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Abstract— We frame the collision avoidance problem of
multi-agent autonomous vehicle systems into an online convex
optimization problem of minimizing certain aggregate cost over
the time horizon. We then propose a distributed real-time
collision avoidance algorithm based on the online gradient
algorithm for solving the resulting online convex optimization
problem. We characterize the performance of the algorithm
with respect to a static offline optimization, and show that, by
choosing proper stepsizes, the upper bound on the performance
gap scales sublinearly in time. The numerical experiment
shows that the proposed algorithm can achieve better collision
avoidance performance than the existing Optimal Reciprocal
Collision Avoidance (ORCA) algorithm, due to less aggressive
velocity updates that can better prevent the collision in the long
run.

I. INTRODUCTION

Collision avoidance is an important problem for the safe
operation of autonomous vehicle systems. In such a multi-
agent system setting, partial observability and limited com-
munication necessitate distributed control policies that are
based only on information available locally at each agent.
Moreover, effective collision avoidance requires real-time
decisions that are based only on current and past information
(as well as possibly limited prediction).

Indeed, many collision avoidance schemes start with these
practical constraints on available information, and the re-
sulting control schemes are highly scalable with low imple-
mentation complexity. A prominent example is the Optimal
Reciprocal Collision Avoidance (ORCA) [13] algorithm,
where each vehicle assumes that its neighbors will keep their
current velocities within a certain prediction time window,
and computes a sufficient collision-free condition in velocity.
Then the vehicle will choose a collision-free velocity that is
closest to the desired velocity.

One of the problems with these distributed real-time
schemes such as the ORCA algorithm is that they may not
be optimal from a systemwide perspective. For example,
the vehicles may end up with a situation where most of
them change their velocities excessively in order to avoid the
collision. Another problem is that many of these schemes are
myopic or greedy, and it is possible that a “best possible”
action at the current time may get the vehicles into an
unnecessarily prolonged collision avoidance phase when they
have to frequently adjust their velocities. In this paper, we
aim to alleviate the latter problem, focusing on the ORCA
method.
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Specifically, we frame the collision avoidance problem
into an online convex optimization problem of minimizing
the aggregate cost over the time horizon, where for each vehi-
cle the collision-free velocity set at each time is computed in
the same way as the ORCA algorithm and the cost function at
each time is the difference from the desired velocity. We then
propose a distributed real-time collision avoidance algorithm
based on the online gradient algorithm for solving the result-
ing online convex optimization problem. We characterize the
performance of the algorithm with respect to a static offline
optimization, and show that, by choosing proper stepsizes,
the upper bound on the performance gap scales sublinearly
in time. Compared with the original ORCA algorithms, the
decisions based on the gradient algorithm for minimizing
the aggregate cost over the whole time horizon expect to
result in less aggressive velocity updates that can better avoid
collisions in the long run. This is confirmed by our numerical
experiment.

The rest of the paper is organized as follows. Section
IT reviews some related work. Section III describes the
ORCA algorithm, and Section IV reviews online convex
programming. Section V presents the proposed distributed
real-time collision avoidance algorithm and characterizes its
performance analytically. Section VI evaluates the proposed
algorithm numerically, and Section VII concludes the paper.

II. RELATED WORK
A. Collision avoidance

Collision avoidance is a critical safety requirement in
control design for autonomous vehicle systems or robotic
systems; see, e.g., [1] for a survey on various collision avoid-
ance approaches for unmanned vehicle systems, and [14] for
a more recent survey on various strategies and methodologies
for path-following and collision-free formation coordination,
as well as communication issues involved.

Of particular relevance to this paper is [5] that introduces
the concept of velocity obstacle representing the set of
velocities that would result in a collision with a given vehicle
at a given velocity within certain prediction time window,
and [13] that proposes the Optimal Reciprocal Collision
Avoidance (ORCA) algorithm based on velocity obstacles.
The ORCA algorithm is a distributed strategy for cooperative
collision avoidance between mobile agents; see Section III
for a detailed description (as well as a brief discussion of its
limitation).

There are lots of efforts on improving or extending the
ORCA method; see, e.g., [7] for fast computation, [12]
for a hybrid reciprocal velocity obstacle method, [2] for
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a more general acceleration-velocity obstacle method, [11]
for incorporating motion continuity constraints, and [4] for
the integration of the ORCA method and model predictive
control (MPC). In this paper, we integrate the ORCA method
into the online convex programming framework, and use it
to guide the design of the online algorithm to achieve better
collision avoidance.

B. Online convex programming

Online convex programming considers a setting where
decisions have to be made based on the current and past
information while trying to minimize certain aggregate cost
over a finite or an infinite time horizon. It has broad applica-
tions in, e.g., prediction [10], [6], [8], [3] and online learning
[9], [15]. See Section IV for a more detailed description of
the online convex programming.

III. OPTIMAL RECIPROCAL COLLISION AVOIDANCE

Optimal Reciprocal Collision Avoidance (ORCA) [13] is a
velocity-based decentralized strategy for collision avoidance
between multiple mobile agents (e.g., autonomous robots or
vehicles), where all agents will follow the same strategy
to select their actions and take the collision avoidance
responsibility cooperatively. Each agent assumes that its
neighbors will keep their current velocities within a certain
prediction time window, and computes a sufficient collision-
free condition (called velocity obstacle (VO) [5]). Then the
agents will choose their velocities such that they get as close
as possible to the desired velocities while simultaneously
outside the VOs. Only the information on its neighbors’
states is needed for each agent’s decision.

Consider a set N of mobile agents, each ¢ € N with a set
S! of feasible states at time ¢. Denote by x! = {p!,vl} € S!
the state of agent i at time ¢, where p! = (z,y)! is the two-
dimensional position and v} = (v, v,)! the two-dimensional
velocity. For each agent 7, the safe zone at time ¢ is specified
by a ball B(p!,7;) = {p|l|p! — pll2 < 7} centered at the
current position p! with a radius r;.

Denote by 7 the length of prediction time window. The
velocity obstacle VO, . of agent i caused by agent j during
the prediction window is defined by:

VO]

7, ={vi3te0,7],tv € B(p; —pi,ri +7)}. (1)

If agent 7 has a velocity in VOiT| j during the next 7 time
window, it will collide with agent j who is not moving. If
agent j moves at velocity v;, we can consider the relative
velocity v; — v; of agent i; see Fig. la for a geometric
illustration. By definition, VO@‘T| j is a truncated convex cone
with the following implications [4]:

Cl: If v; — v; € VOj);, agent i will collide with agent j
if they keep their current velocities. So agent ¢ will try
to take an action u! to escape from VOZT| ; as soon as
possible.

C2: If v, —v; ¢ VOZT| o it is safe for both agents to keep

the current velocities.

Pz

(a) Velocity obstacle
Uy

I~
Y Vg

(b) ORCA
Fig. 1: Velocity obstacle and the ORCA algorithm [4] [13].

Consider

u=arg min |v—(v; —vj)|2 = (v; —vy). (2)

vE@VO:j

If vi—v; € VO], ;» wis the “minimum” velocity change that
allows 7 to escape from VOZ.TU; andif v;—v; ¢ VOile, u will
be the “maximum” velocity change that does not lead to a
collision. The optimal reciprocal collision avoidance velocity
set ORC’AZT| ; for agent ¢ with respect to agent j [4] is defined

as:

ORCAj, =
{{VI(V — (v; +7u) 0 >0}, if v, —v; € VO,
{vI(v—= (v +yu) ™ <0}, if v, —v; € VO],
3)
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B if vi—v; e VO7, . .
where n = {|“2 . ’ 17 s the outward
~Tapp HVvi—v; € VO],
normal vector pointing to the feasible set, and v € (0, 1] is
the responsibility factor. We see that ORCA; ; is actually a
half-plane of the feasible collision-free velocities; see Fig 1b
for a geometric illustration. The velocity set ORC’A]TM can
be calculated similarly. In the previous work, v = % which
means that agents 7 and j take half of the collision avoidance
responsibility respectively.

Agent ¢’s collision-free velocity set is given by the inter-
section ORCA] = N;»xORCA];, which is a polygon of
the collision-free velocities considering all neighbors. Agent
i will then take the action by choosing a velocity in ORC' AT
that is closest to the desired velocity. The resulting ORCA
algorithm for agent ¢ is summarized as Algorithm 1. At each
time t, all agents will follow Algorithm 1 to update their
velocities and positions.

Algorithm 1 Original ORCA [13]

1: Calculate VOZT]. (1) of agent 3.
2: Calculate OR, Alej based on (3).
3: Calculate collision-free velocity set ORC AT

ORCA] = B(0,v]"*) N [JORCA};. (4
j#i
4: Compute new velocity v**“ (and update position p;*“*)

P —arg i —vired 5
vi T8, [v—vi™2, ()
Py = pi + vIUAL. (6)

The division and sharing of responsibility as specified
by Algorithm 1 leads to cooperative behaviors for collision
avoidance. However, this algorithm does not provide any
performance guarantee beyond collision avoidance. Indeed,
the velocity update (5) is of “greedy” type, and it is possible
that the current greedy choice will result in a situation
of prolonged collision avoidance phase when the vehicle
has to adjust its velocity frequently. Moreover, it may lead
to frequent large changes in velocity, which may impact
negatively the actuation and fuel efficiency of the vehicle
and the state estimation by other vehicles. We will integrate
the ORCA algorithm with online convex programming to
alleviate these issues.

IV. ONLINE CONVEX PROGRAMMING

Convex programming seeks to minimize a convex cost
function f : S — R over a convex set S. An online convex
programming (OCP) problem [15] is defined as follows.

Definition 1: An online convex programming problem in-
cludes a convex set S C S and a sequence of convex cost
functions f* : S — R at each time or iteration t = 1,2,---.

Instead of a fixed feasible set S, there may be a different
feasible set S’ at each time t. For instance, in the colli-
sion avoidance problem the feasible collision-free velocity
set ORC'AT may be different at different times. The cost
function f! captures how well the current decision performs.

For example, for the collision avoidance problem the cost
function can be chosen as the difference to the desired
velocity vP"It: fi(vt) = ||vi — vP"* ||, for agent i at
time t.

In the OCP problem, agents make the decisions based on
the current and past information, while seeking to minimize
the total cost >, f*. In such an online decision setting, an
optimal solution is difficult to find because we can only have
the current and past f at time ¢ instead of all cost functions
which make it difficult to find the optimal solution. However,
based on the convexity structure of the problem, it is possible
to design online algorithms to find a solution that is close
to the offline optimum with a bounded gap. In the next
section, we will integrate the ORCA method into the OCP
framework to a design new collision avoidance algorithm,
and characterize analytically and evaluate numerically its
performance.

V. INTEGRATION OF ORCA AND ONLINE CONVEX
PROGRAMMING

Depending on the mission- or task-level objectives, dif-
ferent cost functions may be constructed. For example, if
a mission/task prefers the vehicles to run at certain desired
velocities, the cost function can be chosen as the difference
to the desired velocity, and if however the goal is to arrive
at destinations as early as possible, it can be chosen as
the difference to the destination. In this section, we will
consider velocity-based method, and integrate the ORCA
algorithm and online convex programming with the cost
function ff(v!) := [[vi — vP"“"'|l; introduced in the last
section.

A. Online algorithm

Notice that the original ORCA Algorithm 1 includes two
parts. Steps (1-3) derive the ORCA feasible velocity set
of agent ¢ constrained by its neighbors. Step (4) chooses
“greedily” a velocity in the the ORCA set that is closest
to the desired velocity. In the OCP setting, we will use
steps 1-3 of Algorithm 1 to derive the convex feasible set
St := ORCAT for agent i at time ¢. Instead of the update
(5), we will then use gradient descent method [15] to update
the velocity. The application of gradient method will lead
to smoother dynamics, as well as performance guarantee as
will be seen next.

The resulting algorithm is summarized as Algorithm 2.
Notice that in the gradient descent (8) we separate the
stepsize into two parts o and 7, corresponding to time-
independent and time-dependent control parameters.

B. Performance

We now characterize the performance of Algorithm 2 with
respect to certain offline optimum, and examine how different
choices of the stepsize will impact the performance of the

algorithm.
Consider a time horizon of 7', and define the total cost
Ci(T) == S, fi(v!) for agent i € N. Denote by

Cenline(T) the total cost from the solution generated by
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Algorithm 2 ORCA-OCP

1: Calculate VOZTU (1) of agent 3.
2: Calculate S! = ORCAT based on equations (3)-(4).
3. Construct the cost function fit,

fLv) = [lv = v, @)

4: Update velocity using the gradient descent method
vf“ = Pst (v: — omtfo(vf)) , (8)

where projection Pgt(y) = arg min,cge |2 — yl|2.

Algorithm 2. Denoted by v} the static (offline) optimal
solution that minimizes 23:1 fi(v;) subject to the same
feasible collision-free velocity set S! at each time ¢ as Algo-
rithm 2, and C?//1¢(T) = ST f#(v¥) the corresponding
(offline) minimum cost. Following the standard performance
characterization framework for online algorithms (see, e.g.,
[31, [15]), we define the regret of agent ¢ under Algorithm 2
as:

Ry(T) = C¢mine(T) — ¢/ 7hme(T), ©)

A smaller regret means a better performance of the online
algorithm.
Theorem 2: Define the bounds for each agent ¢ € NV:

D; = max max |ju—v|s,
t u,veS?

G; = maxmax||Vfi(v)]z.
t v€S:

If constant stepsizes are used, i.e., n; = 1, the regret of
agent ¢ under Algorithm 2 satisfies:

D?  aG?T
Ri(T) < =% 4 ===
(T) < 2a 2
. R(T aG?
and lim sup;_, .o r} ) < 5
If time-dependent stepsizes 1, = % are used, the regret
of agent ¢ under Algorithm 2 satisfies:

D2VT  aG?
. < - ? —
R(T) < ==+ = (2\/:7 1),

and limsupp_, o Rij(,T) < 0. More generally, if diminishing

stepsizes are chosen such that Zthl n = O(T'~¢) with
€ > 0, then limsupp_, R’L}T) <0.
Proof: For simplicity of presentation, we omit the index

i. By equation (8), we have

+ (10)

(1)

[V =373 = ||Pse (vV — am VFH(VE)) = v13
<V = am V() = v*l5
=[Iv" = v + P [V (VO3 — 20,V FH (V)T (v
<vh = v*II3 4+ PRIV FEVOE = 20m(f1 (V) — f(V{l)z))

where the first inequality follows from the property of
projection operator, and the last inequality follows from the

convexity of f(-). By (12), we have
I = f1(v)

t o * |12 ot o2 tiot) ]2
V=il v v HerothVf vz

13
< S ; (13)
V= vrE = VT = vl amG?
- 2amy 2
from which we obtain
T
R(T) =) _(f'v) = f'(v")
t=1
T t *[2 t+1 _p) 2 T
vi—v*ls - |[viT =V aG
<y v vl LI
t=1 A t=1
If constant stepsizes 1y = 1 are chosen, by (14) we obtain
vt = v I3 = v = v} | aG?T
R(T) <
(1) = 2a * 2
< [[vt—v*|3 . aG?T
- 2a 2
< D? + aG?T
- 2« 2
and lim supp_, % < O‘TGz

If diminishing stepsizes 7; = 1/+/t are chosen, rewrite
inequality (14) as

R(T)

* T *
<||V1_V||§+Z(1 1 )”Vt_V”%
- 2 pur R/ TR T 20

. T
[V Vi3, oG
20 g 2.
it t=1
D2 K11 D2 aGE
ST S b R OLL
@ = e s t=1
D*VT aG? L
= ) M (15)
2c 2 —
D2VT  aG?
< —2VT -1
- 2a + 2 VT -1),
where the last inequality uses the following result [15]:
d T T at
m=) —=<1+ — <2VT - 1.
L= L= LG
From the above inequality on R(7), we have

lim supp_, @ < 0. Further, by equation (15), if

diminishing stepsizes are chosen such that Zthl =
O(T'~¢) with € > 0, then lim supp_, . Ri:(FT) <0. |
Theorem 2 shows that the performance (i.e., regret) of

—v*) Algorithm 2 depends on the choice of the stepsize. In

particular, if certain diminishing stepsizes are chosen, the
upper bound on the aggregate regret with respect to a (static)
offline optimum scales sublinearly in time, and the upper
bound on the average regret approaches zero as the time
goes to infinity.
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Comment 1: Even though Algorithm 2 is based on specific
cost functions, the proof of Theorem 2 uses only general
properties of convex functions. So, Theorem 2 applies to
online gradient algorithms with any convex cost functions.

Comment 2: Algorithm 2 uses only current information,
but can extend to incorporate past information (history);
e.g., by replacing the “current” gradient V f}(v!) with a
weighted sum of “past” gradients V f¥(vF), 1 < k < t. This
may result in better performance bound, and be preferable
in certain applications despite its higher implementation
complexity. Also, we have focused on the velocity-based
method. But the framework and algorithm design apply to
the position-based method by choosing proper cost functions
in position. We will pursue those extensions elsewhere.

VI. EXPERIMENT

In this section, we implement the proposed ORCA-OCP
algorithm, and evaluate its performance by comparing with
the original ORCA algorithm.

We consider a system of 5 mobile agents with the same
safe zone radius of 0.2 (i.e., the same safe distance of 0.4).

The initial positions are set to 1.5(cos(2%4), sin(254)), i =
1,---,5, the desired velocities (— sin(2%4), — cos(3i)), i =
1,---,5, and the maximal allowable speed v;"** = 2 for

all agents. The numerical results reported below are for the
parameter values v = 0.5 (see equation (3)), @« = 0.5, and
ne =1/ Vt.

Fig. 2 shows the evolution of one agent’s (Agent-1)
velocity when it enters the collision avoidance phase (CAP)
and needs to adjust velocity frequently. We see that, com-
pared with the original ORCA algorithm, the ORCA-OCP
algorithm achieves better collision avoidance as the agent
stays shorter in the CAP. This is expected, as the ORCA-
OCP algorithm has smoother (or less aggressive) velocity
update, as well as tries to minimize an aggregate cost over
the whole time horizon so as to better prevent the collision
in the long run. This is also confirmed by Fig. 3a which
shows that all agents stay in the CAP significantly shorter
under the ORCA-OCP algorithm. Further, Fig. 3b shows
the means, standard deviations, and maximums/minimums
in velocity. We see that the ranges of velocity under the two
algorithms are similar, but the deviations are smaller under
the ORCA-OCP algorithm. This implies that the ORCA-OCP
algorithm achieves better collision avoidance, not because of
lower speeds but due to smoother or less aggressive velocity
updates.

Fig. 4 shows the trajectories of the agents under the orig-
inal ORCA algorithm and the ORCA-OCP algorithm over
the time periods of [0.0s, 8.6s] and [0.0s, 4.6s], respectively.
We can see the new algorithm brings less excessive collision
avoidance actions than the original ORCA algorithm so that
the CAP could be finished earlier. Besides, Fig. 5 shows the
evolution of average regret of each agent, which is consistent
with Theorem 2.

VII. CONCLUSION

We have integrated the online convex programming (OCP)
framework with the optimal reciprocal collision avoidance

original ORCA (v,)
s —— original ORCA (v,)
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(a) vy and vy under the original ORCA algorithm.
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(c) Speed (||v||) comparison between the two algorithms.
Fig. 2: Velocity of one agent under the ORCA-OCP algo-

rithm and the original ORCA algorithm when it enters the
collision avoidance phase (CAP).

W original ORCA (before CAP)
= original ORC; CAP)

4 5

Agents

(a) Durations in the collision avoidance phase (CAP).

1 2 3 4 5
Agents

(b) Velocity statistics.

Fig. 3: Durations in the collision avoidance phase (CAP) and
velocity statistics.

(ORCA) algorithm, and proposed a new distributed collision
avoidance algorithm based on the online gradient algorithm
for solving a proper online convex optimization problem.
We characterize analytically the performance of the proposed
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(a) Trajectories of all agents using Algorithm 1 (the solid circles
indicate the starting positions) during [0.0s, 8.6s].
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(b) Trajectories of all agents using Algorithm 2 (the solid circles
indicate the starting positions) during [0.0s, 4.6s].

Fig. 4: Trajectories using two algorithms.

algorithm in terms of regret with respect to a static offline
optimum. The numerical experiment shows that the new al-
gorithm achieves better collision avoidance than the original
ORCA algorithm, because of less aggressive velocity updates
that can better prevent the collision in the long run.
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