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Abstract

Sampling plans play an important role in monitoring production systems and reducing quality- and
maintenance-related costs. Existing sampling plans usually focus on one assignable cause. However,
multiple assignable causes may occur especially for a multistage production system, and the resulting
process shift may propagate downstream. This paper addresses the problem of finding the optimal sampling
plan for an unreliable multistage production system subject to competing and propagating random quality
shifts. In particular, a serial production system with two unreliable machines that produce a product at a
fixed production rate is studied. It is assumed that both machines are subject to random quality shifts with
increased nonconforming rates and can suddenly fail with increasing failure rates. A sampling plan is
implemented at the end of the production line to determine whether the system has shifted or not. If a
process shift is detected, a necessary maintenance action will be initiated. The optimal sample size,
sampling interval, and acceptance threshold are determined by minimizing the long-run cost rate subject to
the constraints on average time to signal a true alarm, effective production rate, and system availability. A
numerical example on an automatic shot blasting and painting system is provided to illustrate the
application of the proposed sampling plan and the effects of key parameters and system constraints on the
optimal sampling plan. Moreover, the proposed model shows better performance for various cases than an

alternative model that ignores shift propagation.
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1. Introduction

Quality improvement is a major concern for the success of a manufacturing enterprise. To be competitive,
companies often adopt different procedures to improve their production processes for better product quality.

However, regardless of the advances in technology and automation, a manufacturing environment is always



subject to variability and random shift that affect product quality. As a result, it is important to perform
process monitoring so that necessary actions can be taken for maintenance and process adjustments when
the product’s quality drops below an acceptable level.

Product inspection is one of process monitoring methods to determine if a process has shifted or not.
The out-of-control state is attributed to the presence of assignable cause(s) such as tool wear, temperature
increase, and wrong setups. Specially, an assignable cause makes a process variable, such as the process
mean, to deviate from its target, or causes an attribute, such as the proportion of nonconformity, to increase.
In addition to process shift, the production system may fail and stop production. When a process shift or
system failure is detected, maintenance actions are initiated. Maintenance could be perfect, imperfect, or
minimal. In particular, perfect maintenance restores a production unit to its good-as-new condition,
imperfect maintenance restores the unit to a condition between its good-as-new and bad-as-old states, and
minimal repair makes the unit operational while keeping the unit in the same health condition as before.

Regarding inspection options, screening (100% inspection), no inspection, sampling plans by control
charts (online sampling), acceptance sampling, and continuous sampling are the most widely used. In
practice, an inspection policy is adopted according to the type of production and a specific goal. For
instance, acceptance sampling is used for batch (lot) production to decide whether a batch should be
accepted or not. Such inspection procedures can be employed in both single-stage and multistage systems.
Specially, a multistage system is composed of multiple components, machines, processes, or stages required
to make the final product (Shi and Zhou, 2009).

A sampling plan is either designed economically or economically-statistically. Economic designs aim
at minimizing a cost function without focusing on statistical performance, while economic-statistical
designs consider the performance of a process under some practical constraints. The usual performance
metrics could be customer-centered such as the average outgoing quality (AOQ). Some measures are more
producer-centered such as the average fraction inspected (AFI), process availability, and throughput. Other
metrics, such as schedules’ delays, are concerning both parties. Studies on these measures can be found in
Bouslah et al. (2013), Cao and Subramaniam (2013), and Pandey et al. (2011). Existing sampling plans are
often developed based on one assignable cause. Although a few studies consider cases with multiple
assignable causes, it is often assumed that only one assignable cause can occur during a sampling cycle.

In this paper, we develop an economic-statistical sampling plan for a serial production system with two
unreliable machines by considering the occurrences of more than one assignable cause. The term “stage”
can be used in lieu of “machine” to refer to a process or a group of machines (processes). The sampling
plan is modeled based on the competency and downstream propagation of process shifts. Sampling
parameters are determined by minimizing the long-run cost rate subject to constraints on effective

production rate, average time to signal a true alarm and system availability. It is assumed that sampling is



performed only after the second stage. For example, in some systems, the synchronized handling of
products from one stage to another does not allow any stoppage for inspection after the first stage. In other
systems, products are processed sequentially or simultaneously by two different processes on the same
machine making quality inspection impractical due to the machine’s complex configuration.

Some industrial applications of such a system are as follows. In an automatic blasting and painting line,
a fabricated steel unit is first blasted for rust removal and then fed into a painting chamber. Due to
degradation, the disc turbines that provide blasting may still leave some rust on the unit’s surface that causes
poor paint adhesion. On the other hand, the spray nozzles in the painting chamber, if clogged, could cause
bad paint coverage. The unit produced is nonconforming if one or both of the quality issues occur. An
example of two processes being performed automatically on one machine is the production of purlins for
steel structures. Galvanized sheets are fed continuously into a forming machine. Punching holes and
bending edges are sequentially or simultaneously processed to produce a purlin. Due to the complex
configuration of the machine, any quality imperfection cannot be observed until the whole process is
complete. When the punching tips and/or the bending rollers become worn, the purlin is defective because
holes, edges, or both are imprecisely made. Other examples in automotive painting and stamping lines are
provided by Naebulharam and Zhang (2014). In some industries, inspection may be performed only after
the final stage due to safety or economic reasons. For instance, small steel bars are first heated and then
forged to produce small parts such as socket wrenches. Other examples are manufacturing of aluminum
cans, automated bakery production, powder coating, automatic riveting for stamping parts, automatic
assembling and wire bonding, and multi-material additive manufacturing of electronic devices. More
applications of such systems are addressed by Liberopoulos et al. (2010).

The remainder of this paper is organized as follows: Section 2 reviews the related literature and
illustrates the contributions. Section 3 describes the problem and the assumptions, and provides the notation
used throughout this paper. A comprehensive modelling methodology is developed in Section 4. Section 5
provides the mathematical formulation for the optimal design of the proposed sampling plan. A numerical
example and analyses are given in Section 6. Section 7 concludes this study and recommends several

directions for future research.

2. Literature review and research contributions

2.1. Related work

In the context of single-stage production systems, Linderman et al. (2005) propose an economic-statistical
cost model considering constraints on the average run lengths and three maintenance scenarios.
Charongrattanasakul and Pongpullponsak (2011) extend this work by sampling with an exponentially

weighted moving average (EWMA) chart with warning limits along with maintenance at the time of a false



alarm. Mehrafrooz and Noorossana (2011) consider an additional maintenance scenario due to sudden
machine failures. Pandey et al. (2011) use an X control chart to determine the sequence of batches produced
on a single machine subject to scheduled preventive maintenance. Safaei et al. (2015) study sampling by
an X control chart under uncertainty. Pasha et al. (2018) incorporate the Taguchi loss function in the design
of X control chart with non-normal quality data. Abolmohammadi et al. (2019) develop an economical
statistical design for variable parameters X control charts under different quality loss functions. It is worth
pointing out that all these studies focus only on one assignable cause. However, this may not be realistic.
Indeed, multiple assignable causes from different sources, such as raw materials, human errors and tool
wear, cannot be ignored. Yu and Hou (2006) develop an economic model for an X control chart with
variable sampling intervals to monitor a process with multiple assignable causes. Yu et al. (2010) construct
an economic-statistical model with constraints on type-I and type-II errors. The same constraints are used
by Salmasnia et al. (2017). The effects of non-normal quality data on the design of X control chart with the
presence of multiple assignable causes are investigated by Moghadam et al. (2018). Unlike these studies
where only one assignable cause is permitted to occur during an inspection cycle, a case allowing the
occurrences of multiple assignable causes during an inspection cycle is examined by Yang et al. (2010). An
X control chart is designed, but the joint effect of two assignable causes is assumed to be the same. Xiang
(2013) study the joint optimization of an X control chart and preventive maintenance for a deteriorating
production system. The system is assumed to have multiple degraded states that correspond to different
assignable causes, and an economic cost model for maintenance, operation, and inspection is provided.
Inspection procedures for multistage systems are diverse. Zantek et al. (2002) assume that the variation
of a measurement at a stage depends on both the variation of process parameters (i.e., pressure, temperature,
etc.) at the present stage and the variations of measurements taken at preceding stages. Their engineering
model aims at identifying which quality and process variables are responsible for the variation at the final
stage. Zhou et al. (2003) propose an engineering model for an automotive engine heads machining line.
Without process variables, Lam et al. (2005) develop an engineering model for a four-stage machining
process where the last stage has two streams (parallel machines), and each stage or stream is monitored by
a separate X control chart. It is assumed that only one stage is out-of-control at any time and the probability
that a stage is out-of-control is constant. The X control charts are only designed to alert out-of-control
signals according to a desired average time to signal without addressing whether any adjustment on the
process or any rework on defective products is carried out or not. Xiang and Tsung (2008) study statistical
monitoring with EWMA control charts based on engineering models. The EWMA control chart is designed
for a given in-control average run length to determine the out-of-control condition in a three-stage process

where wrong fixturing causes the process to be out-of-control. An engineering model based on multivariate



control charts to detect mean shifts with autocorrelated observations is proposed by Kim et al. (2017).

Inspection allocation is another focus related to multistage systems. Bai and Yun (1996) consider a
serial three-stage circuit board manufacturing system with two inspection stations. Inspection locations and
inspection level (number of components tested on a circuit board) are determined to minimize the expected
total cost of rework, inspection, and defective boards delivered to customers. Rau and Chu (2005) study
inspection allocation in a serial multistage system where inspection could be on product variables and
attributes. Azadeh et al. (2015) study a batch production system where inspection allocation, inspection
tolerances, and full inspection or acceptance sampling are determined. Types and locations of inspection
are determined in a serial multistage system by the trade-off between production costs and customer
satisfaction under uncertainty (Mohammadi et al. 2018).

The quality and quantity are the two main focuses of a multistage production system. Cao and
Subramaniam (2013) investigate a serial multistage system where each stage is monitored by a continuous
sampling plan (CSP). The CSP alternates between 100% and fractional inspections based on whether or not
a consecutive number of conforming units are observed. Additional measures of work in process (WIP) and
throughput rate are also considered. Kim and Gershwin (2005) study a two-machine system with one buffer
using a Markov process. In their work, a machine is assumed to have three states: operating producing good
parts, operating producing bad parts (quality failure state), and complete failure. The effects of quality
failure, production rate, and buffer size on the system’s yield and effective production rate are analyzed.
Kim and Gershwin (2008) also analyze the performance of flow lines with quality and operational failures.
Meerkov and Zhang (2010) investigate different cases for performance analysis of a serial production
system with inspection stations and buffers under 100% inspection. Given the number of inspection stations
and buffers capacities, the study shows the impact of inspection allocation on bottlenecks, blocked and
starving machines, and effective production rate. Colledani and Tolio (2012) develop a Markovian model
for a serial system subject to degradation. The critical state that separates the desired degradation states
from the undesired states is determined by achieving gains in system’s yield and effective production rate.
It is worth pointing out that engineering models are analytical tools for identifying sources of variation for
quality improvement. Usually, a strategy with 100% inspection of variables is adopted. On the other hand,
in most of inspection allocation models, 100% inspection or acceptance sampling are used with the purposes
of locating inspection and determining a testing strategy or inspection level. For both types of models,

maintenance is rarely studied.

Liu et al. (2013) study a serial system consisting of two identical units monitored by an X control chart.
The value of process shift is assumed to be a constant no matter one or both units are in the quality failure

state, and an inspection cycle is renewed by one of four maintenance scenarios. The system’s performance



is evaluated via economic and economic-statistical models with constraints on type-I and type-II errors.
Zhu et al. (2016) investigate a serial four-stage process where attributes sampling is carried out at each
stage. In their work, only quality failures are considered, and the sampling parameters are found by
minimizing the expected total cost of inspection, scrap, and repair with respect to constraints on the average
number of produced products between two false alarms. Zhong and Ma (2017) propose a joint control chart
for a two-stage dependent serial system where the first and second stages are monitored by an X and a
residual control chart, respectively. Eight maintenance scenarios are investigated for cost minimization with
constraints on the average run lengths. For more studies on part quality inspection in multistage production

systems, readers are referred to a recent review by Rezaei-malek et al. (2019).

2.2. Contributions of this work

Clearly, the effects of quality failures, machine failures and maintenance actions on the product quality and
the effective production rate of a multistage production system are worthy of investigation. Although a
plenty of studies have been conducted on online sampling for single-stage production systems, only a few
studies have been done on multistage systems. Specially, there is a lack of research on online sampling of
attribute data for multistage systems. This study aims at developing an attribute sampling plan for a serial
system of two unreliable machines for discrete production. Different from the work of Liu et al. (2013),
this work considers two nonidentical machines and allows a quality shift to propagate downstream. Indeed,
competing process shifts and downstream propagation are two forms of natural interactions in a multistage
system. To the best of our knowledge, modeling sampling plans by attributes with competing shifts in a
multistage system with unreliable machines have not been studied (Yang et al., 2010; Zhu et al., 2016) in
the literature although such a study will have a wide variety of industry applications. In addition, this work
develops a comprehensive economic-statistical model with closed-form formulations and establishes a
compromise between quality and quantity performances. Unlike the studies by Yang et al. (2010), Liu et
al. (2013) and Xiang (2013) that focus only on quality-related performance, we consider a constraint on
system’s availability to increase production, and a constraint on effective production rate to increase the
fraction of good products. Moreover, a constraint on average time to signal is also included. This model
represents a first step that can be extended for a production line with more than two unreliable machines,
multiple assignable causes, and different levels of maintenance actions. The economic benefit of the

proposed model over existing studies that do not consider shift propagation is illustrated in this work.

3. Problem description
A serial production system consisting of two unreliable machines that operate continuously to produce
discrete units of a product is considered. Each unit of the product is first processed at machine 1 followed

by machine 2. Each machine has the proportion of nonconforming (PON) of py,,,, m € {1,2} when it is in-



control. Due to assignable causes, PON may increase to p;,, so that the machine enters its out-of-control
state. Each machine is subject to two issues: quality shift when the PON increases from pg,, to p1,, and
sudden machine breakdown (failure). Failures are observed immediately, whereas quality shifts can be
detected only by inspection.

To inspect the finished units, an attribute sampling plan is employed at the end of the production line
(i.e., after machine 2) to assess the performance of the production process and to initiate necessary
maintenance actions. An inspected unit is classified as either conforming or nonconforming, and if a half-
finished unit is nonconforming upstream (after machine 1), it remains nonconforming downstream. The
power of detecting a process shift depends on the parameter setting of the sampling plan. Clearly, sampling
may generate two kinds of errors: type I error and type Il error. Type-I error (false alarm) is generated when
a process signals an alarm given that the process has not shifted yet. Type-II error is generated when the
sampling plan fails to signal a true alarm when the process has already shifted. Determining which
machine(s) has/have shifted cannot be done unless the system is shut down for close inspections of the two
machines. Therefore, whenever there is a failure or a shift, both machines are stopped for maintenance.
However, when machines are shut down because of a false alarm, no maintenance is carried out and
production resumes.

It is assumed that the time to shift for machine m follows the exponential distribution with a rate of 4,
(see Liu et al., 2013 and Xiang, 2013), whereas time to failure is assumed to follow the two-parameter
Weibull distribution with an increasing failure rate (see Pandey et al., 2011) . During operation, if a machine
fails, minimal repair is performed, which makes the machine operational but does not reduce its failure rate
after repair. If a shift is detected, both machines are restored to their good-as-new conditions with PON of
Pom and age 0, and a new inspection cycle begins. Restoration can be either corrective or preventive.
Corrective restoration is performed on the machine that has the shift, whereas preventive restoration resets
the age of the machine that has not shifted to zero.

Whenever a true alarm is signaled, it is clear that at least one machine has shifted. Clearly, the time to
shift on each machine is random. The system is said to be out-of-control if a shift on any of the machines
has occurred, and hence, the stochastic competency between shifts (which shift occurs first) determines
what out-of-control state the system is currently in, as will be illustrated in Section 4.1. In this regard, the
sampling plan is designed to detect such competing and propagating shifts. Specially, a propagating shift
occurs if one machine has already shifted but that shift is not detected until another shift takes place on the
other machine. In particular, the production system is classified as a multistage multistate system. The
system at any sampling time can be in one of four states: one in-control state, and three out-of-control states.

The system’s PON (p;) can be represented by a set
Ps = {Po, P1, P2, 3},
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where pg = ¢ (po1, Poz) represents that the system is in the in-control state (i.e., both machines are in
control) and ¢(-,") is a function of machines’ PONs; p;,p,, and p3 represent that the system is out-of-
control with p; = ¢(p11,Po2) being that only machine 1 has shifted, p, = ¢(py1,p12) being that only
machine 2 has shifted, and p; = ¢ (p;4, p12) being that both shifts have occurred. Note that for the system’s
probability of nonconforming, p, can evolve to either p; or p,, and p; or p, can evolve to p;. Basically,

ps can be determined by:

2

pe = d(pppp) = 1- | [ =ppm), ()

m=1
where f = {0, machine is in-control; 1, machine is out-of-control}.

To study the process with competing and propagating shifts, the sampling plan with one assignable
cause proposed by Lorenzen and Vance (1986) is used as the baseline. The sampling plan is illustrated in
Figure 1. A new inspection cycle starts with both machines being in good-as-new conditions. Inspection
continues until a true alarm is signaled. Therefore, the inspection cycle length is defined as the time since
the beginning of sampling until the two machines are restored correctively and/or preventively back to their
good-as-new conditions after a true alarm. After each "h" time units (called the sampling interval), N units
are sampled and inspected. If the number of nonconforming units in this sample exceeds an acceptance
threshold r, the two machines are investigated to determine if the out-of-control signal is a false alarm or

indeed a true alarm. All the sampled units found to be nonconforming are rejected without rework.

Shift is removed
A shift First sample and cycle ends

occurs  gaftera shift

Last sample

A sample of size N before a shift

istaken each h Falsealarm

- " S — Shift is
ime units Yy happ detected
: “ > . = y 4
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starts o > <y
e In-Control Period Out-of-Control Period »

Figure 1. Sampling plan proposed by Lorenzen and Vance (1986).

By taking into account competing and propagating shifts, the sampling plan shown in Figure 1 is
modified in Section 4. The objective is to design an attribute sampling plan considering stochastic
competing and propagating shifts. An optimization model is developed to minimize the long-run cost rate
and to find the optimal sampling parameters. The assumptions about system operation and the notation used
in this paper are provided next.

Assumptions
e The raw materials are defect free (i.e., incoming quality is perfect). Note that if the incoming quality

is not perfect, this effect can be folded into the first-stage in-control nonconforming probability.
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e Quality shift and machine failure are independent. For example, in an automated painting line, as
the ambient temperature decreases, paint becomes more viscous causing undesirable coat quality,
but the increased viscosity of paint does not cause a complete machine failure.

o The occurrences of assignable causes that cause shifts on the two machines are independent, as the
two machines perform different tasks, may run under different operating conditions, and are
composed of different components. As will be explained in Section 6, the degradation of turbine
discs causes a shift on the shot blasting machine, whereas the degradation of spraying nozzles
causes another shift on the painting machine. Both shifts are independent as they occur on different
machines without any linkage. Such assumptions about independent assignable causes (or shifts)
have been made by others such as Yu et al. (2010), Xiang (2013), and Salmasnia et al. (2017).

e The production rates and reliability of the two machines are not significantly different.

e There are enough storage areas for the finished products and WIP so that the production will not
be stopped because of lacking storage areas.

e The system is stopped during sampling, which prevents the process with a potential quality shift
from running during sampling. This is reasonable if the loss due producing nonconforming units is
high. Note that the sampling interval (i.e., /) is an important decision variable in this study.

e The two machines do not deteriorate or shift while being stopped.

e Maintenance requests can only be fulfilled in sequence. In other words, a machine can be
maintained only after the current maintenance action is complete. This is reasonable when only one
maintenance team is involved.

Notation

Decision variables

h Sampling interval measured in hours.
N Sample size
T Acceptance threshold

Objective function

LRCR Long-run cost rate measured in $/hour

Other variables, constants and indices

j Index referring to the sample number at which an inspection cycle ends
i,k,q,w Indices
m Index for a machine, m € {1,2}
G Inspection cycle operational time excluding false alarms, minimal repairs, true alarm,

and restoration times

Sm Shift of machine m, m € {1,2}
S12 Propagating shift
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Shift rate of machine m, m € {1,2}
Time to shift of machine m, exponentially distributed T, ~Exp(1,,), m € {1,2}
Time of occurrence of S,,, since the last sampling

Proportion of nonconforming
PON of machine m, m € {1,2}, f = {0, machine m is in-control; 1, machine m is out-

of-control}

PON of the production system

A function that represents p, in terms of machines’ PONs
Number of nonconforming units found in a sample of size N
Type-I error due to a false signal

Time process stays in the in-control state

Time the process is running with pg = p; = 0(P11, Po2)
Time the process is running with py = p, = 0(Po1, P12)
Time the process is running with py = p, = 0(P11,P12)
Type-I1I error when pg € {pl,pz,pg}

Average run length while the process is in-control
Average run length while the process is out-of-control with propagating shift

Number of samples taken while the process is in-control
Number of samples taken while the process is operating with p, = p;(p,)

Number of rejected units found during sampling in the in-control (out-of-control) period

Total number of rejected units during sampling

Average time of inspecting one unit of the product

Average time to search for a false (true) alarm on each machine
Average time to perform a minimal repair on machine m, m € {1,2}
Average corrective (preventive) restoration time on machine m, m € {1,2}
Total time of sampling in an inspection cycle

Total time of searching for false alarms in one inspection cycle
Average total time of searching for a true alarm in an inspection cycle
Total time of minimal repairs in an inspection cycle

Total restoration time in an inspection cycle

Average inspection cost per unit time

Average cost per unit time of searching for a false (true) alarm
Average cost per unit time of performing a minimal repair

Average corrective (preventive) restoration cost per unit time for machine m, m € {1,2}
Average lost production cost per one unit of the product

Average cost of a rejected unit found during sampling

Average cost of a nonconforming unit received by a consumer

Total cost of sampling in an inspection cycle

Total cost of searching for false alarms in an inspection cycle
Average total cost of searching for a true alarm in an inspection cycle
Total cost of minimal repairs in an inspection cycle

10
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RCs,(RCs,)  Average restoration cost if an inspection cycle ends with S; (S;)

RCs , Average restoration cost if an inspection cycle ends with S;,
RC Total restoration cost in an inspection cycle
LP, Lost production cost in an inspection cycle
CRJ Total cost of rejected units during sampling
CNC Total cost of nonconforming units received by customers
O (V) Shape (scale) factor of Weibull distribution of machine m, m € {1,2},6,, > 1
Im Production rate of stage m
Is Production rate of the system, mnel{i&}{gm}
hpy () Failure rate of machine m, m € {1,2}
M, (t) Expected number of failures of machine m, m € {1,2} in time interval [0, ]
MN,, Number of minimal repairs on machine m, m € {1,2} in an inspection cycle
AV System’s availability
PR Effective production rate
ATS Average time to signal
CP(NCP)  Number of conforming (nonconforming) products produced in one inspection cycle
TP Total number of products produced in one inspection cycle
cc Inspection cycle total cost
CT Inspection cycle total time

4. Model development

4.1. Stochastic cases

Let G be the time at which the inspection cycle terminates due to detecting a shift. The random variable
G € {h,2h,- , 0} is the operational time that does not include the stoppage times of inspection, false
alarms, minimal repairs, true alarms, and restorations, where the sampling interval h is the time between
two successive inspections. Clearly, the shortest length of G is h. Since the production process has

competing and propagating shifts, G can be derived based on the following three cases:

e (Case I: Machine 2 shift (S,) and machine 1 shift (§;) occur in the same sampling interval, i.e.,
between (i — 1)ht" and iht" sampling points as shown in Figure 2.

e Casell: S, is not detected before the occurrence of S; given that S, occurs between (i — 1)ht" and
iht" sampling points, and S; occurs after the ih" sampling point as shown in Figure 3.

e (ase lII: S, is detected before the occurrence of S; as shown in Figure 4.
It is worth pointing out that the above cases also apply when S; occurs before S,.

Case I. Let T; and T, be the times to shift of machines 1 and 2, respectively, and T; and T, follow the

exponential distributions with rates 4, and 4, respectively. Moreover, let 75 and 7g, be the times of
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occurrence of S; and S, respectively, since the most recent sampling. As shown in Figure 2, when T; >
T,, S, is missed because it is followed by S; before taking the next sample. Then, the production process

starts to produce units with propagating shift at the time of occurrence of Sj.

Tl
.
Ts,
T,
<4 TSZ P
x X hooX -
(i—1)h 52 51 ih

Figure 2. Case I, T; > Ts.

The probability that S, and S; happen in the same sampling interval given that Ty > T, is
ih ty
P(i—1)h<T,<T, <ih)= f f Aye~H2tz ) e~Mlidt, dt,
(i-Dh (i-Dh
A4

— oA (-Vh(,-A(i-1Dh _ ,—2A4ih
=e 2 e 1 e 1 +

(e=r+A2ih _ o=(a+22)(=Dh),

Thus, the probability that G = jh given that S; and S, happen between the (i — 1)** and i*" sampling
points and T; > T, is
J
P(G = jh,Casely,sy,) = ZP((L‘ —Dh<T,<T; <ih)B, (1 =Bp,), j=1,00, ()

i=1
where 3, is the type I error resulting from that the system is producing units with pg = p3 = p11 + P12 —
P11P12 according to equation 1. Let d be the number of nonconforming units in the sample, then the type

I error By e(p,p,ps} 10T Ps € {P1, D2, P3} is given as

r

N _
'BPSE{I?LPZ.I%} = Z <d>P§1 (1 - ps)N d. (3)

d=0
For instance, in Case [ and T; > T,, G = 2h if 0 < T, < T; < h and a shift is not detected until j = 2, or
h < T, <T; < 2h and a shift is detected at j = 2. Then, the probability that G = 2h is

A
{1 ) 4 2T (i 1) g, (1- )

A
n {e—lzh(e—llh — e 2 4 T 4—112 (e-Gata)2h _ e—(/11+/12)h)} (1-5,.).

The same procedure is followed for T, > T;. Hence, P((i — Dh < T, < T, < ih) and P(G =

Jjh, Case Iz, 7, ) can be expressed as follows, respectively:

12
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ih t;
P((i—-1)h<T, <T,<ih) = f f Ae Mt e hetadt, dt,
(i-1h (i-1)h

: ) ; A ; ;
— —Al(l—l)h —Az(l—l)h _ —lzlh + 2 —(Al"'lz)lh _ —(ll+12)(l—1)h
e (e e ) PN (e e ),

j
P(G = jh,Case lp,57.) = Z P((-Dh<T <T, <ih) Bl (1-B,) Jj=1.,0 (4

i=1

Case I1. As shown in Figure 3, S; occurs at least one sample after the occurrence of S,. Due to the type

I error, S, is always undetected until after the occurrence of S;. The minimum value of G is 2h as a result

that S, happens before taking the first sample (i.e., before time h) but is not detected, S; occurs afterwards,

and the total shift is detected at time 2h. If S, occurs in the sampling interval [(i — 1)h, ih], then S; could

occur in any subsequent interval [(i + k)h, (i + 1 + k)h] where 0 <k <j—i—1foranyi,1<i<j—
1 and j = 2. Note that a true alarm is alerted at j > i + 1 + k, and hence, k < j — i — 1.

T
L
T,
7 " S, is not detected
4 Sz% A @ 51 .
l * § * ......... * ; ‘_
(i-Dh ih (i+k)h (i+1+k)h

Figure 3. Case II, T, > T,.

The probability that G = jh in Case [l and T; > T, is
P(G = jh,Caselly>r,) =

j=1j-i-1
_ j— —2.1 - i _ i j—i—k—1 .

Z z (e722UmDh _ g=Aaih) (g=Aa(k+DR _ ¢ Al(k+1+z)h)'8§2-p-1ﬁégl (L=Bp)J =200 (5)

i=1 k=0

where 8, is the type II error (obtained by equation 3) that could result if the system is producing units with
Ps = P2 = Po1 + P12 — Po1P1a- For instance, P(G =h,Casell; sy, ) =0, and P(G=2h,
Case llz57,) = (1 — e~ *2")(e M —e~M2h)p, (1 — B, ), and so on.
The same procedure can be followed for T, > Ty, and P(G = jh, Case ll1,>7, ) is obtained as
P(G = jh,Casellr,>7,) =

j=1j-i-1
_ — —2.i - i — i j—i—k—1 .
z Z (e~M1l=Dh — g=Aain)(g=Aa(c+Dh _ oA (k+14DR) gl+1 - (1= Bp,) J = 2,00, ©
=0

i=1 k
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where 8, is the type II error (obtained by equation 3) that could result if the system is producing units with
Ps = P1 = P11 t Poz — P11Po2-
Case I1I. In this case, as shown in Figure 4, S, is always detected at time jh,j = i, and before the
occurrence of S;. The probability that G = jh given Case Ill and T; > T, can be expressed as
j
P(G = jh,Case llly,5p, ) = e~*1h Z(e-lz(i-l)h —e BB (1-p, ), j=1.,0 (3
i=1
For example, P(G = h,Case llly,~7,) = e (1 —e™%2")(1 -, ), and P(G = 2h,Case llly,>7,) =

B ((1— R, (1~ B,) + (R — e ) (1~ )], and s0 on

Tl
S R ] »
Ty
) ” S, is detected
< TSZ > A < T.S‘l >
‘ ‘ :; ‘-l-Il--l--*-------unnHS‘;_m
(i—-1h 2 ih jh !

Figure 4. Case III, T; > Ts.

Similarly, when T, > Ty, P(G = jh, Case lllz,5r, ) can be obtained as

~.

P(G = jh, Case HIT2>T1) = g~h2Jjh Z(e—ll(i—l)h — e~hih) ﬁ,{;i(l _ ﬂm)’ j=1,-,00. (8
i=1

Consequently, following the above cases, the expected value E[G] can be given as

E[G] = Ay + A, + A3 + Ay + Ag + A, 9

where 4, to Ag are the weighted expected values of the cycle length given all cases. A; to Ag are obtained

as follows, respectively:
h(e(ll"'lz)h_ﬁp?))(zzelzh(eﬂqh_l)_ll(elzh_l))

Aa+22)(1-Bp,) (e P14 1)

)

Ay =X%,jh-P(G = jh,Caselr,sr,) =

h(eP1tAh-p, A, et1h (A2 1)1, (e*1"-1))

(A1 +22) (1) (e P14 —1)*

)

Ay =Y, jhP(G = jh,Caselpr, ) =

o . _ hﬁpz(el1h_1)(elzh_1)(el1h+(ﬂp3_2)6(211+12)h+ﬁp2(e(l1+lz)h_ﬁp3))
A3 = Z]:Z]h . P(G = ]h, Case IIT1>T2) - (ﬁp3_1)(e(ll+12)h_1)2(el1h_'3p2)2 )

e . _ hﬁpl(eﬂ.lh_1)(eﬂ.2h_1)(eﬂ.2h+(ﬁp3_Z)e(ﬂ.l+212)h+ﬁp1(e(ﬂ.l+12)h_ﬁp3))
Ay =X, jh P(G = jh, Case HT2>T1) = (Bps-D (e ADh-1)2(eA2h—f )2 ’

© . h(Bp, e 1 (eh2h-1) (B, —e PR+
A = ijljh *P(G = jh,Casellly >r,) = = (e(/l1+12)h_1)2(ellphz_ﬁpz)z )
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h(ﬁpl_1)elzh(ellh_1)(ﬁp1_e(}tl+2}tz)h)
(e(A1+2.2)h_1)2(eﬂ.zh_ﬁp1)2

Ag = 3%, jh-P(G = jh,Caselllp,sy, ) =

4.2. Time and cost of sampling
The average number of samples taken during the inspection cycle equals to E[G]/h. Then, the expected

time of sampling E[S;] can be expressed as

Fis) == (10)

where t, is the average time of inspecting one unit of the product. Let C be the average cost per unit time
of sampling, then the expected cost of sampling E[S,] is
E[SC] = CSE[St]' (11)

4.3. Time and cost of false alarms
The process is out-of-control once any of the two shifts occurs. Consequently, the time period that the
process is in-control T;, follows the exponential distribution with T;, = Min(T;, T,)~Exp(4; + 1,).

Therefore, the expected time that the process is in-control E[T;,] is

1
ElT,] =
1) = 7570
Let Q;,, be the number of samples taken when the system is in-control. Then, its expected value is
0 . ' 1
= i (p—(A1tA2)ih _ ,—(A1+43)(I+ DR —
Elo,] = )i+ (m it — e-Gasaisn) -

=0

As a result, the expected total time of false alarms E[TTg4] is given by

E [Qin]
ARL,’

E[TTgs] = 2 Try (12)

where Tr, is the average time for identifying a false alarm on each machine , ARL is the average run length
when the process is in-control (i.e., the average number of samples taken until a false alarm is alerted), and
E[Qin]/ARLy is the average number of false alarms in one cycle, in which ARL, is (Montgomery, 2009)

ARL, = l,

o
where the type-I error @ is reported when pg = pg = Po1 + Poz — Po1Poz and d > r, which is given by
r
a=1- Z (Z) p§ (1 —pe)" .
d=0

The direct cost of false alarms is due to the effort taken for identifying false alarms and inspecting

machines. Let Cr,4 be the average cost per unit time of searching for a false alarm. Then, the expected total
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cost of searching for false alarms can be expressed as
E[FA;] = Cpy E[TTg,]- (13)
4.4. Time and cost of searching for a true alarm
Let Cy4 be the average cost per unit time of searching for a true alarm, then the average total time TTr4 and
cost TA, of searching for a true alarm are given as follows, respectively:
TTrg = 2 Try, (14)
TA; = Cry TTra. (15)
4.5. Restoration time and cost
Restoration time is the time required for machine maintenance and shift removal(s). Since inspection ends
with a shift, at least one of the two machines need corrective restoration. Three possible scenarios are
described next.
e [nspection cycle ends only with S;
For this scenario, machine 1 is correctively restored, and machine 2 is preventively restored. The probability
that the inspection cycle ends with this scenario equals the probability that S; is detected before the
occurrence of S,. Let CRT; and PRT, be the average corrective restoration time of machine 1 and the
average preventive restoration time of machine 2, respectively, and C-; and Cp, be the average costs per
unit time of corrective and preventive restorations on machines 1 and 2, respectively. Then, the average
restoration cost of this scenario RCg, is
RCs, = C¢q1 CRTy + Cpy PRT,.
e [nspection cycle ends only with S,
In this scenario, machine 2 is correctively restored, and machine 1 is preventively restored. The probability
that the inspection cycle ends in this scenario is the probability that S, is detected before the occurrence of
Si1. Let PRT, and CRT, be the average preventive restoration time of machine 1 and the average corrective
restoration time of machine 2, respectively, and C., and Cp; be the average costs per unit time of corrective
and preventive restorations on machines 2 and 1, respectively. Then, the average restoration cost of this
scenario RCg, is
RCs, = Cpy PRT; + C¢, CRT,.
o [Inspection cycle ends with propagating shift S;,
In this scenario, both machines have shifted, and corrective restorations are carried out on both machines.
The average cost of restoration of this scenario RCg , is given as
RCs,, = C¢q CRTy + C¢p CRT.

Hence, the expected total restoration cost E[RC] and time E[RT] are given as follows, respectively:
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E[RC] = RCs, Bg + RCs, Bs + RCs_, B, (16)

E[RT] = (CRT, + PRT,) By + (PRT, + CRT,) Bs + (CRT, + CRT,) B, (17)

where B;(B,) is the probability of Case I given T; > T,(T, > T;), B3(B,) is the probability of Case II
given Ty > T,(T, > T), and B5(Bg) is the probability of Case III given T; > T,(T, > Ty). B, and B; to
By are given as follows, respectively:

B=B,+B,+B;+B,,

Al(l_elzh)_'_lz (e(ll+lz)h_elzh)
(a+2p)(eM+idh-1) 7

By =%, P(G = jh,Casely o, ) =

AZ(1_ellh)+21(e(11+12)h_ellh)
(A1+22)(eP1+A2)h—1) ’

B, =%, P(G = jh,Caselr,sr, ) =

o . Bp, (e*1-1)(e*2"-1)
B3 = ]=2P(G = .]h' Case IIT1>T2 ) = (e(f]_2+lz)h_1)(ellh_ﬁp2)i

Bp, (e*2"-1)(eM1h-1)
e(ll+).2)h_1)(elzh_ﬁp1)'

I G G
= O oA,y

_ MM 1)(1-py,)
G G

By = Y52, P(G = jh,Casell,r, ) =7

Bs = X5, P(G = jh,Case llly 57, )

B = X532, P(G = jh,Case llly,5q, )

4.6. Time and cost of minimal repair
Minimal repair is performed each time a machine fails unless a shift is detected. By nature, minimal repair
does not change the failure rate of a failed machine. The failure rate h,,(t) of machine m is given as

() = 2 (i)gm_l,

mYm

where 6,, > 1 and Y, are the corresponding shape and scale parameters of the Weibull distribution,
respectively. Then, the expected number of failures (i.e., minimal repairs) M,, (t) of machine m during the
interval [0, t] can be obtained as

Om

t
M, (£) = Of h, (W)du = (i)

Since machines do not age during downtime, the expected number of minimal repairs on machine m in

each inspection cycle E[MN,,] can be expressed as
e }h Om
E[MN,] = —| P(G=jh), 18
[MNy] ;<ym) G =jh) (18)

where

P(G = jh) = P(G = jh,Caselr,5r,) + P(G = jh,Case Ir,sr, ) + P(G = jh,Case Il 5q,) +
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P(G = jh,Caselly,sy,) + P(G = jh,CaseIlly,5p, ) + P(G = jh, Case Il r, ).

Since the purpose of minimal repair is to make a failed machine operational again with minimal
resources, the PON of the system will be the same as that right before the failure. Let Ty, and Cyppm, m €
{1,2} be the average time and cost per unit time to perform a minimal repair on machine m, respectively.
Then the expected total time E[MRT] and the expected total cost of performing minimal repairs E[MR,]
are given as follows, respectively:

E[MRT] = Typ1EIMN,] + Tyro EIMN,], (19)
E[MR.] = Cyr1Tur1EIMN1] + CypoTur2 E[MN,]. (20)
4.7. Cost of lost production
The time due to stoppages for searching for false alarms and true alarms, sampling, minimal repairs, and
restoration causes loss in production. Let C;p be the average cost of lost production per one unit of the

product, then the expected cost of lost production E[LP,] can be expressed as

E[LR] = CLpgs{E[TTpal + TTra + E[S:] + EIMRT] + E[RT]}, (21)
where g, is the system’s production rate given as g; = rg{ilnz}{ 9m} where g, is the production rate of
me(1,

machine m.

4.8. Cost of units rejected in all samples

Any nonconforming unit found in a sample is rejected without replacement, and the production process at
each sampling time should be in one of the following states: in-control state and three out-of-control states.

To find the cost of rejected units in all samples, we first define the following quantities:

N
N
aps = z d (d>Pg (1 - pS)N_d' Ps € {pO' P1, P2, p3}'

d=r+1

T
N
by, = Z d (d)Péi (1 =p)""% ps € {Po, P1, P2, D3}
d=0

where a,, represents the expected number of nonconforming units found in a sample if a false or a true
alarm is alerted ,whereas by, refers to the expected number of nonconforming units found in a sample taken
if no alarm is alerted. For instance, a,, is the expected number of nonconforming units found in the last
sample that alerts the true alarm when the process is operating with S; ,whereas by, is the expected number

of nonconforming units found in a sample taken while the process is in control and no false alarm is alerted.
Any sample taken in the in-control period may indicate no alarm or false alarm, and the expected
number of samples with false alarms equals to the expected number of false alarms. Then, the expected

number of rejected units found during inspection when the process is in-control E[V;;,] is
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E[Vin] = aE[Qin]apo +(1- a)E[Qin]bpo-
The expected total number of rejected units during inspection E[V] is given as
E[V] = E[Vi,] + E[Vouel, (22)

where E[V,,,;] is the expected total number of rejected units found in the out-of-control state. The derivation
of E[Voy,] is provided in the Appendix. Let Cg; be the average cost of a rejected unit, then the expected

cost of rejected units E[CR]] is
E[CR]] = Cg,E[V]. (23)

4.9. Cost of nonconforming units delivered to customers
A nonconforming unit found by a customer may cost more than a nonconforming unit found during the
inspection. Let Cy be the average cost of a nonconforming unit received by a customer, then the expected

cost of nonconforming units received by customers E[CNC] is given by

E[CNC] = Crc{gs(poE[Tin] + PrEITs,] + poE(T5,] + p3EITs,,]) — ElV}, (24)
where E[T;, ], E[Ts,], and E[Tg, ] are the expected values of times that the process could operate with S;,
S5, and S5, respectively. The details of these terms are given in Section 5.
4.10. Expected total cycle cost and time
Based on the above calculations, the expected total cycle cost E[CC] and the expected total cycle time
E[CT] can be obtained as follows, respectively:
E[CC] = E[S.] + E[FA.] + TA. + E[RC] + E[MR_.] + E[LP.] + E[CR]] + E[CNC], (25)
E[CT] = E[G] + E[S;] + E[TTg4] + TT74 + E[RT] + E[MRT]. (26)

5. Optimal design of the sampling plan

The optimal sampling parameters are determined by minimizing the long-run cost rate LRCR =
E[CC]/E[CT], which is the ratio between the expected total cycle cost and the expected total cycle time.

The mathematical formulation of the problem is given by

min LRCR = @ (27)
N,h E[CT]
Subject to AV = A (27.1)
PRysr =2 W (27.2)
ATS <L (27.3)
N < (h—up)gs, le{1,45,6} (27.4)
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N>r (27.5)
NrezZ+, h>0. (27.6)

The formulation belongs to a Mixed Integer Nonlinear Programming (MINLP) problem. Equation (27)
states that LRCR is minimized with respect to the three decision variables N, r, and h. Equations (27.1) -
(27.3) specify three performance constraints. In equation (27.1), the system availability AV must be greater
than or equal to a predefined threshold A to ensure the expected total number of units produced in one cycle.
However, with increased availability, both the expected numbers of conforming and nonconforming units
increase. Since the latter is undesirable, equation (27.2) imposes another constraint on the effective

production rate PR,sf to ensure the fraction of expected number of conforming units produced is above a

certain level W. Moreover, equation (27.3) is used to ensure the speed of detecting process shifts in terms
of the average time to signal ATS. ATS is defined as the average time taken to alert a true alarm since the
occurrence of a shift. In practice, ATS could be short to avoid excess losses when producing products in the
out-of-control state (i.e., ATS should be less than or equal to a threshold L). Inspection at each sampling
time is carried out from the last unit produced, and a group of constraints given by equation (27.4) is
provided to ensure that units are sampled from only one population (i.e., with the same p). These
constraints also guarantee that N is always less than the number of units produced between two inspections.
Note that because u; > u, when T; > T,, we have h — u; < h — u,. Moreover, because u, > u; when
T, > T;,wehave h —u, < h — uz (u to ug are defined below). Therefore, the constraints corresponding
to [ € {2,3} are redundant. Lastly, the decision variables r and N (> r) are nonnegative integers, and h is a
positive continuous variable as specified in equations (27.5) and (27.6), respectively.

Since the three performance measures are essential to the operation of this system, they will be
elaborated next.
System’s availability

The system’s availability AV is defined as:

AV = m (28)
E[CT]
which is the ratio between the expected operational time in a cycle and the expected total cycle length.
Effective production rate

The effective production rate PR,sr is the proportion of the expected numbers of conforming units

produced E[CP] in the inspection cycle. PR, can be obtained as
E[CP] E[NCP]

Rery E[TP] E[TP]’

where E[TP] and E[NCP] are the expected total number and the expected number of nonconforming units
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produced in one cycle, respectively. E[NCP] is the sum of the number of nonconforming units produced in
the in-control state and the other three out-of-control states. Since each state has a different p, E[NCP] and
E[TP] are given as follows, respectively:
E[NCP] = gi{poE[Tin] + p1E[Ts,] + p2E[Ts,] + p3E[Ts,, 1},
E[TP] = g,E[G].
Therefore, PR,y is

{pOE[Tin] + plE[Tsl] + pZE[Tsz] + p3E[T512]}
E[G] ’

PRy =1- (29)

where
E[Ts,] = {us —ug}C, + C4 + Cg,
E[Ts,] = {u; —u3}Cy + C5 + G,
E[T,,,] = (hARLs, —u;)Cy + (RARLs,, — uys)Cy + (hARLg,, —us)C; + (RARL; , — us)Cs,

where u, (u3) is the conditional expectation of 7g, given Case I, T; > T5(T, > T;) ,whereas u,(u,) is the
conditional expectation of 7g, given Case I, Ty > To(T, > T1), us(ue) is the conditional expectation of
Ts, (Ts,) given Case I/, C;(C,) are the corresponding probabilities of Case I, Ty > Ty(T, > Ty), €5 =

E[T, Caselly,sy, |, Cy = E[Ts,,Caselly,sy, |, Cs = E[Ts,,Case lly, sy, |, Co = E[Ts,, Case lly,sr, |,

and C;(Cg) is the probability that the time needed is hARL, , — us (RARLg , — ue) to alert a true alarm

S12

since the occurrence of a shift given Case II, Ty > T,(T, > Ty). The derivations of E[Ty, ], E[Ts,],
E[T.

s,,) U1 to ug, and C; to Cg are given in the Appendix.

Average time to signal

As defined earlier, ATS is the average time taken until the sampling plan is successful to alert a true alarm
since the occurrence of a shift. However, the process could run with two shifts (propagating shift), and
hence, the exact definition of ATS will be the average time taken to alert a true alarm since the occurrence
of the earlier shift. In Case I, as shown in Figure 2, S; or S, occurs first, and then, it propagates and becomes
S12 until it is detected. The average number of samples taken to alert a true alarm is ARLg ,, and hence,

ATS|Casel is

hARLS12 — Uy, T1 > T2
ATS|Case I = {hARL —ws, T,>T.

S12

As shown in Figure 3 (T; > T ), S, occurs Tg, time units since time (i — 1)h. Therefore, gh — ug + us is

the elapsed time between the occurrences of S, and S;. At the time of the occurrence of S; , the process

starts operating with Sy, until true detection, i.e., hRARL; , — us units time needed to alert a true alarm.
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Summing up these times, h(q + ARLg,,) — u¢ is the ATS since the occurrence of S,. The same applies

when T, > Ty, but with h(q + ARlez) — usg, and therefore, ATS|Case 11 is given as

h(q+ARL512)—u6, Ty >T,,q={1,-,00}

ATS|Case 11 ={
h(q+ARL512)_u5: TZ >T1 »q :{1""100}'

where g refers to the number of samples taken between the occurrence times of the two shifts.
For Case 111, as shown in Figure 4, there is no S;,. Therefore, ATS|Case III is

_ Wh—u6, T{>T, ,W:{l,"',OO}
arsicasett= {700 = e
where w represents the number of samples that process undergoes with S, (S;) until a successful detection.
Note that ATS |Case 7,57, and ATS |Case 7,7, equal to the conditional expectations of Ty, and T ,

respectively, given Case III as shown in the Appendix. Therefore C5 and Cg are used in the equation below.
Considering all cases, ATS is given by

ATS = (ATS|Case ) C; + (ATS|Case ) C, + D; + Dy + Cs + Cq, (30)

where

[ee] [ee]
D, = Z Z (ATS|Case I17,57,) (e~32U=Dh _ g=12il) (g=ha(i+a-Dh _ g=Aa(+@)h) g —
g=1i=1

B2(R(ARLs,,+1)~ug)(e?1h—e2A1h—e(A1+42)h 4 e 2A1+42)R) 1 B2 (R ARL, , —ue ) (e1h+eP2h—e(A1+22)h_1)
(e(ﬂ.l+lz)h_1)(ellh_ﬂ2)2 ’

[ee] [ee]
D, = Z z (ATS|Case 117,57, (e U=DR _ g=hail)(g=Aa(i+a=Dh _ g=Ro(i+)n) g4 —
q=1i=1

B1(h(ARLy,,+1)—us)(e*2h—e?A2h—e(R1+A2)h e (M1 +24200) L p2(nARL,

_us)(ellh_'_elzh_e(11+12)h_1)
(6(2'1+12)h—1)(€ﬂ'2h—ﬂ1)2 *

6. Numerical example and sensitivity analysis

We consider an automatic shot blasting and painting system as shown in Figure 5. Small fabricated steel
parts such as cleats or rails are first loaded into the conveyor (or hanged on a monorail) and fed into the
shot blasting chamber to remove rust from the surface of each part and texturizes it for better paint adhesion.
Afterwards, parts are moved to the painting chamber for coating. Both blasting and painting are performed
in closed environments. In the blasting machine, turbine disks that blow shot blasting balls on part surface
are subject to degradation. Degradation of those disks reduces the amount of balls that hit the surface, so

that possible rust could be left on the part’s surface. On the other hand, the nozzles of spray guns in the
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painting chamber may be clogged so that they cannot uniformly spray paint and may dip some frozen paint
particles on the part’s surface. Indeed, painting on a rusty surface and dipping frozen paint particles cause
a rough paint appearance. At the end of the line, a sampling plan by attributes explained previously is
employed for inspecting the painted products. The deteriorated turbine disks and spray guns are considered
as the sources of assignable causes, but they do not cause machines to breakdown. Instead, machine failures
can be caused by other reasons such as overheating and power outage.

Disc turbine Clogged nozzle
breakdown degradation breakdown of spray gun

SOZAN

Finished product

Product flow _ Painting p '
> Shot blasting » Sampling
= chamber

Corrective
maintenance
Corrective
maintenance

Preventive
maintenance
maintenance

w
=
[
19
a
—
2]
=
0
e
a
(S

Figure 5. Automatic production line of shot blasting and painting.

Tables 1-3 show the parameters of shifts, failures, production rate, costs, time elements, and bounds of
different constraints. Tr4 is chosen to be greater than T4, as it is often easier to detect a shift when a process
actually has shifted, whereas more time may be spent to verify that there is no shift in case of a false alarm.
Cra and Cp4 are assumed to be equal as the same tooling and practices are required. The time and cost of
maintenance increase as the degree of a maintenance action increases. Specially, corrective restoration may
include replacing some components (e.g., turbine disk, spray gun, filter, nozzle) and thus require more
tooling than other types of maintenance. However, a minimal repair needs the minimum resources to make
the failed machine operational again. Therefore, we have Cgp, > Cppy > Cyg and CRTy, > PRTy > Tiyg.
Moreover, since Cy . may include indirect costs such as claims and the company’s goodwill, it is assumed
that Cy is greater than C;p and Cg;. The values of 4; (A;) shown in Tables 1 and 5 are chosen according
to Zhong and Ma (2017), Mehrafrooz and Noorossana (2011), and Yang et al. (2010) where 0.001 < A <
0.15, whereas the values of py;(pg2) and p;1(p12) shown in Tables 1 and 4 are chosen with respect to the

values used by Zhu et al. (2016) where 0.02 < p, < 0.04 and 0.08 < p; < 0.12.

Table 1. Shift and failure parameters, and production rate.

Po1 P11 Doz P12 A4 Az 0, 0, Y1 V2 91, 92
0.03 0.10 0.05 0.10 0.01 0.03 1.5 2.0 10 10 100,100
hr! hr! hr hr units/hr
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Table 2. Cost parameters.

CS CC 1 Cpl CCZ Cp2 CM R1 CM R2 CF A CTA CLP CR ] CN C
100 1200 600 1200 600 150 150 200 200 3.00 3.00 4.50
$/hr $/hr $/hr $/hr $/hr $/hr $/hr $/hr $/hr  $/unit  $/unit  $/unit

Table 3. Parameters of key time elements and bounds of constraints.

tg CRT, PRT, CRT, PRT, Tygri Tur Tra Tra L A w
0.5 50 25 50 25 15 15 15 7.5 3.00 0.800 0.900
min/unit  min min min min min min min min hr

The MINLP problem given in Section 5 is mathematically complex since it has continuous and discrete
decision variables and a discontinuous solution space. Moreover, the complex expressions involving
discrete decision variables make the problem more complex. As a result, it is difficult to solve the
optimization problem analytically or by an exact solution method. Instead, metaheuristics like Genetic
Algorithm (GA) can be used. GA searches in parallel from a population of points so it can effectively
explore many different solutions at the same time. When a certain solution turns out to be nonoptimal, GA
discards it and proceeds with other more likely candidates. Therefore, GA does not tend to be easily trapped
by local optima (Ahmed et al. 2014). In the literature, similar sampling plan problems have been solved
using GA (e.g., Safaei et al., 2015; Abolmohammadi et al., 2019). Sultana et al. (2014) use both GA and
Simulated Annealing (SA) in the economic design of X control chart, and the results show that GA provides
solutions similar to SA but with less time. Moreover, GA is found superior (in terms of the quality solution
obtained and the processing time) to SA, Particle Swarm Optimization (PSO), and Differential Evolution
for the optimal design of multivariate EWMA (Malaki et al. 2011).

Due to the advantages of GA in solving such MINLP problems, especially those on sampling plans,
GA in MATLAB R2019b is used in this work. In this study, the population size is twenty as only three
decision variables are to be determined. The integer GA solver in MATLAB overrides settings supplied for
creation, crossover, and mutation functions. Instead, GA uses special creation, crossover, and mutation
functions (MATLAB & Simulink, 2019). To make the search process more efficient, strict constraint and
function tolerance are used (set to default values, i.e., 1 X 1073 and 1 X 107, respectively). Moreover, the
UseParallel option is used to compute the fitness value and the feasibility of nonlinear constraints in parallel

to speed up the computation. The search process is stopped if any of the following criteria is met:

e The maximum number of generations (iterations) is reached. Here, the default number is used (i.e.,
100 x number of decision variables).

e The average change in the penalty fitness value is less than the function tolerance over stall
generations where the maximum stall generations is 50.

e Time limit is reached. Here, the default setting is used (i.e., infinity).
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e There is no improvement in the objective function during an interval of time called stall time limit.

Here, the default setting of the stall time limit is used (i.e., infinity).

The optimal solution is LRCR* = $141.61/hr, r* = 1, N* = 5, and h* = 0.428 hrs. The optimization
problem is solved many times with an average computational time of 133 seconds. To illustrate the
economic benefits and the proper use of the proposed sampling plan in practice, an alternative design that
allows only one assignable cause to occur in an inspection cycle is compared. Specially, the two designs
are defined as follows:
e Model 1 (proposed in this paper) allows two assignable causes to occur in an inspection cycle.
e Model 2 considers that only one assignable cause can occur during an inspection cycle without
considering shift propagation (e.g., Yu et al., 2010; Salmasnia et al., 2017). It is worth pointing out
that Model 2 is similar to Case III in Model 1.

LRCRy; and LRCR, are used as the objective functions of the two models, and their performance
measures are investigated over a wide range of parameter settings. Moreover, the influence of the required

ATS and the marginal effects of decision variables are also examined. The analysis is explained next.

Effect of PON(s) on models’ performances. Collecting large data might be needed to estimate PON(s)
parameters, and they depend on the machine’s condition. To cope up with the uncertainty that could arise
from imprecise estimation, the impact of those parameters on the performances of the two models is shown
in Table 4. The parameters are changed by different percentages of the original setup (see Table 1). Since
Model 2 allows only one shift to occur, as PON(s) are changed by = 4+30%, more samples are taken, and
the number of false alarms increases to alert an earlier true alarm. This increases the costs of false alarms,
lost production and sampling, and reduces the cycle time. Hence, LRCRy;, > LRCRy;;when PON(s) are
changed more than +30% where PR,.sr < 0.900. This justifies why Model 2 has a larger (or equal) N
compared to Model 1. Although the costs of Model 1 increase when PON(s) are changed less than +30%,
this increase is absorbed by a longer cycle time making LRCRy;q; = LRCRy;,. One can see that on average,
LRCRy, is only 0.41% less than LRCR,,4 in the range from —50% to +20%, whereas LRCR ;4 is 7.4% less
than LRCRy, in the range from +30% to +100%. This means that for the full range, Model 1 can be used.

Table 4. Effect of PONs on the optimal solutions of the two models.

PON Model 1 Model 2
Po1 P11 Doz P12 r N h LRCRy r N h LRCRy, PResyr
—50% 0.015 0.05 0.025 0.05 0 2 0417 12252 0 2 0450 121.03" 0.900
—40% 0.018 0.06 0.03 0.06 0 2 0502 12552 0 2 0542 124.54" 0.900
—30% 0.021 0.07 0.035 0.07 0 2 0.588 129.22 0 2 0.634 128.73" 0.900
—20% 0.024 0.08 0.04 0.08 0 2 0674 13337 0 2 0.727 133.37° 0.900
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—10% 0.027 0.09 0.045 0.09 0.761  137.80" 0.820 138.18  0.900

0% 0.03 0.1 0.05 0.1 0.428 141.61 0.457 141.21°  0.900
+10%  0.033 0.11  0.055 0.11 0.507  143.00" 0.542  143.01 0.900
+20% 0.036 0.12 0.06 0.12 0.383  144.56 0410 144.51"  0.900

0.442 146.18"
0.506  148.49"
0.573 15134
0.634 154.84"
0.704 158.47"
0.388 160.25"
0434 162.42°
0.483 164.91"

+30% 0.039 0.13 0.065 0.13
+40% 0.042 0.14 007 0.14
+50% 0.045 0.15 0.075 0.15
+60% 0.048 0.16 0.08 0.16
+70% 0.051 0.17 0.085 0.17
+80% 0.054 0.18 0.09 0.18
+90% 0.057 0.19 0.095 0.19
+100%  0.06 0.2 0.1 0.2

0378 152.88  0.891
0.534 161.63  0.884
0.628 163.13  0.875
0.405 168.12  0.868
0.679 17233  0.860
0443 176.24  0.853
0498 177.83  0.845
0.308 180.27  0.837

e e e e e e e i =)
W W W s A B B B B 0D
e e e e e e e e e e L =)
[T R = T T S 24 IRV B N SRV RO, B O]

Effect of quality shift parameters on models’ performances. Parameters, 4, and A1, are related to the
process that are difficult to estimate. These parameters are changed within wider ranges as shown in Table
5. High 4, and 4, increases the probability that shifts occur earlier, and hence, the probability of having a
propagating shift increases. The costs of restoration and lost production increase since machines are highly
likely to need corrective maintenance. Although the total cost increases more in Model 1, the increase is
absorbed by a longer cycle time. This makes Model 1 more economical than Model 2 when 1, and A, are
high (i.e., 0.05 < 1; <0.08 and 0.07 < 1, < 0.1) where 0.724 < A < 0.767. For the medium ranges (i.e.,
0.02 < 4; < 0.045 and 0.04 < 4, < 0.065), the cycle time of Model 1 is not long enough to absorb the
increased costs of restoration and lost production, and therefore, Model 2 performs better where 0.776 <
A < 0.800 . Low values of 4; and A, (i.e., 0.0025 < A; < 0.015 and 0.0225 < A, < 0.035) enable the
process to stay longer in the in-control state. This allows enough time to detect a shift before the occurrence
of the other shift and reduces LRCR of both models. The long in-control times in both models make
LRCRy;, = LRCRy;,. As seen in Table 5, there is a noticeable increase in each model’s LRCR as A and 4,
increase. For instance, LRCR,, of the first scenario is 14.86% and 52% less than LRCR,;; of the original
setup (i.e., 4; = 0.01 and A, = 0.03) and the last scenario, respectively. Since the shift rate is one of the
features of a machine, the decision maker can focus on how to reduce the shift rate. Redesigning or replacing
machines to achieve a cost reduction could be a valuable option. For example, an automated painting
chamber can be reinsulated with better insulation material to avoid spraying products with high viscous

paint in a cold environment that reduces undesirable coating.

Table 5. Effect of shift parameters on the optimal solutions of the two models.

Model 1 Model 2
A Ay r N h LRCR r N h LRCRy, A
0.0025 0.0225 0 2 0.823 12057 0 2 0840 120.76  0.800
0.005  0.025 0 2 0.832 128.20" 0 2 0867 128.58 0.800
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0.01 0.03 I 5 0428 141.61 1 5 0457 141217 0.800
0.015  0.035 I 5 0435 152.78 1 5 0481 151.71° 0.800
0.02 0.04 1 5 0440 163.49 1 5 0506 161.67° 0.800
0.025  0.045 I 5 0448 17342 1 4 0325 171.16° 0.795
0.03 0.05 1 4 0291 182.54 1 4 0359 177.53° 0.785
0.035  0.055 0 12 4.085 194.71 1 4 0363 18597 0.783
0.04 0.06 0 12 4.080 201.20 0 16 5190 197.11°% 0.782
0.045  0.065 0 12 4.073 207.69 0 16 4.688 20627 0.776
0.05 0.07 0 12 4.067 21411 0 16 4275 21540  0.767
0.055  0.075 0 12 4.059 22043 0 16 3930 22445 0.758
0.06 0.08 0 12 4.052 22663 0 16 3.637 23339 0.750
0.065  0.085 0 12 4.044 23270 0 17 3.872 237.08 0.750
0.07 0.09 0 12 4.036 23861 0 17 3.620 24535 0.742
0.075  0.095 0 12 4.028 24437 0 17 3401 25380  0.728
0.08 0.1 0 12 4.020 249.99" 0 17 3206 26193 0.724

Effect of Cpy on models’ performances. As shown in Table 6, there is no significant difference
between LRCRy;; and LRCR,,, at each level of Cr4, so either of the two models can be used. Naturally, the
expected cost of false alarm increases as Cpy increases with the same sampling parameters. When
Cra >150, r increases to avoid frequent false alarms by accepting nonconforming units during inspection.
Moreover, N increases to reduce type I error @ and to achieve the desired PR, . Since withr =0 and N =
2, a becomes high, the only way to reduce the number of false alarms is to reduce the number of samples
taken by having a longer h. This justifies why h is higher for Cr, < 150 (Model 1) and Cr, = 50 (Model
2), and why it is lower for the other levels of Cr4. As seen in Table 6, there are two setups that can be used
for inspection: for Cry <200 (Model 1), the setup with (r, N, h) = (0, 2, 0.847) is appropriate, and for
Cra =200, the setup with (1, 5, 0.428) is more economical. For Model 2, the setup with (0, 2, 0.838) is
appropriate for Cr4, = 50, whereas (1, 5, 0.457) is used for Cr4 >50. Practitioners can choose between the
two setups for a given value of Cr4 without the need for solving the problem again (i.e., the two setups are
usable for a wide range of Cr4). In addition, more solutions can be obtained from those setups by changing
the decision variables slightly to achieve further reduction in LRCR especially if the constraints are not
violated significantly. This strategy allows more flexibility in selecting the most appropriate solution to
cope with possible uncertainties and specific conditions. For instance, if a product is produced for a new
customer, management may decide to reduce h (in Model 1) slightly to 0.800 as opposed to 0.847 (Cr, <
200) to increase customer satisfaction by increasing the inspection frequency regardless of the increase in
LRCRy; .

Table 6. Effect of Cr4 on the optimal solutions of the two models.
Model 1 Model 2
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Cra r N h LRCRy;, r N h LRCR,;
50 0 2 0841 131.54° 0 2 0838 13243

100 0 2 0847 13516 1 5 0457 136.07

150 0 2 0847 138.78 1 5 0457 138.64"
200 1 5 0428 14161 1 5 0457 14121
250 1 5 0428 144.19 1 5 0457 143.77"
300 1 5 0428 146.86 1 5 0457 14633
350 1 5 0428 149.42 1 5 0457 148.90"

Effect of Cip on models’ performances. As seen in Table 7, there is no significant difference between
LRCR,;, and LRCR,,, at each level of C;p, and either of the two models can be used. Since the total cost
increases with the increase in non-productive times such as sampling and false alarms, a high C;p decreases
N and increases h in order to increase AV. A low N means less time will be spent at each sampling, and a
high h means a smaller number of samples will be taken, and hence, resulting in higher AV. On the contrary,
a low C;p permits to inspect more units but with a lower h. The higher values of N, as in the first scenario,
reduce the number of false alarms by accepting nonconforming units during inspection (r = 1), and a low
h reduces the cost of rejected units received by customers. For Model 1, practitioners can choose the setup
with (0, 2, 0.847) for any C;p =4 and (1, 5, 0.428) for any C;p < 4. For Model 2, the setup with (0, 2,
0.914) can be used for C;p = 7, whereas (1, 5, 0.457) is appropriate for C; p < 6. Hence, given the value of

C.p, the corresponding setup can be immediately identified for each model.

Table 7. Effect of C;p on the optimal solutions of the two models.

Model 1 Model 2
Crp r N h LRCR r N h LRCRy,
1 1 5 0428 105.71" 1 5 0457 106.13
2 1 5 0428 123.67° 1 5 0457 123.67
3 1 5 0428 141.61 1 5 0457 141217
4 0 2 0.847 159.22 1 5 0457 158.74"
5 0 2 0847 176.04" 1 5 0457 17627
6 0 2 0847 192.84" 1 5 0457 193.81
7 0 2 0847 209.66" 0 2 0914 21097

Influence of ATS constraint L on models’ performances. Table § illustrates the optimal solutions of the
two models under different levels of L. A high L allows the process to operate for a long time without
alerting a true alarm. This increases the total cost and cycle length of the two models. Because Model 2
allows only one shift to occur, the increase in its cycle length is much less compared to that of Model 1.
For instance, when L = 13.95, the cycle length of Model 1 is 27.04% longer than that of Model 2. This
makes Model 1 more economical than Model 2 for L > 9.5. For L < 9, LRCRy;, on average is just 0.64%

less than LRCRy;q, whereas LRCRy;q is 1.92% less than LRCRy, for L = 9.5. It is worth pointing that
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LRCR,;, approaches a constant when L >13.50, and LRCR,, approaches a constant when L > 9.50. This
means that relaxing the constraint on ATS makes Model 1 preferable than Model 2 under AV > 0.8 and
PR.¢r = 0.9. Clearly, further reductions in LRCRy;; and LRCR), can be achieved if L is increased from 3
to 13.95 while keeping other constraints unviolated. If more interest is in signaling an earlier true alarm, L
can be further reduced down to 2 without affecting other constraints but increasing LRCRy;; and LRCR ;.

Any increment for L >13.95 violates the constraint on PR, s, whereas the constraint on AV is violated for

L<2.
Table 8. Influence of ATS on the optimal solutions of the two models.
Model 1 Model 2

L r N h LRCRy;, r N h LRCR,, A

0.5 0o 2 0.138 245.16 0o 2 0.141 243.88" 0.583
1 0o 2 0.281 187.37 0 2 0.287 186.76" 0.725
1.5 0o 2 0.422 163.37 0 2 0.437 162.80° 0.784
2 0o 2 0.560 151.56 0o 2 0.591 151.07° 0.800
2.5 0o 2 0.700 145.42" 0 2 0.750 145.42" 0.800
3 1 5 0.428 141.61 1 5 0.457 141.20° 0.800
3.5 1 5 0.500 137.09 1 5 0.541 136.80° 0.800
4 1 4 0.367 133.71 1 4 0.402 132.82" 0.800
4.5 1 4 0.415 130.27 1 4 0.460 129.53* 0.800
5 1 4 0.462 127.68 1 4 0.519 127.15* 0.800
5.5 1 4 0.510 125.73 1 4 0.581 125.51° 0.800
6 1 4 0.558 124.29 1 3 0.345 122.94* 0.800
6.5 1 3 0.326 12247 1 3 0.380 120.72" 0.800
7 1 3 0.352 120.53 1 3 0.417 118.86° 0.800
7.5 1 3 0.378 118.87 1 3 0.455 117.35" 0.800
8 1 3 0.404 11745 1 3 0.494 116.15° 0.800
8.5 1 3 0.431 116.23 1 3 0.536 115.21"  0.800
9 1 3 0.457 115.20 1 3 0.578 114.52° 0.800
9.5 1 3 0.485 114.32" 1 3 0.584 114.45 0.800
10 1 3 0.511 113.58" 1 3 0.584 11445 0.800
10.5 1 3 0.539 112.96" 1 3 0.584 114.45 0.800
11 1 3 0.566 112.46" 1 3 0.584 114.45 0.800
11.5 1 3 0.593 112.05" 1 3 0.584 114.45 0.800
12 1 3 0.621 111.74" 1 3 0.584 114.45 0.800
12.5 1 3 0.649 111.51" 1 3 0.584 11445 0.800
13 1 3 0.677 111.35" 1 3 0.584 114.45 0.800
13.5 1 3 0.705 111.26" 1 3 0.584 11445 0.800
13.95 1 3 0.730 111.24" 1 3 0.584 114.45 0.800

The marginal effect of h. Figure 6 shows how the change in h affects LRCR,;, and the performance

measures when keeping other parameters unchanged. In Figure 6.a, AV increases as h increases up to 0.856,
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and then decreases as h goes beyond 0.856. Since ATS is a function of h and ARL, ,, ATS is an increasing

linear function of h for given values of r and N (constant ARL, ) as seen in Figure 6.b. In Figure 6.c,

S12
decreasing h increases inspection frequency and reduces the number of nonconforming units produced
between two inspections, and hence, PR.ss increases. Figure 6.d shows that LRCRy; significantly
decreases to the minimum value 130.21 at h = 0.856 by violating the constraint on ATS, and then, it slowly
increases. If more interest is in reducing LRCR);q, h can be increased beyond the optimal h* = 0.428 by

violating some constraints. This may be satisfying if the violations are not significant. For instance, with

h=0.856, LRCR,;; reduces to 130.21, but ATS increases to 5.
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Figure 7. The marginal effect of r when h = 0.428, N = 5.
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The marginal effect of r. Compared to the optimal setting r* = 1, AV drops to 0.650 and ATS
decreases to 0.63 at r = 0 as seen in Figures 7.a and 7.b, respectively. As r increases with respect to fixed
N, the probability of missed detection (type Il error) increases, and hence, ATS increases quite fast as shown
in Figure 7.b. Moreover, PR,ss decreases as illustrated in Figure 7.c, as more nonconforming units are
produced. Having r = 0, the corresponding number of false alarms is about 8 and 70 times the numbers of
false alarms for r = 1 and r = 2, respectively. This drastically increases LRCR;;4 to 219 due to poor AV as
depicted in Figure 7.d. Basically, r is not flexible to change compared to h, as changing r causes significant

violations on the constraints. Therefore, attention should be paid when changing the value of .

The marginal effect of N. In Figure 8.b, ATS has a noticeable increase when N decreases to 4 and 3,
then it slowly decreases as N goes to 6 and 7. Since ATS increases with the increase of h and/or ARL; ,, a
low N increases type II error given fixed r, and hence, ARL, , increases. In Figure 8.c, PR,s increases
with the increase in N. As N increases, type II error decreases, and a smaller number of nonconforming
units are produced. The linear trends in Figures 8.a and 8.d are expected since as N increases, the times and
costs of inspection and false alarms increase causing LRCR),4 to increase and AV to decrease. Like h, N is
flexible to change for a benefit to some extent. For instance, LRCR,;; can be reduced to 130 if ATS is
violated and increased to 4.7 when N is reduced to 4. In addition, N can be increased to 6 in order to reduce
ATS to less than 2.5 hours resulting in a slight decrease in AV but an increase in LRCRy;; = 150.
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Figure 8. The marginal effect of N when h =0.428, r = 1.

Practical guidelines for using the proposed model
As shown previously, allowing competing shifts to occur and propagate achieves some economic

benefits for different settings of parameters. However, the number of scenarios for stochastic cases
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explained in Section 4 increases as the number of machines increases. In the current model, only two
machines are considered with two scenarios (T; > T, & T; > T, ) for each case. If the number of machines
increases to three, the total number of scenarios increases to 45. To make the model easier to handle, some
assumptions can be made based on some prior understandings about the system. For instance, the model
can be designed by allowing a certain number of shifts to occur, and such shifts cannot occur in the same
sampling interval. Under this assumption, only scenarios of Case III need to be considered, and the three-
machine system can be modelled with 12 scenarios instead of 45. Practitioners need to compromise between
the economic benefits of considering propagating shifts and the design complexity. The proposed model
can be used for systems with a larger number of machines by grouping machines into two aggregate stages.
Within a stage, a combined effect (e.g., aggregate PON or shift rate) of machines can be considered instead
of dealing with each machine alone. For instance, the shift of any machine (or all machines) in a stage may
be assumed to have the same PON. This approach can also be applied to a machine where the degradation
processes of different components cause quality deterioration (e.g., degradation of turbine discs and
circulation mechanisms in the blasting machines). Apparently, combining stages reduces not only the

number of stochastic scenarios but also the number of model parameters in a real-world application.
7. Conclusion and future work

Most of online sampling studies investigating multiple assignable causes are conducted on single-stage
system. A few studies consider the multiplicity of assignable causes in multistage systems. However, those
studies assume identical stages, X control chart, same shift level, economic model, no failures, or no quality
related costs. This paper presents a sampling plan for attributes for a serial production system consisting of
two unreliable machines where each machine is subject to sudden failure and shift in quality. A
comprehensive economic-statistical model is developed to investigate the joint effect of different shifts by
considering the stochastic competency and propagation of the shifts during manufacturing. The developed
model generalizes all previous works and compromises between the quality and the quantity performances.
The proposed sampling plan minimizes the long-run cost rate subject to constraints on system availability,
effective production rate, and average time to signal. A thorough analysis is conducted on some input
parameters, the constraint on average time to signal, and the marginal effects of decision variables.
Specially, investigating the effects of process parameters, such as shift rates, helps management take long-
term decisions (e.g., system overhaul and replacement). The analysis shows that when some decision
variables are flexible to change, some adjustments can be made to emphasize specific needs. More
importantly, compared to an alternative design that allows for only one assignable cause to occur in a single-
stage system with multiple assignable causes, the proposed design shows better economic performance

under different problem settings.
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It is worth pointing out that since this work assumes that sampling is implemented at the end of a
production line, the proposed sampling plan can handle a single-stage system (e.g., one machine) with
multiple assignable causes and shift propagation by setting all the machines to be the same (i.e., identical
machines with the same failure rates). In other words, such a single-stage system is a special case of our
unreliable multistage system subject to competing and propagating random shifts, and it cannot be used

when assignable causes are attributed to different machines with different failure rates.

There are some situations where the assumptions given in Section 3 do not hold. First, if the production
rates and reliability of the two machines are significantly different and there are limited areas for storing
WIP, the faster and the more reliable machine may have to be stopped to reduce WIP for lowering the
related inventory costs. Then, issues with starving and blocking arise. As a result, the developed model in
this work is unsuitable, and a new model must be developed to include decisions on the buffer size and
inventory control. Second, if the two machines are dependent (i.e., a failure or a shift of one machine affects
the other), a more complex model and different maintenance strategies are needed. Third, to avoid
producing more nonconforming units, we assume the system will be preventively stopped during sampling.
This is worthwhile if the sampling interval is long (the chance for the system to have a shift is high) and
measuring the sampled units takes a while. If the production is allowed to continue during sampling, a delay
time due to searching for a true alarm must be added to the average time to signal, and an additional cost
due to potentially producing more nonconforming units must be considered. Beyond these, this work can
be extended in other directions. In particular, a multistage system with more than two machines can be
considered. Moreover, more than two states of product quality and multiple deterioration states of each
machine can be considered. Clearly, the number of system states exponentially increases as the number of
machines and/or the number of states of each machine get bigger. For such a complex situation, a
simulation-based optimization approach may be utilized. In addition, some practical guidelines for using
the model are illustrated. Finally, other system configurations, such as a series-parallel system and parallel-
series system, can be studied to deal with cases involving multiple identical machines that perform the same

actions during production.
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Appendix

Derivation of E[V ;]

In Case I, units are produced with p;= p; .The expected number of samples taken until a true alarm is
alerted is ARLg , where ARLg, , is the average run length when the process is operating with S;,, and it is

given in Montgomery (2009) as:
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1
=T1-g,

The last sample which alerts the true signal has v < d < N. Hence, the expected number of rejected units

ARL

found during sampling when the process is out-of-control given case I E[V,,|Case I] is expressed as:
E[V,ylCasel] = {a,, + (ARLs,, — 1)b,},

where ARL; , — 1 samples do not alert a true alarm.
In Cases Il & 111, at least one sample is taken with pg = p, if Ty > T, or with pg = p; if T, > T;. Let
Qp, and Qp, be the number of samples taken with ps =p,, and pg = p;, respectively. Then

E[sz |Case IIT1>T2] and E[Qp1 |Case IIT2>T1] are given as follows, respectively:

o —A2(i-1)h_ p=2A2ih\(p—A1(i+q—1Dh _ ;=21 (i+q)h) p4
E[Q,, |Case I1y, oy, | = St ZEa ale Bl e (e Do MO, | ehan
D2 T1>T, 230:12521 (e—Az(L—1)h_e—/12lh)(e—ll(L+q—1)h_e—11(1+q)h)[ggz (ellh_ﬁpz):

-A1(i-1)h__,—A1ih —A2(i+q—1)h_ ,—22(i h\p4
E[Q |Case 1 ] _ Y1 Xies qle 19 Dh_g 1.1 )(e 2(‘1+q Dh_, z(‘1+q) B _ ehzh
P1 Ty>Ty 2(010212221 (e—)ll(L—1)h_e—11lh)(e—lz(L+q—1)h_e—lz(1+q)h)ﬁgl (elzh_ﬁpl)’

where g denotes to the number of samples taken between the occurrence times of S; and S,. In Case III,
S,(S1) is always detected before the occurrence of S;(S,), and hence, E [sz |Case IIIT1>T2] and
E[Ql,1 |Case IIIT2>T1] are given as follows:

T TR, W(e—)lz(L—1)h_e—/12Lh)e—/11(1+w—1)hl;;]4£—1(1_ﬁp2) B eMh

Z$=12?21 (e—lz(i—l)h_e—lzih)e—11(i+w—1)hﬂll;1;—1(1_ﬁp2) - (ellh_ﬂpz):

E[Qp,|Case lllz>r, | =

o A (=Dh_,~Aqih) ,— Az (i+W—1)h pw—
TR TR, w(e 1(-Dh_p-21i )e 2 (i+w—1) ﬂl‘:; 1(1_Bp1) eA2h

© . 2221 (e—ll(i—l)h_e—llih)e—lz (i+w—1)h3;)4;—1 (1—ﬁp1) (ezlzh_ﬂpl),

E[Q,,|Casellly or, | =

where w represents the number of samples that process undergoes with S, until a successful detection. The

—Al(l+W—1)h

term e indicates that S, is detected at the sampling time (i + w — 1)k, at which, S; still has not

occurred yet.Consequently, the expected number of rejected units during the inspection when the process

is in the out-of-control period E[V,,;] can be obtained as:

E[Vout] = E[VouelCase II{B; + By} + E[Qy,|Case iy, 51, |b, Bs + E[Qy, |Case g, 51, |b, Bs
+ {(ARLSlZ ~1)b, + ap3}{33 + By} + (E[Qp,|Case Iy, 57, ] = 1)b, Bs +
(E[Qp,|Case lllg,5r, ] = 1)b, Bs +a, Bs +a, Bs,

where {B; + B,} is the total probability of Case I, B; is the probability of Case II given Ty > T,, B, is the
probability of Case II given T, > T;, Bg is the probability of Case III given T; > T,, and By is the
probability of Case III given T, > T;. In the above equation, E[sz |Case IIT1>T2] (E[Qp1 |Case IIT2>T1Dis

38



39

the expected number of samples that don’t alert a true alarm in Case 11 when a process operates with S,(S;),

(ARL - 1) is the average number of samples that don’t alert a true alarm when the process operates with

S12
S12 in Case II, and a,, represents the expected number of rejected units in the last sample that alert a true
alarm given Case II. In Case III, E[Qp2|Case IIIT1>T2] - 1(E[Qpl|Case IIIT2>T1] - 1) is the expected
number of samples that don’t alert a true alarm when the process operates with S, (S7), and a,, (ap 1) is the
average number of rejected units found in the last sample that detects S,(S;). By to By are given in

Subsection 4.5, whereas a,_, by, bs € {Po, P1, P2, D3} are given in Subsection 4.8.

Derivations of E[T, |, E[Ts,], E[Ts,,], u; to ug,and C, to Cg
Case 1. Given that S, and S; occur in the same sampling interval as shown in Figure 2, the conditional
expectations of g, and 7, are obtained as follows.

If T; > T,, we have:

[ = (= Dh)Ae Rt 1 e~ Mtidt,dt,
uy = E[ts,|i = DR < T, < Ty < ih] = R DR

f(L 1)nf<l 1)h e~ M2tz ) e~ Mtidt,dt,

_2 Jlet2h(eth — 1) — A 3h(et2h — 1) — 41,0820 (2 — 2eMh 4 ,h) 4+ 1, %(1 + A,h — et (1 4+ 2/12h))
(A + ) (A1 — et2h (A + A, — A,eth))

[ (k= (= Dh) e 22t e Mbdt, dt,
up = E[15,1(i = Dh <T, < T; < ih] = LR

f(L mf(l m e~ M2tz ) e~ Mtidt,dt,

lzh(a ZeMh — (A +2)2) + A (A + 24, + A, (A4 + Az)h)
Ay (A1 + 1) (A1 — et2h (A + A, — AyeMh))

Since S, occurs before S; in the same sampling interval, S, propagates to S;, at the time of S; occurrence
and prior to the next sampling time. As a result, we have:

E[T,,|Case Ir,sr,| = uy —uy, E[Ts |Caselrsy, | =0, E[Ts, |Case Iy sy, | = RARLg , —uy,
where ARLg, , is the average run length when the system operates with Sy, i.e., with p; = p3. The average
length in the out-of-control state is defined as the average number of samples taken since the occurrence of
a shift until a true alarm is alerted.

The corresponding probability of Case I, T; > T, is:

) . . 2.1(1 — e/lzh) + Az(e(ll+/12)h _ e/lzh)
G = ; P((I—1)h<T, <T,<ih)= TR AT ,

where
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ih ty
P((-Dh<T, <Ty <ih)= f Nye~Rtz 1 e~Mbidt, dt,
(i-1h (i-1h
= e—lz(i—l)h(e—/h(i—l)h _ e—lﬂ’h) + A—(e—(ll+ﬂz)lh —e —(A1+2,) (i— 1)h)
A+,
If T, > T;, we have:
f(l 1)h_ f(l 1)h(t1 l)h)ﬂze_AZtZAle_/lltﬁdtldtz

us = E[t5,|(i—Dh<T; < T, < ih] =

f(l -1h f(l 1h AZe_Azt2/11e_Alt1dt1dt2

e’llh(llze’lzh -(A + /12)2) + A,y + 22 + 41 (44 + 1)h)
(A + 2)(A; — et (A + 2, — A eh2h)) ’

f [ (t, — (i — Dh)Ae 2tz ), e~ Mtide, dt,
Uy = E[1g|(i = Dh < Ty < T, < ih] = LERRECDR =
fl 1)hfl 1)hAze‘lth)lle"lltldtldtz

A 2eMh ezl — 1) — 1,3 (et — 1) — A 1,eM(2 — 2e%2M + 1 h) + 1,2 (1 + A h — eMh (1 + 244h))
Ao (Mg + ) (A — eMP(Ag + 2, — A ePeh)) .

Since S; occurs before S, in the same sampling interval, S; propagates to S;, at the time of S, occurrence

and prior to the next sampling time. Therefore:
E[Ts,|Case Ip,sq, | = 0, E[Ts,|Case Ip,sr, | = ug —us, E[Ts,,|Case Ir, sy | = hARLg,, — u,.

The corresponding probability of Case I, T, > T is:

o ] _ 12(1 — ellh) + /11(3(’11+7‘2)h _ ellh)
C, = Z PG-Dh<T < T, <ih) = Eo i O

where
ih t2
P((—-1Dh<T, <T,<ih)= f f Ne Mt Qe heladt, dt,
(i-1Dh (i-1h
Az

— o~ M(-Dh(,~22(i—Dh _ ,~A5ih
=e™M e "2 e "2') + e
( )

—(A1+A2)ih _ e—(/11+12)(i—1)h).

Cases II & III. In Cases II and III, S, and S; occur in different sampling intervals as shown in Figures 3
and 4 where 0 < 75, < h,and 0 < 75, < h. Therefore, the conditional expectations of 75, and 7, are given
as follows, respectively:

ih . _
f(ll‘_l)h(tl - (l - 1)h)lle Altl dtl _ 1 - (1 + /’{]_h)e_llh
e-2ti dt, T (1 —eMh)

u5 = E[Tsll(i - 1)h S Tl < lh] =
f(l l)h
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Jian(ts = (= DRI~ dty 1 — (1 4 A,h)eon
/126_’12 2 dtZ B Az(l - e_/lzh)

ug = Et5,|(i— DR < T, < ih] =
&l 1)h

Cases I1. E[Tg,] and E[Tg,] depend on how many samples q,q = {1, -, 0} are between T; and T,. For

instance, if S; occurs three samples after the occurrence of S,, then E[Ty,] = 3h — ug + us given that S,

is not detected until the occurrence of S;.
If T; > T,, we have:
C; = E[Ts,, Case lly, >z, |

o 00

_ Z Z(qh — ug + ug) (e 2U=D — g=aih) (g=hi(i+a-Dh _ p=Aa(i+a)h)pd

q=1i=1
By, (eM1h — 1)(e2" — 1) (eM"(h + us — ug) + By, (us — Us))
(etatidh — 1)(ehh — B, )2 ’

E|[T,,,|Casellz,~r, | = RARL;, — us.

In C3, S, occurs in the sampling interval [(i — 1)h,ih] and S; occurs in the sampling interval
[(i + g — DA, (i + q)h ] afterwards. For instance, if S, occurs in [0, ], then S; could occur one sample
afterwards, i.e., [h, 2h ], or two samples afterwards, i.e., [2h, 3h ], and so on. For any q, the sampling plan
always fails to detect S, until the occurrence of S; resulting in ,8;,72 type I error.
If T, > T;, we have:
C, = E[T;,, Case Ily,>r, |

o 00

_ Z Z(qh — ug + 11g) (e UDE _ g i) (o=22(i+a-Dh _ g=Aa(+)h)

g=1i=1
_Bp, (e’ — 1)(eM" — 1)(e™"(h + ug — us) + By, (us — Us))

E[Ts,,|Case Ilz,>r, | = hARLs,, — us.

Cases I11. If T; > T,, then sampling plan is always able to detect S, before the occurrence of S; as shown
in Figure 4. Therefore, the system is only operating with S,. For instance, E[T,] = h — ug, if S, is
immediately detected at the next sampling time and before the occurrence of S;. E[Ty,] = 2h — ug, if S, is
detected two sampling times since its occurrence and before the occurrence of S;. Sampling fails to detect
S, at the first sampling time, but it can detect it at the second sampling time. The following formula

generalizes this situation:

Cs = E[T;,, Case llly,5p, | = z Z (Wh —ug) (e 2(mDh — =ik )o=Ma(tw-Dhpw=1(1 _ g )

w=1i=
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_ (1- ﬁpz)e’llh(e’12 —1)(et"(h —ug) + .szus)
(eati)h — 1)(311 ﬁ )

where w represents the number of samples that process undergoes with S, until a success detection. The

term e ~*1(+W=DR jndicates that S, is detected at the sampling time (i + w — 1)h, at which, S; still has not

occurred yet. For example, if S, occurs in the time interval [h, 2h ], then E [TS2 ] = h — u, if S, is detected
at time 2h, and hence, i = 2,w = 1, and
(wh — uG)(e—Az(i—l)h _ e—lzih)e—ll(Hw—l)hﬁ;v—l(1 .y )
2 2
= (h— uG)(e—lzh _ e—AZZh)e—llzh(l _ ﬁpz)-
E[TS2 ] = 2h — ug if S, is detected at time 3h, and hence, i = 2,w = 2, and
(wh — ué)(e—/lz(i—nh _ e—lzih)e—/ll(i+w—1)hﬁzv—1(1 — B, )
2 2
= 2~ ug) (" — e~hth)eRidhg, (1)
If T, > Ty, then sampling plan is always able to detect S; before the occurrence of S,. Therefore, the

system is only operating with S;. The same derivation approach like in T; > T, is followed, and hence:

Co = E[T,,, Case lllyp, | = Z Z(wh us) (e MU= Dh — g=hit)=2z(tw=Dh pw=1(1 _ p )
w=1i=
_ =gy ettt — (et (h—us) + Brius)
- (e(ll+/12)h — 1)(312 ,8 )2

Note that there is no chance for propagating shift to occur in Case 111, and therefore:

E[T,,,, Caselllz sy, | = E[T;,,,

Case lll7,~7, | = 0.
Considering all the above, E[Ty |, E[Ts,], and E[T,, |, are given as follows, respectively:
E[Ty, ] = {us —u3}C; + C4 + Cg,
E[Ts,] = {u; —u3}Cy + C5 + G,

E[Ts,,] = {hARLs,, —u }C; + {RARLy,, — us}C, + {RARL;,,

—us}C; + {hARL , — us}Cs,
where C; is the probability that the time needed is hARLg , — us to alert a true alarm since the occurrence
of a shift given Case II, T; > T, whereas (g is the probability that the time needed is hARL; , — ug to alert
a true alarm since the occurrence of a shift given Case I, T, > Ty. C; and Cg are given by:

c, = Z Z(e—aza DR _ g=Aaih) (g=Aa(i+a=Dh _ e—Al(i+q)h)ﬁg
2

q=1i=
sze—(4—11+Z.2)h(ellh_l)(elzh_l)(ﬁpze(411+212)h_e(43.1+12)h)

(e(ﬂ.l+lz)h_1)(ellh_ﬂp2)(ﬁpzeﬂ.zh_l) )
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i=1

Co = Z Z(e—ll(i—l)h — e hil)(e~R(i+a-Dh _ g=Ro(i+0)n) g
q=1

ﬁple—(ﬂ.1+4—lz)h(e11h_1)(elzh_l)(ﬁple(211+412)h_e(ﬂ.1+412)h)
= (e(11+Az)h_1)(elzh_ﬁp1)(ﬁp1e}qh_l)
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