
Distributed Online Convex Programming for Collision Avoidance in

Multi-agent Autonomous Vehicle Systems

Guohui Ding, Hadi Ravanbakhsh, Zhiyuan Liu, Sriram Sankaranarayanan, and Lijun Chen

Abstract— We frame the collision avoidance problem of
multi-agent autonomous vehicle systems into an online convex
optimization problem of minimizing certain aggregate cost over
the time horizon. We then propose a distributed real-time
collision avoidance algorithm based on the online gradient
algorithm for solving the resulting online convex optimization
problem. We characterize the performance of the algorithm
with respect to a static offline optimization, and show that, by
choosing proper stepsizes, the upper bound on the performance
gap scales sublinearly in time. The numerical experiment
shows that the proposed algorithm can achieve better collision
avoidance performance than the existing Optimal Reciprocal
Collision Avoidance (ORCA) algorithm, due to less aggressive
velocity updates that can better prevent the collision in the long
run.

I. INTRODUCTION

Collision avoidance is an important problem for the safe

operation of autonomous vehicle systems. In such a multi-

agent system setting, partial observability and limited com-

munication necessitate distributed control policies that are

based only on information available locally at each agent.

Moreover, effective collision avoidance requires real-time

decisions that are based only on current and past information

(as well as possibly limited prediction).

Indeed, many collision avoidance schemes start with these

practical constraints on available information, and the re-

sulting control schemes are highly scalable with low imple-

mentation complexity. A prominent example is the Optimal

Reciprocal Collision Avoidance (ORCA) [13] algorithm,

where each vehicle assumes that its neighbors will keep their

current velocities within a certain prediction time window,

and computes a sufficient collision-free condition in velocity.

Then the vehicle will choose a collision-free velocity that is

closest to the desired velocity.

One of the problems with these distributed real-time

schemes such as the ORCA algorithm is that they may not

be optimal from a systemwide perspective. For example,

the vehicles may end up with a situation where most of

them change their velocities excessively in order to avoid the

collision. Another problem is that many of these schemes are

myopic or greedy, and it is possible that a “best possible”

action at the current time may get the vehicles into an

unnecessarily prolonged collision avoidance phase when they

have to frequently adjust their velocities. In this paper, we

aim to alleviate the latter problem, focusing on the ORCA

method.

This work was supported by NSF award No. 1646556.
All authors are with the Department of Computer Science,

University of Colorado Boulder, CO 80309, USA. The email:
firstname.lastname@colorado.edu.

Specifically, we frame the collision avoidance problem

into an online convex optimization problem of minimizing

the aggregate cost over the time horizon, where for each vehi-

cle the collision-free velocity set at each time is computed in

the same way as the ORCA algorithm and the cost function at

each time is the difference from the desired velocity. We then

propose a distributed real-time collision avoidance algorithm

based on the online gradient algorithm for solving the result-

ing online convex optimization problem. We characterize the

performance of the algorithm with respect to a static offline

optimization, and show that, by choosing proper stepsizes,

the upper bound on the performance gap scales sublinearly

in time. Compared with the original ORCA algorithms, the

decisions based on the gradient algorithm for minimizing

the aggregate cost over the whole time horizon expect to

result in less aggressive velocity updates that can better avoid

collisions in the long run. This is confirmed by our numerical

experiment.

The rest of the paper is organized as follows. Section

II reviews some related work. Section III describes the

ORCA algorithm, and Section IV reviews online convex

programming. Section V presents the proposed distributed

real-time collision avoidance algorithm and characterizes its

performance analytically. Section VI evaluates the proposed

algorithm numerically, and Section VII concludes the paper.

II. RELATED WORK

A. Collision avoidance

Collision avoidance is a critical safety requirement in

control design for autonomous vehicle systems or robotic

systems; see, e.g., [1] for a survey on various collision avoid-

ance approaches for unmanned vehicle systems, and [14] for

a more recent survey on various strategies and methodologies

for path-following and collision-free formation coordination,

as well as communication issues involved.

Of particular relevance to this paper is [5] that introduces

the concept of velocity obstacle representing the set of

velocities that would result in a collision with a given vehicle

at a given velocity within certain prediction time window,

and [13] that proposes the Optimal Reciprocal Collision

Avoidance (ORCA) algorithm based on velocity obstacles.

The ORCA algorithm is a distributed strategy for cooperative

collision avoidance between mobile agents; see Section III

for a detailed description (as well as a brief discussion of its

limitation).

There are lots of efforts on improving or extending the

ORCA method; see, e.g., [7] for fast computation, [12]

for a hybrid reciprocal velocity obstacle method, [2] for

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7926-5/$31.00 ©2019 AACC 2771

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 25,2021 at 15:18:13 UTC from IEEE Xplore. Restrictions apply.

where n =

{

u

‖u‖2

if vi − vj ∈ V Oτ
i|j

− u

‖u‖2

if vi − vj /∈ V Oτ
i|j

is the outward

normal vector pointing to the feasible set, and γ ∈ (0, 1] is

the responsibility factor. We see that ORCAτ
i|j is actually a

half-plane of the feasible collision-free velocities; see Fig 1b

for a geometric illustration. The velocity set ORCAτ
j|i can

be calculated similarly. In the previous work, γ = 1
2 which

means that agents i and j take half of the collision avoidance

responsibility respectively.

Agent i’s collision-free velocity set is given by the inter-

section ORCAτ
i = ∩j 6=iORCAτ

i|j , which is a polygon of

the collision-free velocities considering all neighbors. Agent

i will then take the action by choosing a velocity in ORCAτ
i

that is closest to the desired velocity. The resulting ORCA

algorithm for agent i is summarized as Algorithm 1. At each

time t, all agents will follow Algorithm 1 to update their

velocities and positions.

Algorithm 1 Original ORCA [13]

1: Calculate V Oτ
i|j (1) of agent i.

2: Calculate ORCAτ
i|j based on (3).

3: Calculate collision-free velocity set ORCAτ
i

ORCAτ
i = B(0, vmax

i) ∩
⋂

j 6=i

ORCAτ
i|j . (4)

4: Compute new velocity vnew
i (and update position pnew

i)

vnew
i = arg min

v∈ORCAτ

i

‖v − v
pref
i ‖2, (5)

pnew
i = pi + vnew

i ∆t. (6)

The division and sharing of responsibility as specified

by Algorithm 1 leads to cooperative behaviors for collision

avoidance. However, this algorithm does not provide any

performance guarantee beyond collision avoidance. Indeed,

the velocity update (5) is of “greedy” type, and it is possible

that the current greedy choice will result in a situation

of prolonged collision avoidance phase when the vehicle

has to adjust its velocity frequently. Moreover, it may lead

to frequent large changes in velocity, which may impact

negatively the actuation and fuel efficiency of the vehicle

and the state estimation by other vehicles. We will integrate

the ORCA algorithm with online convex programming to

alleviate these issues.

IV. ONLINE CONVEX PROGRAMMING

Convex programming seeks to minimize a convex cost

function f : S → R over a convex set S. An online convex

programming (OCP) problem [15] is defined as follows.

Definition 1: An online convex programming problem in-

cludes a convex set S ⊆ S and a sequence of convex cost

functions f t : S → R at each time or iteration t = 1, 2, · · · .

Instead of a fixed feasible set S, there may be a different

feasible set St at each time t. For instance, in the colli-

sion avoidance problem the feasible collision-free velocity

set ORCAτ
i may be different at different times. The cost

function f t captures how well the current decision performs.

For example, for the collision avoidance problem the cost

function can be chosen as the difference to the desired

velocity v
pref,t
i : f t

i (v
t
i) := ‖vt

i − v
pref,t
i ‖2 for agent i at

time t.
In the OCP problem, agents make the decisions based on

the current and past information, while seeking to minimize

the total cost
∑

t f
t. In such an online decision setting, an

optimal solution is difficult to find because we can only have

the current and past f t at time t instead of all cost functions

which make it difficult to find the optimal solution. However,

based on the convexity structure of the problem, it is possible

to design online algorithms to find a solution that is close

to the offline optimum with a bounded gap. In the next

section, we will integrate the ORCA method into the OCP

framework to a design new collision avoidance algorithm,

and characterize analytically and evaluate numerically its

performance.

V. INTEGRATION OF ORCA AND ONLINE CONVEX

PROGRAMMING

Depending on the mission- or task-level objectives, dif-

ferent cost functions may be constructed. For example, if

a mission/task prefers the vehicles to run at certain desired

velocities, the cost function can be chosen as the difference

to the desired velocity, and if however the goal is to arrive

at destinations as early as possible, it can be chosen as

the difference to the destination. In this section, we will

consider velocity-based method, and integrate the ORCA

algorithm and online convex programming with the cost

function f t
i (v

t
i) := ‖vt

i − v
pref,t
i ‖2 introduced in the last

section.

A. Online algorithm

Notice that the original ORCA Algorithm 1 includes two

parts. Steps (1-3) derive the ORCA feasible velocity set

of agent i constrained by its neighbors. Step (4) chooses

“greedily” a velocity in the the ORCA set that is closest

to the desired velocity. In the OCP setting, we will use

steps 1-3 of Algorithm 1 to derive the convex feasible set

St
i := ORCAτ

i for agent i at time t. Instead of the update

(5), we will then use gradient descent method [15] to update

the velocity. The application of gradient method will lead

to smoother dynamics, as well as performance guarantee as

will be seen next.

The resulting algorithm is summarized as Algorithm 2.

Notice that in the gradient descent (8) we separate the

stepsize into two parts α and ηt, corresponding to time-

independent and time-dependent control parameters.

B. Performance

We now characterize the performance of Algorithm 2 with

respect to certain offline optimum, and examine how different

choices of the stepsize will impact the performance of the

algorithm.

Consider a time horizon of T , and define the total cost

Ci(T) :=
∑T

t=1 f
t
i (v

t
i) for agent i ∈ N . Denote by

Conline
i (T) the total cost from the solution generated by

2773

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 25,2021 at 15:18:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 ORCA-OCP

1: Calculate V Oτ
i|j (1) of agent i.

2: Calculate St
i = ORCAτ

i based on equations (3)-(4).

3: Construct the cost function f t
i ,

f t
i (v) = ‖v − v

pref,t
i ‖2. (7)

4: Update velocity using the gradient descent method

v
t+1
i = PSt

i

(

vt
i − αηt∇f t

i (v
t
i)
)

, (8)

where projection PSt

i

(y) = argminx∈St

i

‖x− y‖2.

Algorithm 2. Denoted by v∗
i the static (offline) optimal

solution that minimizes
∑T

t=1 f
t
i (vi) subject to the same

feasible collision-free velocity set St
i at each time t as Algo-

rithm 2, and Coffline
i (T) =

∑T

t=1 f
t
i (v

∗
i) the corresponding

(offline) minimum cost. Following the standard performance

characterization framework for online algorithms (see, e.g.,

[3], [15]), we define the regret of agent i under Algorithm 2

as:

Ri(T) = Conline
i (T)− Coffline

i (T). (9)

A smaller regret means a better performance of the online

algorithm.

Theorem 2: Define the bounds for each agent i ∈ N :

Di = max
t

max
u,v∈St

i

‖u− v‖2,

Gi = max
t

max
v∈St

i

‖∇f t
i (v)‖2.

If constant stepsizes are used, i.e., ηt = 1, the regret of

agent i under Algorithm 2 satisfies:

Ri(T) ≤
D2

i

2α
+

αG2
iT

2
, (10)

and lim supT→∞
Ri(T)

T
≤ αG2

i

2 .

If time-dependent stepsizes ηt =
1√
t

are used, the regret

of agent i under Algorithm 2 satisfies:

Ri(T) ≤
D2

i

√
T

2α
+

αG2
i

2

(

2
√
T − 1

)

, (11)

and lim supT→∞
Ri(T)

T
≤ 0. More generally, if diminishing

stepsizes are chosen such that
∑T

t=1 ηt = O(T 1−ǫ) with

ǫ > 0, then lim supT→∞
Ri(T)

T
≤ 0.

Proof: For simplicity of presentation, we omit the index

i. By equation (8), we have

‖vt+1 − v∗‖22 = ‖PSt

(

vt − αηt∇f t(vt)
)

− v∗‖22
≤‖vt − αηt∇f t(vt)− v∗‖22
=‖vt − v∗‖22 + α2η2t ‖∇f t(vt)‖22 − 2αηt∇f t(vt)T (vt − v∗)

≤‖vt − v∗‖22 + α2η2t ‖∇f t(vt)‖22 − 2αηt(f
t(vt)− f t(v∗)),

(12)

where the first inequality follows from the property of

projection operator, and the last inequality follows from the

convexity of f t(·). By (12), we have

f t(vt)− f t(v∗)

≤‖vt − v∗‖22 − ‖vt+1 − v∗‖22
2αηt

+
αηt‖∇f t(vt)‖22

2
(13)

≤‖vt − v∗‖22 − ‖vt+1 − v∗‖22
2αηt

+
αηtG

2

2
,

from which we obtain

R(T) =

T
∑

t=1

(

f t(vt)− f t(v∗)
)

≤
T
∑

t=1

‖vt − v∗‖22 − ‖vt+1 − v∗‖22
2αηt

+
αG2

2

T
∑

t=1

ηt. (14)

If constant stepsizes ηt = 1 are chosen, by (14) we obtain

R(T) ≤ ‖v1 − v∗‖22 − ‖vT+1 − v∗‖22
2α

+
αG2T

2

≤ ‖v1 − v∗‖22
2α

+
αG2T

2

≤ D2

2α
+

αG2T

2
,

and lim supT→∞
R(T)
T

≤ αG2

2 .

If diminishing stepsizes ηt = 1/
√
t are chosen, rewrite

inequality (14) as

R(T)

≤‖v1 − v∗‖22
2α

+

T
∑

t=2

(
1

ηt
− 1

ηt−1
)
‖vt − v∗‖22

2α

− ‖vT+1 − v∗‖22
2αηT

+
αG2

2

T
∑

t=1

ηt

≤D2

2α
+

T
∑

t=2

(
1

ηt
− 1

ηt−1
)
D2

2α
+

αG2

2

T
∑

t=1

ηt

=
D2

√
T

2α
+

αG2

2

T
∑

t=1

ηt (15)

≤D2
√
T

2α
+

αG2

2
(2
√
T − 1),

where the last inequality uses the following result [15]:

T
∑

t=1

ηt =
T
∑

t=1

1√
t
≤ 1 +

∫ T

t=1

dt√
t
≤ 2

√
T − 1.

From the above inequality on R(T), we have

lim supT→∞
R(T)
T

≤ 0. Further, by equation (15), if

diminishing stepsizes are chosen such that
∑T

t=1 ηt =

O(T 1−ǫ) with ǫ > 0, then lim supT→∞
Ri(T)

T
≤ 0.

Theorem 2 shows that the performance (i.e., regret) of

Algorithm 2 depends on the choice of the stepsize. In

particular, if certain diminishing stepsizes are chosen, the

upper bound on the aggregate regret with respect to a (static)

offline optimum scales sublinearly in time, and the upper

bound on the average regret approaches zero as the time

goes to infinity.

2774

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 25,2021 at 15:18:13 UTC from IEEE Xplore. Restrictions apply.

