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Abstract 

Sampling plans play an important role in monitoring production systems and reducing quality- and 

maintenance-related costs. Existing sampling plans usually focus on one assignable cause. However, 

multiple assignable causes may occur especially for a multistage production system, and the resulting 

process shift may propagate downstream. This paper addresses the problem of finding the optimal sampling 

plan for an unreliable multistage production system subject to competing and propagating random quality 

shifts. In particular, a serial production system with two unreliable machines that produce a product at a 

fixed production rate is studied. It is assumed that both machines are subject to random quality shifts with 

increased nonconforming rates and can suddenly fail with increasing failure rates. A sampling plan is 

implemented at the end of the production line to determine whether the system has shifted or not. If a 

process shift is detected, a necessary maintenance action will be initiated. The optimal sample size, 

sampling interval, and acceptance threshold are determined by minimizing the long-run cost rate subject to 

the constraints on average time to signal a true alarm, effective production rate, and system availability. A 

numerical example on an automatic shot blasting and painting system is provided to illustrate the 

application of the proposed sampling plan and the effects of key parameters and system constraints on the 

optimal sampling plan. Moreover, the proposed model shows better performance for various cases than an 

alternative model that ignores shift propagation. 

 

Keywords: Sampling plan, multistage production systems, competing and propagating random shifts 

1. Introduction 

Quality improvement is a major concern for the success of a manufacturing enterprise. To be competitive, 

companies often adopt different procedures to improve their production processes for better product quality. 

However, regardless of the advances in technology and automation, a manufacturing environment is always 
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subject to variability and random shift that affect product quality. As a result, it is important to perform 

process monitoring so that necessary actions can be taken for maintenance and process adjustments when 

the product’s quality drops below an acceptable level. 

Product inspection is one of process monitoring methods to determine if a process has shifted or not. 

The out-of-control state is attributed to the presence of assignable cause(s) such as tool wear, temperature 

increase, and wrong setups. Specially, an assignable cause makes a process variable, such as the process 

mean, to deviate from its target, or causes an attribute, such as the proportion of nonconformity, to increase. 

In addition to process shift, the production system may fail and stop production. When a process shift or 

system failure is detected, maintenance actions are initiated. Maintenance could be perfect, imperfect, or 

minimal. In particular, perfect maintenance restores a production unit to its good-as-new condition, 

imperfect maintenance restores the unit to a condition between its good-as-new and bad-as-old states, and 

minimal repair makes the unit operational while keeping the unit in the same health condition as before. 

Regarding inspection options, screening (100% inspection), no inspection, sampling plans by control 

charts (online sampling), acceptance sampling, and continuous sampling are the most widely used. In 

practice, an inspection policy is adopted according to the type of production and a specific goal. For 

instance, acceptance sampling is used for batch (lot) production to decide whether a batch should be 

accepted or not. Such inspection procedures can be employed in both single-stage and multistage systems. 

Specially, a multistage system is composed of multiple components, machines, processes, or stages required 

to make the final product (Shi and Zhou, 2009). 

A sampling plan is either designed economically or economically-statistically. Economic designs aim 

at minimizing a cost function without focusing on statistical performance, while economic-statistical 

designs consider the performance of a process under some practical constraints. The usual performance 

metrics could be customer-centered such as the average outgoing quality (AOQ). Some measures are more 

producer-centered such as the average fraction inspected (AFI), process availability, and throughput. Other 

metrics, such as schedules’ delays, are concerning both parties. Studies on these measures can be found in 

Bouslah et al. (2013), Cao and Subramaniam (2013), and Pandey et al. (2011). Existing sampling plans are 

often developed based on one assignable cause. Although a few studies consider cases with multiple 

assignable causes, it is often assumed that only one assignable cause can occur during a sampling cycle.  

In this paper, we develop an economic-statistical sampling plan for a serial production system with two 

unreliable machines by considering the occurrences of more than one assignable cause. The term “stage” 

can be used in lieu of “machine” to refer to a process or a group of machines (processes). The sampling 

plan is modeled based on the competency and downstream propagation of process shifts. Sampling 

parameters are determined by minimizing the long-run cost rate subject to constraints on effective 

production rate, average time to signal a true alarm and system availability. It is assumed that sampling is 
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performed only after the second stage. For example, in some systems, the synchronized handling of 

products from one stage to another does not allow any stoppage for inspection after the first stage. In other 

systems, products are processed sequentially or simultaneously by two different processes on the same 

machine making quality inspection impractical due to the machine’s complex configuration.  

Some industrial applications of such a system are as follows. In an automatic blasting and painting line, 

a fabricated steel unit is first blasted for rust removal and then fed into a painting chamber. Due to 

degradation, the disc turbines that provide blasting may still leave some rust on the unit’s surface that causes 

poor paint adhesion. On the other hand, the spray nozzles in the painting chamber, if clogged, could cause 

bad paint coverage. The unit produced is nonconforming if one or both of the quality issues occur. An 

example of two processes being performed automatically on one machine is the production of purlins for 

steel structures. Galvanized sheets are fed continuously into a forming machine. Punching holes and 

bending edges are sequentially or simultaneously processed to produce a purlin. Due to the complex 

configuration of the machine, any quality imperfection cannot be observed until the whole process is 

complete. When the punching tips and/or the bending rollers become worn, the purlin is defective because 

holes, edges, or both are imprecisely made. Other examples in automotive painting and stamping lines are 

provided by Naebulharam and Zhang (2014). In some industries, inspection may be performed only after 

the final stage due to safety or economic reasons. For instance, small steel bars are first heated and then 

forged to produce small parts such as socket wrenches. Other examples are manufacturing of aluminum 

cans, automated bakery production, powder coating, automatic riveting for stamping parts, automatic 

assembling and wire bonding, and multi-material additive manufacturing of electronic devices. More 

applications of such systems are addressed by Liberopoulos et al. (2010).  

The remainder of this paper is organized as follows: Section 2 reviews the related literature and 

illustrates the contributions. Section 3 describes the problem and the assumptions, and provides the notation 

used throughout this paper. A comprehensive modelling methodology is developed in Section 4. Section 5 

provides the mathematical formulation for the optimal design of the proposed sampling plan. A numerical 

example and analyses are given in Section 6. Section 7 concludes this study and recommends several 

directions for future research. 

2. Literature review and research contributions 

2.1. Related work 

In the context of single-stage production systems, Linderman et al. (2005) propose an economic-statistical 

cost model considering constraints on the average run lengths and three maintenance scenarios. 

Charongrattanasakul and Pongpullponsak (2011) extend this work by sampling with an exponentially 

weighted moving average (EWMA) chart with warning limits along with maintenance at the time of a false 
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alarm. Mehrafrooz and Noorossana (2011) consider an additional maintenance scenario due to sudden 

machine failures. Pandey et al. (2011) use an ܺ ത control chart to determine the sequence of batches produced 

on a single machine subject to scheduled preventive maintenance.  Safaei et al. (2015) study sampling by 

an തܺ control chart under uncertainty. Pasha et al. (2018) incorporate the Taguchi loss function in the design 

of തܺ control chart with non-normal quality data. Abolmohammadi et al. (2019) develop an economical 

statistical design for variable parameters തܺ control charts under different quality loss functions. It is worth 

pointing out that all these studies focus only on one assignable cause. However, this may not be realistic. 

Indeed, multiple assignable causes from different sources, such as raw materials, human errors and tool 

wear, cannot be ignored. Yu and Hou (2006) develop an economic model for an തܺ control chart with 

variable sampling intervals to monitor a process with multiple assignable causes. Yu et al. (2010) construct 

an economic-statistical model with constraints on type-I and type-II errors. The same constraints are used 

by Salmasnia et al. (2017). The effects of non-normal quality data on the design of തܺ control chart with the 

presence of multiple assignable causes are investigated by Moghadam et al. (2018). Unlike these studies 

where only one assignable cause is permitted to occur during an inspection cycle, a case allowing the 

occurrences of multiple assignable causes during an inspection cycle is examined by Yang et al. (2010). An 

തܺ control chart is designed, but the joint effect of two assignable causes is assumed to be the same. Xiang 

(2013) study the joint optimization of an തܺ control chart and preventive maintenance for a deteriorating 

production system. The system is assumed to have multiple degraded states that correspond to different 

assignable causes, and an economic cost model for maintenance, operation, and inspection is provided. 

Inspection procedures for multistage systems are diverse. Zantek et al. (2002) assume that the variation 

of a measurement at a stage depends on both the variation of process parameters (i.e., pressure, temperature, 

etc.) at the present stage and the variations of measurements taken at preceding stages. Their engineering 

model aims at identifying which quality and process variables are responsible for the variation at the final 

stage. Zhou et al. (2003) propose an engineering model for an automotive engine heads machining line. 

Without process variables, Lam et al. (2005) develop an engineering model for a four-stage machining 

process where the last stage has two streams (parallel machines), and each stage or stream is monitored by 

a separate തܺ control chart. It is assumed that only one stage is out-of-control at any time and the probability 

that a stage is out-of-control is constant. The തܺ control charts are only designed to alert out-of-control 

signals according to a desired average time to signal without addressing whether any adjustment on the 

process or any rework on defective products is carried out or not. Xiang and Tsung (2008) study statistical 

monitoring with EWMA control charts based on engineering models. The EWMA control chart is designed 

for a given in-control average run length to determine the out-of-control condition in a three-stage process 

where wrong fixturing causes the process to be out-of-control. An engineering model based on multivariate 
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control charts to detect mean shifts with autocorrelated observations is proposed by Kim et al. (2017). 

Inspection allocation is another focus related to multistage systems. Bai and Yun (1996) consider a 

serial three-stage circuit board manufacturing system with two inspection stations. Inspection locations and 

inspection level (number of components tested on a circuit board) are determined to minimize the expected 

total cost of rework, inspection, and defective boards delivered to customers. Rau and Chu (2005) study 

inspection allocation in a serial multistage system where inspection could be on product variables and 

attributes. Azadeh et al. (2015) study a batch production system where inspection allocation, inspection 

tolerances, and full inspection or acceptance sampling are determined. Types and locations of inspection 

are determined in a serial multistage system by the trade-off between production costs and customer 

satisfaction under uncertainty (Mohammadi et al. 2018). 

The quality and quantity are the two main focuses of a multistage production system. Cao and 

Subramaniam (2013) investigate a serial multistage system where each stage is monitored by a continuous 

sampling plan (CSP). The CSP alternates between 100% and fractional inspections based on whether or not 

a consecutive number of conforming units are observed. Additional measures of work in process (WIP) and 

throughput rate are also considered. Kim and Gershwin (2005) study a two-machine system with one buffer 

using a Markov process. In their work, a machine is assumed to have three states: operating producing good 

parts, operating producing bad parts (quality failure state), and complete failure. The effects of quality 

failure, production rate, and buffer size on the system’s yield and effective production rate are analyzed. 

Kim and Gershwin (2008) also analyze the performance of flow lines with quality and operational failures. 

Meerkov and Zhang (2010) investigate different cases for performance analysis of a serial production 

system with inspection stations and buffers under 100% inspection. Given the number of inspection stations 

and buffers capacities, the study shows the impact of inspection allocation on bottlenecks, blocked and 

starving machines, and effective production rate. Colledani and Tolio (2012) develop a Markovian model 

for a serial system subject to degradation. The critical state that separates the desired degradation states 

from the undesired states is determined by achieving gains in system’s yield and effective production rate. 

It is worth pointing out that engineering models are analytical tools for identifying sources of variation for 

quality improvement. Usually, a strategy with 100% inspection of variables is adopted. On the other hand, 

in most of inspection allocation models, 100% inspection or acceptance sampling are used with the purposes 

of locating inspection and determining a testing strategy or inspection level. For both types of models, 

maintenance is rarely studied.  

Liu et al. (2013) study a serial system consisting of two identical units monitored by an തܺ control chart. 

The value of process shift is assumed to be a constant no matter one or both units are in the quality failure 

state, and an inspection cycle is renewed by one of four maintenance scenarios. The system’s performance 
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is evaluated via economic and economic-statistical models with constraints on type-I and type-II errors. 

Zhu et al. (2016) investigate a serial four-stage process where attributes sampling is carried out at each 

stage. In their work, only quality failures are considered, and the sampling parameters are found by 

minimizing the expected total cost of inspection, scrap, and repair with respect to constraints on the average 

number of produced products between two false alarms. Zhong and Ma (2017) propose a joint control chart 

for a two-stage dependent serial system where the first and second stages are monitored by an തܺ and a 

residual control chart, respectively. Eight maintenance scenarios are investigated for cost minimization with 

constraints on the average run lengths. For more studies on part quality inspection in multistage production 

systems, readers are referred to a recent review by Rezaei-malek et al. (2019).  

2.2. Contributions of this work 

Clearly, the effects of quality failures, machine failures and maintenance actions on the product quality and 

the effective production rate of a multistage production system are worthy of investigation. Although a 

plenty of studies have been conducted on online sampling for single-stage production systems, only a few 

studies have been done on multistage systems. Specially, there is a lack of research on online sampling of 

attribute data for multistage systems. This study aims at developing an attribute sampling plan for a serial 

system of two unreliable machines for discrete production. Different from the work of Liu et al. (2013), 

this work considers two nonidentical machines and allows a quality shift to propagate downstream. Indeed, 

competing process shifts and downstream propagation are two forms of natural interactions in a multistage 

system. To the best of our knowledge, modeling sampling plans by attributes with competing shifts in a 

multistage system with unreliable machines have not been studied (Yang et al., 2010; Zhu et al., 2016) in 

the literature although such a study will have a wide variety of industry applications. In addition, this work 

develops a comprehensive economic-statistical model with closed-form formulations and establishes a 

compromise between quality and quantity performances. Unlike the studies by Yang et al. (2010), Liu et 

al. (2013) and Xiang (2013) that focus only on quality-related performance, we consider a constraint on 

system’s availability to increase production, and a constraint on effective production rate to increase the 

fraction of good products. Moreover, a constraint on average time to signal is also included. This model 

represents a first step that can be extended for a production line with more than two unreliable machines, 

multiple assignable causes, and different levels of maintenance actions. The economic benefit of the 

proposed model over existing studies that do not consider shift propagation is illustrated in this work.  

3. Problem description 

A serial production system consisting of two unreliable machines that operate continuously to produce 

discrete units of a product is considered. Each unit of the product is first processed at machine 1 followed 

by machine 2. Each machine has the proportion of nonconforming (PON) of ݌଴௠, ݉ ∈ ሼ1,2ሽ when it is in-



7 
 

7 
 

control. Due to assignable causes, PON may increase to ݌ଵ௠ so that the machine enters its out-of-control 

state. Each machine is subject to two issues: quality shift when the PON increases from ݌଴௠ to ݌ଵ௠, and 

sudden machine breakdown (failure). Failures are observed immediately, whereas quality shifts can be 

detected only by inspection.  

To inspect the finished units, an attribute sampling plan is employed at the end of the production line 

(i.e., after machine 2) to assess the performance of the production process and to initiate necessary 

maintenance actions. An inspected unit is classified as either conforming or nonconforming, and if a half-

finished unit is nonconforming upstream (after machine 1), it remains nonconforming downstream. The 

power of detecting a process shift depends on the parameter setting of the sampling plan. Clearly, sampling 

may generate two kinds of errors: type I error and type II error. Type-I error (false alarm) is generated when 

a process signals an alarm given that the process has not shifted yet. Type-II error is generated when the 

sampling plan fails to signal a true alarm when the process has already shifted. Determining which 

machine(s) has/have shifted cannot be done unless the system is shut down for close inspections of the two 

machines. Therefore, whenever there is a failure or a shift, both machines are stopped for maintenance. 

However, when machines are shut down because of a false alarm, no maintenance is carried out and 

production resumes.  

It is assumed that the time to shift for machine ݉ follows the exponential distribution with a rate of ߣ௠ 

(see Liu et al., 2013 and Xiang, 2013), whereas time to failure is assumed to follow the two-parameter 

Weibull distribution with an increasing failure rate (see Pandey et al., 2011) . During operation, if a machine 

fails, minimal repair is performed, which makes the machine operational but does not reduce its failure rate 

after repair. If a shift is detected, both machines are restored to their good-as-new conditions with PON of 

 .଴௠ and age 0, and a new inspection cycle begins. Restoration can be either corrective or preventive݌

Corrective restoration is performed on the machine that has the shift, whereas preventive restoration resets 

the age of the machine that has not shifted to zero.  

Whenever a true alarm is signaled, it is clear that at least one machine has shifted. Clearly, the time to 

shift on each machine is random. The system is said to be out-of-control if a shift on any of the machines 

has occurred, and hence, the stochastic competency between shifts (which shift occurs first) determines 

what out-of-control state the system is currently in, as will be illustrated in Section 4.1. In this regard, the 

sampling plan is designed to detect such competing and propagating shifts. Specially, a propagating shift 

occurs if one machine has already shifted but that shift is not detected until another shift takes place on the 

other machine. In particular, the production system is classified as a multistage multistate system. The 

system at any sampling time can be in one of four states: one in-control state, and three out-of-control states. 

The system’s PON ሺ݌௦ሻ can be represented by a set 

௦݌ ൌ ሼ݌଴, ,ଵ݌ ,ଶ݌  ,ଷሽ݌
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where ݌଴ ൌ ߶ሺ݌଴ଵ,  ଴ଶሻ represents that the system is in the in-control state (i.e., both machines are in݌

control) and ߶ሺ∙,∙ሻ is a function of machines’ PONs; ݌ଵ, -ଷ represent that the system is out-of݌ ଶ, and݌

control with ݌ଵ ൌ ߶ሺ݌ଵଵ, ଶ݌ ,଴ଶሻ being that only machine 1 has shifted݌ ൌ ߶ሺ݌଴ଵ,  ଵଶሻ being that only݌

machine 2 has shifted, and ݌ଷ ൌ ߶ሺ݌ଵଵ,  ଵଶሻ being that both shifts have occurred. Note that for the system’s݌

probability of nonconforming, ݌଴ can evolve to either ݌ଵ or ݌ଶ, and ݌ଵ or ݌ଶ can evolve to ݌ଷ. Basically, 

  :௦ can be determined by݌

௦݌ ൌ ߶൫݌௙ଵ, ௙ଶ൯݌ ൌ 1 െෑሺ1 െ

ଶ

௠ୀଵ

 ௙௠ሻ, (1)݌

where ݂ ൌ {0, machine is in-control; 1, machine is out-of-control}. 

To study the process with competing and propagating shifts, the sampling plan with one assignable 

cause proposed by Lorenzen and Vance (1986) is used as the baseline. The sampling plan is illustrated in 

Figure 1. A new inspection cycle starts with both machines being in good-as-new conditions. Inspection 

continues until a true alarm is signaled. Therefore, the inspection cycle length is defined as the time since 

the beginning of sampling until the two machines are restored correctively and/or preventively back to their 

good-as-new conditions after a true alarm. After each "݄" time units (called the sampling interval), ܰ units 

are sampled and inspected. If the number of nonconforming units in this sample exceeds an acceptance 

threshold ݎ, the two machines are investigated to determine if the out-of-control signal is a false alarm or 

indeed a true alarm. All the sampled units found to be nonconforming are rejected without rework.  

 

Figure 1. Sampling plan proposed by Lorenzen and Vance (1986). 

By taking into account competing and propagating shifts, the sampling plan shown in Figure 1 is 

modified in Section 4. The objective is to design an attribute sampling plan considering stochastic 

competing and propagating shifts. An optimization model is developed to minimize the long-run cost rate 

and to find the optimal sampling parameters. The assumptions about system operation and the notation used 

in this paper are provided next. 

Assumptions 

 The raw materials are defect free (i.e., incoming quality is perfect). Note that if the incoming quality 

is not perfect, this effect can be folded into the first-stage in-control nonconforming probability.   
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 Quality shift and machine failure are independent. For example, in an automated painting line, as 

the ambient temperature decreases, paint becomes more viscous causing undesirable coat quality, 

but the increased viscosity of paint does not cause a complete machine failure. 

 The occurrences of assignable causes that cause shifts on the two machines are independent, as the 

two machines perform different tasks, may run under different operating conditions, and are 

composed of different components. As will be explained in Section 6, the degradation of turbine 

discs causes a shift on the shot blasting machine, whereas the degradation of spraying nozzles 

causes another shift on the painting machine. Both shifts are independent as they occur on different 

machines without any linkage. Such assumptions about independent assignable causes (or shifts) 

have been made by others such as Yu et al. (2010), Xiang (2013), and Salmasnia et al. (2017).  

 The production rates and reliability of the two machines are not significantly different.  

 There are enough storage areas for the finished products and WIP so that the production will not 

be stopped because of lacking storage areas. 

 The system is stopped during sampling, which prevents the process with a potential quality shift 

from running during sampling. This is reasonable if the loss due producing nonconforming units is 

high. Note that the sampling interval (i.e., h) is an important decision variable in this study. 

 The two machines do not deteriorate or shift while being stopped.  

 Maintenance requests can only be fulfilled in sequence. In other words, a machine can be 

maintained only after the current maintenance action is complete. This is reasonable when only one 

maintenance team is involved.     

Notation 

Decision variables  
݄ Sampling interval measured in hours.  
ܰ Sample size 
 Acceptance threshold ݎ

Objective function 

 ܴܥܴܮ Long-run cost rate measured in $/hour 

Other variables, constants and indices 
݆ Index referring to the sample number at which an inspection cycle ends 

݅, ݇, ,ݍ  Indices ݓ
݉ Index for a machine, ݉ ∈ ሼ1,2ሽ 
 ܩ Inspection cycle operational time excluding false alarms, minimal repairs, true alarm, 

and restoration times 

ܵ௠ Shift of machine ݉, ݉ ∈ ሼ1,2ሽ 

ଵܵଶ Propagating shift 
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݉ ,݉ ௠ Shift rate of machineߣ ∈ ሼ1,2ሽ 

௠ܶ Time to shift of machine ݉, exponentially distributed ௠ܶ~Expሺߣ௠ሻ, ݉ ∈ ሼ1,2ሽ 
߬ௌ೘ Time of occurrence of ܵ௠ since the last sampling 

PON  Proportion of nonconforming 
݉ ,݉ ௙௠ PON of machine݌ ∈ ሼ1,2ሽ, ݂ ൌ {0, machine ݉ is in-control; 1, machine ݉ is out-

of-control} 

  ௦ PON of the production system݌
߶ሺ∙,∙ሻ  A function that represents ݌௦ in terms of machines’ PONs 
݀ Number of nonconforming units found in a sample of size ܰ 
 ߙ Type-I error due to a false signal 

௜ܶ௡  Time process stays in the in-control state 

௦ܶభ   Time the process is running with ݌௦ ൌ ଵ݌ ൌ ∅ሺ݌ଵଵ,  ଴ଶሻ݌

௦ܶమ   Time the process is running with  ݌௦ ൌ ଶ݌ ൌ ∅ሺ݌଴ଵ,  ଵଶሻ݌

௦ܶభమ   Time the process is running with  ݌௦ ൌ ଶ݌ ൌ ∅ሺ݌ଵଵ,  ଵଶሻ݌

௦݌ ௣ೞ Type-II error whenߚ ∈ ൛1݌, ,2݌  3ൟ݌

 ଴ܮܴܣ Average run length while the process is in-control 
௦భమܮܴܣ   Average run length while the process is out-of-control with propagating shift 

ܳ௜௡ Number of samples taken while the process is in-control 
ܳ௣భሺܳ௣మሻ  Number of samples taken while the process is operating with ݌௦ ൌ  ଶሻ݌ଵሺ݌

௜ܸ௡ሺ ௢ܸ௨௧ሻ  Number of rejected units found during sampling in the in-control (out-of-control) period

 ܷܬܴ Total number of rejected units during sampling 
 ௦ Average time of inspecting one unit of the productݐ

ிܶ஺ሺ ்ܶ஺ሻ  Average time to search for a false (true) alarm on each machine 

ெܶோ௠  Average time to perform a minimal repair on machine ݉, ݉ ∈ ሼ1,2ሽ 
ܴܥ ௠ܶሺܴܲ ௠ܶሻ  Average corrective (preventive) restoration time on machine ݉, ݉ ∈ ሼ1,2ሽ 

ܵ௧  Total time of sampling in an inspection cycle 
ܶ ிܶ஺  Total time of searching for false alarms in one inspection cycle 
ܶ ்ܶ஺  Average total time of searching for a true alarm in an inspection cycle 
 ܴܶܯ Total time of minimal repairs in an inspection cycle 
ܴܶ  Total restoration time in an inspection cycle 
 ௦ܥ Average inspection cost per unit time 

 ஺ሻ்ܥி஺ሺܥ Average cost per unit time of searching for a false (true) alarm 
 ெோ Average cost per unit time of performing a minimal repairܥ

݉ ,݉ ௉௠ሻ Average corrective (preventive) restoration cost per unit time for machineܥ஼௠ሺܥ ∈ ሼ1,2ሽ
 ௅௉ Average lost production cost per one unit of the productܥ
  ோ௃ Average cost of a rejected unit found during samplingܥ
ே஼ܥ  Average cost of a nonconforming unit received by a consumer  
ܵ௖ Total cost of sampling in an inspection cycle 
 ௖ Total cost of searching for false alarms in an inspection cycleܣܨ
 ௖ Average total cost of searching for a true alarm in an inspection cycleܣܶ
 ௖ܴܯ Total cost of minimal repairs in an inspection cycle 
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 ௌమሻܥௌభሺܴܥܴ Average restoration cost if an inspection cycle ends with ଵܵሺܵଶሻ 

ௌభమܥܴ   Average restoration cost if an inspection cycle ends with ଵܵଶ 

 Total restoration cost in an inspection cycle ܥܴ
ܮ ௖ܲ  Lost production cost in an inspection cycle 
 ܬܴܥ Total cost of rejected units during sampling 
 Total cost of nonconforming units received by customers ܥܰܥ

݉ ,݉ ௠ሻ Shape (scale) factor of Weibull distribution of machineߛ௠ሺߠ ∈ ሼ1,2ሽ, ߠ௠ ൐ 1 
݃௠  Production rate of stage ݉ 
݃௦ Production rate of the system, min

௠∈ሼଵ,ଶሽ
ሼ݃௠ሽ 

݄௠ሺݐሻ  Failure rate of machine ݉, ݉ ∈ ሼ1,2ሽ 
 ሻݐ௠ሺܯ Expected number of failures of machine ݉, ݉ ∈ ሼ1,2ሽ in time interval ሾ0,  ሿݐ
 ௠ܰܯ Number of minimal repairs on machine ݉, ݉ ∈ ሼ1,2ሽ in an inspection cycle 
 ܸܣ System’s availability 

ܴܲ௘௙௙  Effective production rate 
 ܵܶܣ Average time to signal 

 ሻܲܥሺܰܲܥ Number of conforming (nonconforming) products produced in one inspection cycle 
ܶܲ  Total number of products produced in one inspection cycle 
 ܥܥ Inspection cycle total cost 
 ܶܥ Inspection cycle total time 

 

4. Model development 

4.1. Stochastic cases 

Let ܩ be the time at which the inspection cycle terminates due to detecting a shift. The random variable 

ܩ ∈ ሼ݄, 2݄,⋯⋯ ,∞ሽ is the operational time that does not include the stoppage times of inspection, false 

alarms, minimal repairs, true alarms, and restorations, where the sampling interval ݄ is the time between 

two successive inspections. Clearly, the shortest length of ܩ is ݄. Since the production process has 

competing and propagating shifts, ܩ can be derived based on the following three cases: 

 Case I: Machine 2 shift (ܵଶ) and machine 1 shift ( ଵܵ) occur in the same sampling interval, i.e., 

between ሺ݅ െ 1ሻ݄௧௛ and ݄݅௧௛ sampling points as shown in Figure 2. 

 Case II: ܵଶ is not detected before the occurrence of ଵܵ given that ܵଶ occurs between ሺ݅ െ 1ሻ݄௧௛ and 

݄݅௧௛ sampling points, and ଵܵ occurs after the ݄݅௧௛ sampling point as shown in Figure 3. 

 Case III: ܵଶ is detected before the occurrence of ଵܵ as shown in Figure 4. 

It is worth pointing out that the above cases also apply when ଵܵ occurs before ܵଶ. 

Case I. Let ଵܶ and ଶܶ be the times to shift of machines 1 and 2, respectively, and ଵܶ and ଶܶ follow the 

exponential distributions with rates ߣଵ and ߣଶ, respectively. Moreover, let ߬ௌభ and ߬ௌమ be the times of 
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occurrence of ଵܵ and ܵଶ, respectively, since the most recent sampling. As shown in Figure 2, when ଵܶ ൐

ଶܶ, ܵଶ is missed because it is followed by ଵܵ before taking the next sample. Then, the production process 

starts to produce units with propagating shift at the time of occurrence of ଵܵ.  

 

Figure 2. Case I, Tଵ ൐ Tଶ. 

The probability that ܵଶ and ଵܵ happen in the same sampling interval given that ଵܶ ൐ ଶܶ is  

ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଶܶ ൑ ଵܶ ൏ ݄݅൯ ൌ න න ଶ݁ିఒమ௧మߣ

௧భ

ሺ௜ିଵሻ௛

ଶݐଵ݁ିఒభ௧భ݀ߣ

௜௛

ሺ௜ିଵሻ௛

  ଵݐ݀

ൌ ݁ିఒమሺ௜ିଵሻ௛൫݁ିఒభሺ௜ିଵሻ௛ െ ݁ିఒభ௜௛൯ ൅
ଵߣ

ଵߣ ൅ ଶߣ
൫݁ିሺఒభାఒమሻ௜௛ െ ݁ିሺఒభାఒమሻሺ௜ିଵሻ௛൯.                 

Thus, the probability that ܩ ൌ ݆݄ given that ଵܵ and ܵଶ happen between the ሺ݅ െ 1ሻ௧௛ and ݅௧௛ sampling 

points and ଵܶ ൐ ଶܶ is 

ܲ൫ܩ ൌ ݆݄, Case	I
భ்வ మ்

൯ ൌ෍ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଶܶ ൑ ଵܶ ൏ ݄݅൯

௝

௜ୀଵ

௣యߚ
௝ି௜൫1 െ ,௣య൯ߚ ݆ ൌ 1,⋯ ,∞, (2) 

where ߚ௣య  is the type II error resulting from that the system is producing units with ݌௦ ൌ ଷ݌ ൌ ݌ଵଵ ൅ ଵଶ݌ െ

 ଵଶ according to equation 1. Let ݀ be the number of nonconforming units in the sample, then the type݌ଵଵ݌

II error ߚ௣ೞ∈ሼ௣భ,௣మ,௣యሽ for ݌௦ ∈ ሼ݌ଵ, ,ଶ݌  ଷሽ is given as݌

௣ೞ∈ሼ௣భ,௣మ,௣యሽߚ ൌ ෍ ቆ
ܰ
݀
ቇݏ݌

݀
ݎ

݀ൌ0

ሺ1 െ ሻݏ݌
ܰെ݀. (3) 

For instance, in Case I and  ଵܶ ൐ ଶܶ, ܩ ൌ 2݄ if 0 ൑ ଶܶ ൑ ଵܶ ൏ ݄ and a shift is not detected until ݆ ൌ 2, or 

݄ ൑ ଶܶ ൑ ଵܶ ൏ 2݄ and a shift is detected at ݆ ൌ 2. Then, the probability that ܩ ൌ 2݄ is 

൜൫1 െ ݁ିఒభ௛൯ ൅
ଵߣ

ଵߣ ൅ ଶߣ
൫݁ିሺఒభାఒమሻ௛ െ 1൯ൠ ௣య൫1ߚ െ ௣య൯ߚ

൅ ൜݁ିఒమ௛൫݁ିఒభ௛ െ ݁ିఒభଶ௛൯ ൅
ଵߣ

ଵߣ ൅ ଶߣ
൫݁ିሺఒభାఒమሻଶ௛ െ ݁ିሺఒభାఒమሻ௛൯ൠ ൫1 െ  .௣య൯ߚ

The same procedure is followed for ଶܶ ൐ ଵܶ. Hence, ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଵܶ ൑ ଶܶ ൏ ݄݅൯ and ܲሺܩ ൌ

݆݄, Case	I
మ்வ భ்

ሻ can be expressed as follows, respectively: 
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ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଵܶ ൑ ଶܶ ൏ ݄݅൯ ൌ න න ଵ݁ିఒభ௧భߣ

௧మ

ሺ௜ିଵሻ௛

ଵݐଶ݁ିఒమ௧మ݀ߣ

௜௛

ሺ௜ିଵሻ௛

  ଶݐ݀

ൌ ݁ିఒభሺ௜ିଵሻ௛൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯ ൅
ଶߣ

ଵߣ ൅ ଶߣ
൫݁ିሺఒభାఒమሻ௜௛ െ ݁ିሺఒభାఒమሻሺ௜ିଵሻ௛൯,       

ܲ൫ܩ ൌ ݆݄, Case	I
మ்வ భ்

൯ ൌ෍ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଵܶ ൑ ଶܶ ൏ ݄݅൯

௝

௜ୀଵ

௣యߚ
௝ି௜൫1 െ ,௣య൯ߚ ݆ ൌ 1,… ,∞.  (4)

Case II. As shown in Figure 3, ଵܵ occurs at least one sample after the occurrence of ܵଶ. Due to the type 

II error, ܵଶ is always undetected until after the occurrence of ଵܵ. The minimum value of ܩ is 2݄ as a result 

that ܵଶ happens before taking the first sample (i.e., before time ݄) but is not detected, ଵܵ occurs afterwards, 

and the total shift is detected at time 2݄. If ܵଶ occurs in the sampling interval ሾሺ݅ െ 1ሻ݄, ݄݅ሿ, then ଵܵ could 

occur in any subsequent interval ሾሺ݅ ൅ ݇ሻ݄, ሺ݅ ൅ 1 ൅ ݇ሻ݄ሿ where 0 ൑ ݇ ൑ ݆ െ ݅ െ 1 for any ݅, 1 ൑ ݅ ൑ ݆ െ

1 and ݆ ൒ 2. Note that a true alarm is alerted at ݆ ൒ ݅ ൅ 1 ൅ ݇, and hence, ݇ ൑ ݆ െ ݅ െ 1. 

 

Figure 3. Case II, Tଵ ൐ Tଶ. 

The probability that ܩ ൌ ݆݄ in Case II and ଵܶ ൐ ଶܶ is  

ܲሺܩ ൌ ݆݄, Case	II
భ்வ మ்

ሻ 	ൌ  

෍ ෍ ൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯൫݁ିఒభሺ௞ା௜ሻ௛ െ ݁ିఒభሺ௞ାଵା௜ሻ௛൯ߚ௣మ
௞ାଵߚ௣య

௝ି௜ି௞ିଵ൫1 െ ௣య൯ߚ

௝ି௜ିଵ

௞ୀ଴

௝ିଵ

௜ୀଵ

, ݆ ൌ 2,… ,∞,  (5) 

where ߚ௣మ  is the type II error (obtained by equation 3) that could result if the system is producing units with 

௦݌ ൌ ଶ݌ ൌ ଴ଵ݌ ൅ ଵଶ݌ െ ܩଵଶ. For instance, ܲ൫݌଴ଵ݌ ൌ ݄, Case	II
భ்வ మ்

൯ ൌ 0, and ܲ൫ܩ ൌ 2݄,

Case	II
భ்வ మ்

൯ ൌ ൫1 െ ݁ିఒమ௛൯൫݁ିఒభ௛ െ ݁ିఒభଶ௛൯ߚ௣మ൫1 െ   .௣య൯, and so onߚ

The same procedure can be followed for ଶܶ ൐ ଵܶ, and ܲሺܩ ൌ ݆݄, Case	II
మ்வ భ்

ሻ	is obtained as 

ܲሺܩ ൌ ݆݄, Case	II
మ்வ భ்

ሻ 	ൌ  

෍ ෍ ൫݁ିఒభሺ௜ିଵሻ௛ െ ݁ିఒభ௜௛൯൫݁ିఒమሺ௞ା௜ሻ௛ െ ݁ିఒమሺ௞ାଵା௜ሻ௛൯ߚ௣భ
௞ାଵߚ௣య

௝ି௜ି௞ିଵ൫1 െ ௣య൯ߚ

௝ି௜ିଵ

௞ୀ଴

௝ିଵ

௜ୀଵ

, ݆ ൌ 2,… ,∞, (6) 
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where ߚ௣భ  is the type II error (obtained by equation 3) that could result if the system is producing units with  

௦݌ ൌ ଵ݌ ൌ ݌ଵଵ ൅ ଴ଶ݌ െ  .଴ଶ݌ଵଵ݌

Case III. In this case, as shown in Figure 4, ܵଶ is always detected at time ݆݄, ݆ ൒ ݅, and before the 

occurrence of ଵܵ. The probability that ܩ ൌ ݆݄ given Case III and ଵܶ ൐ ଶܶ can be expressed as 

ܲ൫ܩ ൌ ݆݄, Case	III
భ்வ మ்

൯ ൌ ݁ିఒభ௝௛෍൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯

௝

௜ୀଵ

2݌ߚ
௝ି௜ቀ1 െ ,2ቁ݌ߚ ݆ ൌ 1,… ,∞. (7) 

For example, ܲሺܩ ൌ ݄, Case	III
భ்வ మ்

ሻ ൌ ݁ିఒభ௛൫1 െ ݁ିఒమ௛൯൫1 െ ܩ௣మ൯, and ܲሺߚ ൌ 2݄, Case	III
భ்வ మ்

ሻ ൌ

݁ିఒభଶ௛൛൫1 െ ݁ିఒమ௛൯ߚ௣మ൫1 െ ௣మ൯ߚ ൅ ൫݁ିఒమ௛ െ ݁ିఒమଶ௛൯൫1 െ   .௣మ൯ൟ, and so onߚ

 

Figure 4. Case III, Tଵ ൐ Tଶ. 

Similarly, when ଶܶ ൐ ଵܶ, ܲሺܩ ൌ ݆݄, Case	III
మ்வ భ்

ሻ can be obtained as 

ܲ൫ܩ ൌ ݆݄, Case	III
మ்வ భ்

൯ ൌ ݁ିఒమ௝௛෍൫݁ିఒభሺ௜ିଵሻ௛ െ ݁ିఒభ௜௛൯

௝

௜ୀଵ

1݌ߚ
௝ି௜ቀ1 െ ,1ቁ݌ߚ ݆ ൌ 1,⋯ ,∞. (8) 

Consequently, following the above cases, the expected value ܧሾܩሿ can be given as 

ሿܩሾܧ ൌ ଵܣ	 ൅ ଶܣ ൅ ଷܣ ൅ ସܣ ൅ ହܣ ൅  ଺, (9)ܣ

where ܣଵ to ܣ଺ are the weighted expected values of the cycle length given all cases. ܣଵ to ܣ଺ are obtained 

as follows, respectively: 

ଵܣ ൌ ∑ ݆݄ ∙ஶ
௝ୀଵ ܲ൫ܩ ൌ ݆݄, Case I

భ்வ మ்
൯ ൌ

௛ሺ௘ሺഊభశഊమሻ೓ିఉ3݌ሻሺఒమ௘
ഊమ೓ሺ௘ഊభ೓ିଵሻିఒభሺ௘ഊమ೓ିଵሻሻ

ሺఒభାఒమሻሺଵିఉ3݌ሻ൫௘
ሺഊభశഊమሻ೓ିଵ൯

మ ,  

ଶܣ ൌ ∑ ݆݄ஶ
௝ୀଵ ∙ ܲ൫ܩ ൌ ݆݄, Case I

మ்வ భ்
൯ ൌ

௛ሺ௘ሺഊభశഊమሻ೓ିఉ3݌ሻሺఒభ௘
ഊభ೓ሺ௘ഊమ೓ିଵሻିఒమሺ௘ഊభ೓ିଵሻሻ

ሺఒభାఒమሻሺଵିఉ3݌ሻ൫௘
ሺഊభశഊమሻ೓ିଵ൯

మ ,  

ଷܣ ൌ ∑ ݆݄	 ∙ ܲ൫ܩ ൌ ݆݄, Case	II భ்வ మ்൯ ൌ
ஶ
௝ୀଶ

௛ఉ೛మሺ௘
ഊభ೓ିଵሻሺ௘ഊమ೓ିଵሻሺ௘ഊభ೓ାሺߚ೛యିଶሻ௘

ሺమഊభశഊమሻ೓ାఉ೛మሺ௘
ሺഊభశഊమሻ೓ିߚ೛యሻሻ

ሺߚ೛యିଵሻሺ௘
ሺഊభశഊమሻ೓ିଵሻమሺ௘ഊభ೓ିఉ೛మሻ

మ ,  

ସܣ ൌ ∑ ݆݄ ∙ஶ
௝ୀଶ ܲ൫ܩ ൌ ݆݄, Case	II మ்வ భ்൯ ൌ

௛ఉ೛భሺ௘
ഊభ೓ିଵሻሺ௘ഊమ೓ିଵሻሺ௘ഊమ೓ାሺఉ೛యିଶሻ௘

ሺഊభశమഊమሻ೓ାߚ೛భሺ௘
ሺഊభశഊమሻ೓ିఉ೛యሻሻ

ሺఉ೛యିଵሻሺ௘
ሺഊభశഊమሻ೓ିଵሻమሺ௘ഊమ೓ିߚ೛భሻ

మ ,  

ହܣ ൌ ∑ ݆݄	 ∙ ܲሺܩ ൌ ݆݄, Case III భ்வ మ்ሻ
ஶ
௝ୀଵ ൌ

௛ሺఉ೛మିଵሻ௘
ഊభ೓ሺ௘ഊమ೓ିଵሻሺఉ೛మି௘

ሺమഊభశഊమሻ೓ሻ

ሺ௘ሺഊభశഊమሻ೓ିଵሻమሺ௘ഊభ೓ିఉ೛మሻ
మ ,  
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଺ܣ ൌ ∑ ݆݄ ∙ ܲ൫ܩ ൌ ݆݄, Case III మ்வ భ்൯ ൌ
௛ሺఉ೛భିଵሻ௘

ഊమ೓ሺ௘ഊభ೓ିଵሻሺఉ೛భି௘
ሺഊభశమഊమሻ೓ሻ

ሺ௘ሺഊభశഊమሻ೓ିଵሻమሺ௘ഊమ೓ିఉ೛భሻ
మ

ஶ
௝ୀଵ .  

4.2. Time and cost of sampling  

The average number of samples taken during the inspection cycle equals to	ܧሾܩሿ ݄⁄ . Then, the expected 

time of sampling ܧሾܵ௧ሿ can be expressed as  

ሾܵ௧ሿܧ ൌ
௦ݐ ∙ ܰ ∙ ሿܩሾܧ

݄
, (10) 

where ݐ௦ is the average time of inspecting one unit of the product. Let ܥ௦ be the average cost per unit time 

of sampling, then the expected cost of sampling ܧሾܵ௖ሿ is 

ሾܵ௖ሿܧ ൌ ௦ܥ  ሾܵ௧ሿ. (11)ܧ

4.3. Time and cost of false alarms  

The process is out-of-control once any of the two shifts occurs. Consequently, the time period that the 

process is in-control ௜ܶ௡ follows the exponential distribution with ௜ܶ௡ ൌ Minሺ ଵܶ , ଶܶሻ~Expሺߣଵ ൅  .ଶሻߣ

Therefore, the expected time that the process is in-control ܧሾ ௜ܶ௡ሿ is 

ሾܶ݅݊ሿܧ ൌ
1

ଵߣ ൅ ଶߣ
  

Let ܳ௜௡ be the number of samples taken when the system is in-control. Then, its expected value is 

൧݊݅ܳൣܧ ൌ෍݅ ∙ ൫݁ିሺఒభାఒమሻ௜௛ െ ݁ିሺఒభାఒమሻሺ௜ାଵሻ௛൯ ൌ
1

݁ሺఒభାఒమሻ௛ െ 1

ஶ

௜ୀ଴

.  

As a result, the expected total time of false alarms ܧሾܶ ிܶ஺ሿ is given by 

ሾܶܧ ிܶ஺ሿ ൌ 2 ிܶ஺
൧݊݅ܳൣܧ
଴ܮܴܣ

, (12) 

where ிܶ஺ is the average time for identifying a false alarm on each machine , ܮܴܣ଴ is the average run length 

when the process is in-control (i.e., the average number of samples taken until a false alarm is alerted), and 

ሾܳ௜௡ሿܧ ⁄଴ܮܴܣ  is the average number of false alarms in one cycle, in which ܮܴܣ଴ is (Montgomery, 2009) 

଴ܮܴܣ ൌ
1
ߙ
, 

 

where the type-I error ߙ  is reported when ݌௦ ൌ ଴݌ ൌ ଴ଵ݌ ൅ ଴ଶ݌ െ ݀ ଴ଶ and݌଴ଵ݌ ൐  which is given by ,ݎ

ߙ ൌ 1 െ෍ ൬
ܰ
݀
൰݌଴

ௗ

௥

ௗୀ଴

ሺ1 െ  .଴ሻேିௗ݌
 

 

The direct cost of false alarms is due to the effort taken for identifying false alarms and inspecting 

machines. Let ܥி஺ be the average cost per unit time of searching for a false alarm. Then, the expected total 
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cost of searching for false alarms can be expressed as 

௖ሿܣܨሾܧ ൌ ி஺ܥ ሾܶܧ ிܶ஺ሿ. (13)

4.4. Time and cost of searching for a true alarm 

Let ்ܥ஺ be the average cost per unit time of searching for a true alarm, then the average total time ܶ ்ܶ஺ and 

cost ܶܣ௖ of searching for a true alarm are given as follows, respectively: 

ܶ ்ܶ஺ ൌ 2 ்ܶ஺, (14)

௖ܣܶ ൌ ஺்ܥ ܶ ்ܶ஺.    (15)

4.5. Restoration time and cost 

Restoration time is the time required for machine maintenance and shift removal(s). Since inspection ends 

with a shift, at least one of the two machines need corrective restoration. Three possible scenarios are 

described next. 

 Inspection cycle ends only with ଵܵ 

For this scenario, machine 1 is correctively restored, and machine 2 is preventively restored. The probability 

that the inspection cycle ends with this scenario equals the probability that ଵܵ is detected before the 

occurrence of ܵଶ. Let ܴܥ ଵܶ and ܴܲ ଶܶ be the average corrective restoration time of machine 1 and the 

average preventive restoration time of machine 2, respectively, and ܥ஼ଵ and ܥ௉ଶ be the average costs per 

unit time of corrective and preventive restorations on machines 1 and 2, respectively. Then, the average 

restoration cost of this scenario ܴܥௌభ is 

ௌభܥܴ ൌ ஼ଵܥ ܴܥ ଵܶ ൅ ௉ଶܥ ܴܲ ଶܶ.  

 Inspection cycle ends only with ܵଶ 

In this scenario, machine 2 is correctively restored, and machine 1 is preventively restored. The probability 

that the inspection cycle ends in this scenario is the probability that ܵଶ is detected before the occurrence of 

ଵܵ. Let ܴܲ ଵܶ and ܴܥ ଶܶ be the average preventive restoration time of machine 1 and the average corrective 

restoration time of machine 2, respectively, and ܥ஼ଶ and ܥ௉ଵ be the average costs per unit time of corrective 

and preventive restorations on machines 2 and 1, respectively.  Then, the average restoration cost of this 

scenario ܴܥௌమ  is 

ௌమܥܴ ൌ ௉ଵܥ ܴܲ ଵܶ ൅ ஼ଶܥ ܴܥ ଶܶ.  

 Inspection cycle ends with propagating shift ଵܵଶ 

In this scenario, both machines have shifted, and corrective restorations are carried out on both machines. 

The average cost of restoration of this scenario ܴܥௌభమ is given as 

ௌభమܥܴ ൌ ஼ଵܥ ܴܥ ଵܶ ൅ ஼ଶܥ ܴܥ ଶܶ.  

Hence, the expected total restoration cost ܧሾܴܥሿ and time ܧሾܴܶሿ are given as follows, respectively: 
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ሿܥሾܴܧ ൌ ௌభܥܴ ଺ܤ ൅ ௌమܥܴ ହܤ ൅ ௌభమܥܴ (16) ,ܤ

ሾܴܶሿܧ ൌ ሺܴܥ ଵܶ ൅ ܴܲ ଶܶሻ	ܤ଺ ൅ ሺܴܲ ଵܶ ൅ ܴܥ ଶܶሻ ହܤ ൅ ሺܴܥ ଵܶ ൅ ܴܥ ଶܶሻ (17) ,ܤ

where ܤଵሺܤଶሻ is the probability of Case I given ଵܶ ൐ ଶܶሺ ଶܶ ൐ ଵܶሻ, ܤଷሺܤସሻ is the probability of Case II 

given ଵܶ ൐ ଶܶሺ ଶܶ ൐ ଵܶሻ, and ܤହሺܤ଺ሻ is the probability of Case III given ଵܶ ൐ ଶܶሺ ଶܶ ൐ ଵܶሻ. ܤ, and ܤଵ to 

 :଺ are given as follows, respectivelyܤ

ܤ ൌ ଵܤ ൅ ଶܤ ൅ ଷܤ ൅  ,ସܤ

ଵܤ ൌ ∑ ܲ൫ܩ ൌ ݆݄, Case	I
భ்வ మ்

	൯ஶ
௝ୀଵ ൌ

ఒభ൫ଵି௘ഊమ೓൯ାఒమሺ௘ሺഊభశഊమሻ೓ି௘ഊమ೓ሻ

ሺఒభାఒమሻሺ௘ሺഊభశഊమሻ೓ିଵሻ
,  

ଶܤ ൌ ∑ ܲ൫ܩ ൌ ݆݄, Case	I
మ்வ భ்

	൯ ൌ
ఒమ൫ଵି௘ഊభ೓൯ାఒభሺ௘ሺഊభశഊమሻ೓ି௘ഊభ೓ሻ

ሺఒభାఒమሻሺ௘ሺഊభశഊమሻ೓ିଵሻ
ஶ
௝ୀଵ ,  

ଷܤ ൌ ∑ ܲ൫ܩ ൌ ݆݄, Case	II
భ்வ మ்

	൯ஶ
௝ୀଶ ൌ

ఉ೛మሺ௘
ഊభ೓ିଵሻሺ௘ഊమ೓ିଵሻ

ሺ௘ሺഊభశഊమሻ೓ିଵሻሺ௘ഊభ೓ିఉ೛మሻ
,  

ସܤ ൌ ∑ ܲ൫ܩ ൌ ݆݄, Case	II
మ்வ భ்

	൯ஶ
௝ୀଶ ൌ

ఉ೛భሺ௘
ഊమ೓ିଵሻሺ௘ഊభ೓ିଵሻ

ሺ௘ሺഊభశഊమሻ೓ିଵሻሺ௘ഊమ೓ିఉ೛భሻ
,  

ହܤ ൌ ∑ ܲ൫ܩ ൌ ݆݄, Case	III
భ்வ మ்

	൯ ൌ
௘ഊభ೓൫௘ഊమ೓ିଵ൯൫ଵିఉ೛మ൯

൫௘ሺഊభశഊమሻ೓ିଵ൯൫௘ഊభ೓ିఉ೛మ൯
ஶ
௝ୀଵ ,  

଺ܤ ൌ ∑ ܲ൫ܩ ൌ ݆݄, Case	III
మ்வ భ்

	൯ஶ
௝ୀଶ ൌ

௘ഊమ೓൫௘ഊభ೓ିଵ൯൫ଵିఉ೛భ൯

൫௘ሺഊభశഊమሻ೓ିଵ൯൫௘ഊమ೓ିఉ೛భ൯
.  

4.6. Time and cost of minimal repair 

Minimal repair is performed each time a machine fails unless a shift is detected. By nature, minimal repair 

does not change the failure rate of a failed machine. The failure rate ݄௠ሺݐሻ of machine ݉ is given as 

݄௠ሺݐሻ ൌ
௠ߠ
௠ߛ

൬
ݐ
௠ߛ
൰
ఏ೘ିଵ

,  

where  ௠ߠ ൐ 1 and ߛ௠ are the corresponding shape and scale parameters of the Weibull distribution, 

respectively. Then, the expected number of failures (i.e., minimal repairs) ܯ௠ሺݐሻ of machine ݉ during the 

interval ሾ0,  ሿ can be obtained asݐ

ሻݐ௠ሺܯ ൌ න݄௠ሺݑሻ݀ݑ

௧

଴

ൌ ൬
ݐ
௠ߛ
൰
ఏ೘
.  

Since machines do not age during downtime, the expected number of minimal repairs on machine ݉ in 

each inspection cycle ܧሾܰܯ௠ሿ can be expressed as 

ሿ݉ܰܯሾܧ ൌ෍ቆ
݆݄
݉ߛ

ቇ
݉ߠ

ܲሺܩ ൌ ݆݄ሻ
∞

݆ൌ1

, (18) 

where  

ܲሺܩ ൌ ݆݄ሻ ൌ ܲ൫ܩ ൌ ݆݄, Case	I భ்வ మ்൯ ൅ ܲ൫ܩ ൌ ݆݄, Case I మ்வ భ்൯ ൅ ܲ൫ܩ ൌ ݆݄, Case	II భ்வ మ்൯ ൅ 
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																																																			ܲ൫ܩ ൌ ݆݄, Case	II మ்வ భ்൯ ൅ ܲ൫ܩ ൌ ݆݄, Case III భ்வ మ்൯ ൅ ܲ൫ܩ ൌ ݆݄, Case	III మ்வ భ்൯. 

Since the purpose of minimal repair is to make a failed machine operational again with minimal 

resources, the PON of the system will be the same as that right before the failure. Let ܶ ெோ௠	and	ܥெோ௠,݉ ∈

ሼ1,2ሽ be the average time and cost per unit time to perform a minimal repair on machine ݉, respectively. 

Then the expected total time ܧሾܴܶܯሿ and the expected total cost of performing minimal repairs ܧሾܴܯ௖ሿ 

are given as follows, respectively:  

ሿܴܶܯሾܧ ൌ ெܶோଵܧሾܯ ଵܰሿ ൅ ெܶோଶܧሾܯ ଶܰሿ, (19)

௖ሿܴܯሾܧ ൌ ெோଵܥ ெܶோଵܧሾܯ ଵܰሿ ൅ ெோଶܥ ெܶோଶܧሾܯ ଶܰሿ. (20) 

4.7. Cost of lost production 

The time due to stoppages for searching for false alarms and true alarms, sampling, minimal repairs, and 

restoration causes loss in production. Let ܥ௅௉ be the average cost of lost production per one unit of the 

product, then the expected cost of lost production ܧሾܮ ௖ܲሿ can be expressed as  

ܮሾܧ ௖ܲሿ ൌ ሾܶܧ௅௉݃௦ሼܥ ிܶ஺ሿ ൅ ܶ ்ܶ஺ ൅ ሾܵ௧ሿܧ ൅ ሿܴܶܯሾܧ ൅ ሾܴܶሿሽ, (21)ܧ

where ݃௦ is the system’s production rate given as ݃௦ ൌ min
	௠∈ሼଵ,ଶሽ

ሼ݃௠ሽ where ݃௠ is the production rate of 

machine ݉.  

4.8. Cost of units rejected in all samples 

Any nonconforming unit found in a sample is rejected without replacement, and the production process at 

each sampling time should be in one of the following states: in-control state and three out-of-control states. 

To find the cost of rejected units in all samples, we first define the following quantities: 

ܽ௣ೞ ൌ ෍ ݀ ൬
ܰ
݀
൰݌௦ௗ

ே

ௗୀ௥ାଵ

ሺ1 െ ,௦ሻேିௗ݌ ௦݌ ∈ ሼ݌଴, ,ଵ݌ ,ଶ݌  ,ଷሽ݌

ܾ௣ೞ ൌ ෍ ݀ ൬
ܰ
݀
൰݌௦ௗ

௥

ௗୀ଴

ሺ1 െ ,௦ሻேିௗ݌ ௦݌ ∈ ሼ݌଴, ,ଵ݌ ,ଶ݌  ,ଷሽ݌

where ܽ௣ೞ represents the expected number of nonconforming units found in a sample if a false or a true 

alarm is alerted ,whereas ܾ௣ೞ refers to the expected number of nonconforming units found in a sample taken 

if no alarm is alerted. For instance, ܽ௣భis the expected number of nonconforming units found in the last 

sample that alerts the true alarm when the process is operating with ଵܵ ,whereas  ܾ௣బ  is the expected number 

of nonconforming units found in a sample taken while the process is in control and no false alarm is alerted. 

Any sample taken in the in-control period may indicate no alarm or false alarm, and the expected 

number of samples with false alarms equals to the expected number of false alarms. Then, the expected 

number of rejected units found during inspection when the process is in-control ܧሾ ௜ܸ௡ሿ  is 
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ሾܧ ௜ܸ௡ሿ ൌ ሾܳ௜௡ሿܽ௣బܧߙ ൅ ሺ1 െ  .ሾܳ௜௡ሿܾ௣బܧሻߙ
 

The expected total number of rejected units during inspection ܧሾܸሿ is given as 

ሾܸሿܧ ൌ ሾܧ ௜ܸ௡ሿ ൅ ሾܧ ௢ܸ௨௧ሿ, (22)

where ܧሾ ௢ܸ௨௧ሿ is the expected total number of rejected units found in the out-of-control state. The derivation 

of ܧሾ ௢ܸ௨௧ሿ is provided in the Appendix. Let ܥோ௃ be the average cost of a rejected unit, then the expected 

cost of rejected units ܧሾܬܴܥሿ is 

ሿܬܴܥሾܧ ൌ ሾܸሿ. (23)ܧோ௃ܥ

4.9. Cost of nonconforming units delivered to customers 

A nonconforming unit found by a customer may cost more than a nonconforming unit found during the 

inspection. Let ܥே஼  be the average cost of a nonconforming unit received by a customer, then the expected 

cost of nonconforming units received by customers ܧሾܥܰܥሿ is given by 

ሿܥܰܥሾܧ ൌ ሾܧ଴݌ே஼൛݃௦൫ܥ ௜ܶ௡ሿ ൅ ሾܧଵ݌ ௦ܶభሿ ൅ ሾܧଶ݌ ௦ܶమሿ ൅ ሾܧଷ݌ ௦ܶభమሿ൯ െ ሾܸሿൟ, (24)ܧ

where ܧሾ ௦ܶభሿ, ܧሾ ௦ܶమሿ, and ܧሾ ௦ܶభమሿ are the expected values of times that the process could operate with ଵܵ, 

ܵଶ, and ଵܵଶ, respectively. The details of these terms are given in Section 5.  

4.10. Expected total cycle cost and time 

Based on the above calculations, the expected total cycle cost ܧሾܥܥሿ and the expected total cycle time 

 :ሿ can be obtained as follows, respectivelyܶܥሾܧ

ሿܥܥሾܧ ൌ ሾܵ௖ሿܧ ൅ ௖ሿܣܨሾܧ ൅ ௖ܣܶ ൅ ሿܥሾܴܧ ൅ ௖ሿܴܯሾܧ ൅ ܮሾܧ ௖ܲሿ ൅ ሿܬܴܥሾܧ ൅ ሿ, (25)ܥܰܥሾܧ

ሿܶܥሾܧ ൌ ሿܩሾܧ ൅ ሾܵ௧ሿܧ ൅ ሾܶܧ ிܶ஺ሿ ൅ ܶ ்ܶ஺ ൅ ሾܴܶሿܧ ൅ ሿ. (26)ܴܶܯሾܧ

5.  Optimal design of the sampling plan  

The optimal sampling parameters are determined by minimizing the long-run cost rate ܴܥܴܮ ൌ

 .ሿ, which is the ratio between the expected total cycle cost and the expected total cycle timeܶܥሾܧ/ሿܥܥሾܧ

The mathematical formulation of the problem is given by  

 min
ே,௥,௛

				 ܴܥܴܮ ൌ
ሿܥܥሾܧ
ሿܶܥሾܧ

 (27) 

Subject to ܸܣ ൒ (27.1) ܣ

 ܴܲ௘௙௙ ൒ ܹ (27.2)

ܵܶܣ  ൑ (27.3) ܮ

 ܰ ൑ ሺ݄ െ ݈       ,௟ሻ݃௦ݑ ∈ ሼ1,4,5,6ሽ (27.4)
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 ܰ ൐ (27.5) ݎ

 ܰ, ݎ ∈ Z ൅ , ݄ ൐ 0. (27.6)

The formulation belongs to a Mixed Integer Nonlinear Programming (MINLP) problem. Equation (27) 

states that ܴܥܴܮ is minimized with respect to the three decision variables ܰ, - and ݄. Equations (27.1) ,ݎ

(27.3) specify three performance constraints. In equation (27.1), the system availability ܸܣ must be greater 

than or equal to a predefined threshold ܣ to ensure the expected total number of units produced in one cycle. 

However, with increased availability, both the expected numbers of conforming and nonconforming units 

increase. Since the latter is undesirable, equation (27.2) imposes another constraint on the effective 

production rate ܴܲ௘௙௙ to ensure the fraction of expected number of conforming units produced is above a 

certain level ܹ. Moreover, equation (27.3) is used to ensure the speed of detecting process shifts in terms 

of the average time to signal ܵܶܣ .ܵܶܣ is defined as the average time taken to alert a true alarm since the 

occurrence of a shift. In practice, ܵܶܣ could be short to avoid excess losses when producing products in the 

out-of-control state (i.e., ܵܶܣ should be less than or equal to a threshold ܮ). Inspection at each sampling 

time is carried out from the last unit produced, and a group of constraints given by equation (27.4) is 

provided to ensure that units are sampled from only one population (i.e., with the same ݌௦). These 

constraints also guarantee that ܰ is always less than the number of units produced between two inspections. 

Note that because ݑଵ ൐ ଶ when ଵܶݑ	 ൐ 	 ଶܶ, we have ݄ െ ଵݑ ൏ 	݄ െ ସݑ ଶ. Moreover, becauseݑ ൐  ଷ whenݑ	

ଶܶ ൐ 	 ଵܶ, we have ݄ െ ସݑ ൏ 	݄ െ  Therefore, the constraints corresponding .(଺ are defined belowݑ ଵtoݑ) ଷݑ

to	݈ ∈ ሼ2,3ሽ	are redundant. Lastly, the decision variables ݎ and ܰሺ൐  ሻ are nonnegative integers, and ݄ is aݎ

positive continuous variable as specified in equations (27.5) and (27.6), respectively.  

Since the three performance measures are essential to the operation of this system, they will be 

elaborated next. 

System’s availability 

The system’s availability ܸܣ is defined as:  

ܸܣ ൌ
ሿܩሾܧ
ሿܶܥሾܧ

, (28)

which is the ratio between the expected operational time in a cycle and the expected total cycle length.  

Effective production rate 

The effective production rate ܴܲ௘௙௙ is the proportion of the expected numbers of conforming units 

produced ܧሾܲܥሿ in the inspection cycle. ܴܲ௘௙௙ can be obtained as  

ܴܲ௘௙௙ ൌ
ሿܲܥሾܧ
ሾܶܲሿܧ

ൌ 1 െ
ሿܲܥሾܰܧ

ሾܶܲሿܧ
, 

where ܧሾܶܲሿ and ܧሾܰܲܥሿ are the expected total number and the expected number of nonconforming units 
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produced in one cycle, respectively. ܧሾܰܲܥሿ is the sum of the number of nonconforming units produced in 

the in-control state and the other three out-of-control states. Since each state has a different ݌௦, ܧሾܰܲܥሿ and 

 :ሾܶܲሿ are given as follows, respectivelyܧ

ሿܲܥሾܰܧ ൌ ݃௦൛݌଴ܧሾ ௜ܶ௡ሿ ൅ ሾܧଵ݌ ௦ܶభሿ ൅ ሾܧଶ݌ ௦ܶమሿ ൅ ሾܧଷ݌ ௦ܶభమሿൟ, 

ሾܶܲሿܧ ൌ ݃௦ܧሾܩሿ. 

Therefore, ܴܲ௘௙௙ is  

ܴܲ௘௙௙ ൌ 1 െ
൛݌଴ܧሾ ௜ܶ௡ሿ ൅ ሾܧଵ݌ ௦ܶభሿ ൅ ሾܧଶ݌ ௦ܶమሿ ൅ ሾܧଷ݌ ௦ܶభమሿൟ

ሿܩሾܧ
, (29)

where  

ሾܧ ௦ܶభሿ ൌ ሼݑସ െ ଶܥଷሽݑ ൅ ସܥ ൅   ,଺ܥ

ሾܧ ௦ܶమሿ ൌ ሼݑଵ െ ଵܥଶሽݑ ൅ ଷܥ ൅   ,ହܥ

ሾܧ ௦ܶభమሿ ൌ ൫݄ܮܴܣ௦భమ െ ଵܥଵ൯ݑ ൅ ൫݄ܮܴܣ௦భమ െ ଶܥସ൯ݑ ൅ ൫݄ܮܴܣ௦భమ െ ଻ܥହ൯ݑ ൅ ൫݄ܮܴܣ௦భమ െ  ,଼ܥ଺൯ݑ  

where ݑଵ(ݑଷ) is the conditional expectation of ߬ௌభ given Case I, ଵܶ ൐ ଶܶ( ଶܶ ൐ ଵܶሻ ,whereas ݑଶሺݑସሻ is the 

conditional expectation of ߬ௌమ given Case I, ଵܶ ൐ ଶܶ( ଶܶ ൐ ଵܶሻ, ݑହሺݑ଺) is the conditional expectation of 

߬ௌభሺ߬ௌమሻ given Case II/III, ܥଵሺܥଶሻ are the corresponding probabilities of Case I, ଵܶ ൐ ଶܶ( ଶܶ ൐ ଵܶሻ, ܥଷ ൌ

ൣܧ ௦ܶమ, Case	II భ்வ మ்
	൧, ܥସ ൌ ൣܧ ௦ܶభ, Case	II మ்வ భ்

	൧, ܥହ ൌ ൣܧ ௦ܶమ, Case	III భ்வ మ்
	൧, ܥ଺ ൌ ൣܧ ௦ܶభ, Case	II మ்வ భ்

	൧, 

and ܥ଻ሺ଼ܥሻ is the probability that the time needed is ݄ܮܴܣ௦భమ െ ௦భమܮܴܣ݄) ହݑ െ  ଺) to alert a true alarmݑ

since the occurrence of a shift given Case II, ଵܶ ൐ ଶܶሺ ଶܶ ൐ ଵܶሻ. The derivations of ܧሾ ௦ܶభሿ, ܧሾ ௦ܶమሿ, 

ሾܧ ௦ܶభమሿ, ,଺ݑ	to	ଵݑ and	ܥଵ	to	଼ܥ are given in the Appendix. 

Average time to signal 

As defined earlier, ܵܶܣ is the average time taken until the sampling plan is successful to alert a true alarm 

since the occurrence of a shift. However, the process could run with two shifts (propagating shift), and 

hence, the exact definition of ܵܶܣ will be the average time taken to alert a true alarm since the occurrence 

of the earlier shift. In Case I, as shown in Figure 2, ܵ ଵ	or ܵ ଶ occurs first, and then, it propagates and becomes 

ଵܵଶ until it is detected. The average number of samples taken to alert a true alarm is ܮܴܣ௦భమ, and hence,  

 I is	Case|ܵܶܣ

I	Case|ܵܶܣ ൌ ቊ
௦భమܮܴܣ݄ െ ,2ݑ ܶ1 ൐ ܶ2
௦భమܮܴܣ݄ െ ,3ݑ ܶ2 ൐ ܶ1.

  

As shown in Figure 3 ( ଵܶ ൐ ଶܶ ), ܵଶ occurs ߬ௌమ time units since time ሺ݅ െ 1ሻ݄. Therefore, ݄ݍ െ ଺ݑ ൅  ହ isݑ

the elapsed time between the occurrences of ܵଶ and ଵܵ. At the time of the occurrence of ଵܵ , the process 

starts operating with ଵܵଶ until true detection, i.e., ݄ܮܴܣ௦భమ െ  .ହ units time needed to alert a true alarmݑ
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Summing up these times, ݄ሺݍ ൅ ௦భమሻܮܴܣ െ  since the occurrence of ܵଶ. The same applies ܵܶܣ ଺ is theݑ

when ଶܶ ൐ ଵܶ, but with ݄൫ݍ ൅ ௦భమ൯ܮܴܣ െ  II is given as	Case|ܵܶܣ ,ହ, and thereforeݑ

II	Case|ܵܶܣ ൌ ቊ
݄ሺݍ ൅ ௦భమሻܮܴܣ െ ,6ݑ ܶ1 ൐ ܶ2 , ݍ ൌ ሼ1,⋯ ,∞ሽ

	݄൫ݍ ൅ ௦భమ൯ܮܴܣ െ ,5ݑ ܶ2 ൐ ܶ1 , ݍ ൌ ሼ1,⋯ ,∞ሽ,
  

where ݍ refers to the number of samples taken between the occurrence times of the two shifts.  

For Case III, as shown in Figure 4, there is no ଵܵଶ. Therefore, ܵܶܣ|Case	III is  

III	Case|ܵܶܣ ൌ ൜
݄ݓ െ ,6ݑ ܶ1 ൐ ܶ2 ݓ, ൌ ሼ1,⋯ ,∞ሽ
݄ݓ െ ,5ݑ ܶ2 ൐ ܶ1 ݓ, ൌ ሼ1,⋯ ,∞ሽ,

  

where ݓ represents the number of samples that process undergoes with ܵଶሺ ଵܵሻ until a successful detection. 

Note that ܵܶܣหCase	III
భ்வ మ்

 and ܵܶܣหCase	III
మ்வ భ்

 equal to the conditional expectations of ௦ܶమ  and ௦ܶభ , 

respectively, given Case III as shown in the Appendix. Therefore ܥହ and ܥ଺ are used in the equation below. 

Considering all cases, ܵܶܣ is given by 

ܵܶܣ ൌ ሺܵܶܣ|Case	Iሻ	ܥଵ ൅ ሺܵܶܣ|Case Iሻ ଶܥ ൅ ଵܦ ൅ ଶܦ ൅ ହܥ ൅ ଺, (30)ܥ

where  

ଵܦ ൌ ෍෍	൫ܵܶܣหCase	II
భ்வ మ்

൯

ஶ

௜ୀଵ

൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯൫݁ିఒభሺ௜ା௤ିଵሻ௛ െ ݁ିఒభሺ௜ା௤ሻ௛൯ߚଶ
௤

ஶ

௤ୀଵ

ൌ 

ఉమ൫௛൫஺ோ௅12ݏାଵ൯ି௨ల൯൫௘
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ഊభ೓ା௘ഊమ೓ି௘ሺഊభశഊమሻ೓ିଵ൯
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ഊమ೓ି௘మഊమ೓ି௘ሺഊభశഊమሻ೓ା௘ሺഊభశమഊమሻ೓൯ାఉభ

మ൫௛஺ோ௅12ିݏ௨ఱ൯൫௘
ഊభ೓ା௘ഊమ೓ି௘ሺഊభశഊమሻ೓ିଵ൯

൫௘ሺഊభశഊమሻ೓ିଵ൯ሺ௘ഊమ೓ିఉభሻమ
.  

 

6. Numerical example and sensitivity analysis 

We consider an automatic shot blasting and painting system as shown in Figure 5. Small fabricated steel 

parts such as cleats or rails are first loaded into the conveyor (or hanged on a monorail) and fed into the 

shot blasting chamber to remove rust from the surface of each part and texturizes it for better paint adhesion. 

Afterwards, parts are moved to the painting chamber for coating. Both blasting and painting are performed 

in closed environments. In the blasting machine, turbine disks that blow shot blasting balls on part surface 

are subject to degradation. Degradation of those disks reduces the amount of balls that hit the surface, so 

that possible rust could be left on the part’s surface. On the other hand, the nozzles of spray guns in the 
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painting chamber may be clogged so that they cannot uniformly spray paint and may dip some frozen paint 

particles on the part’s surface. Indeed, painting on a rusty surface and dipping frozen paint particles cause 

a rough paint appearance. At the end of the line, a sampling plan by attributes explained previously is 

employed for inspecting the painted products. The deteriorated turbine disks and spray guns are considered 

as the sources of assignable causes, but they do not cause machines to breakdown. Instead, machine failures 

can be caused by other reasons such as overheating and power outage. 

 

Figure 5. Automatic production line of shot blasting and painting. 

Tables 1-3 show the parameters of shifts, failures, production rate, costs, time elements, and bounds of 

different constraints. ܶ ி஺ is chosen to be greater than ܶ ்஺, as it is often easier to detect a shift when a process 

actually has shifted, whereas more time may be spent to verify that there is no shift in case of a false alarm. 

 ஺ are assumed to be equal as the same tooling and practices are required. The time and cost of்ܥ ி஺ andܥ

maintenance increase as the degree of a maintenance action increases. Specially, corrective restoration may 

include replacing some components (e.g., turbine disk, spray gun, filter, nozzle) and thus require more 

tooling than other types of maintenance. However, a minimal repair needs the minimum resources to make 

the failed machine operational again. Therefore, we have ܥ௖௠ ൐ ௣௠ܥ ൐ ܴܥ ெோ andܥ ௠ܶ ൐ ܴܲ ௠ܶ ൐ ெܶோ. 

Moreover, since ܥே஼  may include indirect costs such as claims and the company’s goodwill, it is assumed 

that ܥே஼  is greater than ܥ௅௉ and ܥோ௃. The values of ߣଵሺߣଶሻ shown in Tables 1 and 5 are chosen according 

to Zhong and Ma (2017), Mehrafrooz and Noorossana (2011), and Yang et al. (2010) where 0.001 ൑ ߣ ൑ 

0.15, whereas the values of ݌଴ଵ(݌଴ଶ) and ݌ଵଵ(݌ଵଶ) shown in Tables 1 and 4 are chosen with respect to the 

values used by Zhu et al. (2016) where 0.02 ൑ ଴݌ ൑ 0.04 and 0.08 ൑ ଵ݌ ൑ 0.12.  

Table 1. Shift and failure parameters, and production rate. 

,ଶ ݃ଵߛ ଵߛ ଶߠ ଵߠ ଶߣ ଵߣ ଵଶ݌ ଴ଶ݌ ଵଵ݌ ଴ଵ݌ ݃ଶ 

0.03 0.10 0.05 0.10 0.01 0.03 1.5 2.0 10  10  100,100 
    hr-1 hr-1   hr hr units/hr 
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Table 2. Cost parameters. 

 ே஼ܥ ோ௃ܥ ௅௉ܥ ஺்ܥ ி஺ܥ ெோଶܥ ெோଵܥ ௣ଶܥ ௖ଶܥ ௣ଵܥ ௖ଵܥ ௦ܥ

100 1200 600 1200 600 150 150 200 200 3.00 3.00 4.50 
$/hr $/hr $/hr $/hr $/hr $/hr $/hr $/hr $/hr $/unit $/unit $/unit 

 

Table 3. Parameters of key time elements and bounds of constraints. 

ܴܥ ௦ݐ ଵܶ ܴܲ ଵܶ ܴܥ ଶܶ ܴܲ ଶܶ ெܶோଵ ெܶோଶ ிܶ஺ ்ܶ஺ ܣ ܮ ܹ 

0.5 50 25 50 25 15 15 15 7.5 3.00 0.800 0.900 
min/unit min min min min min min min min hr   

The MINLP problem given in Section 5 is mathematically complex since it has continuous and discrete 

decision variables and a discontinuous solution space. Moreover, the complex expressions involving 

discrete decision variables make the problem more complex. As a result, it is difficult to solve the 

optimization problem analytically or by an exact solution method. Instead, metaheuristics like Genetic 

Algorithm (GA) can be used. GA searches in parallel from a population of points so it can effectively 

explore many different solutions at the same time. When a certain solution turns out to be nonoptimal, GA 

discards it and proceeds with other more likely candidates. Therefore, GA does not tend to be easily trapped 

by local optima (Ahmed et al. 2014). In the literature, similar sampling plan problems have been solved 

using GA (e.g., Safaei et al., 2015; Abolmohammadi et al., 2019). Sultana et al. (2014) use both GA and 

Simulated Annealing (SA) in the economic design of ܺ ത control chart, and the results show that GA provides 

solutions similar to SA but with less time. Moreover, GA is found superior (in terms of the quality solution 

obtained and the processing time) to SA, Particle Swarm Optimization (PSO), and Differential Evolution 

for the optimal design of multivariate EWMA (Malaki et al. 2011).  

Due to the advantages of GA in solving such MINLP problems, especially those on sampling plans, 

GA in MATLAB R2019b is used in this work. In this study, the population size is twenty as only three 

decision variables are to be determined. The integer GA solver in MATLAB overrides settings supplied for 

creation, crossover, and mutation functions. Instead, GA uses special creation, crossover, and mutation 

functions (MATLAB & Simulink, 2019). To make the search process more efficient, strict constraint and 

function tolerance are used (set to default values, i.e., 1 ൈ 10ିଷ and 1 ൈ 10ି଺, respectively). Moreover, the 

UseParallel option is used to compute the fitness value and the feasibility of nonlinear constraints in parallel 

to speed up the computation. The search process is stopped if any of the following criteria is met: 

 The maximum number of generations (iterations) is reached. Here, the default number is used (i.e., 

100 × number of decision variables). 

 The average change in the penalty fitness value is less than the function tolerance over stall 

generations where the maximum stall generations is 50. 

 Time limit is reached. Here, the default setting is used (i.e., infinity). 
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 There is no improvement in the objective function during an interval of time called stall time limit. 

Here, the default setting of the stall time limit is used (i.e., infinity). 

The optimal solution is ܴܥܴܮ∗ ൌ	$141.61/hr, ݎ∗ ൌ 1, ܰ∗ ൌ 5, and ݄∗ ൌ 0.428 hrs. The optimization 

problem is solved many times with an average computational time of 133 seconds. To illustrate the 

economic benefits and the proper use of the proposed sampling plan in practice, an alternative design that 

allows only one assignable cause to occur in an inspection cycle is compared. Specially, the two designs 

are defined as follows: 

 Model 1 (proposed in this paper) allows two assignable causes to occur in an inspection cycle.  

 Model 2 considers that only one assignable cause can occur during an inspection cycle without 

considering shift propagation (e.g., Yu et al., 2010; Salmasnia et al., 2017). It is worth pointing out 

that Model 2 is similar to Case III in Model 1. 

 ெଶ are used as the objective functions of the two models, and their performanceܴܥܴܮ ெଵ andܴܥܴܮ

measures are investigated over a wide range of parameter settings. Moreover, the influence of the required 

 .and the marginal effects of decision variables are also examined. The analysis is explained next ܵܶܣ

Effect of PON(s) on models’ performances. Collecting large data might be needed to estimate PON(s) 

parameters, and they depend on the machine’s condition. To cope up with the uncertainty that could arise 

from imprecise estimation, the impact of those parameters on the performances of the two models is shown 

in Table 4. The parameters are changed by different percentages of the original setup (see Table 1). Since 

Model 2 allows only one shift to occur, as PON(s) are changed by ൒ ൅30%, more samples are taken, and 

the number of false alarms increases to alert an earlier true alarm. This increases the costs of false alarms, 

lost production and sampling, and reduces the cycle time. Hence, ܴܥܴܮெଶ ൐  ெଵwhen PON(s) areܴܥܴܮ

changed more than ൅30% where ܴܲ௘௙௙ ൑ 0.900. This justifies why Model 2 has a larger (or equal) ܰ 

compared to Model 1. Although the costs of Model 1 increase when PON(s) are changed less than +30%, 

this increase is absorbed by a longer cycle time making ܴܥܴܮெଵ ൎ  ,ெଶ. One can see that on averageܴܥܴܮ

 ெଵ is 7.4% lessܴܥܴܮ ெଵ in the range from െ50% to ൅20%, whereasܴܥܴܮ ெଶ is only 0.41% less thanܴܥܴܮ

than ܴܥܴܮெଶ in the range from ൅30% to ൅100%. This means that for the full range, Model 1 can be used.  

Table 4. Effect of PONs on the optimal solutions of the two models. 

 PON  Model 1  Model 2  

ܰ ݎ  ଵଶ݌ ଴ଶ݌ ଵଵ݌ ଴ଵ݌  ெଵܴܥܴܮ ݄ ܰ ݎ  ெଶ ܴܲ௘௙௙ܴܥܴܮ ݄
െ50% 0.015 0.05 0.025 0.05  0 2 0.417 122.52  0 2 0.450 121.03* 0.900 

െ40% 0.018 0.06 0.03 0.06  0 2 0.502 125.52  0 2 0.542 124.54* 0.900 

 െ30% 0.021 0.07 0.035 0.07  0 2 0.588 129.22  0 2 0.634 128.73* 0.900 

െ20% 0.024 0.08 0.04 0.08  0 2 0.674 133.37*  0 2 0.727 133.37* 0.900 
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െ10% 0.027 0.09 0.045 0.09  0 2 0.761 137.80*  0 2 0.820 138.18 0.900 

 0% 0.03 0.1 0.05 0.1  1 5 0.428 141.61  1 5 0.457 141.21* 0.900 

 ൅10% 0.033 0.11 0.055 0.11  1 5 0.507 143.00*  1 5 0.542 143.01 0.900 

൅20% 0.036 0.12 0.06 0.12  1 4 0.383 144.56  1 4 0.410 144.51* 0.900 

൅30% 0.039 0.13 0.065 0.13  1 4 0.442 146.18*  1 4 0.378 152.88 0.891 

൅40% 0.042 0.14 0.07 0.14  1 4 0.506 148.49*  1 5 0.534 161.63 0.884 

൅50% 0.045 0.15 0.075 0.15  1 4 0.573 151.34*  1 5 0.628 163.13 0.875 

൅60% 0.048 0.16 0.08 0.16  1 4 0.634 154.84*  1 4 0.405 168.12 0.868 

൅70% 0.051 0.17 0.085 0.17  1 4 0.704 158.47*  1 5 0.679 172.33 0.860 

൅80% 0.054 0.18 0.09 0.18  1 3 0.388 160.25*  1 4 0.443 176.24 0.853 

൅90% 0.057 0.19 0.095 0.19  1 3 0.434 162.42*  1 4 0.498 177.83 0.845 

൅100% 0.06 0.2 0.1 0.2  1 3 0.483 164.91*  1 3 0.308 180.27 0.837 

Effect of quality shift parameters on models’ performances. Parameters, ߣଵ and ߣଶ are related to the 

process that are difficult to estimate. These parameters are changed within wider ranges as shown in Table 

5. High ߣଵ and ߣଶ increases the probability that shifts occur earlier, and hence, the probability of having a 

propagating shift increases. The costs of restoration and lost production increase since machines are highly 

likely to need corrective maintenance. Although the total cost increases more in Model 1, the increase is 

absorbed by a longer cycle time. This makes Model 1 more economical than Model 2 when ߣଵ and ߣଶ are 

high (i.e., 0.05 ൑ ଵߣ ൑ 0.08 and 0.07 ൑ ଶߣ ൑ 0.1) where 0.724 ൑ ܣ ൑ 0.767. For the medium ranges (i.e., 

0.02 ൑ ଵߣ ൑ 0.045 and 0.04 ൑ ଶߣ ൑ 0.065), the cycle time of Model 1 is not long enough to absorb the 

increased costs of restoration and lost production, and therefore, Model 2 performs better where 0.776 ൑

ܣ ൑ 0.800 . Low values of ߣଵ and ߣଶ (i.e., 0.0025 ൑ ଵߣ ൑ 0.015 and 0.0225 ൑ ଶߣ ൑ 0.035) enable the 

process to stay longer in the in-control state. This allows enough time to detect a shift before the occurrence 

of the other shift and reduces ܴܥܴܮ of both models. The long in-control times in both models make 

ெଶܴܥܴܮ ൎ  ଶߣ ଵ andߣ as ܴܥܴܮ ெଵ. As seen in Table 5, there is a noticeable increase in each model’sܴܥܴܮ

increase. For instance, ܴܥܴܮெଵ of the first scenario is 14.86% and 52% less than ܴܥܴܮெଵ of the original 

setup (i.e.,	ߣଵ ൌ 0.01 and ߣଶ ൌ 0.03) and the last scenario, respectively. Since the shift rate is one of the 

features of a machine, the decision maker can focus on how to reduce the shift rate. Redesigning or replacing 

machines to achieve a cost reduction could be a valuable option. For example, an automated painting 

chamber can be reinsulated with better insulation material to avoid spraying products with high viscous 

paint in a cold environment that reduces undesirable coating. 

Table 5. Effect of shift parameters on the optimal solutions of the two models. 

 Model 1  Model 2  

 ܣ ெଶܴܥܴܮ ݄ ܰ ݎ  ெଵܴܥܴܮ ݄ ܰ ݎ  ଶߣ ଵߣ

0.0025 0.0225  0 2 0.823 120.57*  0 2 0.840 120.76 0.800 

0.005 0.025  0 2 0.832 128.20*  0 2 0.867 128.58 0.800 
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0.01 0.03  1 5 0.428 141.61  1 5 0.457 141.21* 0.800 

0.015 0.035  1 5 0.435 152.78  1 5 0.481 151.71* 0.800 

0.02 0.04  1 5 0.440 163.49  1 5 0.506 161.67* 0.800 

0.025 0.045  1 5 0.448 173.42  1 4 0.325 171.16* 0.795 

0.03 0.05  1 4 0.291 182.54  1 4 0.359 177.53* 0.785 

0.035 0.055  0 12 4.085 194.71  1 4 0.363 185.97* 0.783 

0.04 0.06  0 12 4.080 201.20  0 16 5.190 197.11* 0.782 

0.045 0.065  0 12 4.073 207.69  0 16 4.688 206.27* 0.776 

0.05 0.07  0 12 4.067 214.11*  0 16 4.275 215.40 0.767 

0.055 0.075  0 12 4.059 220.43*  0 16 3.930 224.45 0.758 

0.06 0.08  0 12 4.052 226.63*  0 16 3.637 233.39 0.750 

0.065 0.085  0 12 4.044 232.70*  0 17 3.872 237.08 0.750 

0.07 0.09  0 12 4.036 238.61*  0 17 3.620 245.35 0.742 

0.075 0.095  0 12 4.028 244.37*  0 17 3.401 253.80 0.728 

0.08 0.1  0 12 4.020 249.99*  0 17 3.206 261.93 0.724 

Effect of ࡭ࡲ࡯ on models’ performances. As shown in Table 6, there is no significant difference 

between ܴܥܴܮெଵ and ܴܥܴܮெଶ at each level of ܥி஺, so either of the two models can be used. Naturally, the 

expected cost of false alarm increases as ܥி஺ increases with the same sampling parameters. When 

ி஺ܥ ൐150, ݎ increases to avoid frequent false alarms by accepting nonconforming units during inspection. 

Moreover, ܰ increases to reduce type I error ߙ and to achieve the desired ܴܲ௘௙௙. Since with ݎ ൌ 0 and ܰ ൌ 

 becomes high, the only way to reduce the number of false alarms is to reduce the number of samples ߙ ,2

taken by having a longer ݄. This justifies why ݄ is higher for ܥி஺ ൑ 150 (Model 1) and ܥி஺ ൌ 50 (Model 

2), and why it is lower for the other levels of ܥி஺. As seen in Table 6, there are two setups that can be used 

for inspection: for ܥி஺ ൏	200 (Model 1), the setup with ሺݎ, ܰ, ݄ሻ ൌ (0, 2, 0.847) is appropriate, and for 

ி஺ܥ ൒	200, the setup with (1, 5, 0.428) is more economical. For Model 2, the setup with (0, 2, 0.838) is 

appropriate for ܥி஺ ൌ	50, whereas (1, 5, 0.457) is used for ܥி஺ ൐50. Practitioners can choose between the 

two setups for a given value of ܥி஺ without the need for solving the problem again (i.e., the two setups are 

usable for a wide range of ܥி஺). In addition, more solutions can be obtained from those setups by changing 

the decision variables slightly to achieve further reduction in ܴܥܴܮ especially if the constraints are not 

violated significantly. This strategy allows more flexibility in selecting the most appropriate solution to 

cope with possible uncertainties and specific conditions. For instance, if a product is produced for a new 

customer, management may decide to reduce ݄ (in Model 1) slightly to 0.800 as opposed to 0.847 (ܥி஺ ൏

	200) to increase customer satisfaction by increasing the inspection frequency regardless of the increase in 

 .ெଵܴܥܴܮ

Table 6. Effect of ܥி஺ on the optimal solutions of the two models. 

 Model 1  Model 2 
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ெଵܴܥܴܮ ݄ ܰ ݎ  ி஺ܥ  ெଶܴܥܴܮ ݄ ܰ ݎ 

50  0 2 0.841 131.54*  0 2 0.838 132.43 

100  0 2 0.847 135.16*  1 5 0.457 136.07 

150  0 2 0.847 138.78  1 5 0.457 138.64* 

200  1 5 0.428 141.61  1 5 0.457 141.21* 

250  1 5 0.428 144.19  1 5 0.457 143.77* 

300  1 5 0.428 146.86  1 5 0.457 146.33* 

350  1 5 0.428 149.42  1 5 0.457 148.90* 

Effect of ࡼࡸ࡯ on models’ performances. As seen in Table 7, there is no significant difference between 

 ௅௉, and either of the two models can be used. Since the total costܥ ெଶ at each level ofܴܥܴܮ ெଵ andܴܥܴܮ

increases with the increase in non-productive times such as sampling and false alarms, a high ܥ௅௉ decreases 

ܰ and increases ݄ in order to increase ܸܣ. A low ܰ means less time will be spent at each sampling, and a 

high ݄  means a smaller number of samples will be taken, and hence, resulting in higher ܸܣ. On the contrary, 

a low ܥ௅௉ permits to inspect more units but with a lower ݄. The higher values of ܰ, as in the first scenario, 

reduce the number of false alarms by accepting nonconforming units during inspection (ݎ ൌ 1ሻ, and a low 

݄ reduces the cost of rejected units received by customers. For Model 1, practitioners can choose the setup 

with (0, 2, 0.847) for any ܥ௅௉ ൒	4 and (1, 5, 0.428) for any ܥ௅௉ ൏	4. For Model 2, the setup with (0, 2, 

0.914) can be used for ܥ௅௉ ൒ 7, whereas (1, 5, 0.457) is appropriate for ܥ௅௉ ൑ 6. Hence, given the value of 

 .௅௉, the corresponding setup can be immediately identified for each modelܥ

Table 7. Effect of ܥ௅௉ on the optimal solutions of the two models. 

 Model 1  Model 2 

ெଵܴܥܴܮ ݄ ܰ ݎ  ௅௉ܥ  ெଶܴܥܴܮ ݄ ܰ ݎ 

1  1 5 0.428 105.71*  1 5 0.457 106.13 

2  1 5 0.428 123.67*  1 5 0.457 123.67 

3  1 5 0.428 141.61  1 5 0.457 141.21* 

4  0 2 0.847 159.22  1 5 0.457 158.74* 

5  0 2 0.847 176.04*  1 5 0.457 176.27 

6  0 2 0.847 192.84*  1 5 0.457 193.81 

7  0 2 0.847 209.66*  0 2 0.914 210.97 

Influence of ࡿࢀ࡭ constraint L on models’ performances. Table 8 illustrates the optimal solutions of the 

two models under different levels of ܮ. A high ܮ allows the process to operate for a long time without 

alerting a true alarm. This increases the total cost and cycle length of the two models. Because Model 2 

allows only one shift to occur, the increase in its cycle length is much less compared to that of Model 1. 

For instance, when ܮ ൌ 13.95, the cycle length of Model 1 is 27.04% longer than that of Model 2. This 

makes Model 1 more economical than Model 2 for ܮ ൒ 9.5. For ܮ ൑ 9, ܴܥܴܮெଶ on average is just 0.64% 

less than ܴܥܴܮெଵ, whereas ܴܥܴܮெଵ is 1.92% less than ܴܥܴܮெଶ for ܮ ൒ 9.5. It is worth pointing that 
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ܮ ெଵ approaches a constant whenܴܥܴܮ ൐13.50, and ܴܥܴܮெଶ approaches a constant when ܮ ൒ 9.50. This 

means that relaxing the constraint on ܵܶܣ makes Model 1 preferable than Model 2 under ܸܣ ൒ 0.8 and 

ܴܲ௘௙௙ ൒ 0.9. Clearly, further reductions in ܴܥܴܮெଵ and ܴܥܴܮெଶ can be achieved if ܮ is increased from 3 

to 13.95 while keeping other constraints unviolated. If more interest is in signaling an earlier true alarm, ܮ 

can be further reduced down to 2 without affecting other constraints but increasing ܴܥܴܮெଵ and ܴܥܴܮெଶ. 

Any increment for ܮ ൐13.95 violates the constraint on ܴܲ௘௙௙, whereas the constraint on ܸܣ is violated for 

ܮ ൏ 2. 

Table 8. Influence of ܵܶܣ on the optimal solutions of the two models. 

Model 1  Model 2  

ெଵܴܥܴܮ ݄ ܰ ݎ  ܮ  ܣ ெଶܴܥܴܮ ݄ ܰ ݎ 

0.5  0 2 0.138 245.16  0 2 0.141 243.88* 0.583 

1  0 2 0.281 187.37  0 2 0.287 186.76* 0.725 

1.5  0 2 0.422 163.37  0 2 0.437 162.80* 0.784 

2  0 2 0.560 151.56  0 2 0.591 151.07* 0.800 

2.5  0 2 0.700 145.42*  0 2 0.750 145.42* 0.800 

3  1 5 0.428 141.61  1 5 0.457 141.20* 0.800 

3.5  1 5 0.500 137.09  1 5 0.541 136.80* 0.800 

4  1 4 0.367 133.71  1 4 0.402 132.82* 0.800 

4.5  1 4 0.415 130.27  1 4 0.460 129.53* 0.800 

5  1 4 0.462 127.68  1 4 0.519 127.15* 0.800 

5.5  1 4 0.510 125.73  1 4 0.581 125.51* 0.800 

6  1 4 0.558 124.29  1 3 0.345 122.94* 0.800 

6.5  1 3 0.326 122.47  1 3 0.380 120.72* 0.800 

7  1 3 0.352 120.53  1 3 0.417 118.86* 0.800 

7.5  1 3 0.378 118.87  1 3 0.455 117.35* 0.800 

8  1 3 0.404 117.45  1 3 0.494 116.15* 0.800 

8.5  1 3 0.431 116.23  1 3 0.536 115.21* 0.800 

9  1 3 0.457 115.20  1 3 0.578 114.52* 0.800 

9.5  1 3 0.485 114.32*  1 3 0.584 114.45 0.800 

10  1 3 0.511 113.58*  1 3 0.584 114.45 0.800 

10.5  1 3 0.539 112.96*  1 3 0.584 114.45 0.800 

11  1 3 0.566 112.46*  1 3 0.584 114.45 0.800 

11.5  1 3 0.593 112.05*  1 3 0.584 114.45 0.800 

12  1 3 0.621 111.74*  1 3 0.584 114.45 0.800 

12.5  1 3 0.649 111.51*  1 3 0.584 114.45 0.800 

13  1 3 0.677 111.35*  1 3 0.584 114.45 0.800 

13.5  1 3 0.705 111.26*  1 3 0.584 114.45 0.800 

13.95  1 3 0.730 111.24*  1 3 0.584 114.45 0.800 

The marginal effect of ࢎ. Figure 6 shows how the change in ݄ affects ܴܥܴܮெଵ and the performance 

measures when keeping other parameters unchanged. In Figure 6.a, ܸܣ increases as ݄  increases up to 0.856, 
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and then decreases as ݄ goes beyond 0.856. Since ܵܶܣ is a function of ݄ and ܮܴܣ௦భమ  is an increasing ܵܶܣ ,

linear function of ݄ for given values of ݎ and ܰ (constant ܮܴܣ௦భమ) as seen in Figure 6.b. In Figure 6.c, 

decreasing ݄ increases inspection frequency and reduces the number of nonconforming units produced 

between two inspections, and hence, ܴܲ௘௙௙ increases. Figure 6.d shows that ܴܥܴܮெଵ significantly 

decreases to the minimum value 130.21 at ݄ ൌ 0.856 by violating the constraint on ܵܶܣ, and then, it slowly 

increases. If more interest is in reducing ܴܥܴܮெଵ, ݄ can be increased beyond the optimal ݄∗ ൌ 0.428 by 

violating some constraints. This may be satisfying if the violations are not significant. For instance, with 

 .increases to 5 ܵܶܣ ெଵ reduces to 130.21, butܴܥܴܮ ,0.856 =݄

Figure 6. The marginal effect of ݄ when 5 = ܰ ,1= ݎ. 

 

 
Figure 7. The marginal effect of ݎ when ݄ = 0.428, ܰ = 5. 
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The marginal effect of ࢘. Compared to the optimal setting ݎ∗ ൌ  ܵܶܣ drops to 0.650 and ܸܣ ,1

decreases to 0.63 at ݎ	0 = as seen in Figures 7.a and 7.b, respectively. As ݎ	increases with respect to fixed 

ܰ, the probability of missed detection (type II error) increases, and hence, ܵܶܣ increases quite fast as shown 

in Figure 7.b. Moreover, ܴܲ௘௙௙ decreases as illustrated in Figure 7.c, as more nonconforming units are 

produced. Having ݎ	0 =, the corresponding number of false alarms is about 8 and 70 times the numbers of 

false alarms for ݎ	1 = and ݎ	2 =, respectively. This drastically increases ܴܥܴܮெଵ to 219 due to poor ܸܣ as 

depicted in Figure 7.d. Basically, ݎ is not flexible to change compared to ݄ , as changing ݎ causes significant 

violations on the constraints. Therefore, attention should be paid when changing the value of ݎ. 

The marginal effect of ࡺ. In Figure 8.b, ܵܶܣ has a noticeable increase when ܰ decreases to 4 and 3, 

then it slowly decreases as ܰ goes to 6 and 7. Since ܵܶܣ increases with the increase of ݄ and/or ܮܴܣ௦భమ , a 

low ܰ increases type II error given fixed ݎ, and hence, ܮܴܣ௦భమ increases. In Figure 8.c, ܴܲ௘௙௙ increases 

with the increase in ܰ. As ܰ increases, type II error decreases, and a smaller number of nonconforming 

units are produced. The linear trends in Figures 8.a and 8.d are expected since as ܰ increases, the times and 

costs of inspection and false alarms increase causing ܴܥܴܮெଵ to increase and ܸܣ to decrease. Like ݄, ܰ is 

flexible to change for a benefit to some extent. For instance, ܴܥܴܮெଵ can be reduced to 130 if ܵܶܣ is 

violated and increased to 4.7 when ܰ is reduced to 4. In addition, ܰ can be increased to 6 in order to reduce 

ெଵܴܥܴܮ but an increase in ܸܣ to less than 2.5 hours resulting in a slight decrease in ܵܶܣ ൎ 150. 

 

Figure 8. The marginal effect of ܰ when ݄ = 0.428, 1 = ݎ. 

Practical guidelines for using the proposed model 

As shown previously, allowing competing shifts to occur and propagate achieves some economic 

benefits for different settings of parameters. However, the number of scenarios for stochastic cases 
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explained in Section 4 increases as the number of machines increases. In the current model, only two 

machines are considered with two scenarios ሺ ଵܶ ൐ ଶܶ	&	 ଵܶ ൐ ଶܶ	ሻ for each case. If the number of machines 

increases to three, the total number of scenarios increases to 45. To make the model easier to handle, some 

assumptions can be made based on some prior understandings about the system. For instance, the model 

can be designed by allowing a certain number of shifts to occur, and such shifts cannot occur in the same 

sampling interval. Under this assumption, only scenarios of Case III need to be considered, and the three-

machine system can be modelled with 12 scenarios instead of 45. Practitioners need to compromise between 

the economic benefits of considering propagating shifts and the design complexity. The proposed model 

can be used for systems with a larger number of machines by grouping machines into two aggregate stages. 

Within a stage, a combined effect (e.g., aggregate PON or shift rate) of machines can be considered instead 

of dealing with each machine alone. For instance, the shift of any machine (or all machines) in a stage may 

be assumed to have the same PON. This approach can also be applied to a machine where the degradation 

processes of different components cause quality deterioration (e.g., degradation of turbine discs and 

circulation mechanisms in the blasting machines). Apparently, combining stages reduces not only the 

number of stochastic scenarios but also the number of model parameters in a real-world application. 

7.  Conclusion and future work 

Most of online sampling studies investigating multiple assignable causes are conducted on single-stage 

system. A few studies consider the multiplicity of assignable causes in multistage systems. However, those 

studies assume identical stages, തܺ control chart, same shift level, economic model, no failures, or no quality 

related costs. This paper presents a sampling plan for attributes for a serial production system consisting of 

two unreliable machines where each machine is subject to sudden failure and shift in quality. A 

comprehensive economic-statistical model is developed to investigate the joint effect of different shifts by 

considering the stochastic competency and propagation of the shifts during manufacturing. The developed 

model generalizes all previous works and compromises between the quality and the quantity performances. 

The proposed sampling plan minimizes the long-run cost rate subject to constraints on system availability, 

effective production rate, and average time to signal. A thorough analysis is conducted on some input 

parameters, the constraint on average time to signal, and the marginal effects of decision variables. 

Specially, investigating the effects of process parameters, such as shift rates, helps management take long-

term decisions (e.g., system overhaul and replacement). The analysis shows that when some decision 

variables are flexible to change, some adjustments can be made to emphasize specific needs. More 

importantly, compared to an alternative design that allows for only one assignable cause to occur in a single-

stage system with multiple assignable causes, the proposed design shows better economic performance 

under different problem settings. 
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It is worth pointing out that since this work assumes that sampling is implemented at the end of a 

production line, the proposed sampling plan can handle a single-stage system (e.g., one machine) with 

multiple assignable causes and shift propagation by setting all the machines to be the same (i.e., identical 

machines with the same failure rates). In other words, such a single-stage system is a special case of our 

unreliable multistage system subject to competing and propagating random shifts, and it cannot be used 

when assignable causes are attributed to different machines with different failure rates.  

There are some situations where the assumptions given in Section 3 do not hold. First, if the production 

rates and reliability of the two machines are significantly different and there are limited areas for storing 

WIP, the faster and the more reliable machine may have to be stopped to reduce WIP for lowering the 

related inventory costs. Then, issues with starving and blocking arise. As a result, the developed model in 

this work is unsuitable, and a new model must be developed to include decisions on the buffer size and 

inventory control. Second, if the two machines are dependent (i.e., a failure or a shift of one machine affects 

the other), a more complex model and different maintenance strategies are needed. Third, to avoid 

producing more nonconforming units, we assume the system will be preventively stopped during sampling.  

This is worthwhile if the sampling interval is long (the chance for the system to have a shift is high) and 

measuring the sampled units takes a while. If the production is allowed to continue during sampling, a delay 

time due to searching for a true alarm must be added to the average time to signal, and an additional cost 

due to potentially producing more nonconforming units must be considered. Beyond these, this work can 

be extended in other directions. In particular, a multistage system with more than two machines can be 

considered. Moreover, more than two states of product quality and multiple deterioration states of each 

machine can be considered. Clearly, the number of system states exponentially increases as the number of 

machines and/or the number of states of each machine get bigger. For such a complex situation, a 

simulation-based optimization approach may be utilized. In addition, some practical guidelines for using 

the model are illustrated. Finally, other system configurations, such as a series-parallel system and parallel-

series system, can be studied to deal with cases involving multiple identical machines that perform the same 

actions during production. 
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Appendix 

Derivation of ࡱሾ࢚࢛࢕ࢂሿ 

In Case I, units are produced with ݌௦= ݌ଷ .The expected number of samples taken until a true alarm is 

alerted is ܮܴܣ௦భమ  where  ܮܴܣ௦భమ is the average run length when the process is operating with ଵܵଶ, and it is 

given in Montgomery (2009) as: 
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௦భమܮܴܣ ൌ
1

1 െ ௣యߚ
. 

 

The last sample which alerts the true signal has ݎ ൏ ݀ ൑ ܰ. Hence, the expected number of rejected units 

found during sampling when the process is out-of-control given case I	 ܧሾ ௢ܸ௨௧|Case	Iሿ is expressed as:  

ሾܧ ௢ܸ௨௧|Case Iሿ ൌ ൛ܽ௣య ൅ ൫ܮܴܣ௦భమ െ 1൯ܾ௣యൟ,  

where ܮܴܣ௦భమ െ 1 samples do not alert a true alarm. 

In Cases II & III, at least one sample is taken with ݌௦ ൌ  if ଵܶ	ଶ݌ ൐ ଶܶ or with ݌௦ ൌ ଵ if  ଶܶ݌ ൐ ଵܶ. Let 

ܳ௣మ  and ܳ௣భ  be the number of samples taken with ݌௦ ൌ ௦݌ ଶ, and݌ ൌ  ଵ, respectively. Then݌

II	௣మหCaseܳൣܧ భ்வ మ்
൧ and ܳൣܧ௣భหCase	II మ்வ భ்

൧ are given as follows, respectively: 

II	௣మหCaseܳൣܧ భ்வ మ்
൧ ൌ

∑ ∑ ௤ಮ
೔సభ ൫௘షഊమሺ೔షభሻ೓ି௘షഊమ೔೓൯൫௘షഊభሺ೔శ೜షభሻ೓ି௘షഊభሺ೔శ೜ሻ೓൯ఉ೛మ

೜ಮ
೜సభ

∑ ∑ಮ೔సభ ൫௘
షഊమሺ೔షభሻ೓ି௘షഊమ೔೓൯൫௘షഊభሺ೔శ೜షభሻ೓ି௘షഊభሺ೔శ೜ሻ೓൯ఉ೛మ

೜ಮ
೜సభ

ൌ
௘ഊభ೓

ሺ௘ഊభ೓ିఉ೛మሻ
,  

II	௣భหCaseܳൣܧ మ்வ భ்
൧ ൌ

∑ ∑ ௤ಮ
೔సభ ൫௘షഊభሺ೔షభሻ೓ି௘షഊభ೔೓൯൫௘షഊమሺ೔శ೜షభሻ೓ି௘షഊమሺ೔శ೜ሻ೓൯ఉ೛భ

೜ಮ
೜సభ

∑ ∑ಮ೔సభ ൫௘
షഊభሺ೔షభሻ೓ି௘షഊభ೔೓൯൫௘షഊమሺ೔శ೜షభሻ೓ି௘షഊమሺ೔శ೜ሻ೓൯ఉ೛భ

೜ಮ
೜సభ

ൌ
௘ഊమ೓

ሺ௘ഊమ೓ିఉ೛భሻ
, 

where ݍ denotes to the number of samples taken between the occurrence times of ଵܵ and ܵଶ. In Case III, 

ܵଶሺ ଵܵሻ is always detected before the occurrence of ଵܵሺܵଶሻ, and hence, ܳൣܧ௣మหCase	III భ்வ మ்
൧ and 

III	௣భหCaseܳൣܧ మ்வ భ்
൧ are given as follows: 

III	௣మหCaseܳൣܧ భ்வ మ்
൧ ൌ

∑ ∑ ௪ಮ
೔సభ ൫௘షഊమሺ೔షభሻ೓ି௘షഊమ೔೓൯௘షഊభሺ೔శೢషభሻ೓ఉ2݌

ೢషభቀଵିఉ2݌ቁ
ಮ
ೢసభ

∑ ∑ಮ೔సభ ൫௘
షഊమሺ೔షభሻ೓ି௘షഊమ೔೓൯௘షഊభሺ೔శೢషభሻ೓ఉ2݌

ೢషభቀଵିఉ2݌ቁ
ಮ
ೢసభ

ൌ
௘ഊభ೓

ሺ௘ഊభ೓ିఉ2݌ሻ
,   

III	௣భหCaseܳൣܧ మ்வ భ்
൧ ൌ

∑ ∑ ௪ಮ
೔సభ ൫௘షഊభሺ೔షభሻ೓ି௘షഊభ೔೓൯௘షഊమሺ೔శೢషభሻ೓ఉ1݌

ೢషభቀଵିఉ1݌ቁ
ಮ
ೢసభ

∑ ∑ಮ೔సభ ൫௘
షഊభሺ೔షభሻ೓ି௘షഊభ೔೓൯௘షഊమሺ೔శೢషభሻ೓ఉ1݌

ೢషభቀଵିఉ1݌ቁ
ಮ
ೢసభ

ൌ
௘ഊమ೓

ሺ௘ഊమ೓ିఉ1݌ሻ
,   

where ݓ represents the number of samples that process undergoes with ܵଶ until a successful detection. The 

term ݁ିఒభሺ௜ା௪ିଵሻ௛ indicates that ܵଶ is detected at the sampling time ሺ݅ ൅ ݓ െ 1ሻ݄, at which, ଵܵ still has not 

occurred yet.Consequently, the expected number of rejected units during the inspection when the process 

is in the out-of-control period ܧሾ ௢ܸ௨௧ሿ can be obtained as: 

ሾܧ ௢ܸ௨௧ሿ ൌ ሾܧ ௢ܸ௨௧|Case	Iሿሼܤଵ ൅ ଶሽܤ ൅ ௣మหCaseܳൣܧ II భ்வ మ்
൧ܾܤ2݌ଷ ൅ ௣భหCaseܳൣܧ II మ்வ భ்

൧ܾܤ1݌ସ 

                  ൅	ቄ൫12ݏܮܴܣ െ 1൯ܾ3݌ ൅ ଷܤ3ቅሼ݌ܽ ൅ ସሽܤ ൅ ൫ܳൣܧ௣మหCase III భ்வ మ்
൧ െ 1൯ܾܤ2݌ହ ൅ 

                  ൫ܳൣܧ௣భหCase	III మ்வ భ்
൧ െ 1൯ܾܤ1݌଺ ൅ ହܤ2݌ܽ ൅  ,଺ܤ1݌ܽ

where ሼܤଵ ൅ ଷ is the probability of Case II given ଵܶܤ ,ଶሽ is the total probability of Case Iܤ ൐ ଶܶ, ܤସ is the 

probability of Case II given ଶܶ ൐ ଵܶ, ܤହ is the probability of Case III given ଵܶ ൐ ଶܶ, and ܤ଺ is the 

probability of Case III given ଶܶ ൐ ଵܶ. In the above equation, ܳൣܧ௣మหCase	II భ்வ మ்
൧ ൫ܳൣܧ௣భหCase	II మ்வ భ்

൧൯is 



39 
 

39 
 

the expected number of samples that don’t alert a true alarm in Case II when a process operates with ܵ ଶሺ ଵܵሻ, 

൫ܮܴܣ௦భమ െ 1൯ is the average number of samples that don’t alert a true alarm when the process operates with 

ଵܵଶ in Case II, and ܽ௣యrepresents the expected number of rejected units in the last sample that alert a true 

alarm given Case II. In Case III, ܳൣܧ௣మหCase	III భ்வ మ்
൧ െ 1൫ܳൣܧ௣భหCase	III మ்வ భ்

൧ െ 1൯ is the expected 

number of samples that don’t alert a true alarm when the process operates with ܵଶሺ ଵܵሻ, and ܽ௣మ൫ܽ௣భ൯ is the 

average number of rejected units found in the last sample that detects ܵଶሺ ଵܵሻ. ܤଵ	to	ܤ଺ are given in 

Subsection 4.5, whereas  ܽ௣ೞ, ܾ௣ೞ, ௦݌ ∈ ሼ݌଴, ,ଵ݌ ,ଶ݌  .ଷሽ are given in Subsection 4.8݌

Derivations of ࡱሾ࢙ࢀ૚ሿ, ࡱሾ࢙ࢀ૛ሿ, ࡱሾ࢙ࢀ૚૛ሿ, ࢛૚	ܗܜ	࢛૟,  ૡ࡯	ܗܜ	૚࡯	܌ܖ܉

Case I. Given that  ܵଶ and ଵܵ occur in the same sampling interval as shown in Figure 2, the conditional 

expectations of 	߬ௌభ  and	߬ௌమ  are obtained as follows. 

If  ଵܶ ൐ ଶܶ, we have: 

ଵݑ ൌ ௌభหሺ݅߬ൣܧ െ 1ሻ݄ ൑ ଶܶ ൑ ଵܶ ൏ ݄݅൧ ൌ
׬ ׬ ሺݐଵ െ ሺ݅ െ 1ሻ݄ሻߣଶ݁ିఒమ௧మߣଵ݁ିఒభ௧భ݀ݐଶ݀ݐଵ

௧భ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

׬ ׬ ଵݐଶ݀ݐଵ݁ିఒభ௧భ݀ߣଶ݁ିఒమ௧మߣ
௧భ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

 

ൌ
ଶߣ

ଶ݁ఒమ௛ሺ݁ఒభ௛ െ 1ሻ െ ଵߣ
ଷ݄ሺ݁ఒమ௛ െ 1ሻ െ ଶ݁ఒమ௛ሺ2ߣଵߣ െ 2݁ఒభ௛ ൅ ଶ݄ሻߣ ൅ ଵߣ

ଶሺ1 ൅ ଶ݄ߣ െ ݁ఒమ௛ሺ1 ൅ ଶ݄ሻሻߣ2
ଵߣଵሺߣ ൅ ଵߣଶሻሺߣ െ ݁ఒమ௛ሺߣଵ ൅ ଶߣ െ ଶ݁ఒభ௛ሻሻߣ

, 

ଶݑ ൌ ௌమ|ሺ݅߬ൣܧ െ 1ሻ݄ ൑ ଶܶ ൑ ଵܶ ൏ ݄݅൧ ൌ
׬ ׬ ሺݐଶ െ ሺ݅ െ 1ሻ݄ሻߣଶ݁ିఒమ௧మߣଵ݁ିఒభ௧భ݀ݐଶ݀ݐଵ

௧భ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

׬ ׬ ଵݐଶ݀ݐଵ݁ିఒభ௧భ݀ߣଶ݁ିఒమ௧మߣ
௧భ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

 

ൌ
݁ఒమ௛ሺߣଶ

ଶ݁ఒభ௛ െ ሺߣଵ ൅ ଶሻଶሻߣ ൅ ଵߣଵሺߣ ൅ ଶߣ2 ൅ ଵߣଶሺߣ ൅ ଶሻ݄ሻߣ
ଵߣଶሺߣ ൅ ଵߣଶሻሺߣ െ ݁ఒమ௛ሺߣଵ ൅ ଶߣ െ ଶ݁ఒభ௛ሻሻߣ

. 

Since ܵଶ occurs before ଵܵ in the same sampling interval, ܵଶ propagates to ଵܵଶ at the time of ଵܵ occurrence 

and prior to the next sampling time. As a result, we have:  

ൣܧ ௦ܶమหCase	I భ்வ మ்
൧ ൌ ଵݑ െ ൣܧ  ,ଶݑ ௦ܶభหCase	I భ்வ మ்

൧ ൌ 0, ൣܧ ௦ܶభమหCase	I భ்வ మ்
൧ ൌ ௦భమܮܴܣ݄ െ  ,ଵݑ

where ܮܴܣ௦భమ  is the average run length when the system operates with ଵܵଶ, i.e., with ݌௦ ൌ  ଷ. The average݌

length in the out-of-control state is defined as the average number of samples taken since the occurrence of 

a shift until a true alarm is alerted.  

The corresponding probability of Case I, ଵܶ ൐ ଶܶ is:  

ଵܥ ൌ෍ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଶܶ ൑ ଵܶ ൏ ݄݅൯ ൌ
ଵ൫1ߣ െ ݁ఒమ௛൯ ൅ ଶሺ݁ሺఒభାఒమሻ௛ߣ െ ݁ఒమ௛ሻ

ሺߣଵ ൅ ଶሻሺ݁ሺఒభାఒమሻ௛ߣ െ 1ሻ

ஶ

௜ୀଵ

, 

where 
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ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଶܶ ൑ ଵܶ ൏ ݄݅൯ ൌ න න ଶ݁ିఒమ௧మߣ

௧భ

ሺ௜ିଵሻ௛

ଶݐଵ݁ିఒభ௧భ݀ߣ

௜௛

ሺ௜ିଵሻ௛

 ଵݐ݀

ൌ ݁ିఒమሺ௜ିଵሻ௛൫݁ିఒభሺ௜ିଵሻ௛ െ ݁ିఒభ௜௛൯ ൅
ଵߣ

ଵߣ ൅ ଶߣ
൫݁ିሺఒభାఒమሻ௜௛ െ ݁ିሺఒభାఒమሻሺ௜ିଵሻ௛൯. 

If  ଶܶ ൐ ଵܶ, we have: 

ଷݑ ൌ ௌభหሺ݅߬ൣܧ െ 1ሻ݄ ൑ ଵܶ ൑ ଶܶ ൏ ݄݅൧ ൌ
׬ ׬ ሺݐଵ െ ሺ݅ െ 1ሻ݄ሻߣଶ݁ିఒమ௧మߣଵ݁ିఒభ௧భ݀ݐଵ݀ݐଶ

௧మ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

׬ ׬ ଶݐଵ݀ݐଵ݁ିఒభ௧భ݀ߣଶ݁ିఒమ௧మߣ
௧మ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

 

ൌ
݁ఒభ௛ሺߣଵ

ଶ݁ఒమ௛ െ ሺߣଵ ൅ ଶሻଶሻߣ ൅ ଶߣଶሺߣ ൅ ଵߣ2 ൅ ଵߣଵሺߣ ൅ ଶሻ݄ሻߣ
ଵߣଵሺߣ ൅ ଶߣଶሻሺߣ െ ݁ఒభ௛ሺߣଵ ൅ ଶߣ െ ଵ݁ఒమ௛ሻሻߣ

, 

ସݑ ൌ ௌమหሺ݅߬ൣܧ െ 1ሻ݄ ൑ ଵܶ ൑ ଶܶ ൏ ݄݅൧ ൌ
׬ ׬ ሺݐଶ െ ሺ݅ െ 1ሻ݄ሻߣଶ݁ିఒమ௧మߣଵ݁ିఒభ௧భ݀ݐଵ݀ݐଶ

௧మ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

׬ ׬ ଶݐଵ݀ݐଵ݁ିఒభ௧భ݀ߣଶ݁ିఒమ௧మߣ
௧మ
ሺ௜ିଵሻ௛

௜௛
ሺ௜ିଵሻ௛

ൌ 

ଵߣ
ଶ݁ఒభ௛ሺ݁ఒమ௛ െ 1ሻ െ ଶߣ

ଷ݄ሺ݁ఒభ௛ െ 1ሻ െ ଶ݁ఒభ௛ሺ2ߣଵߣ െ 2݁ఒమ௛ ൅ ଵ݄ሻߣ ൅ ଶߣ
ଶሺ1 ൅ ଵ݄ߣ െ ݁ఒభ௛ሺ1 ൅ ଵ݄ሻሻߣ2

ଵߣଶሺߣ ൅ ଶߣଶሻሺߣ െ ݁ఒభ௛ሺߣଵ ൅ ଶߣ െ ଵ݁ఒమ௛ሻሻߣ
. 

Since ଵܵ occurs before ܵଶ in the same sampling interval, ଵܵ propagates to ଵܵଶ at the time of ܵଶ occurrence 

and prior to the next sampling time. Therefore:  

ൣܧ ௦ܶమหCase	I మ்வ భ்
൧ ൌ ൣܧ  ,0 ௦ܶభหCase	I మ்வ భ்

൧ ൌ ସݑ െ ൣܧ  ,ଷݑ ௦ܶభమหCase	I మ்வ భ்
൧ ൌ ௦భమܮܴܣ݄ െ  .ସݑ

The corresponding probability of Case I, ଶܶ ൐ ଵܶ is:  

ଶܥ ൌ෍ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଵܶ ൑ ଶܶ ൏ ݄݅൯ ൌ
ଶ൫1ߣ െ ݁ఒభ௛൯ ൅ ଵሺ݁ሺఒభାఒమሻ௛ߣ െ ݁ఒభ௛ሻ

ሺߣଵ ൅ ଶሻሺ݁ሺఒభାఒమሻ௛ߣ െ 1ሻ

ஶ

௜ୀଵ

, 

where 

ܲ൫ሺ݅ െ 1ሻ݄ ൑ ଵܶ ൑ ଶܶ ൏ ݄݅൯ ൌ න න ଵ݁ିఒభ௧భߣ

௧మ

ሺ௜ିଵሻ௛

ଵݐଶ݁ିఒమ௧మ݀ߣ

௜௛

ሺ௜ିଵሻ௛

 ଶݐ݀

ൌ ݁ିఒభሺ௜ିଵሻ௛൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯ ൅
ଶߣ

ଵߣ ൅ ଶߣ
൫݁ିሺఒభାఒమሻ௜௛ െ ݁ିሺఒభାఒమሻሺ௜ିଵሻ௛൯. 

Cases II & III. In Cases II and III, ܵଶ and ଵܵ occur in different sampling intervals as shown in Figures 3 

and 4 where 0 ൑ ߬ௌభ ൑ ݄, and 0 ൑ ߬ௌమ ൑ ݄. Therefore, the conditional expectations of ߬ௌభ and	߬ௌమ  are given 

as follows, respectively: 

ହݑ ൌ ௌభหሺ݅߬ൣܧ െ 1ሻ݄ ൑ ଵܶ ൏ ݄݅൧ ൌ
׬ ሺݐଵ െ ሺ݅ െ 1ሻ݄ሻߣଵ݁ିఒభ௧భ
௜௛
ሺ௜ିଵሻ௛ ଵݐ݀

׬ ଵ݁ିఒభ௧భߣ
௜௛
ሺ௜ିଵሻ௛ ଵݐ݀

ൌ
1 െ ሺ1 ൅ ଵ݄ሻ݁ିఒభ௛ߣ

ଵሺ1ߣ െ ݁ିఒభ௛ሻ
, 
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଺ݑ ൌ ௌమหሺ݅߬ൣܧ െ 1ሻ݄ ൑ ଶܶ ൏ ݄݅൧ ൌ
׬ ሺݐଶ െ ሺ݅ െ 1ሻ݄ሻߣଶ݁ିఒమ௧మ
௜௛
ሺ௜ିଵሻ௛ ଶݐ݀

׬ ଶ݁ିఒమ௧మߣ
௜௛
ሺ௜ିଵሻ௛ ଶݐ݀

ൌ
1 െ ሺ1 ൅ ଶ݄ሻ݁ିఒమ௛ߣ

ଶሺ1ߣ െ ݁ିఒమ௛ሻ
. 

Cases II. ܧሾ ௦ܶభሿ and ܧሾ ௦ܶమሿ depend on how many samples ݍ, ݍ ൌ ሼ1,⋯ ,∞ሽ are between ଵܶ and ଶܶ. For 

instance, if ଵܵ occurs three samples after the occurrence of ܵଶ, then ܧሾ ௦ܶమሿ ൌ 3݄ െ ଺ݑ ൅  ହ given that ܵଶݑ

is not detected until the occurrence of ଵܵ. 

If  ଵܶ ൐ ଶܶ, we have: 

ଷܥ ൌ ൣܧ ௦ܶమ, Case	II భ்வ మ்
	൧

ൌ ෍෍ሺ݄ݍ െ ଺ݑ ൅ ହሻݑ
ஶ

௜ୀଵ

൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯൫݁ିఒభሺ௜ା௤ିଵሻ௛ െ ݁ିఒభሺ௜ା௤ሻ௛൯ߚ௣మ
௤

ஶ

௤ୀଵ

 

ൌ
௣మሺ݁ߚ

ఒభ௛ െ 1ሻሺ݁ఒమ௛ െ 1ሻሺ݁ఒభ௛ሺ݄ ൅ ହݑ െ ଺ሻݑ ൅ ଺ݑ௣మሺߚ െ ହሻሻݑ

ሺ݁ሺఒభାఒమሻ௛ െ 1ሻ൫݁ఒభ௛ െ ௣మ൯ߚ
ଶ , 

ൣܧ ௦ܶభమหCase	II భ்வ మ்
൧ ൌ ௦భమܮܴܣ݄ െ  .ହݑ

In ܥଷ, ܵଶ occurs in the sampling interval ሾሺ݅ െ 1ሻ݄, ݄݅	ሿ and ଵܵ occurs in the sampling interval 

ሾሺ݅ ൅ ݍ െ 1ሻ݄, ሺ݅ ൅ ,ሿ afterwards. For instance, if ܵଶ occurs in ሾ0	ሻ݄ݍ ݄	ሿ, then ଵܵ could occur one sample 

afterwards, i.e., ሾ݄, 2݄	ሿ, or two samples afterwards, i.e., ሾ2݄, 3݄	ሿ, and so on. For any	ݍ, the sampling plan 

always fails to detect ܵଶ until the occurrence of ଵܵ resulting in ߚ௣మ
௤  type II error. 

If  ଶܶ ൐ ଵܶ, we have: 

ସܥ																								 ൌ ൣܧ ௦ܶభ, Case	II మ்வ భ்
	൧

ൌ ෍෍ሺ݄ݍ െ ହݑ ൅ ଺ሻݑ
ஶ

௜ୀଵ

൫݁ିఒభሺ௜ିଵሻ௛ െ ݁ିఒభ௜௛൯൫݁ିఒమሺ௜ା௤ିଵሻ௛ െ ݁ିఒమሺ௜ା௤ሻ௛൯ߚ௣భ
௤

ஶ

௤ୀଵ

 

					ൌ
௣భሺ݁ߚ

ఒమ௛ െ 1ሻሺ݁ఒభ௛ െ 1ሻሺ݁ఒమ௛ሺ݄ ൅ ଺ݑ െ ହሻݑ ൅ ହݑ௣భሺߚ െ ଺ሻሻݑ

ሺ݁ሺఒభାఒమሻ௛ െ 1ሻ൫݁ఒమ௛ െ ௣భ൯ߚ
ଶ , 

ൣܧ ௦ܶభమหCase	II మ்வ భ்
൧ ൌ ௦భమܮܴܣ݄ െ  .଺ݑ

Cases III. If  ଵܶ ൐ ଶܶ, then sampling plan is always able to detect ܵଶ before the occurrence of ଵܵ as shown 

in Figure 4. Therefore, the system is only operating with ܵଶ. For instance, ܧሾ ௦ܶమሿ ൌ ݄ െ  ଺, if ܵଶ isݑ

immediately detected at the next sampling time and before the occurrence of ଵܵ. ܧሾ ௦ܶమሿ ൌ 2݄ െ  ଺, if ܵଶ isݑ

detected two sampling times since its occurrence and before the occurrence of ଵܵ. Sampling fails to detect 

ܵଶ at the first sampling time, but it can detect it at the second sampling time. The following formula 

generalizes this situation: 

ହܥ ൌ ൣܧ ௦ܶమ, Case	III భ்வ మ்
	൧ ൌ ෍෍	ሺ݄ݓ െ ଺ሻݑ

ஶ

௜ୀଵ

൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯݁ିఒభሺ௜ା௪ିଵሻ௛ߚ௣మ
௪ିଵ൫1 െ ௣మ൯ߚ

ஶ

௪ୀଵ

 



42 
 

42 
 

ൌ
൫1 െ ௣మ൯݁ߚ

ఒభ௛൫݁ఒమ௛ െ 1൯൫݁ఒభ௛ሺ݄ െ ଺ሻݑ ൅ ଺൯ݑ௣మߚ

ሺ݁ሺఒభାఒమሻ௛ െ 1ሻ൫݁ఒభ௛ െ ௣మ൯ߚ
ଶ , 

where ݓ represents the number of samples that process undergoes with ܵଶ until a success detection. The 

term ݁ିఒభሺ௜ା௪ିଵሻ௛ indicates that ܵଶ is detected at the sampling time ሺ݅ ൅ ݓ െ 1ሻ݄, at which, ଵܵ still has not 

occurred yet. For example, if ܵଶ occurs in the time interval ሾ݄, 2݄	ሿ, then ൣܧ ௦ܶమ	൧ ൌ ݄ െ  ଺ if ܵଶ is detectedݑ

at time 2݄, and hence, ݅ ൌ ݓ,2 ൌ 1, and 

ሺ݄ݓ െ ଺ሻ൫݁ିఒమݑ
ሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯݁ିఒభሺ௜ା௪ିଵሻ௛ߚ௣మ

௪ିଵ൫1 െ  ௣మ൯ߚ

ൌ ሺ݄ െ ଺ሻ൫݁ିఒమ௛ݑ െ ݁ିఒమଶ௛൯݁ିఒభଶ௛൫1 െ  .௣మ൯ߚ

ൣܧ  ௦ܶమ	൧ ൌ 2݄ െ ݅ ,଺ if ܵଶ is detected at time 3݄, and henceݑ ൌ ݓ,2 ൌ 2, and 

ሺ݄ݓ െ ଺ሻ൫݁ିఒమݑ
ሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯݁ିఒభሺ௜ା௪ିଵሻ௛ߚ௣మ

௪ିଵ൫1 െ  ௣మ൯ߚ

ൌ ሺ2݄ െ ଺ሻ൫݁ିఒమ௛ݑ െ ݁ିఒమଶ௛൯݁ିఒభଷ௛ߚ௣మ൫1 െ  .௣మ൯ߚ

If  ଶܶ ൐ ଵܶ, then sampling plan is always able to detect ଵܵ before the occurrence of ܵଶ. Therefore, the 

system is only operating with ଵܵ. The same derivation approach like in ଵܶ ൐ ଶܶ is followed, and hence: 

଺ܥ ൌ ൣܧ ௦ܶభ, Case	III మ்வ భ்
	൧ ൌ ෍෍ሺ݄ݓ െ ହሻݑ

ஶ

௜ୀଵ

൫݁ିఒభሺ௜ିଵሻ௛ െ ݁ିఒభ௜௛൯݁ିఒమሺ௜ା௪ିଵሻ௛
ஶ

௪ୀଵ

௣భߚ
௪ିଵ൫1 െ  ௣భ൯ߚ

ൌ
ሺ1 െ ௣భሻ݁ߚ

ఒమ௛ሺ݁ఒభ௛ െ 1ሻሺ݁ఒమ௛ሺ݄ െ ହሻݑ ൅ ହሻݑ௣భߚ

ሺ݁ሺఒభାఒమሻ௛ െ 1ሻሺ݁ఒమ௛ െ ௣భሻߚ
ଶ . 

Note that there is no chance for propagating shift to occur in Case III, and therefore: 

ൣܧ ௦ܶభమ, Case	III భ்வ మ்
	൧ ൌ ൣܧ ௦ܶభమ, Case	III మ்வ భ்

	൧ ൌ 0. 

Considering all the above, ܧሾ ௦ܶభሿ, ܧሾ ௦ܶమሿ, and ܧሾ ௦ܶభమሿ, are given as follows, respectively: 

ሾܧ ௦ܶభሿ ൌ ሼݑସ െ ଶܥଷሽݑ ൅ ସܥ ൅  ,଺ܥ

ሾܧ ௦ܶమሿ ൌ ሼݑଵ െ ଵܥଶሽݑ ൅ ଷܥ ൅  ,ହܥ

ሾܧ ௦ܶభమሿ ൌ ൛݄ܮܴܣ௦భమ െ ଵܥଵൟݑ ൅ ൛݄ܮܴܣ௦భమ െ ଶܥସൟݑ ൅ ൛݄ܮܴܣ௦భమ െ ଻ܥହൟݑ ൅ ൛݄ܮܴܣ௦భమ െ  ,଼ܥ଺ൟݑ

where ܥ଻ is the probability that the time needed is ݄ܮܴܣ௦భమ െ  ହ to alert a true alarm since the occurrenceݑ

of a shift given Case II, ଵܶ ൐ ଶܶ, whereas ଼ܥ is the probability that the time needed is ݄ܮܴܣ௦భమ െ  ଺ to alertݑ

a true alarm since the occurrence of a shift given Case II, ଶܶ ൐ ଵܶ. ܥ଻ and ଼ܥ are given by: 

଻ܥ ൌ ෍෍൫݁ିఒమሺ௜ିଵሻ௛ െ ݁ିఒమ௜௛൯൫݁ିఒభሺ௜ା௤ିଵሻ௛ െ ݁ିఒభሺ௜ା௤ሻ௛൯ߚ௣మ
௤

ஶ

௜ୀଵ

ஶ

௤ୀଵ

 

ൌ
ఉ೛మ௘

షሺరഊభశഊమሻ೓൫௘ഊభ೓ିଵ൯൫௘ഊమ೓ିଵ൯൫ఉ೛మ௘
ሺరഊభశమഊమሻ೓ି௘ሺరഊభశഊమሻ೓൯

൫௘ሺഊభశഊమሻ೓ିଵ൯൫௘ഊభ೓ିఉ೛మ൯൫ఉ೛మ௘
ഊమ೓ିଵ൯

,  
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଼ܥ ൌ ෍෍൫݁ିఒభሺ௜ିଵሻ௛ െ ݁ିఒభ௜௛൯൫݁ିఒమሺ௜ା௤ିଵሻ௛ െ ݁ିఒమሺ௜ା௤ሻ௛൯ߚଵ
௤

ஶ

௜ୀଵ

ஶ

௤ୀଵ

 

ൌ
ఉ೛భ௘

షሺഊభశరഊమሻ೓ሺ௘ഊభ೓ିଵሻሺ௘ഊమ೓ିଵሻሺఉ೛భ௘
ሺమഊభశరഊమሻ೓ି௘ሺഊభశరഊమሻ೓ሻ

ሺ௘ሺഊభశഊమሻ೓ିଵሻሺ௘ഊమ೓ିఉ೛భሻሺఉ೛భ௘
ഊభ೓ିଵሻ

.  


