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ABSTRACT

The hospital length-of-stay (LOS), as an important measure of the effectiveness of healthcare, rep-
resents the level of medical requirement and is highly related to the treatment costs. As the
human life expectancy has being increased rapidly in the past few decades, there is a pressing
need to improve health systems for geriatric patients. Similarly, the alcohol use disorder (AUD), as
a chronic relapsing brain disease related to severe problem drinking, has caused negative impacts
to society and put patients’ health and safety at risk. In both cases, more efficient hospital man-
agement is in demand due to increasing requirements for long-term hospital treatment and the
continuously rising medical cost. In order to improve the healthcare efficiency, an accurate model-
ing of the LOS data and the further analysis of potential influencing factors are necessary. In this
paper, we utilize the Coxian Phase-Type (PH) distribution and apply Maximum Likelihood
Estimation (MLE) to fit the patient flow information of both geriatric patients and AUD patients
collected in a hospital. The influences of the covariates of age, gender, admission type, admit
source, and financial class on LOS are assessed and compared through Expectation-Maximization
(EM) algorithms. The results show that the LOS data of both types of patients can be modeled
well, and the differences with respect to covariates can be accurately identified by the proposed
methods. Using the fitted Coxian PH distribution and the estimated coefficients of covariates will
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provide a guide for better decision-making in healthcare service and resource allocation.

1. Introduction

Nowadays, population ageing is much faster than ever
before. According to World Health Organization Fact Sheets
(WHO, 2015), the proportion of the world’s population over
60years old will be nearly doubled from 12% to 22%
between 2015 and 2050. Facing fast increasing proportions
of elder populations, all countries need to improve the plan-
ning and management of their health and service systems to
handle this demographic shift.

According to the 2019 National Survey on Drug Use and
Health, 14.1 million adults at age of 18 and older (5.6% of
this age group) had alcohol use disorder (AUD) in U.S.
(Alcohol Facts and Statistics, 2020). Following the ICD-10
(2016) code, the alcohol related disorders include alcohol
abuse, alcohol dependence, alcohol use, and unspecified.
Among the alcohol related disorders, alcohol abuse is a het-
erogeneous set of behaviors that include any pattern of ethyl
alcohol intake that causes medical and social complications
(Cloninger et al., 1981). It also influences children in both
genetic and environmental aspects.

Both geriatric diseases and AUD are common seen diag-
nosis in heathcare, and always cause negative effects on
patients’ life. The symptoms of geriatric diseases and AUD
are difficult to be completed treated, which leads to repeated

admissions or even death. Therefore, an efficient treatment
and a thorough understanding of the factors related to them
are necessary.

The length-of-stay (LOS), the time difference between the
admission time and discharge time, is a significant measure
of healthcare efficiency. Analyzing LOS helps improving
hospital efficiency for geriatric diseases (Turgeman et al,
2015). The importance of LOS as an indicator of severity
and a measure of treatment in investigating alcohol related
diseases are studied in both Finney et al. (1981) and Long
et al. (1998).

A lot of previous research has been performed on analyz-
ing the LOS information of geriatric or AUD patients. El-
Darzi et al. (1998) and Faddy and McClean (2007) apply a
multi-state model to classify geriatric patients to different
LOS groups, while Toh et al. (2017) and Kwok et al. (2017)
study the factors that influence the LOS of geriatric patients.
However, the research on the LOS of patients with AUD
has not been always consistent. In Gottheil et al. (1992), the
relationships between LOS and outcome for patients
grouped by severity are examined. In Saitz et al. (1997), it is
observed that having an alcohol-related diagnosis is associ-
ated with more use of intensive care, longer inpatient stays,
and higher hospital charges. J. H. Park et al. (2018) also find
that the alcohol use is associated with increased emergency
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department LOS, and a multivariate quantile regression
model is applied to include information, such as age, gender,
consciousness status, severity of injury, emergency medical
service use, etc, for analysis.

In the literature, lots of studies on modeling and evaluat-
ing LOS of patients with various diseases have been con-
ducted (Gu et al.,, 2019; Xie et al., 2005; Zhang et al., 2013).
Among these methods of modeling LOS data, the phase-
type (PH) distributions have been applied in the healthcare
field increasingly over time to interpret healthcare systems
and to improve the healthcare efficiency. A PH distribution
describes the absorption time of an evanescent finite-state
Continuous Time Markov Chain (CTMC) (Fackrell, 2003).
The Coxian PH distributions, as a special type of PH distri-
butions, are often used in modeling and investigating the
influences of covariates on LOS data.

As stated in Faddy et al. (2009), understanding how age,
gender, comorbid conditions, and iatrogenic events influence
LOS will aid program evaluation and handle difficult tasks
in managing hospital systems. These factors are called cova-
riates, which are variables that are possibly predictive of the
outcome under study. As a result, the covariates are some-
times referred as predictor variables.

Previous study of LOS for both geriatric patients and
AUD mostly focuses on studying the effects of LOS on the
treatment outcomes or a simple comparison between those
alcohol users and non-alcohol users. It lacks of investigating
simultaneously the pattern recognition of LOS and identify-
ing important factors that significantly influence the
LOS itself.

For simple PH distributions without the covariates, the
EMpht-programme is developed based on the Expectation-
Maximization (EM) algorithms proposed in Asmussen et al.
(1996) and has been widely used in various fields. For mod-
els with covariates, Tang et al. (2012), McGrory et al. (2009)
and Faddy et al. (2009) apply either the maximum likeli-
hood estimation (MLE) or the Bayesian method to estimate
Coxian PH models and incorporate covariates to explain the
differences in distinct LOS groups. Gardiner (2012),
Gardiner et al. (2014), and Zhu et al. (2018) apply an order
restriction on Coxian PH models and reform it into a finite
mixture of parametric distributions that can be -easily
interpreted.

Since there is no application of EM algorithms in PH dis-
tributions with covariates before, in this paper, we extend
the original methods in Asmussen et al. (1996) to allow
modeling the LOS with consideration of the influences of
covariates. Further analysis on the estimated results of our
modeling the patient flow information is also presented. The
characteristics of patients on admission will be considered as
the covariates in a LOS study from a more general view-
point. It is aimed to verify the efficiency of our extended
EM algorithms in fitting the Coxian PH distributions and
capturing the impacts of covariates.

To this end, the flow information of patients with either
geriatric diseases or AUD, and the demographic information
collected in Banner University Medical Center Tucson -
Main Campus and South Campus from 2012 to 2017 are

preprocessed and analyzed. Because of limitations and avail-
ability of the patient information, the most common and
basic factors that are available for all patients in this data
source are identified, and thus the covariates studied in this
research include age, gender, admission type, admit source,
and financial class for the payment of medical care. Based
on the collected data, the effects of these covariates on LOS
will be studied through the PH distribution, and their coeffi-
cients in expressing LOS will be estimated through the
extended EM algorithms. The top predictors of LOS and a
series of useful comparisons among covariates are also pre-
sented. The fitting results provide a reference for patient
cluster for both geriatric patients and AUD patients. It also
helps to understand how the LOS is related to a set of given
covariates and to better classify and identify the hidden pat-
tern inside the LOS of patients.

The remainder of this paper is organized as follows. In
Section 2, the properties of Coxian PH distributions are
introduced, and the algorithms to fit Coxian PH distribu-
tions with covariates are proposed. In Section 3, we present
how to collect and manipulate data of patients. In Section 4,
the fitting results and further analysis are presented. Finally,
Section 5 concludes the paper.

2. Model fitting
2.1. Coxian PH distributions

A continuous PH distribution is the distribution of the time
from the initial state until absorption in the absorbing state
in a CTMC (Neuts, 1981). Consider a CTMC {J,},~, on a
finite discrete state space S = {0, 1,2,...,m}, where state 0 is
the absorbing state and states 1, ...,m are transient states. In
PH distributions, the sojourn w; in transient state i follows
an exponential distribution with rate 4, ie. f(w;|k) =
Jiexp (—A;w;), w; > 0. It is understandable to treat the time
between transitions as the time spent in each previous state
and the parameter A as transition density or the transition
rate (Cox, 1955).

The infinitesimal generator (transition rate matrix) for
the CTMC mentioned above can be presented in the form

of block-matrix Q = (?1 '(I)‘) Here, 0 is a 1 x m all zero

vector, demonstrating that the transition rates Ag;,i=
1,..,m from the absorbing state to transient states are all
zeros. The matrix T consists of the transition rates between
transient states, where the transition rates },,-j >0,i,j =
1,....,m. The m x 1 vector q is composed of transition rates
Aip > 0,i=1,...,m from transient states to the absorbing
state. Let the random variable Y be the time from the initial
state until absorption to the absorbing state. Then, Y is said
to have a (continuous) PH distribution (Neuts, 1981), and a
phase corresponds to a specific state in the CTMC. Then
the distribution and density function of variable Y can be
expressed in terms of initial state distribution © and matrix
T. The pair (r,T) is also known as a representation of the
PH distribution.



Figure 1. State transition diagram of a Coxian PH distribution.

One popular type of PH distributions is the Coxian PH
distribution, shown in Figure 1, which ensures that the tran-
sient states of the model are ordered (Fackrell, 2009). In the
Coxian PH distribution, the stochastic process begins from
the first transient state and may either move sequentially or
enter the absorbing state 0 directly. For the last transient
state, it has only one direction which leads to the absorbing
state. The time spent in each transient state i is exponen-
tially distributed with parameter A;, which is also interpreted
as the average rate moving out of state i. The transition rate
from state i to state i+ 1 is 4;;+1, and the rate to absorbing
state 0 is Ajp. According to the special structure of Coxian
PH distribution, we have the following relationships as /4; =
Aiiv1+ Ao for i=1,..,m—1 and 4, = Ayo. The initial
state distribution for Coxian PH distribution is m =
[1,0,...0],,,, and the probability density function (PDF),
and cumulative distribution function (CDF) of absorbing
time y can be expressed as

f(y) = —TreVe = quexp (Ty),
F(y)=P(Y <y)=1—mexp (Ty)e,

respectively, where e = (1,1,..., l)z;xl, and

—)»1 ;le 0 te 0

0 —12 },23 te 0

T=| : S : :
0 0 —Jm-1 Am—1,m

0 0 0 dw |

Recently, the Coxian PH distributions have been success-
fully applied to modeling patient LOS, corresponding to
absorbing time y, in a hospital. The m states correspond to
m phases in patients care processes in the hospital, which
may be used to describe those steps or stages according to

the LOS.

2.2. Incorporating covariates

Next, we will introduce how to incorporate the covariates
information into a Coxian PH model. To study the LOS
¥n (n=1,..,N) for the nth patient, consider covariate
information of all N observed patients as X =
(X1,X2, ...,Xy), where the nth (n=1,...,N) observation vec-
tor is x, = (xnl,xnz,...,xnc)T, and each x,; corresponds to
one categorical information of patient n (here ¢ is the num-
ber of covariates to be considered). The coefficient vector
b = (b1, by, ..., b.) contains the coefficients for all the covari-
ates. Here vectors x,; and b; (j =1,2,...,c) have the same
dimension, depending the number of categories in the
jth covariates.
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The early research on regression analysis of covariates
can be traced back to Cox (1972), in which the Cox propor-
tional hazards regression model is proposed. Li (1999) also
recommends the Cox proportional hazards model to esti-
mate the adjusted expected LOS using several factors that
influence the outcome. The hazard rate usually refers to the
rate of death or failure for an item at a certain time, which
can be treated as the transition rate.

In order to assess the relationship between the probability
distribution of absorbing time and covariates, the transition
rate function is considered to be a function of the covariates.
Specifically, we assume the hazard rate function as A(x) =
2" exp (—bx) in the Coxian PH distribution. The /° is the
baseline rate which should be the value when the covariates
are not considered, and x is the vector for the information
of covariates. Therefore, the adjusted transition rate matrix
becomes T = exp (—bx)T, where T is the transition rate
matrix if covariates x = 0 or the so called baseline transition
rate matrix.

In Section 2.1, it is already shown that the distribution of
variable y depends on the pair (%, T). Then the parameters
need to be estimated in model fitting without the covariates
are all from T, and there will be a total of 2m — 1 parame-
ters. Additionally, with the coefficient vector b, there will be
2m — 1 + |b| parameters to be estimated in models that con-
sider the covariates. Let Y = (y1,%2,....yn) be an independ-
ent and identically distributed sample from a population
with PDF f(y|®), where © is a vector consisting of k=
2m — 1 + |b| parameters to be estimated in T and b.

For the models with covariates, the likelihood function
becomes

N N
L(®[Y) = Hf()’n|®) = Hnexp (Tn}’n)fln'

Let 2! = Ai(x,) = Z;exp (—bx,) be the adjusted transition
rate of the ith state with the influence of covariates on the
nth observation. Then the adjusted transition matrix and
adjusted absorbing matrix are expressed as

T, = exp (—bx,)T = exp (—bx,)

—J O 0

0 */12 ;L23 0

0 0 —Jm—1 Am—1,m

0 0o - 0 S .
/110
/120

q, = exp (—bx,)q = exp (—bx,)

;mel,O
/lm,O mx1

2.3. Constructing complete sample

With the method used in Asmussen et al. (1996) and the
properties of the Coxian PH distributions, we consider the
incomplete observation of N independent replications of
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Markov process J.,..,JN as the time to absorption state,
Y = (y1,...,¥n). Assuming there are p jumps until arriving
absorbing state 0 within the embedded Markov chain
In, Iy, ... I,y (I, = 0), where the I, represents the last state
the Markov process visits and it equals 0 (state 0). The cor-
responding sojourn time in each state the Markov process
visits are Sp, Sy, ...,Sp-1(Sp = 00), where S, is the time it
spends in state 0 and according to the property of absorbing
state, S, = co. Both the Markov chain and sojourn time list
are unknown, and hence the complete sample set of N
Markov processes can be represented by C which contains
the information of N observations,

1 1 1 N N N
C=(c15....cn)=ig)-.. lpl S0+ Splfl""’lo""’lefl’Sg]""’sprl)'

Then the real observations becomes

Y = (yi,pn) = (554

where p", n=1,..,N
observation has.

Since the sojourn in transient state i follows an exponen-
tial distribution with rate 4;, the PDF of one complete obser-
vation ¢,, n=1,..,N is

S S eSS ),

is the total number of jumps the nth

f(calm, Tn) =f

e B, is the frequency of the nth observation starting in
state i, i =1, ..., m;

e Ny, is the probability of processes exiting from state i to
the absorbing state for the nth observation;

e Njj, is the probability of jumping from state i to state j
for the nth observation;

e 7, is the total time spent in state i prior to absorption
for the nth observation.

To estimate 2m — 1 + |b| parameters, it corresponds to
estimate the values of b, Njou, Nijn, Zin-

2.4. Fitting method

The EM algorithm is a broadly applicable approach to the
iterative computation of MLE, and is useful in a variety of
incomplete-data problems. Given observed data Y, missing
values Y, and thus the complete data can be denoted by
Y = (Y,Y). The EM algorithm seeks to find the MLE of
the marginal likelihood by iteratively applying these
two steps:

(¢a|m, T, b) = myr exp (—bx,,) Ay exp {— exp (—bx, ) dinsg } pirir

X exp (—bx,,)}vq exp {—exp (—bxn))»qs{‘}p,w
- X exp (_bxn))‘i;n,l exp {— exp (_bxn);“i;n,lSZ"—l}Pi;n,l e

where 7, g =0,...,p" is the state the nth observation arrives
after g jumps. Beside}s, we have the relationships that p; =
Pr(Lyp1 = jlln =1i) =7,  pio = Pr(lyy = 0|, = i) = ))’0, i,

j=1,..,m. Then the likelihood function can be expressed
as follows
N
L(®[Y) = | |f(ca|m, T,b) =f(C|n,T,b)
n=1

E]s
—s

3
Il
-
Il
_
Il
o

Il
=

exp {—exp (—bx, iZ,n}ﬁ ﬁ
=1j=0,j

x (exp (—=bx,)4;) ‘J"},

and by taking log of the likelihood function, we have

IOgL ®|Y _i{iBmlog T[l i

=1

+Z Nijj, log (exp (— bxn))uij)},

i=1 j=0,j#i

—exp (—bx,)4iZiy))

(1)

where a set of variables are defined as follows:

E-Step. Evaluate the conditional expectation of the log
likelihood function of a parameter 0 with respect to the cur-
rent conditional distribution of complete data Y given the
information of Y and the current estimate of the parameter
0", where s is the number of iteration

Q(010Y) = Egyy, 4 [log L(0]7)];

M-Step. Find the parameter 0°") = arg maxyQ(0|0")
such that

Q(O“*V10%) > Q(0]0")

until the difference between the likelihood in two iterations
L(0“T) — L(0%)) is small enough. Otherwise, let s = s+ 1
and go to E-step.

In order to obtain the log likelihood function log L(®ly)
in Equation (1), we calculate the expectation of B;,, Njy,
Nij»» and Z;,, which are related to the state i given the
absorbing time y, and covariates value x,. The formula of
the expectations without the information of covariates are
clearly presented in Asmussen et al. (1996), and here we
derive the conditional expectations given the influences of
covariates on each observation as follows



P(Jo = i|xn)P(ynlJo = i, Xn)
P(yﬂ|x1’l)

_ mel exp { exp (—bx,,)Ty,} exp (—bx,)q

~ mexp{exp(—bx,)Ty,} exp (—bx,)q

_ mbi(ya|m, T)

= mb(T)

o0
E[Z,»n|yn,xn} :EUO 1{]u_i}du|yn,xn}

-]
- [
1

T exp { exp (—bx, )Ty, } exp (—bx,)q

E[Binb’mxn] = P(]O = i‘yn,xn) =

=1,..,m,

Vn

P(Jy = ilyn, xp)du = J

0

P(]u = i|yn)xn)du

= i|xn)P0/n|]u = inxn) du

X J " exp { exp (—bx,)Tu}e;e]
0

xexp { exp (—bx,)T(y, — u)} x exp (—bx,)qdu

- Cin<yn> 1|TE,T) i—1 m
nb(y,|T) ~ o

Here Njj,, denotes the probability of jumping from state i
to state j given the covariates information of the nth obser-
vation. A set of discrete approximations of Ny, as Nj, =
l,=i,J0=p € >0, i7#jare dominated by the Zlﬁ Nijn and
converge to Ny, as € 1 0. Suppose the system is in state i at
time ke, then

b1
E[N;jnlyn’xn] = Z P(]kf l]k+1

=0

=jlynXn)

k
[p/e]—1 . . . .
P(yn|]k€—l>](k+l)s_]rxn)P(]ke—l>](k+l)e_]‘xn)
=0 P(yn[xn)

[y/f] 1

P(]k€:i|xn)P(](k+1)5:j|]ke:i’xn)P(yn‘](k+1)5:j>xn)

=0 P(yalxn)
[

<~ mexp{exp(—bx,)Ty,}exp(—bx,)q

><n:exp{exp(—bxn)Tu}eieiTeXp{eXp(—bx”)Te}ejejT

xexp{exp(—bx, ) T(y, — (u+¢)) Jexp(~bx,)q}

” 1
*Lonexp{exp(—bxﬁ%exp(—bxn)q
X nexp{exp(—bxn)Tu}ei(exp(—bxn))ﬁj)ef

x exp{exp(—bx,)T(y,—u)}exp(—bx,)q}du,

and thus
exp(—bx, ) Zijcjn (i m,T)
E[Nijn|ymxn]: ﬂb(yan) s
i=1,...m, j=1,..,m and i#j.
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Similarly, we can achieve

E[ iOn |)’mxn]
_ (]yn—s:”)’n|xn)
P(y,|x,)

_ P()’n|]y,,—e:i)xn)P(]yn—6:i|Xn)

P(yu|x,)
:nexp{exp(—bxn)T(yn—e) }e;elexp{exp(—bx,)Te}exp(—bx,)q

nexp{exp(—bx,)Ty, lexp(—bx,)q
nexp{exp(—bx, )Ty, }e;exp(—bx,) L
rexp{exp(—bx,) Ty, Jexp(—bx,)q
exp(—bx,) Liodin(y4|nT)

E[ 10n|yn’xn] Tl?b()/n‘T) s i:1,...,m,

where

byl T)e explexp(~bx,) Ty, Jexp(~bx,)g,
b(yu|T)=exp{exp(—bx,) Ty, }exp(—bx.)q,

Y
Cin (y,,,i\n:,T)zJ nexp{exp(fbx,,)Tu}eieiTexp{exp(fbx,,)T(y,,fu) +
0
xexp(—bx,)qdu
in(yn|nT)=nexp{exp(—bx,) Ty, te;,

and e; is an all-one vector. The most difficult part of the E-
Step is to calculate the terms of cj,(y,.im,T) and a;,(y,|nT),
and since it is differentiable, we can apply the Runge-Kutta
method (Asmussen et al., 1996) to approximate its value. By
the Runge-Kutta method, we can obtain

a,, (y|n,T)=nexp(—bx,) Texp{exp(—bx,)Ty}e;
=Y _exp(—bx,) Zjiaju(y|m.T).
=1
We can set the initial yy = 0, then
a;(0|m, T) = mexp { exp (—bx,)T x 0}e; = 7;.

Similarly,

Vn

cin(pilm, T) = J nexp { exp (—bx,)Tu}ee!
0

xexp { exp (—bx,)T(y, — u)} exp (—bx,)qdu.

The initial function value is ¢;,(0|n, T) = 0,
,ilm, T) = mexp { exp (—bx,)Ty}eie]
exp { exp (=bx,)T(y, — y)} exp (~bx,)q

= JikCia(y:lm, T).
k=0

In the M-Step, the maximum likelihood estimators for Z;
and /; are given by

(k+1)
D) _ S By
i N >
(k+1) (k
56+ Zn lNun il Zn 1N10n+1
“ij N (kt1) > 70 N (k1)
Zn IZ Zn IZ
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where N is the number of samples. In Coxian PH distribu-
tion, m; =1, m; =0,i = 2,.

We then need to maximize logL oY upon the coeffi-
cients b, that is getting the root of loggbO‘Y =0. The
Newton-Raphson method is used to obtain the new estima-
tor of b. The first and second derivative of the log-likeli-
hood function over coefficient b are.

M i{anexp bxn )V,Zm-‘rz Z —X, zjn}

=1 j=0,j#i
PlogL(B]Y) o[
O%%(ZH—Z{Z—xnxfexp(—bxn)iizin}
n=1 \ i=1
Therefore the new estimator is given
as b — b _ 3logI§l()®\Y) [az log L(OIY) 1
¢ an’

2.5. Los groups

In this paper, the Akaike Information Criterion AIC =
2k — 2maxg log L(®|Y) will be used to determine the num-
ber of states by taking into consideration the number k of
parameters. The most appropriate number m of states in the
Coxian PH distribution is obtained by minimizing the value
of AIC.

After the model structure is determined, the transition
rates /; and Ajg,i,j = 1,...,m can be obtained from the esti-
mated T, and the coefficients for the covariates can be
obtained from the estimated b. Let P;, i =1,...,m be the
probability of transferring from state i to absorbing state 0,
and the time spent in state i follows exp (4;). According to
the balance equation 4; = A;;+1 + 4o, i=1,...,m —1 and
Am = Amo, the time spent in each transient state contributes
to two directions, one transferring to the next neighboring
state with rate /;;+; and another one for being absorbed to
state 0 with rate 4;o. Then, the proportion of being
absorbed to state 0 from state i directly is obtained using
the formula below (for calculations, we refer to Gu et al.
(2019)):

A10
Pi=———,
Ao+ 212
12 /23 2i0
=- X X X——— i=2,...,m—1
Jo+ 212 A+ las 2i,0 F Aijig1
_ ;LIZ > )v23 j-m 1,m
Ao+ At as ;tm L0+ Am-1,m

To determine the LOS groups, we first sorted the LOS
data in an ascending order. The first group has the shortest
LOS, while the mth one has the longest LOS.

3. Data preprocessing
3.1. Data description and covariates

The proposed approaches are applied to the patient flow
data collected from 2012 to 2017 in Banner University
Medical Center Tucson - Main Campus and South Campus.
Since most developed countries have accepted 65years as a

Table 1. Statistical description of LOS.

Geriatric AUD
No. of records 3287 3586
Mean 4.96 0.8118
Min 0.01 0.0007
Max 93.49 32.3944
Median 1.47 0.3688
Mode 3.76 0.1361
Std 8.58 1.9652
Skewness 3.66 7.0761
Kurtosis 18.63 74.1356
25th percentile 0.25 0.2326
75th percentile 6.19 0.5521

definition of “elderly” (WHO, 2002), we collected 3287 elec-
tronic medical records (EMRs) of 2183 patients with their
age larger than or equal to 65 in the data. The diagnosis
geriatric patients at admission have common seen geriatric
diseases, like Alzheimer Disease, Heart failure, etc. From the
same data source, 3586 records are collected with diagnosis
code containing F10.1 (Alcohol abuse) in terms of ICD-10
codes, and of 2019 patients are identified among them.

The statistical description of the LOS information for the
collected data is presented in Table 1. The range of the LOS
of geriatric patients (from 0.01 day to 93.49 days) is much
wider than that of AUD patients (from 0.0007 day to
32.3944 days), and so are the mean, the 25th percentile and
the 75th percentile. The mean LOS of both diseases are
larger than the mode, and then the median, indicating that
the LOS data is right skewed and this can be confirmed by
the positive-valued skewness. Furthermore, the LOS of two
diseases has large values of kurtosis, especially that the LOS
of AUD patients has kurtosis as 74.1356, and it shows that
the LOS data has a heavy tail.

The covariate information of patients in the collected
data includes: gender, age, admission type, admission source,
and financial class for the payment of medical care. (i) For
the gender, both (male and female) are recorded. (ii) When
considering geriatric diseases, the covariate age is partitioned
into two categories, which are Age< 85 and Age > 85.
While for AUD, the age of the patients varies from 10 to 90.
According to the minimum alcohol drinking age and the
common-seen geriatric age, we divide the age variable into
three categories as less than 21years, 21 to 65years, and
older than 65 years. (iii) According to (CMS Manual System,
2018) “FL 14 - Type of Admission/Visit”, the admission
types are classified into four categories as Emergency,
Urgent, Elective and Trauma Center. However, these four
categories are similar to each other so that we may use
some statistical tests to check whether the variables of
admission types matter. (iv) In the same code list, admit
sources are divided into nine categories, Ambulatory Surgery
Center, Court/Law Enforcement, Discharge and Readmit,
Emergency Room, Outside Hospital, Outside Healthcare
Facility, Physician or Clinic Referral, Self Referral, and
Skilled Nursing Facility. Different from admission types
which refer to the circumstances under which the patient is
admitted, the admit sources describe the origin of the
patient’s admission. (v) The financial classes for the payment
of medical care include Commercial insurance, Medicaid,
Medicare, Self-pay and Other.
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Table 4. Distributions fitting restults of LOS of geriatric patients.

Covariates df h p value  Transition rate P;  Group Min Max  Average No. of records
Gender 1 8.57 0.0034 210 0.0000 0.0000 - - - - -
Age 1 26.54 0.0000 720 34393 04047 G, 0.0083 0.5139 0.2226 1331
Admission type 3 351.45 0.0000 /30 0.1267 0.5953 G, 05153 93.4931 8.1789 1956
Admit source 4 29441 0.0000
Financial class 4 29.48 0.0000
For a pair of categories under same covariate, if the p
value is small enough, the null hypothesis that the pair has
Table 3. Kruskal-Wallis test of LOS of AUD patients. el . .
— " a . : the same effect on the LOS distribution will be rejected.
ovariates value . I . .
P We set the significance level as o = 0.05 in this study
Gender 1 1.24 0.2657 . . Lo . .
Age ) 47.80 00000 and for patients with geriatric diseases, the category pairs
Admission type 3 108.65 00000 under gender, age and admission type are all rejected, mean-
Admit source 4 83.77 0.0000 jng that the LOS of patients in each category under same
Financial class 4 37.26 0.0000

3.2. Statistical tests on covariates

Before incorporating these five type of covariates into our
model, we firstly use Kolmogorov-Smirnov (KS) tests to
check the normality of LOS in each category. The p values
of KS tests of LOS in each category are close to 0, and the
results reject the original hypothesis that the LOS in each
category is normally distributed or follows a specific distri-
bution. Thus, the parametric test of One-Way Analysis of
variance (ANOVA), assuming the distribution of residuals
are normal, may not be used here. In situations where the
normality assumption is unjustified, an alternative procedure
that does not depend on this assumption is needed. The
Kruskal-Wallis (KW) test is used to test the null hypothesis
that the LOS distribution affected by covariates are identical
against the alternative hypothesis that at least one of the dis-
tributions is different from others. In general, the KW test is
a nonparametric alternative to the wusual ANOVA
(Montgomery, 2017).

In this study, the significance level is chosen as « = 0.05,
and if the test statistic h is larger than y2, | (t is the num-
ber of categories in each covariate), the null hypothesis will
be rejected. The h, p value and degrees of freedom (t—1)
with the corresponding covariates categories are listed in
Tables 2 and 3. One can see that the effects of gender, age,
admission type, admit source, financial class are significant in
studying the geriatric patients based on the test result. While
the all of the covariates except gender have significant effects
on the LOS of AUD patients.

The KW test is significant, and thus a post-hoc analysis
can be performed to determine which categories of a certain
covariate differ from others. One of the most popular test
for this is the Dunn’s test. Dunn’s Multiple Comparison
Test is a post-hoc non-parametric test, which means that it
should run after the Kruskal-Wallis test and it is a
“distribution free” test (Dunn, 1961). The null hypothesis
for the test is that there is no difference between the effects
of categories under one covariate on LOS distribution (cate-
gories can be equal or unequal in size). The alternative
hypothesis for the test is that there is a difference between
categories under one covariate. Since Dunn’s test is appro-
priate for groups with unequal numbers of observations
(Zar, 2010), it is applied to each covariate separately in this
study to identify where the difference occurs.

covariate follow different distributions.

Based on the Dunn’s test results for the patients with
geriatric diseases, we can classify admit source of Court/Law
Enforcement, Discharge and Readmit, Outside Hospital,
Outside Healthcare Facility, and Skilled Nursing Facility into
one group. Besides, Physician or Clinic Referral, Self
Referral, and Emergency Room can be grouped together
since the pair of these three categories are significant. Thus,
the admit source actually has 3 categories: Admit source 1
(Ambulatory Surgery Center), Admit source 2 (Court/Law
Enforcement, Discharge and Readmit, Outside Hospital,
Outside Healthcare Facility, Skilled Nursing Facility), and
Admit source 3 (Physician or Clinic Referral, Self Referral,
Emergency Room).

In the same way for the patients with geriatric diseases,
financial classes of Medicaid, Medicare, Self-pay, and Other
should be combined together. So the final categories in the
Financial Class should be Noncommercial and Commercial.
Above all, we can conclude that the LOS distributions of
geriatric patients depend on covariates consisting of gender,
age, admission type, admit source, and financial class.

Similarly, for patients with AUD, all of the categories
under the covariates of age, admission type, financial class
will be kept unchanged since we reject the null hypotheses
for all category pairs. Four categories under Admit Source
has been reassigned into one category as Admit source other
(Physician or Clinic Referral, Outside Healthcare Facility,
Other Banner Hospital, and Psych, Substance Abuse, or
Rehab Hospital). Totally, there are 5 categories under Admit
Source:  Court/Law  Enforcement,  Discharge  and
Readmission, Emergency Room, Self Referral, Admit source
other. Above all, we can conclude that the LOS distributions
depend on patients age, admission type, admit source, and
financial class.

In Section 4, a Coxian PH distribution with inclusion of
covariates will be fitted to the LOS data and the influences
of covariates will also be identified.

4. Numerical analysis
4.1. Geriatric diseases

As verified in the Section 3, five types of covariates, includ-
ing gender, age, admission type, admit source, and financial
class may influence the geriatric patients’ LOS. There are
two categories in gender (Female, Male), age (<85, >85),
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Table 5. Statistical description of covariates for geriatric patients.

Table 6. Distributions fitting restults of LOS of AUD patients.

Category # b; Mean Transition rate P Group Min Max  Average No. of records

Gender Female 1763 —0.0344 46185 1o 0.0202 0.0045 G, 0.0007 0.0306 0.0175 16

Male 1524 - 5.3489 220 47597 09209 G, 0.0313 1.7368 0.3887 3302
Age Age > 85 485 —0.0940 48381 A30 0.0154 0.0045 Gz 1.7500 1.9208 1.8329 16

Age < 85 2802 - 49778 Jao 0.6156 0.0701 G, 1.9306 32.3944 6.3418 252
Admission type Elective 294 —0.5423 3.0028

Emergency 2678 —0.5243 4.4556

Trauma 39 —0.4749 52776  class have longer LOS than those with commercial insurance

Urgent 276 - 11.8609 p . P P
Admit source Admit source 1 p 05475 02097 t).rpe. This relat1onsh1p is supported by the positive coeffi

Admit source 2 240 0.2599 102069 cient of Noncommercial financial class.

Admit source 3 2980 - 4.6411 Same findings can be achieved for other covariates. The
Financial class Noncommercial 3062 0.4367 5.0309 : . : :

Commercial 225 ° Jos3¢ tOP negative predictor of LOS is the Admit source 1

financial class (Noncommercial, Commercial) respectively,
four categories in admission type, including Emergency,
Urgent, Elective and Trauma Center, and three categories in
admit source (named Admit Source 1,2,3). Therefore, a total
of thirteen categories should be considered in the model.
Eight dummy binary variables, with value one indicating the
presence of the category, are created to keep the independ-
ency of all categories.

We apply the EM algorithm introduced in Section 2.4 on
Coxian PH distributions with various number of phases,
and the least AIC value occurred to the three phases. Since
the transition rate of ;0 = 0, which means that all patients
in the first LOS group transfer to the second LOS group, the
final model is a two-phase Coxian PH distribution.

The estimated transition rates, absorbing rates, and the
proportion of each LOS group are shown in the Table 4.
About 40.47% of the records of geriatric patients, that is a
total number of 1331, should be classified into the first LOS
group with minimum LOS as 0.0083 day, maximum LOS as
0.5139day, and average LOS as 0.2226 day. In the mean-
while, the second LOS group consists of 1956 records, which
occupies a proportion of 0.5953, and its LOS varies widely
from 0.5153day to 93.4931days. The average LOS in the
second group is 8.1789 days, which indicates severer situa-
tions and much more resources demands than the
first group.

In addition to the transition matrix, the estimated coeffi-
cients of each category in five covariates are also obtained
(Table 5). A numerical comparison of LOS in each category
is also presented in Table 5, by which the efficiency of our
model is verified. One of the categories for each covariate is
designated as the base category, which will has no value of
coefficient corresponding to it. As such, the coefficient for
each non-base category indicated the effect of the presence
of that category relative to the base category.

As shown in Table 5, female patients have less LOS than
male patients, patients older than 85 leave earlier from hos-
pital than younger patients, and patients with
Noncommercial financial situations may stay in hospital for
a longer period. Therefore, the factors, Female, and Age >
85, have negative relationship with LOS, and this has been
verified by the estimated results of our model. The potential
reason is that patients older than 85 may discharge due to
being transferred to other hospitals, to nursing homes, or
fatality. Similarly, patients with noncommercial financial

(Ambulatory Surgery Center), with which immediate atten-
tion for the care and treatment is required, and it is always
expected to have less than 24 h of LOS. The estimation coin-
cides with the finding in Table 5 that patients admitted
from Ambulatory Surgery Center may have the least average
LOS as 0.2097 day. The Admit Source 2, including sources
like Discharge and Readmit, Outside Hospital, Skilled
Nursing Facility, etc., positively impact the LOS relative to
the Admit Source 3 and the average LOS in such category is
10.2069 days. The Admit Source 3, consisting of Physician
or Clinic Referral, Self Referral, and Emergency Room, is
designated as base category for admit source and has a rela-
tively short LOS averagely at 4.6411 days.

The admission type of Urgent has the largest mean LOS,
and it is intuitive that the patient with such admission type
are in a severe situation and require more time and effort in
the care and treatment although they have priority in the
first available and suitable accommodation. This also
explains the negativeness of the coefficients in admission
type when the Urgent is chosen as base category.

With the Elective admission type, patients’ conditions are
usually not severe, leading to a shorter LOS and a negative
coefficient of the covariate, which is also verified in Earnest
et al. (2006). Furthermore, the admission types of
Emergency and Trauma will both decrease the LOS com-
pared with type of Urgent. The Emergency type contains the
largest proportion of patients and they have a wide range
LOS, which may lead to negative relationships with LOS
in general.

4.2. AUD

In the same way of treating categorical variables, thirteen
dummy variables are created and the four-phase Coxian PH
distribution is then identified. In Table 6, majority of AUD
patients are in the second LOS group with LOS ranging
from 0.0313 day to 1.7368 days. All of the patients from the
first three LOS groups discharge within 2 days, while the last
group has LOS ranging from 1.9306 days to 32.3944 days.

In Table 7, the average LOS of patients older than 65 is
the longest, the LOS of patients younger than 21 is the
shortest, and the LOS of patients aged from 21 to 65 is in
the middle. The relationship is then verified by the coeffi-
cients in Table 7 that both types of patients with Age <21
and 21< Age <65 have negative coefficients if Age > 65 is
the base category. Similarly, patients admitted with urgent
type have the largest LOS among all admission types and so



Table 7. Statistical description of covariates for AUD patients.

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 9

Table 8. Rates of discharge destinations for geriatric patients.

Covariates Category # b; Mean Discharge to home  Discharge to intermediate care Other
Age Age < 21 96  —0.2947 03795 Groupl  84.748310 13.072878 2.178813
21 < Age < 65 3140 —0.0806 0.7852  Group2  56.952965 16.615542 26.431493
Age > 65 350 - 1.1696
Admission type  Elective 10  —03613 03101
Emergency 3385 —01941 07447  Taple 9. Rates of discharge destinations for patients with AUD.
Trauma 159 —0.1072 1.1931 - - - -
Urgent 32 _ 6.1773 Discharge to home  Discharge to intermediate care Other
Admit source Court/Law enforcement 47 —0.3292 03744 Groupl  62.500000 6.250000 31.250000
Discharge and readmission 12 2.60448 53406 Group2  86.220472 10.841914 2.937614
Emergency room 2700 0.1110 0.7798  Group3  62.500000 25.000000 12.500000
Admit source other 115 0.1230 24435  Group4  59.523810 16.666667 23.809524
Self referral 712 - 0.6224
Financial class Commercial 321 —0.0991 0.7602
Medicaid 2205 —0.0560 0.7974 3 ]
Medicare 535 0.0751 1.1092 N
Other 436 —0.1458 0.5403 o .
@ 7 —— Group1
Self pay 89 - 0.8978 - Gmugz

that the coefficients of Elective, Emergency, Trauma Center
are all negative. The results in the admission type of AUD
patients go the same way with the ones of geriatric patients,
which not only verifies that our model has the ability of
capturing the impacts of covariates, but also conveys the
generality of the distribution of admission types.

The top predictor in Admit Source is Discharge and
Readmission, and it is intuitive that patients being readmit-
ted to hospital due to AUD may have being through terrible
addiction and severe situations. One can notice that the
Discharge and Readmission is included in the Admit Source
2 for the geriatric patients, which also has a relatively
large LOS.

The predictor in Financial Class with longest LOS is
Medicare, with largest coefficient. Compared with other cat-
egories, the Medicare patients have relative worse healthcare
condition. The Other Financial Class has the shortest LOS,
which is consistent with the most negative coefficient.

Above all, the models for geriatric patients and AUD
patients both coincide with the LOS distribution under each
covariates. The priority of inpatient admission in terms of
the service indicated by the admission type (CMS Manual
System, 2018) is also confirmed by our model. We can con-
clude with effectiveness of our method of fitting Coxian PH
distribution with consideration of covariates. Besides,
patients admitted through discharge and readmission needs
more attention since they may have larger LOS.

4.3. Further analysis

In Section 4.1 and Section 4.2, we can roughly catch the dif-
ferences between the fitted distribution of the LOS of geriat-
ric patients and AUD patients. In this section, we perform
further analysis and comparison of the discharge destina-
tions among different LOS groups and two types of patients.

The Tables 8 and 9 and Figure 2 illustrate the percentage
of each discharge destination and visual comparisons of it
for both diseases. The home, as the most common seen dis-
charge destination, always occupies the largest proportion
among all discharge destinations no matter in which group
or with which disease.

Rate (%)
60
|
/

40

20

Home Intermediate Care

(a) geriatric patients

100
1

~ —— Group1
= = Group2
~ + -+  Group3
~ - =+ Group4

60

Rate (%)

40

20
1

Home Intermediate Care

(b) patients with AUD

Figure 2. Plots of discharge destinations in each LOS group.

For geriatric patients (see Figure 2(a)), the first LOS
group has higher rate of being discharged to home, and
lower rate of going to both intermediate care and others
than the second LOS group. That is due to the geriatric
patients may require more treatment or care after discharg-
ing with the increase of LOS. Another fact is that the destin-
ation of others includes death, on which the second LOS
group might has highest percentage. The proportion of
patients going to intermediate care after discharge for two
LOS groups are close to each other.

In Figure 3, we can notice an obvious rise in the propor-
tion of the urgent admission type in the second LOS group,
which explains the urgent status of patients at admission
and the low rate of going back home after treatment.

For patients with AUD (see Figure 2(b)), the second LOS
group has the largest number of patients, and this indicates
that the LOS range in this group is the most reasonable for
general AUD patients. Also, the second LOS group has the
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Figure 3. The distribution of admission type in each LOS group for geriat-
ric patients.

highest percentage of home discharge, while the other three
LOS groups share similar proportion. The third LOS group
has the highest rate of being transferred to intermedi-
ate care.

5. Conclusions

This paper investigates the flow information of both geriat-
ric patients and patients with AUD, based on the data col-
lected in a medical center from 2012 to 2017. Several
descriptive statistical modeling methods along with the EM
algorithm for Coxian PH distributions are applied to analyze
the LOS data with the information of covariates. In the
descriptive statistical modeling part, we first present statis-
tical descriptions of LOS in terms of each category accord-
ing to the corresponding covariate. Then, several statistical
hypothesis tests are conducted in order to better identify the
significant covariates which indeed impact the LOS distribu-
tions. The KW test is chosen to check whether different
covariates lead to different LOS distributions. A post hoc
Dunn’s test is then conducted to confirm the significance of
the covariates by testing the existence of difference among
the categories in pairs for each covariate.

The hypothesis tests verifies that the five covariates,
including gender, age, admission type, admit source, and
financial class are significantly impact the LOS of geriatric
patients. The covariate of admit source is needed to be
regrouped for both geriatric patients and AUD patients in
order to keep the independency of each category.

In fitting the Coxian PH distribution to the LOS data
considering the influences of covariates, we develop the EM
algorithm by generating the expression of density of the
complete observations and updating the sufficient statistics
iteratively. Several numerical analysis methods are used to
approximate the formulas and to obtain the MLE of param-
eters. The distribution of LOS groups and influences of each
category under covariates on the LOS are obtained. The lon-
gest LOS group of geriatric patients stay in hospital from
0.5153day to 93.4931days, and the one of patients with
AUD has LOS ranging from 1.9306 days to 32.3944 days.

Although the LOS distributions are different for the geri-
atric patients and AUD patients, there exists the same pat-
tern of impacts of the admission type on LOS, which is

captured by our model. The coincidence between the LOS
in each category and the corresponding estimated coeffi-
cients also verifies the efficiency of our model. The pattern
of the fitting results and further discharge destination ana-
lysis are then compared between geriatric patients and AUD
patients. Patients in the same LOS group or with the same
covariate may have some characteristics in common.

For geriatric patients, the top negative predictor of LOS
is the admit source of Ambulatory Surgery Center, for
which urgent requests for treatment are always the case.
While for AUD patients, the most impactive factor is the
admit source of Discharge and Readmission, which reveals
the repeat of such a disease highly related to addiction. The
geriatric patients with longer LOS are less likely to return
home directly after treatment, which is due to more request
of treatment and a higher probability of death during treat-
ment with the increase of LOS. More urgent status for geri-
atric patients staying longer in hospital also explains the
difference in the distribution of discharge destinations
between LOS groups.

The efficiency of our extended EM algorithms has been
verified in this paper in fitting the Coxian PH distributions
and capturing the impacts of covariates. Also, the consist-
ence between the LOS distribution in each category and the
corresponding estimated coefficients verifies the effectiveness
of our model. Even though this paper only studies five cova-
riates, the proposed approaches can be applied on flow
information of patients with other type of disease, and dis-
tinct factors that influence the LOS. The analysis of both the
distribution of LOS groups and influences of covariates on
LOS will further offer variable insight into the improvement
of healthcare service and resource allocation by reviewing
patients information at admission. Patients with the charac-
ters that have larger impacts on LOS may have higher chan-
ces of requesting priority in treatment, resources
assignments and staying longer in hospital.
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