user behavior and leverage constraints (e.g., POI availability and uncertain trav-
eling time) to prune the state space in solving the orienteering problem. Chen et al. [8] simultane-
ously use both POIs and routes from historical behavior and trajectories, and leverageMC tomodel
POI→POI transition. Lim et al. [39] study recommending personalized itineraries while minimiz-
ing queuing times in popular and interesting attractions. This is a NP-hard problem that includes
time-dependent queuing times and is solved by an adapted Monte Carlo tree search algorithm
that considers attraction popularity, user interest, and queuing times as reward. Similarly to their
earlier work, this approach is feature driven and fails to capture intrinsic moving patterns in tra-
jectories, although a state-of-the-art performance on trip planning was demonstrated. In contrast,
our proposed method TRED in this article is the first data-driven trip planning algorithm without
any further feature engineering—neither POIs nor routes—and it can be easily incorporated into
existing framework, which opens a new perspective on modeling the trip planning problem.

2.3 RNN-based Trajectory Modeling

Recurrent neural networks (RNN) have been successfully applied in many sequential data, such
as machine translation [3], click prediction [87] and text classification [35]. ST-RNN [43] models
spatio-temporal data using RNN for next location prediction. The problem of identifying human
trajectory patterns has been investigated in Reference [21] using various RNN-based models. Wu
et al. [75] make full advantage of the strength of RNN to capture variable-length sequence and
meanwhile to address constraints of topological structure on trajectory modeling. In computer
vision, Alahi et al. learn general human movement to predict their future trajectories [1].
Our proposed model is different from these works in that: (1) we model the geo-location learn-

ing problem in LBSN with the encoder-decoder mechanism, (2) we propose a semi-supervised
learning approach for capturing sequential behaviors and patterns of trajectories in an end-to-end
manner, and (3) we demonstrate that the proposed data-driven method can efficiently tackle the
trip planning problem.
We note that related problems (e.g., sequence route planning, pattern queries, etc.) have been

studied by the researchers from spatio-temporal data management community [16, 17, 58, 64,
68]. More recently, the variants of group patterns and sequence routes have been explored [59,
61], along with extensions that include hierarchical semantic similarity of the points of stop-
ping/visiting [62]. However, these works are orthogonal to the problem(s) that we pursue: namely,
they are focused on efficient query processing from given datasets, whereas we are focusing on the
problem of learning about the relationships in sequentiality of POIs visits from users’ check-ins.

3 MOTION MODELING AND BASIC PROCESSING FRAMEWORK

Given a set of trajectories T = {T1,T2, . . . ,Tn }, where T∗ is a sequence of POIs generated by
a particular user and it can be denoted as T∗ = {l1, l2, . . . , lm }, let Tr denote the training data
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consisting of a set of variable-length trajectories generated by certain users in a particular area
(e.g., in a city or a scenic spot). The goal of trajectory recommendation is to plan a trip with length
L: τ = {l1, l2, . . . , lL }, where li denotes a location or POI, and the start (l1 = ls ) and end (lL = le )
points are specified as parameters in the recommendation algorithm.
Similarly to word embedding in natural language [50] and other POI embedding techniques [18,

21], we obtain POI vector representations P ∈ R |C |×d (|C | is the number of unique POIs in the
dataset, d is the dimensionality in the lower space) by maximizing the probabilities of locations
(check-ins) given their context in trajectories.
We model the occurrence probability of a sequence ofm locations/POIs l1, . . . , lm in a particular

trajectory using all previous locations (rather than a window ofw previous locations), as follows:

P (l1, . . . , lm ) =
m∏

i=1

P (li |l1, . . . , li−1). (1)

In essence, this is an autoregressive type of a problem—and a rather natural approach is to model
it via RNNs. Specifically, RNNs consist of layers of neuron units, and they rely on the respective
cells and controlled gates to capture (and correspondingly update) the user’s dynamic preferences
as given in the sequence of user’s check-ins. Thus, at a time-step t , the output of the hidden state
ht−1 of RNNs from the previous step, along with the POI vector vt , are used to compute the current
state ht , for which we rely on the following formula:

ht = σ (Whhht−1 +W
ihvt ), (2)

where matrixWhh conditions the output ht−1 of a non-linear activation function σ (·) at previous
time-step t − 1 (e.g., ReLU and Sigmoid), and matrixWih parameterizes the connection from input
vector vt to the hidden layer.
Given the current state ht and the input POI vector vt , the next POI is predicted based on the

probability distribution at time t ,

ŷt = softmax(Whoht ), (3)

where matrix Who parameterizes the hidden-to-output connections, and softmax function pro-
duces the normalized probabilities over the output value ot =Whoht . The output values o1, . . . , om
are therefore a mapping from input vectors l1, . . . , lm . Now we can compute the loss of such map-
ping as the sum of losses over the entire POI sequence and time steps m, similarly to sentence
modeling in NLP [25]:

L (y, ŷ) = − 1

m

m∑

t=1

|C |∑

k=1

yt,k ln(ŷt,k ) +
(
1 − yt,k

)
ln
(
1 − ŷt,k

)
, (4)

where the runtime of training this model with Backward Propagation Through Time (BPTT) is
O (m) [73].

3.1 Basic Methodologies

We now introduce the overall framework of our proposed solution, as illustrated in Figure 1. It
consists of the following major components: POI embedding for capturing latent semantics of
check-ins, trajectory pretraining with parameters initialized to make learning more efficient, en-
coder (various recurrent neural network models can serve such a role), and decoder to reconstruct
the trajectory for trip planning. We then discuss in detail each component of TRED.
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Fig. 1. The overall framework of TRED with training and planning. The training uses an autoencoder to

characterize latent semantics of trajectories in an unsupervised manner. The recommendation can be made

through the decoder for a given tuple < ls , le ,L >, where ls is the start POI and le is the end POI, and L is

the length.

3.1.1 POI Embedding. To encode latent features of POIs in trajectories, we represent each POI li
with a low-dimensional vector vi ∈ Rd instead of using traditional location representationmethod
such as one-hot. Like word embedding in natural language processing [50], we obtain the POI
representations P ∈ R |C |×d (again, |C | denotes the number of POIs in the dataset and d is the
dimensionality in the lower space) by maximizing the probabilities of POIs given their context in
trajectories.
Essentially, the embedding of a POI li is calculated by maximizing the log-likelihood of all tra-

jectories:
∑n

t=1

∑m
i=1 logp (li |li+j ), where −w ≤ j ≤ w ,w is the size of sliding window,m is the tra-

jectory length, and n is the number of trajectories. The conditional probability p (li |li+j ) is defined
by the softmax function as

p (li |li+j ) =
exp{viv′i+j }
∑ |C |
l=1

exp{viv′l }
,−w ≤ j ≤ w, (5)

where vi and v′i are, respectively, the input and output vector representations of the POI li . We
now can estimate the probability of a trajectory T∗ = {l1, l2, . . . , lm } by

p (T∗) =
m∏

i=1

p (vi |N (li )), (6)

where N (li ) is the context of location li in a trajectory T∗, and the value for the probability
p (vi |N (li )) is approximated with

p (vi |N (li )) =
∏

l ′ ∈N (li )

p (vi |vl ′ ) =
∏

l ′ ∈N (li )

exp{vi · vl ′ }∑
l ′′ ∈C exp{vl ′′ · vl ′ }

. (7)

3.1.2 Trajectory Encoding. To capture the context information of POIs, TRED uses RNN—an
effective sequence modeling method—as an encoder to code trajectories. The encoder reads the
input—a trajectoryT∗ denoted by a sequence of POI embedding vectors v1, . . . , vm and fromwhich
to generate a context vector Evt . At each time step t , given the input POI sequence vectors vt and
previous hidden state ht−1, the encoder computes the hidden state as ht = RNN(vt , ht−1). The
output of the final hidden layer of the RNN is recognized as the variable-length encoding vector
Evt .
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Fig. 2. Illustration of the encoder.

The implementation of RNN encoder can vary—e.g., a Long Short-Term Memory (LSTM) [29],
Gated Recurrent Units (GRU) [12], or bi-directional LSTM/GRU [3]—all of which are able to learn
context information with long-range temporal dependencies.

3.1.3 LSTM Encoder. When applying the LSTM as the cell for encoding, the current hidden
state ht = LSTM(vt , ht−1) is updated by:

it = σ (Wivt + Uiht−1 + bi )

ft = σ (Wf vt + Uf ht−1 + bf )

ot = σ (Wovt + Uoht−1 + bo ),

where it , ft , ot , and b∗ are respectively the input gate, forget gate, output gate, and bias vectors; σ
is the logistic sigmoid function; matricesW and U (∈ Rd×d ) are the different gate parameters; and
vt is the embedding vector of the POI lt . The memory cell ct is updated by replacing the existing
memory unit with a new cell as:

c̃t = tanh(Wcvt + Ucht−1 + bc )

ct = ft � ct−1 + it � c̃t ,
(8)

where tanh(·) refers to the hyperbolic tangent function and � is the component-wise multipli-
cation. The new memory ct is produced by comprehensively considering the forget gate ft (and
accordingly ignoring the past memory ct−1) and input gate it (and accordingly generating a new
memory c̃t ). Figure 2 shows the computation graph of LSTM encoder.

The encoding vector Evt , the output of the final hidden layer, is updated as

Evt = ht = ot � tanh(ct ). (9)

3.1.4 GRU Encoder. GRU is a simpler LSTM variant that has nonetheless been proven effective.
Similarly to LSTM, the hidden state in GRU encoding ht = GRU(vt , ht−1) is updated by:

zt = σ (Wzvt + Uzht−1 + bz )

rt = σ (Wrvt + Urht−1 + br )

h̃t = tanh(Whvt + Uh (rt � ht−1) + bh ),

where reset gate rt determines the importance weight of ht−1, and the new memory h̃t is the
combination of a new input vector vt with the previous hidden state ht−1. Finally, the encoding
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vector of the last hidden state is generated by considering ht−1 and h̃t as

Evt = ht = zt h̃t + (1 − zt )ht−1. (10)

Compared to the LSTM, GRU encoder performs less parameterized affine transform and thus is
more memory and computation efficient.

3.1.5 Bi-directional Encoder. In this article, we choose the bi-directional encoder where the
trajectories are fed into two RNN layers (LSTM or GRU) in different directions [26]. The hidden
states are concatenated to get the final context vector.
Bi-directional RNNs have recently been used for representation learning for sequential data and

pre-training of natural language models [15, 54]. The main motivation for adopting them in our
work is that they enable encoding the context around a pivot-POI (which, in turn, is subsequently
used in the attention mechanism).
The forward RNN reads the trajectory (e.g., l1, l2, . . . , lm ) and calculates a sequence of forward

hidden states (
−→
h 1,
−→
h 2, . . . ,

−→
hm ). The backward RNN reads the trajectory in a reverse order (e.g.,

lm , lm−1, . . . , l1) and generates a sequence of backward hidden states (
←−
hm ,
←−
hm−1, . . . ,

←−
h 1). Thus,

we can obtain an representation for each POI by concatenating the forward and backward hidden

states, i.e., hi = [
−→
h i ,
←−
h i ].

We note that we provide two implementations of the bi-directional TRED—LSTM based and
GRU based. They are respectively denoted as TRED-L and TRED-G, and we provide experimental
observations regarding their tradeoffs between effectiveness vs. efficiency in Section 6.

3.1.6 Trajectory Decoding. The decoder is also a recurrent neural network trained to output a
trajectory l1, . . . , lL by predicting the next POI li given the hidden state h′i and encoding vector
(a.k.a. context vector) Evt . Unlike the encoder, the output ith POI li and its hidden state h′i are
conditioned on both previous POI li−1 and hidden state h′i−1:

li = RNN(h′i−1, li−1,Evt ). (11)

Thus, the probability of POI sequence l1, . . . , lL with the conditional distribution of the next POI
can be computed as:

p (l1, . . . , lL ) =
L∏

i=1

p (li |l1, l2, . . . , li−1,Evt ) =
L∏

i=1

π (h′i , li−1,Evt ), (12)

where π is an activation function (e.g., softmax) and the length of recommended POIs L is a user-
specified parameter. Note that Lmay vary fromm—the length of the input sequence v1, . . . , vm—to
1.

3.2 Trajectory Attention

With the above processes of trajectory encoding-decoding, one can readily produce a sequence of
POIs with highest probability at each time step. However, we ignore an important characteristic
of the POIs in the trajectory recommendation—namely, the importance of POIs is different from
each other when generating a particular trip, i.e., some POIs are more influential when compared
to others [60]. To overcome this problem, we introduce the idea of trajectory attention—and adap-
tation of the approach recently used in neural machine translation (NMT) [52]. The basic idea of
attention mechanism in sequence-to-sequence NMT model is motivated by the observation that
instead of attempting to learn a fixed-length representation for each sentence, one can focus on
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a specific area of the whole input and refer to these vectors at each decoding step [3]. In a sim-
ilar spirit, we can reference a particular area of the input rather than the entire trajectory at the
decoding step.
In our trip recommendation problem, by introducing attention on the input trajectories, the

process of generating planned trip would focus on those POIs that are more influential. When
recommending a trajectory, TRED produces a sequence of POIs conditioned on the hidden state
h′i and the context vector Evt . Toward that goal, we add a non-linear function in the decoder RNN
to track the state of generating planned POI by computing an attention vector αi for each input
POI. This vector tells the decoder how much it should focus on a particular input POI—the larger
the value in αi , the more influence a POI will play the role of generating the outputs [67].
Since we do not have prior knowledge of which POI in the input trajectory, we leverage the

global attention proposed in Reference [49] to involve all the hidden states of the encoder when
deriving the context vector as Evt =

∑m
t=1 αi,tht , where ht is the t th hidden state of the encoder

andm is the length of the input trajectory. Specifically, the attention vector αi,t is computed by
comparing the current (decoder) hidden state h′i with each source (encoder) hidden state ht as

αi,t =
exp(η(h′i , ht ))∑m
t=1 exp(η(h

′
i , ht ))

, (13)

where η(·) refers to a score function (or alignment model in Reference [3]) and can be arbitrary
function that represents the confidence that the model focuses on a particular input POI encoding
vector at the each decoding step. We note that a number of works have proposed various methods
for improving the performance of attention, e.g., coverage-based attention [67], monotonic at-
tention [55], conditional random fields-based attention [32], stacked attention layers [69], among
others. However, optimal attention mechanism selection is beyond the scope of this work. We use
the dot product as score function η(h′i , ht ) = hTt h

′
i , which is based on the RNN hidden state h′i and

the POIs of the input trajectory. The alignment model is then fed into the decoder RNN for training
with all the other components of the TRED framework.

4 MODEL LEARNING

We now turn the attention to the training process. For each trajectoryTi in Tr , the input is a tuple
τs =< l1, lL,L > (starting POI, ending POI, and the length of the trajectory), and the predicted out-
put sequence isτo = l2, . . . , lL−1 (all intermediate POIs). Our objective is to learn a supervisedmodel
mapping τs 	→ τo using the above-described trajectory encoding-decoding method. The training
process seeks to optimize parameters ϑ∗ for the purpose of encoding < l1, lL,L > and decoding it
into the target POI sequence l2, . . . , lL−1. Thus, the objective is to maximize likelihood estimation:

ϑ∗ = argmax
ϑ

∏

(τs ,τo )∈Tr
P (τo |τs ;ϑ ) = argmax

ϑ

∏

(τs ,τo )∈Tr

L∏

i=4

P (τo |l2, . . . , li−2,τs ;ϑ ). (14)

4.1 Pre-training

Before training the trajectory recommendation model, we first pre-train an unsupervised model
using a sequence autoencoder, which encodes each input trajectory into a vector and then predicts
the input trajectory itself at the stage of decoding. This pre-trained model can be used as the
initialization for training. Although the objectives of the two models are different, they share a
common structure through latent variables. The basic motivation behind this pre-training process
is to make our TRED model training converge faster and more stable [14]. In addition, we find this
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Fig. 3. Illustration of training TRED and pretraining with autoencoder. Note that ignoring the middle POIs

(highlighted in yellow ellipse) of input would get the training procedure of TRED. TRED first embeds all the

POIs into a low-dimension representation and uses an autoencoder to pretrain the trajectories in unsuper-

vised manner. Then the start-end POI pair (ls , le ) combined with tour length L are used to train TRED model

to characterize trajectories. A trip can finally be planned for a given tuple 〈ls , le ,L〉.

process can, to some extent, alleviate overfitting usually involved in autoencoder training, which
has also been observed inmachine translation [56]. The overview of pre-trainingwith autoencoder
is illustrated in Figure 3.
The effectiveness of using autoencoder lies in the “memory” function of the neural networks.

That is, the pre-trained model may have already “remembered” the visiting order and sequential
patterns of training trajectories, which is the possible reason for good and stable performance in
initializing sequence-to-sequence-based models [14]. Another merit of this pre-training is that it
is an unsupervised manner and thus can be used to leverage large amount of unlabeled data—
normally considered to be an efficient way of improving the generalization capability of recurrent
networks and thus useful especially when the labeled data are limited.
The objective for this pre-trained encoder is to capture the intrinsic features of moving patterns

and underlying structure of trajectories by learning both linear and non-linear feature representa-
tions in data. The encoding vector, usually smaller than the original trajectory in terms of dimen-
sionality, maintains meaningful latent attributes of the trajectory, which can be used to reconstruct
the outputs when planning the trip. This autoencoder model is proved to be effective and, more
importantly, significantly reduce and even eliminate the heavy task of feature engineering.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 2, Article 13. Publication date: February 2020.



13:12 F. Zhou et al.

4.2 Training and Optimizing the Trip Planning

After pre-training the autoencoder model, we use the encoder and decoder to initialize the model
for training trip planning. The training detail is similar to the autoencoder except that (1) the input
of trip planning consists only the start and end POIs and (2) the output contains the rest POIs in the
original trajectories. That is, removing the shadow area highlighted in yellow (encoder) in Figure 3
is the training process of TRED.
Since the training objective is to optimize probability P (τo |τs ;ϑ ), decoding of a tuple τs , ideally,

should be the maximum conditional probability P (l2, . . . , lL−1 |τs ). Nevertheless, one cannot com-
pute the probability of sequence τo for every candidate POI and find the maximum one, due to the
combinatorial problem of searching all possible P (l2, . . . , lL−1) POI combinations, especially for the
larger value of L and |C |. Beam search is a widely used heuristic algorithm in neural machine trans-
lation [3, 56] that shrinks search space and significantly reduces the computation complexity by
exploiting the sequential-factorization of P (τo |τs ) to maintain a small number of partial hypothe-
ses and find an approximation. However, beam search may easily drop to local optimum problem,
since a locally optimal choice does not necessarily lead to a maximal conditional probability in a
complete planning trip P (l2, . . . , lL−1).
We note that in TRED, we leverage the reconstruction idea from Reference [66] in neural ma-

chine translation to alleviate the suboptimal problem of trip inference. The basic idea behind the
reconstruction is an added reconstructor imposes a constraint that the machine translation model
should be able to reconstruct the input source sentence from the target-side hidden layers, which
encourages the decoder to embed complete information of the source side [66]. Recall that we
pre-train trajectories with an autoencoder, where we use the output of hidden layer at the de-
coder to reconstruct the original trajectory POI by POI. That is, the reconstructor leverages an
inverse context vector Evj to reconstruct the input POI sequence, and the training objective is
therefore:

J (ϑ , β ) = argmax
ϑ

∑

(τs ,τo )∈Tr
log P (τo |τs ;ϑ ) + argmax

β

∑

(τs ,τo )∈T
λ log P (τs |τo ; β ), (15)

where ϑ and β are model parameters in encoder-decoder and reconstructor, respectively, and the
hyper-parameter λ regularizes the performance of encoder-decoder with the reconstruction. Note
that the log-likelihood in the first term maximizes the conditional probability in training data
Tr while in the pre-training (the second term) leveraging both training data and testing data Te .
Once the model is trained, we can use the likelihood scoreQk + λPk associated with the candidate
trip τ ′

k
and its corresponding hidden state in decoder h′

k
, where likelihood score Qk and auxil-

iary reconstruction score Pk are respectively produced by decoder candidates and reconstructor
candidates to conduct the beam search to plan a trip that approximately maximize the score. In
testing, reconstruction works as a reranking technique to select a better trip from the k-best can-
didates generated by the decoder [66]. Algorithm 1 demonstrates the pseudo-code of the TRED
training.
We observe that in the proposed model TRED we mainly focus on learning the users’ visiting

patterns from historical trips. While not explicitly modeling certain constraints (e.g., travel time
and distance between successive POIs), TRED can be straightforwardly regularized with such con-
straints. For example, it is not hard to add a regularizer term to penalize the recommended POIs
that are too far away from the previous one. However, despite this, as we will show in the next
section, TRED can capture the constraints in a data-driven manner. Thus, for example, TRED per-
forms competitively in terms of POI popularity and trip interest of users, compared to the baselines
that have explicitly optimized based on these constraints.
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ALGORITHM 1: Overview of the TRED Training.

Input: ls : start POI, le : end POI, L: trip length, T = Tr + Te : trajectories, k : beam search size.

Embed POIs into vector vi , i ∈ [1,m].

repeat

/* Pretraining */

foreach Ti ∈ T do

Encode Ti to obtain context vector Evt ;

Compute attention vector αi,t ;

Decode Evt to obtain τo = l2, . . . , lL−1;
Produce candidate tuples < τ1, h1, P1 >, . . . , < τk , hk , Pk >;

Reconstruct τo to obtain Ti ;

Produce candidate tuples < τ ′1, h
′
1, P1 + λQ1 >, . . . , < τ ′

k
, h′

k
, Pk + λQk >.

end

Output: reconstructor parameters β and regularizer paramter λ.
/* Training */

foreach τs =< ls , le ,L >∈ Tr do
Encode τs to obtain context vector Evt ;

Compute attention vector αi,t ;

Decode Evt to obtain τo = l2, . . . , lL−1.
end

Output: autoencoder parameters ϑ .
/* Reconstruction */

foreach Ti ∈ Te do

Produce candidate tuples < τ1, h1, P1 >, . . . , < τk , hk , Pk >;

Reconstruct τo to obtain Ti ;

Produce candidate tuples < τ ′1, h
′
1, P1 + λQ1 >, . . . , < τ ′

k
, h′

k
, Pk + λQk >.

end

until converge

5 EXPERIMENTS

In this section, we present our experimental observations by comparing TRED with several base-
line methods on three public datasets in terms of both effectiveness and scalability of those
methods.

5.1 Datasets

The datasets used in our experiments are shown in Table 1. The trajectories in Toronto, Osaka,
Glasgow, and Edinburgh are extracted from Flickr photos and videos [65] by Lim et. al. [41], while
the Melbourne data are as built in Reference [8]. The Foursquare dataset [78] contains 573,703
check-ins in Tokyo collected for about 10 months (from April 12, 2012, to February 16, 2013).
Each check-in is associated with a timestamp, GPS coordinates and some semantics (e.g., fine-
grained venue-categories).We obtain different sets of Foursquare@N (N= 100, 200, ...) by randomly
selecting N users and their historical trajectories.
We note that the Flickr and Foursquare datasets have relatively fewer POIs/users—however,

this is caused by the nature of trip (sequence) planning problem that, having an ordering, is more
difficult than a single point recommendation. In other words, one should not only accurately rec-
ommend a sequence of POIs but also consider their ranking order. More importantly, these datasets
are typically used for evaluating the trip recommendation methods in the state-of-the-art works
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Table 1. Descriptives of Datasets (# Denotes the Number of)

Dataset #POIs #Trajectories #Users

Flickr@Edinburgh 29 5,028 1,454
Flickr@Glasgow 29 2,227 601
Flickr@Melbourne 87 5,106 1,000
Flickr@Osaka 29 1,115 450
Flickr@Toronto 30 6,057 1,395

Foursquare@100 30 3,667 100
Foursquare@200 30 6,414 200
Foursquare@400 30 11,254 400
Foursquare@800 30 22,064 800

Geolife 4,796 24,943 179

[8, 18, 39, 41]. To evaluate the performance of models on more general scenarios, we also conduct
experiments on a larger and dense GPS dataset.
Geolife dataset [91] was collected by the Microsoft Geolife project over a period of 5+ years

(from April 2007 to August 2012). Since trajectories in the original Geolife datasets only have GPS
coordinates (longitude and latitude), we cluster all points based on their locations to obtain 4,796
POIs—that is, we save the two digits after the decimal point of longitude and latitude. While the
Geolife data may not be the most suitable for trip recommendation, we note that they contain
richer human mobility information, especially daily moving patterns, which can be used to eval-
uate the ability of modeling sequential patterns. For all datasets, we use leave-one-out cross val-
idation to evaluate different trajectory recommendation algorithms, following Reference [8]—i.e.,
when testing on a trajectory, all other trajectories are used for training.

5.2 Baselines and Metrics

We compare the two variants of TRED, i.e., LSTM-based (TRED-L) and GRU-based encoder-
decoder (TRED-G)—both implemented with bi-directional RNNs—with several state-of-the-art ap-
proaches. In the following, we present the baselines and define the evaluation metrics.

5.2.1 Baselines. The baselines for trip recommendation consist of the following:

• Random: This is a naïve approach that chooses POIs at random (i.e., POI li different from
li−1 and ls , le , ∀i) to construct a trajectory with a desired length.

• Popularity [18]: This method is essentially recommending the most popular and unvisited
POI at each time.

• PersTour and PersTour-L [41]: The tour recommendation problem is modeled using a
formulation of the orienteering problem and considers user trip constraints such as time
limits and the need to start and end at specific POIs. PersTour explores POI features with a
time budget, while PersTour-L is a variant by replacing the time budget with a constrained
trajectory length.

• POIRank [8]: POIRank recommends a trajectory by first ranking POIs with rankSVM and
then connecting them according to ranking scores.

• Markov and Markov-Rank [8]: Markov-based method considers the POI-to-POI transi-
tion probabilities and recommends a trajectory by maximizing the transition likelihood.
Markov-Rank is a method for learning both POI ranking and Markov transition. The rank-
ing of POIs is learned by rankSVMwith linear kernel and L2 loss. Trajectories recommended
by Markov and Markov-Rank are trained using the maximum likelihood approach.
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• Path and Path-Rank [8]: Path and Path-Rank are methods for eliminating sub-tours in
Markov and Markov-Rank by finding the best path using an Integer Linear Program with
sub-tour elimination constraints adapted from the Traveling Salesman Problem.

• PersQueue [39]: This most recent personalized tour recommendation approach recom-
mends personalized itineraries that aims tomaximize attraction popularity and user interest
preferences andminimize queuing times, while adhering to a time constraint for completing
the itinerary. It adopts Monte Carlo Tree Search (MCTS) for the queuing time aware tour
recommendation, where the reward reflects the POI popularity, user interest and queuing
time associated with each itinerary. Due to lack of explicitly queuing time of POIs, we use
the time interval between two adjacent POIs as the implicit queuing time for each POI.

5.2.2 Evaluation Metrics. We use the standard F1 and pairs-F1 scores to evaluate the trip rec-
ommendation performance.
F1 score. Following Reference [41], we use the F1 score of a recommended trajectory as one

evaluationmetric. It is defined as the harmonic mean of Precision and Recall of POIs in a trajectory:

F1 =
2 × P × R
P + R

, (16)

where P and R are respectively the trajectory Precision and Recall. Precision determines the pro-
portion of POIs in a user’s real-life trajectory that were also recommended in the planned trip,
while Recall is the proportion of POIs planed in the results that were also in a user’s ground-truth
trajectory.
pairs-F1 score. pairs-F1 is a new metric proposed in Reference [8], considering both POI cor-

rectness and visiting order by measuring the F1 score of every pair of POIs, whether they are
adjacent or not in a trajectory as

pairs-F1 =
2 × P ′ × R′
P ′ + R′

, (17)

where P ′ and R′ denote the Precision and Recall of ordered POI pairs, respectively. The value of
pairs-F1 is between 0 and 1. The higher the value, the better the recommended results—value 1
means that both POIs and their visiting order in the planned trajectory are exactly the same as the
ground truth.
Popularity score. The overall popularity based on all POIs in a recommended trip τ [41], de-

fined as Pop(τ ) =
∑
l ∈τ Pop(l ), where Pop(l ) measures the number of times POI l has been visited

in the data.
Trip Interest. The total interest (for a useru) based on all POIs in a recommended trip τ , defined

as Int(τ ) =
∑

l ∈τ Cat(l ), where Cat(l ) is the interest of a user u in POI category.

5.2.3 Experimental Setup. The experiments are conducted on a machine with 2 Inter Xeon E5
@2.20 GHz CPU, 64G RAM and one Nvidia GTX 1080Ti GPU. We evaluate all algorithms with
5 times 10-fold cross validation. Table 2 shows the optimal parameter settings tuned for both TRED-
L and TRED-G, which are implemented using tensorflow and GPU for computational acceleration.
All reported results are following this setting.

5.3 Performance on Trip Recommendation

Figures 4 and 5 compare the performance of various trip recommendation algorithms on Flickr data
in terms of F1 and pairs-F1 scores respectively. The results demonstrate that TRED outperforms all
previous algorithms, both heuristics and feature-based learning methods, in almost all scenarios—
except that PTour achieves slightly higher pairs-F1 score on Glasgow data than TRED. In fact, the
performance of TRED can be easily tuned better by adding more layers—however, we prefer to
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Table 2. Optimal Parameter Settings

Tuned for TRED-L and TRED-G

Parameters Values

Number of layers 2
Number of hidden units 29
Dropout rate 0.5
Learning rate 0.5
Learning rate decay factor 0.99
Batch size 64

Fig. 4. F1 Comparisons among different algorithms on Flickr data. The table with the exact values used this

figure is reported in the Appendix.

keep all the reported results using the same experimental settings. Another reason behind this
choice is that we are interested in investigating the ability of deep learning–based methods on the
trip planning problem while minimizing the complexity of neural networks models.
Tables 3 and 4, respectively, summarize the F1 and pairs-F1 performance comparison between

TRED and several baselines on Geolife and Foursquare datasets where the best method is shown
in bold, and the second best is shown as underlined. Note that the values before and after “±” are
respectively the mean and standard deviation of POIs successfully predicted (or reconstructed) by
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Fig. 5. Pairs-F1 comparisons among different algorithms on Flickr data. The table with the exact values used

this figure is reported in the Appendix.

Table 3. F1 Comparisons among Different Algorithms on Geolife and Foursquare Data

Geolife F@100 F@200 F@400 F@800

Random 0.116 ± 0.121 0.622 ± 0.103 0.630 ± 0.105 0.626 ± 0.103 0.617 ± 0.109
Popularity 0.176 ± 0.124 0.664 ± 0.120 0.687 ± 0.133 0.682 ± 0.126 0.688 ± 0.143
POIRank 0.231 ± 0.132 0.710 ± 0.155 0.748 ± 0.172 0.743 ± 0.166 0.716 ± 0.159
TRED-L 0.459 ± 0.248 0.866 ± 0.107 0.871 ± 0.109 0.874 ± 0.108 0.883 ± 0.114
TRED-G 0.431 ± 0.233 0.866 ± 0.110 0.873 ± 0.106 0.873 ± 0.108 0.887 ± 0.110

all methods. The reason of only focusing on these methods is that the number of POIs and trajecto-
ries in these two datasets are too large to train theMarkov-based POI-POI transition model and the
feature-based user preference models used in previous works [8, 18], as well as the MCTS-based
queuing time aware model [39]—usually they require days and even weeks to train models in our
experiment settings. Therefore, we only compare the performance of TRED with Markov-based
methods on Foursquare@100 dataset. As illustrated in Figure 6, TRED again exhibits significant
improvement on trip recommendation in both metrics.
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Table 4. Pairs-F1 Comparisons among Different Algorithms on Geolife and Foursquare Data

Geolife F@100 F@200 F@400 F@800

Random 0.011 ± 0.033 0.258 ± 0.153 0.275 ± 0.164 0.270 ± 0.156 0.259 ± 0.156
Popularity 0.000 ± 0.000 0.192 ± 0.269 0.255 ± 0.313 0.239 ± 0.297 0.259 ± 0.323
POIRank 0.000 ± 0.000 0.251 ± 0.351 0.353 ± 0.410 0.330 ± 0.395 0.285 ± 0.354
TRED-L 0.204 ± 0.229 0.642 ± 0.166 0.658 ± 0.179 0.646 ± 0.168 0.653 ± 0.171

TRED-G 0.199 ± 0.158 0.641 ± 0.166 0.663 ± 0.176 0.648 ± 0.167 0.651 ± 0.167

Fig. 6. Performance on Foursquare data with previous 100 users’ trajectories (F@100).

From the experimental results we observe that:

• Learning-basedmethods aremore accurate than heuristicmethods on trip recommendation.
• The performance of Markov chains-based POI-POI transition models are restricted by the

number of POIs, i.e., the more POIs, the less accuracy they achieve. For example, the per-
formance of methods proposed in References [8, 18] deteriorates as the number of POIs
increase (e.g., they all behave worse in the case of Melbourne data that has more POIs).
However, the number of trajectories may also affect the performance of the Markov-based
models. For instance, when the number of POIs are equal (e.g., Osaka, Glasgow, Toronto
and Edinburgh data), more trajectories and lower accuracy are achieved by these methods.

• In contrast, both of our methods (TRED-L and TRED-G) act in a rather stable manner as
the number of POIs and trajectories increases. An extreme case is the Geolife data that has
particularly larger number of POIs, where the performance of TRED drops to lower value.
However, all the other trip recommendation methods fail to work especially in terms of the
pairs-F1 score.

• Surprisingly, while MCTS is successful in many reinforcement learning tasks such as Alpha
Go, PersQueue [39] fails in our implementation. The main reason is that PersQueue is very
sensitive to data—while performingwell on datasets that explicitly contain the queuing time
associated with attractions (as reported in Reference [39]), it fails to most datasets where
the queuing time is only implicitly given.

• As our motivation for this work, TRED outperforms previous works in terms of learn-
ing the sequential information of trajectories—especially, the performance of TRED on

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 2, Article 13. Publication date: February 2020.



Semi-supervised Trajectory Understanding with POI Attention 13:19

Table 5. Popularity Comparisons on Flickr Data

Edinburgh Glasgow Osaka Toronto

Random 0.656 ± 0.025 0.483 ± 0.048 0.433 ± 0.055 0.581 ± 0.032
Popularity 1.775 ± 0.039 1.399 ± 0.075 0.837 ± 0.062 1.566 ± 0.050
PersTour 2.012 ± 0.043 1.601 ± 0.089 1.144 ± 0.093 1.960 ± 0.064
PersTour-L 2.016 ± 0.042 1.562 ± 0.089 1.126 ± 0.095 2.053 ± 0.063

TRED-L 2.014 ± 0.040 1.665 ± 0.092 1.168 ± 0.094 2.022 ± 0.060
TRED-G 2.009 ± 0.043 1.582 ± 0.084 1.148 ± 0.098 2.046 ± 0.066

Table 6. User Interest Comparisons on Flickr Data

Edinburgh Glasgow Osaka Toronto

Random 0.526 ± 0.033 0.229 ± 0.041 0.305 ± 0.089 0.467 ± 0.037
Popularity 0.577 ± 0.033 0.217 ± 0.049 0.223 ± 0.066 0.443 ± 0.029
PersTour 1.579 ± 0.069 0.625 ± 0.084 1.171 ± 0.206 1.223 ± 0.061

PersTour-L 1.383 ± 0.068 0.563 ± 0.091 1.151 ± 0.213 1.088 ± 0.060
TRED-L 1.402 ± 0.074 0.611 ± 0.084 1.160 ± 0.202 1.085 ± 0.068
TRED-G 1.398 ± 0.072 0.620 ± 0.082 1.166 ± 0.200 1.080 ± 0.065

pairs-F1 prove the effectiveness of RNN-based model on maintaining the order of POIs in
trajectories.

• Finally, we compared the trip popularity and user interest (over the POI category) in a rec-
ommended trip. We re-iterate that we do not explicitly model the POI popularity and users’
interests on the POI category in this work. Table 5 shows the results on POI popularity and,
as can be seen, our two models exhibit competitive performance compared to PersTour and
PersTour-L—which, however, are completely based on user interest and POI visit frequency.
This is a natural result of the pre-training step used in our model that, in fact, encodes the
POI frequency in an implicit manner. Combined with the beam search with reconstruction
trick enables us to successfully balance the transition probability that is mainly captured by
RNN modules and POI popularity when recommending a trip. As for the user interest over
the POI category (Table 6), our model performs slightly worse than PersTour and PersTour-
L, which incorporate the duration time of POIs—which, arguably, reflects the interest of
users over a POI [41]—when recommending a trip.

5.4 Efficiency Comparisons

Figure 7(a) and (b) illustrates the computation time taken by the different approaches used in this
section and on different datasets.We observe that as the size of data (i.e., number of trajectories and
users) increases, the advantage of TRED in terms of efficiency becomes more significant, especially
for larger size datasets such as Foursquare@800 and Flickr@Melbourne. In other words, it demon-
strates that our method scales much better than the MC-based POI transition methods—which
have the overheads of calculating all the pairwise POIs transitions. Note that we do not include
the results of PersQueue, because the execution took an extremely long time to converge—i.e.,
more than a week in our implementation.
As for recommending trips after training the model (i.e., applicability for real-time recommen-

dations), we observe that a trip can be planed quite efficiently with TRED. Figure 7(c) and (d) shows
the testing time of the two proposedmodels, fromwhere we can observe that the time for planning
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Fig. 7. Comparison of training and testing time.

trips is linearly related to the data size. In addition, TRED-L requires slightly greater execution time
than TRED-G on both training and testing, because more parameters need to be learned by LSTM.

6 CONCLUSIONS AND FUTURE WORK

We introduced a novel framework, TRED, for generating an end-to-end trip recommendation, with
consideration of intermediate stop-points that capture various POIs. TRED is based on integrat-
ing RNNs and sequence-to-sequence learning to exploit existing POI transition patterns. This, in
turn, enables us to automatically learn intrinsic patterns among users and POIs that can be subse-
quently used for planning a trajectory that satisfies both (1) end-locations and (2) sequentiality of
intermediate points. One major advantage of TRED is that it does not require labor-intensive fea-
ture engineering and thus can be easily generalized to various LBSNs applications. We evaluated
the benefits of TRED on several publicly available spatio-temporal datasets. The results show that
it outperforms state-of-the-art baselines in recommendation accuracy, while also being efficient
in terms of execution time. One of the benefits of a deep learning–based trip recommendation is
that it provides valuable insights in correlating contexts that may have influence on users’ mov-
ing patterns. This, in turn, may be a source of promising guidelines for further investigations of
mobility patterns and enable customization for a broader range of applications dealing with mod-
eling trajectory distributions—which is part of the challenges that we plan to address in the future.
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The immediate extensions of our work are focusing on jointly exploiting the potential impacts of
two complementary contexts: (1) Temporal: We are planning to incorporate both trip-time con-
straints and stay-time constraints in POIs, as well as other temporal kinds of costs. In addition to
the existing works (e.g., Reference [39]), we are planning to leverage the body of literature on the
time-window variants of Vehicle Routing Problems (VRP), with specific focus on the impact of the
travel-time constraints [51, 86]. (2) Spatial: In addition to incorporating the impacts of contexts
such as uncertainty [31] and semantic similarity of spatial attributes [76], we will also address the
problem of pruning the impact of POI locations that are exceeding certain distance (respectively,
travel-time) thresholds and cater to variable-length trip recommendations. To this end, we plan to
investigate the benefits of the concept of learned trees [33].

A APPENDIX

Exact values used in Figures 4 and 5:

Table 7. F1 Comparisons among Different Algorithms on Flickr Data

Edinburgh Glasgow Melbourne Osaka Toronto

Random 0.578 ± 0.136 0.629 ± 0.114 0.539 ± 0.152 0.644 ± 0.126 0.618 ± 0.122

Popularity 0.701 ± 0.160 0.745 ± 0.166 0.620 ± 0.136 0.663 ± 0.125 0.678 ± 0.121

PersTour 0.656 ± 0.223 0.801 ± 0.213 0.483 ± 0.208 0.686 ± 0.231 0.720 ± 0.215

PersTour-L 0.651 ± 0.143 0.660 ± 0.102 0.576 ± 0.141 0.686 ± 0.137 0.643 ± 0.113

POIRank 0.700 ± 0.155 0.768 ± 0.171 0.637 ± 0.142 0.745 ± 0.173 0.754 ± 0.170

Markov 0.645 ± 0.169 0.725 ± 0.167 0.577 ± 0.168 0.697 ± 0.150 0.669 ± 0.151

Markov-Rank 0.659 ± 0.174 0.754 ± 0.173 0.613 ± 0.166 0.715 ± 0.164 0.723 ± 0.185

Path 0.678 ± 0.149 0.732 ± 0.168 0.595 ± 0.148 0.706 ± 0.150 0.688 ± 0.138

Path-Rank 0.697 ± 0.152 0.762 ± 0.167 0.639 ± 0.146 0.732 ± 0.162 0.751 ± 0.170

PersQueue 0.470 ± 0.196 0.586 ± 0.231 0.430 ± 0.165 0.507 ± 0.186 0.536 ± 0.187

TRED-L 0.850 ± 0.089 0.876 ± 0.095 0.801 ± 0.085 0.859 ± 0.077 0.860 ± 0.098

TRED-G 0.850 ± 0.082 0.873 ± 0.091 0.804 ± 0.088 0.861 ± 0.100 0.862 ± 0.096

Table 8. Pairs- F1 Comparisons among Different Algorithms on Flickr Data

Edinburgh Glasgow Melbourne Osaka Toronto

Random 0.271 ± 0.152 0.316 ± 0.151 0.232 ± 0.135 0.342 ± 0.190 0.305 ± 0.153

Popularity 0.436 ± 0.259 0.507 ± 0.298 0.316 ± 0.178 0.365 ± 0.190 0.384 ± 0.201

PersTour 0.417 ± 0.343 0.643 ± 0.366 0.216 ± 0.265 0.468 ± 0.376 0.504 ± 0.354

PersTour-L 0.359 ± 0.207 0.352 ± 0.162 0.266 ± 0.140 0.406 ± 0.238 0.333 ± 0.163

POIRank 0.432 ± 0.251 0.548 ± 0.311 0.339 ± 0.203 0.511 ± 0.309 0.518 ± 0.296

Markov 0.417 ± 0.248 0.495 ± 0.296 0.288 ± 0.195 0.445 ± 0.266 0.407 ± 0.241

Markov-Rank 0.444 ± 0.263 0.545 ± 0.306 0.351 ± 0.220 0.486 ± 0.288 0.512 ± 0.303

Path 0.400 ± 0.235 0.485 ± 0.293 0.294 ± 0.187 0.442 ± 0.260 0.405 ± 0.231

Path-Rank 0.428 ± 0.245 0.533 ± 0.303 0.344 ± 0.206 0.489 ± 0.287 0.514 ± 0.297

PersQueue 0.320 ± 0.243 0.384 ± 0.224 0.335 ± 0.268 0.363 ± 0.283 0.336 ± 0.257

TRED-L 0.599 ± 0.146 0.595 ± 0.123 0.590 ± 0.145 0.636 ± 0.140 0.616 ± 0.139

TRED-G 0.601 ± 0.144 0.599 ± 0.137 0.598 ± 0.148 0.626 ± 0.149 0.617 ± 0.138
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