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great potential in the BOR prediction method based on the phase 
change model. In other words, the heat convection of the fluid 
considering the phase change of liquid as well as the heat con
duction of the solid were simultaneously implemented, and this 
could take a step closer to the reproduction of more practical 
physical phenomena. 

For future works, a variety of applications at various conditions must 
be calculated using the proposed phase change model in order to verify 
the validity of the method. The present calculation is validated with 
existing experiments and validation with practical physics where com
plex interacting phenomena are taking place. After then, many indus
trial application problems, such as loading/unloading problems of 
cryogenic liquids accompanying the time change, heat loss problems of 
local support structures, dynamics problems with sloshing during 
operation will be solved by the CFD simulation. The high-fidelity CFD- 
based calculation method will be greatly beneficial to the analysis, 
design, and the development of the Korea LNG tank system. In addition, 
the method can be further applied to engineering areas which uses liquid 
hydrogen gas including ships, cars and spacecraft. 
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