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Abstract

In this report, we study decentralized stochastic optimization to minimize a sum of smooth and strongly convex

cost functions when the functions are distributed over a directed network of nodes. In contrast to the existing work, we

use gradient tracking to improve certain aspects of the resulting algorithm. In particular, we propose the S-ADDOPT

algorithm that assumes a stochastic first-order oracle at each node and show that for a constant step-size α, each

node converges linearly inside an error ball around the optimal solution, the size of which is controlled by α. For

decaying step-sizes O(1/k), we show that S-ADDOPT reaches the exact solution sublinearly at O(1/k) and its

convergence is asymptotically network-independent. Thus the asymptotic behavior of S-ADDOPT is comparable

to the centralized stochastic gradient descent. Numerical experiments over both strongly convex and non-convex

problems illustrate the convergence behavior and the performance comparison of the proposed algorithm.

I. INTRODUCTION

This report considers minimizing a sum of smooth and strongly convex functions F (z) =
∑n

i=1 fi(z) over a

network of n nodes. We assume that each fi is private to only on node i and that the nodes communicate over

a directed graph (digraph) to solve the underlying problem. Such problems have found significant applications

traditionally in the areas of signal processing and control [1], [2] and more recently in machine learning prob-

lems [3]–[6]. Gradient descent (GD) is one of the simplest algorithms for function minimization and requires the

true gradient ∇F . When this information is not available, GD is implemented with stochastic gradients and the

resulting method is called stochastic gradient descent (SGD). As the data becomes large-scale and geographically

diverse, GD and SGD present storage and communication challenges. In such cases, decentralized methods are

attractive as they are locally implemented and rely on communication among nearby nodes.

Related work on decentralized first-order methods can be found in [7]–[12]. Of relevance is Distributed Gradient

Descent (DGD) that converges sublinearly to the optimal solution with decaying step-sizes [7] and linearly to an

inexact solution with a constant step-size [8]. Its stochastic variant DSGD can be found in [9], [10], which is

further extended with the help of gradient tracking [13]–[15] in [12] where inexact linear convergence in addition
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to asymptotic network independence are shown; see also [16]–[18] and references therein. More recently, variance

reduction has been used to show linear convergence for smooth and strongly convex finite-sum problems [11].

However, all of these decentralized stochastic algorithms are built on undirected graphs, see [19] for a friendly

tutorial. Related work on directed graphs includes [14], [15], [20]–[24] where true gradients are used, and [16],

[25]–[27] on stochastic methods, all of which use the push-sum algorithm [28] to achieve agreement with an

exception of [15], [27], [29], [30] that employ updates with both row and column stochastic weights to avoid the

eigenvector estimation in push-sum.

In this report, we present S-ADDOPT for decentralized stochastic optimization over directed graphs. In particular,

S-ADDOPT adds gradient tracking to SGP (stochastic gradient push) [16], [25], [26] and can be viewed as a

stochastic extension of ADDOPT [14], [31] that uses true gradients. Of significant relevance is [12] that is applicable

to undirected graphs and is based on doubly stochastic weights. Since S-ADDOPT is based on directed graphs, it

essentially extends the algorithm in [12] with the help of push-sum when the network weights are restricted to be

column stochastic. A similar algorithm based on row-stochastic weights is also immediate by apply the extension

and analysis in this report to FROST [23], [24].

The main contributions of this report are as follows: (i) We develop a stochastic algorithm over directed graphs by

combining push-sum with gradient tacking; (ii) For a constant step-size α, we show that each node converges linearly

inside an error ball around the optimal solution, and further show that the size of the error ball is controlled by α.

(iii) For decaying step-sizes O(1/k), we show that S-ADDOPT is asymptotically network-independent and reaches

the exact solution sublinearly at O(1/k), while the network agreement error decays at a faster rate of O(1/k2).

(iv) We explicitly quantify the directed nature of graphs using a directivity constant τ , which makes this work a

generalization of DSGD, SGP, and the method proposed in [12]. The directivity constant τ is 1 for undirected graphs

and thus the results apply to undirected graphs as a special case. The rest of this report is organized as follows.

We formalize the optimization problem, list the underlying assumptions, and describe S-ADDOPT in Section II.

We then present the main results in Section III and the convergence analysis in Section IV. Finally, we provide

numerical experiments in Section V and conclude the report in Section VI.

Basic Notation: We use uppercase italic letters for matrices and lowercase bold letters for vectors. We use In for

the n × n identity matrix and 1n denotes the column vector of n ones. A column stochastic matrix is such

that it is non-negative and all of its columns sum to 1. For a primitive column stochastic matrix B ∈ Rn×n, we

have B∞=π1>n , from the Perron-Frobenius theorem [32], where π and 1>n are its right and left Perron eigenvectors.

For a matrix G, ρ(G) is its spectral radius. We denote the Euclidean (vector) norm by ‖·‖2 and define a weighted

inner product as 〈x,y〉π := x>diag(π)−1y, for x,y ∈ Rp, which leads to a weighted Euclidean norm: ‖x‖π :=

‖diag(
√
π)−1x‖2. We denote ||| · |||π as the matrix norm induced by ‖ · ‖π such that ∀X ∈ Rn×n, |||X ||| :=∣∣∣∣∣∣diag(
√
π)−1 X diag(

√
π)
∣∣∣∣∣∣

2
. Note that these norms are related as ‖ · ‖π ≤ π−0.5‖ · ‖2 and ‖ · ‖2 ≤ π0.5‖ · ‖π,

where π and π are the maximum and minimum elements in π, while |||B |||π = |||B∞ |||π = ||| In −B∞ |||π = 1.

Finally, it is shown in [27] that σB := |||B −B∞ |||π < 1.
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II. PROBLEM FORMULATION

Consider n nodes communicating over a strongly-connected directed graph (digraph), G = (V, E), where V =

{1, 2, 3, . . . , n} is the set of agents and E is the collection of ordered pairs, (i, j), i, j ∈ V , such that node i receives

information from node j. We let N out
i (resp. N in

i ) to denote the set of out-neighbors (resp. in-neighbors) of node i,

i.e., nodes that can receive information from i, and |N out
i | is the out-degree of node i. Note that both N out

i and N in
i

include node i. The nodes collaborate to solve the following optimization problem:

P : min
z∈Rp

F (z) :=
1

n

n∑
i=1

fi(z),

where each node i possesses a private cost function fi : Rp → R. We make the following assumptions.

Assumption 1. The communication graph G is a strongly-connected directed graph and each node has the

knowledge of its out-degree |N out
i |.

Assumption 2. Each local cost function fi (and thus F ) is µ-strongly convex and `-smooth, i.e., ∀x,y ∈ Rp and

∀i ∈ V , there exist positive constants µ and ` such that

µ

2
‖x− y‖22 ≤ fi(y)− fi(x)−∇fi(x)>(y − x) ≤ `

2
‖x− y‖22.

Note that the ratio κ := `
µ is called the condition number of the function fi. We have that ` ≥ µ and thus κ ≥ 1.

Assumption 3. Each node has access to a stochastic first-order oracle SFO that returns a stochastic gradi-

ent ∇f̂i(zik) for any zik ∈ Rp such that

E
[
∇f̂i(zik)|zik

]
= ∇fi(zik),

E
[
‖∇f̂i(zik)−∇fi(zik)‖22|zik

]
≤ σ2.

These assumptions are standard in the related literature. The bounded variance assumption however can be relaxed,

see [6], for example. Due to Assumption 2, we note that F has a unique minimizer that is denoted by z∗. The

proposed algorithm to solve Problem P is described next.

A. S-ADDOPT: Algorithm

The S-ADDOPT algorithm to solve Problem P is formally described in Algorithm 1. We note that the set of

weights B = {bij} is such that B is column stochastic. A valid choice is bji = |N out
i |−1, for each j ∈ N out

i and zero

otherwise, recall Assumption 1. Each agent i maintains three state vectors, i.e., xik,w
i
k, z

i
k ∈ Rp and a (positive)

scalar yik at each iteration k. The first update xik+1 is similar to DSGD, where the stochastic gradient ∇f̂i(xik) is

replaced with wi
k. This auxiliary variable wi

k is based on dynamic average-consensus [33] and in fact tracks the

global gradient ∇F when viewed as a non-stochastic update (see [13]–[15], [34] for details). However, since the

weight matrix B is not row-stochastic, the variables xik’s do not agree on a solution and converge with a certain

imbalance that is due to the fact that 1n is not the right Perron eigenvector of B. This imbalance is canceled in
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the zik-update with the help of a scaling by yik, since yik estimates the i-th component of π (recall that Bπ = π).

We note that S-ADDOPT is in fact a stochastic extension of ADDOPT, where true local gradients ∇fi’s are used

at each node.
Algorithm 1 S-ADDOPT: At each node i

Require: xi0 ∈ Rp, zi0 = xi0, y
i
0 = 1,wi

0 = ∇f̂i(zi0), α > 0

1: for k = 0, 1, 2, · · · do

2: State update: xik+1 =
∑n

j=1 bijx
j
k − αw

i
k

3: Eigenvector est.: yik+1 =
∑n

j=1 bijy
j
k

4: Push-sum update: zik+1 = xik+1/y
i
k+1

5: Gradient tracking update: wi
k+1 =

∑n
j=1 bijw

j
k +∇f̂i(zik+1)−∇f̂i(zik)

6: end for

S-ADDOPT can be compactly written in a vector form with the help of the following notation. Let xk, zk,wk,

all in Rnp concatenate the local states xik, z
i
k,w

i
k (all in Rp) at the nodes and yk ∈ Rn stacks the yik’s. Let ⊗

denote the Kronecker product and define B := B ⊗ Ip, and let Yk := diag(yk) ⊗ Ip. Then S-ADDOPT described

in Algorithm 1 can be written in a vector form as

xk+1 = Bxk − αwk, (1a)

yk+1 = Byk, (1b)

zk+1 = Y −1
k+1xk+1, (1c)

wk+1 = Bwk +∇f̂(zk+1)−∇f̂(zk). (1d)

In the following sections, we summarize the main results (Section III) and provide the convergence analysis

(Section IV) of S-ADDOPT. Subsequently, we compare its performance with related algorithms on digraphs in

Section V.

III. MAIN RESULTS

We use p = 1 for simplicity and thus B = B. Before we proceed, we define xk := 1
n1
>
nxk, and x̂k := B∞xk,

which are the mean and weighted averages of xik’s, respectively, and y := supk |||Yk |||2, y− := supk
∣∣∣∣∣∣Y −1

k

∣∣∣∣∣∣
2
. We

next provide two useful lemmas.

Lemma 1. [14], [27] Consider Assumption 1 and define Y∞ := limk→∞ Yk, h := π/π, and β :=
√
h‖1n − nπ‖2.

Then |||Yk − Y∞ |||2 ≤ βσkB , ∀k ≥ 0.

Proof. Note that ∀k ≥ 0, y∞ = B∞yk. Thus we have

|||Yk − Y∞ |||2 ≤ ‖yk − y∞‖2 ≤
√
π|||B −B∞ |||π‖yk−1 − y∞‖π ≤ σkB

√
h‖y0 − y∞‖2.

and the proof follows.
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Lemma 2. Define ek := 1
nE[‖zk − 1nz

∗‖22] as the mean error in the network. We have

ek ≤
ω

n
E‖xk − x̂k‖2π + ωβ2σkB‖z∗‖22 + ωy2E‖xk − z∗‖2π, (2)

ek ≤ ψE‖xk − x̂k‖2π + ψβσkBE‖xk‖2π + 2E‖xk − z∗‖22, (3)

where ω := 3y2
−π and ψ := 2y2

−π(1 + β)/n.

We now provide the main results on S-ADDOPT.

Theorem 1. Let Assumptions 1, 2, and 3 hold and let the step-size α be a constant such that,

α ≤ 1

`
√
κ
·

(1− σ2
B)2

51
√
τ

, (4)

where τ := y6
−y

2h(1 + β) is the directivity constant. Then ek converges linearly, at a rate γ, γ ∈ [0, 1), to a ball

around z∗, i.e.,

lim sup
k→∞

ek = αO
(
σ2

nµ

)
+ α2 O

(
`2σ2

µ2(1− σ2
B)4

)
. (5)

The proof of Theorem 1 is provided in the next Section. It essentially shows that S-ADDOPT converges linearly

with a constant step-size to an error ball around z∗, the size of which however is controlled by α. We note

that τ ≥ 1 can be considered as a directivity constant and is large when the graph is more directed as quantified

by e.g., the constant h (in addition to the other constants in τ ); clearly, for undirected graphs τ = 1 and thus

Theorem 1 is applicable to undirected graphs as a special case. We further note that the first term in (5) is due to

the variance σ2 of the stochastic gradients and does not have a network dependence, i.e., a scaling with (1−σ2
B)−1.

The rate of convergence of S-ADDOPT thus is comparable to the SGD (up to some constant factors) when the

step-size α is sufficiently small since the second term has a higher order of α. The result in Theorem 1 is similar

to what was obtained for undirected graphs in [12], where the network dependence is O((1 − σ2
B)−3). We next

provide an upper bound on the linear rate γ.

Corollary 1. Let Assumptions 1, 2 and 3 hold. If the step-size follows α ≤ 3
40

(
1−σ2

B

µ

)
, then the linear rate

parameter γ in Theorem 1 is such that

γ ≤ 1− αµ

3
.

The proof of Corollary 1 is available in Appendix B and follows the same arguments as in [12]. Going back to

Theorem 1, note that the exact expression of (5) is provided later in the convergence analysis, see (15), where we

dropped the higher powers of α when writing (5). We note from (15) that all terms in the residual are a function

of σ2 and thus S-ADDOPT recovers the exact linear convergence as σ2 vanishes. When σ2 is not zero, exact

convergence is achievable albeit at a sublinear rate with decaying step-sizes. We provide this result below.
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Theorem 2. Let Assumptions 1, 2, and 3 hold. Consider S-ADDOPT with decaying step-sizes αk := θ
m+k , θ >

1
µ

and m such that 
m > max

{
θ(`+µ)

2 ,
6`θy−

√
(1+σ2

B)h

1−σ2
B

}
,

(1−σ2
B)2

6θ2(1+σ2
B)

(
1−σ2

B

2 − 2m+1
(m+1)2

)
> E2

m2 +
(

θ3`6E1E3

m4n(θµ−1)

)(
θµ+m
mµ

)
,

for some constants E1, E2, E3. Select S̃ large enough such that ∀k ≥ S̃, σkB ≤
1

n(m+k)2 , then we have

E‖xk − x̂k‖2π ≤
O(1)

(m+ k)2
,

E‖xk − z∗‖22 ≤
2θ2σ2

n(θµ− 1)(m+ k)
+

O(1)

(m+ k)θµ
+
O(1)

(m+ k)2
,

which leads to ek → 0 at a network-independent convergence rate of O( 1
k ).

Theorem 2, formally analyzed in the next section, shows that the error ek in S-ADDOPT asymptotically converges

to the exact solution at a rate dominant by 4θ2σ2

n(θµ−1)k , which is network-independent since all other terms decay

faster, and thus S-ADDOPT matches the rate of SGD (up to some constant factors); see also [12], [16]–[18]. It can

also be verified that the network reaches an agreement at O(1/k2).

IV. CONVERGENCE ANALYSIS

To aid the analysis of Theorems 1 and 2, we first develop a dynamical system that characterizes S-ADDOPT for

both constant and decaying step-sizes. We find inter-relationships between the following three terms:

(i) Network agreement error, E‖xk −B∞xk‖2π,

(ii) Optimality gap, E‖xk − z∗‖22,

(iii) Gradient tracking error, E‖wk −B∞wk‖2π,

to write an LTI system of equations governing S-ADDOPT. For simplicity, we assume p = 1. Denote tk, sk, c ∈ R3,

and Aα, Hk ∈ R3x3 for all k as

tk :=


E[‖xk −B∞xk‖2π]

E[‖xk − z∗‖22]

E[‖wk −B∞wk‖2π]

 , sk :=


E[‖xk‖22]

0

0

 , c :=


0

α2 σ2

n

Cσ

 ,

Hk :=


0 0 0

h1σ
k
B 0 0

(h2 + α2h3)σkB 0 0

 , Aα :=


1+σ2

B

2 0 α2 1+σ2
B

1−σ2
B

α2g1 + αg2 1− αµ 0

g3 + α2g4 α2g5
5+σ2

B

6

 , (6)

where the constants are defined as:

g1 :=
(
`2y2−
n

)
(1 + βσB)π, g2 :=

(
`2y2−
nµ

)
(1 + βσB)π, g3 := 4k2,

g4 := 2`2y2k2k3(1 + βσB), g5 := 18`4qy4
−y

2π−1, k1 := 1−σ2
B

3 ,

Cσ := σ2
(
c1 + α2c2

)
, c1 := 4qnπ−1, k2 := 6`2qy2

−h

c2 := 12`2qy4
−y

2k3π
−1, h1 := y2

−β
(
α`2

µ + α2`2
)

(β + 1), k3 := 2k1−3k2α2

k1−2k2α2 ,

h2 := 24`2qy4
−β

2π−1, h3 := 12`4qy6
−y

2k3βπ
−1(β + 1), q := 1+σ2

B

1−σ2
B
.
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With α ≤
(

1−σ2
B

9`

)
1

y−
√
h

, we have that

tk+1 ≤ Aαtk +Hksk + c. (7)

The derivation of the above inequality is available in Appendix A. We now provide the proofs of Theorems 1 and 2.

A. Proof of Theorem 1

From [12] Lemma 5, for a 3×3 non-negative, irreducible matrix Aα={aij} with {aii}<λ∗, we have ρ(Aα)<λ∗

if and only if det(λ∗I3−Aα) > 0. For Aα in (6), a11, a33 < 1 since σB ∈ [0, 1), and a22 < 1 since α < 1
` and ` ≥ µ.

Expanding the determinant as

det(I3 −Aα) = (1− a11)(1− a22)(1− a33)− a13[a21a32 + (1− a22)a31]

= (1− a22)
[
(1− a11)(1− a33)− a13a31

]
− a13a21a32,

we note that if the following is true for some Γ > 1,

−a13a31 ≥ −
1

Γ
(1− a11)(1− a33), (8)

−a13a21a32 ≥ −
Γ− 1

Γ(Γ + 1)
(1− a11)(1− a22)(1− a33), (9)

then we obtain

det(I3 −Aα) ≥ (1− a22)
[
(1− a11)(1− a33)− 1

Γ
(1− a11)(1− a33)

]
− Γ− 1

Γ(Γ + 1)
(1− a11)(1− a22)(1− a33)

≥ (1− a22)(1− a11)(1− a33)
Γ− 1

Γ
− Γ− 1

Γ(Γ + 1)
(1− a11)(1− a22)(1− a33)

≥
(

Γ− 1

Γ + 1

)
(1− a22)(1− a11)(1− a33) > 0,

ensuring ρ(Aα) < 1. We thus find the range of α that satisfies (8) and (9). Using {aij}’s from (6) in (8), we get

α2q
(
g3 + α2g4

)
≤ 1

Γ

(
1− σ2

B

2

)(
1− σ2

B

6

)
α2k2(4 + α22`2y2 2k1 − 3k2α

2

k1 − 2k2α2
(1 + βσB)) ≤ 1

12Γ

(
(1− σ2

B)3

1 + σ2
B

)
α2k2

(
4k1 − 8k2α

2) + 2α2`2y2(1 + βσB)(2k1 − 3k2α
2)

k1 − 2k2α2

)
≤ 1

12Γ

(
(1− σ2

B)3

1 + σ2
B

)
α2k2

(
4k1 + 4k1α

2`2y2(1 + βσB)
)

+
2k2α

2

12Γ

(
(1− σ2

B)3

1 + σ2
B

)
≤ 1

36Γ

(
(1− σ2

B)4

1 + σ2
B

)
+ 8k2

2α
4 + 6k2

2α
6`2y2(1 + βσB)

α2k2

(
4k1 + 4k1`

2y2(1 + βσB)α2 +
2

12Γ

(
(1− σ2

B)3

1 + σ2
B

))
≤ 1

36Γ

(
(1− σ2

B)4

1 + σ2
B

)
+ 8k2

2α
4

+ 6k2
2`

2y2(1 + βσB)α6

α2k1k2

(
4 + 4`2y2(1 + βσB)α2 +

1

2Γ

(
(1− σ2

B)2

1 + σ2
B

))
≤ 1

36Γ

(
(1− σ2

B)4

1 + σ2
B

)
+ 8k2

2α
4

+ 6k2
2`

2y2(1 + βσB)α6.
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We now simplify the above condition by letting α ≤
(

1−σ2
B

9`y−

)√
π
π in the LHS and decreasing the RHS, which

leads to

α2 ≤
1

36Γ
(1−σ2

B)4

1+σ2
B

(2`2y2
−π
−1π(1 + σ2

B))

(
4 + 4

(
(1−σ2

B)
√
π

9y−
√
π

)2
y2(1 + βσB) + 1

2Γ

(
(1−σ2

B)2

1+σ2
B

))
=

(1−σ2
B)4

1+σ2
B

(`2y2
−π
−1π(1 + σ2

B))

(
288Γ + 288Γ

(
(1−σ2

B)
√
π

9y−
√
π

)2
y2(1 + βσB) + 36 (1−σ2

B)2

1+σ2
B

)
⇐= α2 ≤

y2
−

(1−σ2
B)4

1+σ2
B

`2y2
−h(1 + σ2

B)
(

288y2
−Γ + 4Γ(1− σ2

B)2h−1y2(1 + βσB) + 36y2
−

(1−σ2
B)2

1+σ2
B

)
=

y2
−(1− σ2

B)4

`2y2
−h(1 + σ2

B)
(
288y2

−Γ(1 + σ2
B) + 4Γ(1− σ2

B)2h−1y2(1 + βσB)(1 + σ2
B) + 36y2

−(1− σ2
B)2
) .

We use σB < 1, (1− σ2
B) < 1, (1 + σ2

B) < 2, y2(1 + β) ≥ 1, hy2
− ≥ 1 and Γhy2(1 + β) > 1 leading to

α2 ≤
y2
−(1− σ2

B)4

2`2y2
−
(
612Γhy2

−y
2(1 + β) + 8Γhy2

−y
2(1 + β)

) =
(1− σ2

B)4

1240`2
(
Γhy2

−y
2(1 + β)

) .
Taking square root of both sides results into

α ≤
(1− σ2

B)2

36`y−y
√

Γh(1 + β)
.

We next note that (9) holds when

(α2q)(α2g1 + αg2)(α2g5) ≤ Γ− 1

Γ(Γ + 1)

(
1−

(
1 + σ2

B

2

))
(1− (1− αµ))

(
1−

5 + σ2
B

6

)
α5qg5(αg1 + g2) ≤ Γ− 1

Γ(Γ + 1)

(
1− σ2

B

2

)
(αµ)

(
1− σ2

B

6

)
α4qg5g2(1 + αµ) ≤ Γ− 1

Γ(Γ + 1)

(
1− σ2

B

2

)2 (µ
3

)
,

which can be simplified by using α ≤ 1
µ , i.e.,

α4 ≤ Γ− 1

Γ(Γ + 1)

(
(1− σ2

B)3

1 + σ2
B

)( µ
24

)( µ

`6(18y6
−y

2π−1π)(1 + βσB)

)
⇐= α4 ≤ Γ− 1

Γ(Γ + 1)

(
(1− σ2

B)3µ2

864`6(y6
−y

2π−1π)(1 + βσB)

)

⇐= α ≤ 1

6`
√
κ

[
Γ− 1

Γ(Γ + 1)

(
(1− σ2

B)3

y6
−y

2h(1 + βσB)

)] 1

4

,

for which it is sufficient to have

α ≤
(1− σ2

B)3/4

12`
√
κ

(
Γ− 1

Γ2y6
−y

2h(1 + β)

) 1

4

. (10)
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We next select the minimum of all the bounds on step-size,

α ≤ min

{
1− σ2

B

9`y−
√
h
,

(1− σ2
B)2

36`y−y
√

Γh(1 + β)
,

(1− σ2
B)3/4

12`
√
κ

(
Γ− 1

Γ2y6
−y

2h(1 + β)

) 1

4

}

⇐= α ≤
(1− σ2

B)2

36`
√
κ
·min

{(
1

τΓ

) 1

2

,

(
Γ− 1

τΓ2

) 1

4

}

⇐= α ≤
(1− σ2

B)2

36`
√
κ
· 1√

τΓ
·min

{
1, (Γ− 1)

1

4

}
,

where τ := y6
−y

2h(1 + β). We note that the above is true for all Γ > 1 and min
{

1, (Γ− 1)
1

4

}
is maximized

at Γ = 2. Hence, for a largest possible α, that is feasible given our bound, we select Γ = 2, which leads to

α ≤ 1

`
√
κ
·

(1− σ2
B)2

51
√
τ

.

Thus, when α follows the above relation, we have ρ(Aα) < 1 and using the linear system recursion in (7), we get

lim
k→∞

tk+1 ≤ (I3 −Aα)−1c, (11)

since limk→∞Hk is a zero matrix. The first two elements in the R.H.S (vector) of (11) can be manipulated as

follows:

[(I3 −Aα)−1c]1 =
a13a32

α2σ2

n + a13(1− a22)Cσ

det(I3 −Aα)

≤
(

Γ + 1

Γ− 1

)
a13

(1− a11)(1− a22)(1− a33)

[
a32

α2σ2

n
+ (1− a22)Cσ

]

≤

 α2
(

1+σ2
B

1−σ2
B

)
(

1−σ2
B

2

)
(αµ)

(
1−σ2

B

6

)
[α2(18`4y4

−y
2π−1)

(
1 + σ2

B

1− σ2
B

)(
α2σ2

n

)
+ (αµ)Cσ

]

≤

(
12α

(
1 + σ2

B

)
µ
(
1− σ2

B

)3
)[

18α4`4y4
−y

2π−1

(
1 + σ2

B

1− σ2
B

)(
σ2

n

)
+ αµ(4σ2nπ−1)

(
1 + σ2

B

1− σ2
B

)]

= α5

(
`4σ2

nµ

)(
216y4

−y
2π−1

(
1 + σ2

B

)2(
1− σ2

B

)4
)

+ α2(nσ2)

(
48π−1

(
1 + σ2

B

)2(
1− σ2

B

)4
)

=
α5

(1− σ2
B)4
O
(
`4σ2

nµ

)
+

α2

(1− σ2
B)4
O
(
nσ2

)
; (12)

[(I3 −Aα)−1c]2 =
[(1− a11)(1− a33)− a13a31]α

2σ2

n + (a13a21)Cσ

det(I3 −Aα)

≤ Γ + 1

Γ

(
α2σ2

n(1− a22)

)
+

(
Γ + 1

Γ− 1

)(
a13a21Cσ

(1− a11)(1− a22)(1− a33)

)

≤ α2σ2

n(αµ)
+
α2
(

1+σ2
B

1−σ2
B

)(
α2
(
`2y2−(1+βσB)π

n

)
+ α

(
`2y2−(1+βσB)π

nµ

))
Cσ(

1−σ2
B

2

)
(αµ)

(
1−σ2

B

6

)
=
ασ2

nµ
+

12α
(
1 + σ2

B

)2 (
α2(`2y2

−(1 + βσB)π) + α
(
`2y2−(1+βσB)π

µ

))
(4σ2nπ−1)

nµ(1− σ2
B)4

= αO
(
σ2

nµ

)
+

α2

(1− σ2
B)4
O
(
`2σ2

µ2

)
. (13)
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Finally, the mean network error, defined as ek := 1
nE
[
‖zk − 1nz

∗‖22
]
, is given by

ek ≤
3y2
−π

n
E[‖xk −B∞xk‖2π] + 3y2

−β
2E[‖z∗‖22]σ2k

B + 3y2
−y

2E[‖xk − 1nz
∗‖22]. (14)

Notice that the second term of (14) vanishes asymptotically. Using (12) and (13), we further have

lim sup
k→∞

ek ≤
3y2
−πα

5

(1− σ2
B)4
O
(
`4σ2

n2µ

)
+

3y2
−πα

2

(1− σ2
B)4
O
(
σ2
)

+
3y2
−y

2α2

(1− σ2
B)4
O
(
`2σ2

µ2

)
+ 3y2

−y
2αO

(
σ2

nµ

)
. (15)

and the theorem follows by dropping the higher order term of α and noting that `2

µ2 ≥ 1. �

Corollary 2. For all k, ∃b ∈ R, such that E[‖xk‖22] ≤ b.

The proof follows from Theorem 1.

B. Proof of Theorem 2

Let Pk := E[‖xk −B∞xk‖2π], Qk := E[‖xk − z∗‖22] and Rk := E[‖wk −B∞wk‖2π]. To show that

Pk ≤
P̃

(m+ k)2
, Qk ≤

Q̃

(m+ k)
, Rk ≤ R̃, (16)

for all k ≥ 0, it suffices to show that the R.H.S of (7), with a decaying step-size αk <
(

1−σ2
B

6`

)
1

y−
√

(1+σ2
B)h

,

follows the above bounds. We develop the proof by induction. Consider (7) for k = 0, i.e.,

Aα0
t0 +H0s0 + c

with α0 = θ
m , and therefore m >

6`θy−
√

(1+σ2
B)h

1−σ2
B

, to obtain the following conditions:

R̃ ≤
(

1− σ2
B

θ2(1 + σ2
B)

)(
m2

(m+ 1)2
−

1 + σ2
B

2

)
P̃ , (17a)

Q̃ ≥
[(

θ

m
+

1

µ

)(
θ`2E1

mn (θµ− 1)

)
P̃ +

nm2K1b+ θ2σ2

n (θµ− 1)

]
, (17b)

R̃ ≥ 6

1− σ2
B

[(
E2

m2

)
P̃ +

(
θ2`4E3

m3

)
Q̃+K2b+ C0

]
. (17c)

where E1, E2, E3 are defined in the following. It can be verified, that the above conditions hold if and only if

1− σ2
B

θ2(1 + σ2
B)

(
m2

(m+ 1)2
−

1 + σ2
B

2

)
P̃ >

6

1− σ2
B

[
E2P̃

m2
+

(
θ2`4E3

m3

)(
θ

m
+

1

µ

)(
θ`2E1P̃

mn (θµ− 1)

)]
(1− σ2

B)2

6θ2(1 + σ2
B)

(
1− σ2

B

2
− 2m+ 1

(m+ 1)2

)
>
E2

m2
+

(
θ3`6E1E3

m4n (θµ− 1)

)(
θ

m
+

1

µ

)
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and Q̃ = max {mQ0, D6}, where P̃ and R̃ follow the constraints in (17a), (17c), and R̃ > R0. We use E‖xk‖22 < b,

for some b > 0, which follows from Theorem 1. Thus, P̃ is selected as P̃ = max
{
m2P0,

R0

D1
, D3

D1−D2
, D5

D1−D4

}
,

where

C0 := 4σ2qπ−1
(
n+ 3

(
θ2`2y4−y

2

m2

)(
2m2k1−3k2θ2

m2k1−2k2θ2

))
, D2 := 6E2

m2(1−σ2
B) ,

D1 :=
(

1−σ2
B

θ2(1+σ2
B)

)(
1−σ2

B

2 − 2m+1
(m+1)2

)
, D4 :=

[
6E1

1−σ2
B

] (
θ3`6E3

m4n(θµ−1)

)(
θ
m + 1

µ

)
+D2,

D3 :=
[

6
1−σ2

B

] [(
θ2`4E3

m3

)
‖x0 − z∗‖22 + C0 +K2b

]
, E1 := (1 + βσB)y2

−π,

D5 :=
[

6
1−σ2

B

] [(
θ2`4E3

m3n(θµ−1)

)
(θ2σ2 + nm2K1b) + C0 +K2b

]
, E3 := 18qy4

−y
2π−1,

D6 :=
[

1
n(θµ−1)

] [(
θ
m + 1

µ

)(
θ`2E1

m

)
P̃ + θ2σ2 + nm2K1b

]
, K1 := K3

(
θ`2

µm + θ2`2

m2

)
,

K2 :=
12`2qy4−β

π

(
2β +

θ2`2y2−y
2(β+1)

m2

(
2m2k1−3k2θ2

m2k1−2k2θ2

))
, K3 := y2

−β(β + 1),

E2 := 4k2 +
(

2`2y2k2θ2

m2

)(
2k1m2−3k2θ2

k1m2−2k2θ2

)
(1 + βσB).

Thus, we conclude that (16) holds for k = 0 when the corresponding conditions on P̃ , Q̃, R̃, and m are met. Next,

assume that (16) holds for some k, it can be verified that it automatically holds for k+ 1 with the same conditions

on P̃ , Q̃, R̃, and m that are derived for k = 0.

We next improve Qk to establish the network-independence. Pick S̃ large enough such that ∀k ≥ S̃, σkB ≤
1

n(m+k)2 .

Then using the decaying step-size in (7), we have

Qk+1 ≤
(

1− θµ

m+ k

)
Qk +

2θ`2(E1P̃ +K3b)

nµ(m+ k)3
+

θ2σ2

n(m+ k)2
,

which leads to

Qk ≤
k−1∏
t=0

(
1− θµ

m+ t

)
Q0 +

k−1∑
t=0

k−1∏
j=t+1

m+ j − θ
m+ j

[
2θ`2(E1P̃ +K3b)

nµ(m+ t)3
+

θ2σ2

n(m+ t)2

]
, (18)

From [17], we have
k−1∏
t=0

(
1− θµ

m+ t

)
≤ mθµ

(m+ k)θµ
,

k−1∏
j=t+1

(
1− θµ

m+ j

)
≤ (m+ t+ 1)θµ

(m+ k)θµ
;

Using the above relations and in (18),

Qk ≤
mθµ

(m+ k)θµ
Q0 +

4θ`2(E1P̃ +K3b)

nµ(m+ k)θµ

k−1∑
t=0

(m+ t)θµ−3 +
2θ2σ2

n(m+ k)θµ

k−1∑
t=0

(m+ t)θµ−2

≤ mθµ

(m+ k)θµ
Q0 +

4θ`2(E1P̃ +K3b)

nµ(m+ k)θµ

∫ k

t=−1
(m+ t)θµ−3dt+

2θ2σ2

n(m+ k)θµ

∫ k

t=−1
(m+ t)θµ−2dt

≤ 2θ2σ2

n(θµ− 1)(m+ k)
+

mθµ

(m+ k)θµ
Q0 + max

{
4θ`2(E1P̃ +K3b)

nµ(θµ− 2)(m+ k)2
,

4θ`2(E1P̃ +K3b)(m− 1)θµ−2

nµ(2− θµ)µ(m+ k)θµ

}
,

and the theorem follows by (3) in Lemma 2 and by noting that the 1
(m+k) term in Qk is network independent. �
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V. NUMERICAL SIMULATIONS

In this section, we illustrate S-ADDOPT and compare its performance with related algorithms over directed graphs,

i.e., GP [20], [21], ADDOPT [14], [31], and SGP [16], [25], [26]. Recall that GP and ADDOPT are batch algorithms

and operate on the entire local batch of data at each node. In other words, the true gradient ∇fi is used at each node

to compute the algorithm updates. In contrast, SGP and S-ADDOPT employ a stochastic gradient∇f̂i(·) = ∇fi,sik(·),

where sik is chosen uniformly at random from the index set {1, . . . ,mi} at each node i and each time k. It can be

verified that this choice of stochastic gradient satisfies the SFO setup in Assumption 3. The numerical experiments

are described next.

A. Logistic Regression: Strongly convex

We now show the numerical experiments for a binary classification problem to classify hand-written digits {3, 8}

from the MNIST dataset. In this setup, there are a total of N = 12,000 labeled images for training and each node i

possesses a local batch with mi training samples. The j-th sample at node i is a tuple {xi,j , yi,j} ⊆ R784×{+1,−1}

and the local logistic regression cost function fi at node i is given by

fi =
1

mi

mi∑
j=1

ln
[
1 + exp

{
−(b>xi,j + c)yi,j

}]
+
λ

2
‖b‖22,

which is smooth and strongly convex because of the addition of the regularizer λ. The nodes cooperate to solve

the following decentralized optimization problem:

min
b∈R784, c∈R

F (b, c) =
1

n

∑
i

fi.

For all algorithms, the step-sizes are hand-tuned for best performance. The column stochastic weights are chosen

such that bji = |N out
i |−1, for each j ∈ N out

i .

Fig. 1. (Left) Directed exponential graph with n = 16 nodes. (Right) geometric graph with n = 1000 nodes

Structured training setup–Data-centers: We choose an exponential graph with n = 16 nodes (Fig. 1, left) to

model a highly structured communication graph mimicking, for example, a data center where the data is typically

evenly divided among the nodes. In particular, we choose mi = N/n = 750 training images at each node i.

Performance comparison is provided in Fig. 2, for a constant step-size, and in Fig. 4 (left), for decaying step-sizes,
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where we plot the optimality gap F (xk)−F (z∗) versus the number of epochs. Each epoch represents N/n = 750

stochastic gradient evaluations implemented (in parallel) at each node. Recall that S-ADDOPT adds gradient tracking

to SGP and in this balanced data scenario, its performance is virtually indistinguishable from SGP, while their

batch counterparts are much slower. ADDOPT however converges linearly to the exact solution as can be observed

in Fig. 2 (right) over a longer number of epochs.

Fig. 2. (Left) Balanced data and constant step-sizes for all algorithms: Performance comparison over the exponential graph with n = 16

nodes and m = 750 data samples per node. (Right) Linear convergence of ADDOPT shown over a longer number of epochs.

Ad hoc training setup–Multi-agent networks: We next consider a large-scale nearest-neighbor (geometric)

digraph with n = 1,000 nodes (Fig. 1, right) that models, for example, ad hoc wireless multi-agent networks,

where the agents typically possess different sizes of local batches depending on their locations and local resources;

see Fig. 3 (left) for an arbitrary data distribution across the agents. Performance comparison is shown in Fig. 3

(right), for a constant step-size, and in Fig. 4 (right), for decaying step-sizes. Each epoch represents N/n = 12

component gradient evaluations (in parallel) at each node. When the data is unbalanced, the addition of gradient

tracking in S-ADDOPT results in a significantly improved performance than SGP.

Fig. 3. Performance comparison (right), over the directed geometric graph in Fig. 1 (right), with an unbalanced data distribution (left) and

constant step-sizes for all algorithms.

Comparing the structured and ad hoc training scenarios, we note that gradient tracking does not show a noticeable

improvement over the balanced data scenario but results in a superior performance when the data distribution is

unbalanced. This is because the convergence (15) of S-ADDOPT (similar to its undirected counterpart [12]) does

not depend on the heterogeneity of local data batches as opposed to SGP. A detailed discussion along these lines
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can be found in [19].

Fig. 4. Performance comparison for exact convergence (decaying step-sizes for S-ADDOPT and SGP, and constant step-size for ADDOPT):

(Left) Directed exponential graph with balanced data. (Right) Directed geometric graph with unbalanced data.

B. Neural networks: Non-convex

Finally, we compare the performance of the stochastic algorithms discussed in this report for training a distributed

neural network optimizing a non-convex problem with constant step-sizes of the algorithms. Each node has a local

neural network comprising of one fully connected hidden layer of 64 neurons learning 51,675 parameters. We train

the neural network to for a multi-class classification problem to classify ten classes in MNIST {0, · · · , 9} and

CIFAR-10 {“airplanes”, · · · , “trucks”} datasets. Both have 60,000 images in total and 6,000 images per class. The

data samples are divided randomly and equally over a 500 node directed geometric graph shown in Fig. 5. We

Fig. 5. Directed geometric graph with n = 500 nodes.

show the loss F (xk) and test accuracy of SGP and S-ADDOPT with respect to epochs over the MNIST dataset

in Fig. 6. Similarly, Fig. 7 illustrates the performance for the CIFAR-10 dataset. We observe that adding gradient

tracking in SGP improves the transient and steady state performance in these non-convex problems.
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Fig. 6. MNIST classification using a two-layer neural network over a directed geometric graph with n = 500 nodes and m = 120 data

samples per node; both algorithms use a constant step-size.

Fig. 7. CIFAR-10 classification using a two-layer neural network over a directed geometric graph with n = 500 nodes and m = 120 data

samples per node; both algorithms use a constant step-size.

VI. CONCLUSIONS

In this report, we present S-ADDOPT, a decentralized stochastic optimization algorithm that is applicable

to both undirected and directed graphs. S-ADDOPT adds gradient tracking to SGP and can be viewed as a

stochastic extension of ADDOPT. We show that for a constant step-size α, S-ADDOPT converges linearly inside an

error ball around the optimal, the size of which is controlled by α. For decaying step-sizes O(1/k), we show

that S-ADDOPT is asymptotically network-independent and reaches the exact solution sublinearly at O(1/k).

These characteristics match the centralized SGD up to some constant factors. Numerical experiments over both

strongly convex and non-convex problems illustrate the convergence behavior and the performance comparison

of S-ADDOPT versus SGP and their non-stochastic counterparts.
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APPENDIX A

DEVELOPING THE LTI SYSTEM DESCRIBING S-ADDOPT

To derive the LTI system described in (7), we first define a few terms:

wk :=
1

n
1>nwk, hk :=

1

n
1>n∇f(zk), gk :=

1

n
1>n∇f̂(zk) := wk,

pk :=
1

n
1>n∇f(1nxk), ∇f(zk) := [∇f1(z1

k)
>, · · · ,∇fn(znk)>]>.

We denote ξik ∈ Rp as random vectors for all k ≥ 0 and i ∈ V such that the stochastic gradient is ∇f̂i(zik) =

∇fi(zik, ξik). Assumption 3 allows the gradient noise processes to be dependent on agent i and the current iterate zik.

We denote by Fk, the σ-algebra generated by the set of random vectors {ξil}i∈V , where 0 ≤ l ≤ k−1. The derivation

of the system described in (7) is now provided in the following three steps:

Step 1. Network agreement error.

Note that the first term ‖xk+1 −B∞xk+1‖2π in the LTI system is essentially the network agreement error and it

can be expanded as:

‖xk+1 −B∞xk+1‖2π = ‖Bxk −B∞xk − α(wk −B∞wk)‖2π

= ‖Bxk −B∞xk‖2π + α2‖wk −B∞wk‖2π − 2〈Bxk −B∞xk, α(wk −B∞wk)〉π

≤ σ2
B‖xk −B∞xk‖2π + α2‖wk −B∞wk‖2π + 2ασB‖xk −B∞xk‖π‖wk −B∞wk‖π

≤
(
σ2
B + ασB

1− σ2
B

2ασB

)
‖xk −B∞xk‖2π +

(
α2 + ασB

2ασB
1− σ2

B

)
‖wk −B∞wk‖2π

=

(
1 + σ2

B

2

)
‖xk −B∞xk‖2π + α2

(
1 + σ2

B

1− σ2
B

)
‖wk −B∞wk‖2π. (19)

Step 2. Optimality gap.

Next, we consider ‖xk+1 − z∗‖22, which defines the the gap between the mean iterate and the true solution:

‖xk+1 − z∗‖22 = ‖(xk − αwk)− z∗‖22 = ‖xk − z∗‖22 + α2‖gk‖22 − 2〈xk − z∗,gk〉.

Noticing that E[gk|Fk] = hk,

E[‖gk‖22|Fk] = E[‖gk − hk‖22|Fk] + ‖hk‖22 ≤
σ2

n
+ ‖hk‖22.

For η = (1− αµ), we can write:

E[‖xk+1 − z∗‖22|Fk] ≤ ‖xk − z∗‖22 − 2〈xk − z∗,hk〉+ α2‖hk‖22 +
α2σ2

n

= ‖xk − z∗‖22 − 2α〈xk − z∗,pk〉+ 2α〈xk − z∗,pk − hk〉+ α2‖pk − hk‖22

+ α2‖pk‖22 − 2α2〈pk,pk − hk〉+
α2σ2

n

= ‖xk − αpk − z∗‖22 + α2‖pk − hk‖22 + 2α〈xk − αpk − z∗,pk − hk〉+
α2σ2

n

≤ η2‖xk − z∗‖22 + α2‖pk − hk‖22 + 2αη‖xk − z∗‖2‖pk − hk‖2 +
α2σ2

n

≤ (1− αµ)‖xk − z∗‖22 +

(
α`2

nµ

)
(1 + αµ)‖1nxk − zk‖22 +

α2σ2

n
. (20)
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It can be verified that B∞ = 1
nY
∞1n1

>
n . Next consider ‖zk − 1nxk‖22:

‖zk − 1nxk‖22 = ‖Y −1xk − Y∞1nxk + Y∞1nxk − 1nxk‖22

= ‖Y −1(xk − Y∞1nxk) + (Y −1Y∞ − In)1nxk‖22

= ‖Y −1(xk −B∞xk)‖22 + ‖(Y −1Y∞ − In)1nxk‖22 + 2〈Y −1(xk −B∞xk), (Y
−1Y∞ − In)1nxk〉

≤ y2
−‖xk −B∞xk‖22 + (y−βσ

k
B)2‖xk‖22 + 2(y−)(y−βσ

k
B)‖xk −B∞xk‖2‖xk‖2

≤ (y2
− + y2

−βσB)π‖xk −B∞xk‖2π +
(
y2
−β

2σ2k
B + y2

−βσ
k
B

)
‖xk‖22.

Using the above relation in (20), we obtain the final expression for E
[
‖xk+1 − z∗‖22|Fk

]
.

E
[
‖xk+1 − z∗‖22|Fk

]
≤ (α2g1 + αg2)‖xk −B∞xk‖2π + (1− αµ)‖xk − z∗‖22

+ α2

(
σ2

n

)
+ (h1σ

k
B)‖xk‖22. (21)

Step 3: Gradient tracking error. Finally, we calculate the gradient tracking error ‖wk+1 −B∞wk+1‖2π.

‖wk+1 −B∞wk+1‖2π = ‖Bwk −B∞wk + (In −B∞)(∇f̂(zk+1)−∇f̂(zk)‖2π

≤ σ2
B‖wk −B∞wk‖2π + ||| In −B∞ |||2π‖∇f̂(zk+1)−∇f̂(zk)‖2π

+ 2σB〈wk −B∞wk, (In −B∞)(∇f̂(zk+1)−∇f̂(zk))〉π

≤ σ2
B‖wk −B∞wk‖2π + ‖∇f̂(zk+1)−∇f̂(zk)‖2π

+ 2σB‖wk −B∞wk‖π||| In −B∞ |||π‖∇f̂(zk+1)−∇f̂(zk))‖π

≤
(
σ2
B + σB

1− σ2
B

2σB

)
‖wk −B∞wk‖2π +

(
1 + σB

2σB
1− σ2

B

)
‖∇f̂(zk+1)−∇f̂(zk)‖2π

=

(
1 + σ2

B

2

)
‖wk −B∞wk‖2π +

(
1 + σ2

B

1− σ2
B

)
‖∇f̂(zk+1)−∇f̂(zk)‖2π.

We bound the second term of the above equation as:

‖∇f̂(zk+1)−∇f̂(zk)‖2π = ‖∇f̂(zk+1)−∇f̂(zk)− (∇f(zk+1)−∇f(zk)) +∇f(zk+1)−∇f(zk)‖2π

≤ 2`2π−1‖zk+1 − zk‖22 + 2‖∇f̂(zk+1)−∇f̂(zk)− (∇f(zk+1)−∇f(zk))‖2π.

Consider the first term ‖zk+1 − zk‖22 of above equation.

‖zk+1 − zk‖22 = ‖Y −1
k+1((Bxk − αwk)− xk) + (Y −1

k+1 − Y
−1
k )xk‖22

= ‖Y −1
k+1(B − In)xk − αY −1

k+1wk + (Y −1
k+1 − Y

−1
k )xk‖22

≤ ‖Y −1
k+1(B − In)xk‖22 + α2‖Y −1

k+1wk‖22 + ‖(Y −1
k+1 − Y

−1
k )xk‖22 + 2‖Y −1

k+1(B − In)xk‖2‖αY −1
k+1wk‖2

+ 2‖αY −1
k+1wk‖2‖(Y −1

k+1 − Y
−1
k )xk‖2 + 2‖Y −1

k+1(B − In)xk‖2‖(Y −1
k+1 − Y

−1
k )xk‖2

≤ ‖Y −1
k+1(B − In)xk‖22 + ‖αY −1

k+1wk‖22 +
∣∣∣∣∣∣Y −1

k+1 − Y
−1
k

∣∣∣∣∣∣2
2
‖xk‖22 + 2‖Y −1

k+1(B − In)xk‖2‖αY −1
k+1wk‖2

+ 2α‖Y −1
k+1wk‖2

∣∣∣∣∣∣Y −1
k+1 − Y

−1
k

∣∣∣∣∣∣
2
‖xk‖2 + 2‖Y −1

k+1(B − In)xk‖2
∣∣∣∣∣∣Y −1

k+1 − Y
−1
k

∣∣∣∣∣∣
2
‖xk‖2

≤ 12y2
−π‖xk −B∞xk‖2π + 3α2y2

−‖wk‖22 + 24y4
−β

2σ2k
B ‖xk‖22.
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Next we bound ‖wk‖22,

‖wk‖22 = ‖(wk − Y∞1ngk) + Y −1Y∞1npk + Y −1Y∞(1ngk − 1npk)‖22

≤ (2 + r)‖wk − Y∞1nwk‖22 + 3‖Y −1Y∞1npk‖22 +

(
2 +

1

r

)
‖Y −1Y∞1n(gk − pk)‖22

≤ (2 + r)π‖wk −B∞wk‖2π + 3y2
−y

2`2‖xk − z∗‖22 + 2

(
2 +

1

r

)
y2
−y

2n‖gk − hk‖22

+ 2

(
2 +

1

r

)
y2
−y

2`2‖zk − 1nxk‖22.

whereas,

E[‖∇f̂(zk+1)−∇f̂(zk)− (∇f(zk+1)−∇f(zk))‖2π|Fk] = 2nσ2π−1.

Pick r = k1
k2α2 − 2 = k1−2k2α2

k2α2 > 0 => 1
r = k2α2

k1−2k2α2 > 0. This will enforce a constraint on α such that

α <
√

k1
2k2

=
(

1−σ2
B

6`y−

)√
π

(1+σ2
B)π . The term ‖zk − 1nxk‖22 is already simplified in solving for the optimality gap.

Putting these in above equation and after taking the expectation, the resultant equation for gradient tracking error

becomes:

E
[
‖wk+1 −B∞wk+1‖2π|Fk

]
≤ (g3 + α2g4)‖xk −B∞xk‖2π + (α2g5)‖xk − z∗‖22 + Cσ

+

(
5 + σ2

B

6

)
E
[
‖wk −B∞wk‖2π|Fk

]
+ ((h2 + α2h3)σkB)‖xk‖22. (22)

Taking full expectation of (19), (21), and (22) leads to the system dynamics described by the relation in (7).

APPENDIX B

PROOF OF COROLLARY 1

We derive the upper bound on the spectral radius of Aα under the conditions on step-size described in Theorem 1.

Using (8) and (9), the characteristic function of Aα can be calculated as:

det(λI3 −Aα) = (λ− a11)(λ− a22)(λ− a33)− a13a31(λ− a22)− a13a21a32

≥ (λ− a11)(λ− a22)(λ− a33)− a13a31(λ− a22)− 1

Γ + 1
(1− a22)[(1− a11)(1− a33)− a13a31]

≥ (λ− a11)(λ− a22)(λ− a33)− 1

Γ
(λ− a22)(1− a11)(1− a33)

− Γ− 1

Γ(Γ + 1)
(1− a11)(1− a22)(1− a33).
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Since the det(λI − Aα) > 0 and the det(max{a11, a22, a33}I − Aα) = det(a22I − Aα) < 0, the spectral

radius ρ(Aα) = (a22, 1). Suppose λ = 1− ε for some ε ∈ (0, αµ), satisfying

det(λI3 −Aα) ≥
(

1− ε−
1 + σ2

B

2

)
(αµ− ε)

(
1− ε−

5 + σ2
B

6

)
− 1

Γ
(αµ− ε)

(
1−

1 + σ2
B

2

)(
1−

5 + σ2
B

6

)
− Γ− 1

Γ(Γ + 1)

(
1−

1 + σ2
B

2

)
(αµ)

(
1−

5 + σ2
B

6

)
≥ 0,

⇐⇒
(

1− σ2
B − 2ε

2

)
(αµ− ε)

(
1− σ2

B − 6ε

6

)
− 1

Γ
(αµ− ε)

(
1− σ2

B

2

)(
1− σ2

B

6

)
− Γ− 1

Γ(Γ + 1)

(
1− σ2

B

2

)
(αµ)

(
1− σ2

B

6

)
≥ 0,

⇐⇒ (αµ− ε)
[
(1− σ2

B − 2ε)(1− σ2
B − 6ε)− 1

Γ
(1− σ2

B)2

]
≥ Γ− 1

Γ(Γ + 1)
(1− σ2

B)2(αµ),

⇐⇒
(
αµ− ε
αµ

)[
(1− σ2

B − 2ε)(1− σ2
B − 6ε)

(1− σ2
B)2

− 1

Γ

]
≥ Γ− 1

Γ(Γ + 1)
. (23)

It is sufficient to have

ε ≤
(

Γ− 1

Γ + 1

)
αµ.

Notice that, (
αµ− ε
αµ

)
≥

αµ−
(

Γ−1
Γ+1

)
αµ

αµ

 = 1−
(

Γ− 1

Γ + 1

)
=

Γ + 1− Γ + 1

Γ + 1
=

2

Γ + 1
.

To verify the upper bound on ε under the condition on step-size described in Corollary 1,

ε ≤
(

Γ− 1

Γ + 1

)(
Γ + 1

Γ

)(
1− σ2

B

20µ

)
µ =

(
Γ− 1

Γ

)(
1− σ2

B

20

)
,

which implies,

1− σ2
B − 2ε ≥ 1− σ2

B − 2

(
Γ− 1

Γ

)(
1− σ2

B

20

)
=

(9Γ + 1)(1− σ2
B)

10Γ
,

1− σ2
B − 6ε ≥ 1− σ2

B − 6

(
Γ− 1

Γ

)(
1− σ2

B

20

)
=

(7Γ + 3)(1− σ2
B)

10Γ
,

⇐⇒ (1− σ2
B − 2ε)(1− σ2

B − 6ε) ≥
(63Γ2 + 34Γ + 3)(1− σ2

B)2

100Γ2
.

Plugging these values in (23) and for Γ > 1, we get,(
αµ− ε
αµ

)[
(1− σ2

B − 2ε)(1− σ2
B − 6ε)

(1− σ2
B)2

− 1

Γ

]
≥
(

2

Γ + 1

)[ (63Γ2+34Γ+3)(1−σ2
B)2

100Γ2

(1− σ2
B)2

− 1

Γ

]

=

(
1

Γ(Γ + 1)

)[
(63Γ2 + 34Γ + 3)

50Γ
− 2

]
=

(
1

Γ(Γ + 1)

)[
63Γ2 − 66Γ + 3

50Γ

]
=

(
1

Γ(Γ + 1)

)[
Γ− 1 +

13Γ

50
− 16

50
+

3

50Γ

]
≥ Γ− 1

Γ(Γ + 1)
.

Define λ∗ = 1 −
(

Γ−1
Γ+1

)
αµ. Then the det(λ∗I − Aα) ≥ 0. Therefore, ρ(Aα) ≤ λ∗. We select Γ = 2 and the

corollary follows.


