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SUMMARY & CONCLUSIONS 

Covariates (e.g., temperature, humidity, and electric 
current) are those factors affecting the outcome under study. 
Practitioners, such as reliability engineers, are often faced with 
measurement errors in covariates and/or unimportant covariates 
when collecting data on important variables. Such errors and 
unimportant covariates usually lead to low-quality estimation 
results and significantly increase computational efforts. To 
make the best use of data, it is essential to reduce the negative 
impact of measurement errors in covariates and eliminate those 
unimportant covariates, so that an adequate model with accurate 
and precise model parameter estimates can be obtained. A 
typical example involving measurement errors in covariates is 
accelerated life testing (ALT). Even in a laboratory testing 
environment, the exact measurements of covariates cannot be 
guaranteed. Moreover, the test conditions may not be perfectly 
controlled, and bringing the conditions back to the required 
levels may take some time. Consequently, these affect the 
reliability estimation for a product under investigation. 
Considering failure-time data collected from the field, the 
negative impact of measurement errors in covariates is even 
more significant. Besides a number of known accelerating 
variables, it is beneficial to monitor some other conditions that 
might also be influential on the product’s reliability. However, 
it is often difficult to tell which variables are actually important 
prior to data analysis. To overcome this challenge, variable 
selection needs to be considered in order to reduce the model 
complexity. In this work, both Weibull and Lognormal 
regression models are studied for modeling ALT data with 
measurement errors in covariates. The numerical results 
validate the proposed method for handling measurement errors 
in covariates and for eliminating unimportant covariates.  

1 INTRODUCTION 

Covariates are those factors affecting the outcome under 
study. In the analysis of ALT data, such covariates (e.g., 
temperature, humidity, and electric current) affect the lifetime 
distribution of a product.  When collecting ALT data, engineers 
often encounter measurement errors in covariates. Extensive 
research has been conducted on the analysis of different types 
of ALT data, but reliability estimation in the presence of 
measurement errors in multiple covariates has not been well 
studied. Moreover, it may be beneficial to monitor some other 
conditions that might also be influential on the product’s 

reliability. However, it is often difficult to tell which variables 
are actually important prior to data analysis, especially when 
measurement errors are unavoidable. Indeed, such errors and 
unimportant covariates may lead to low-quality estimation 
results and complex models. To facilitate data analysis in ALT, 
it is essential to reduce the negative impact of measurement 
errors in covariates and eliminate those unimportant covariates. 

Detection of measurement error has been investigated for 
other statistical purposes. Important basics of modeling 
measurement error are well provided by Fuller [1]. So far, only 
a few statistical methods have been employed for variable 
selection in the presence of measurement error. For example, a 
variant of Lasso introduced by Sørensen et al. [2] considers 
independent, identically and normally distributed additive 
measurement errors. Another method called CoCoLasso by 
Datta and Zou [3] considers additive and multiplicative 
measurement errors. However, both methods focus only on 
linear models rather than general regression models. Another 
group of studies analyzes cases for regression models with 
measurement errors without variable selection [4][5]. The 
Measurement Error Boosting (MEBoost) algorithm introduced 
by Brown et al. [6] usually outperforms the variant of Lasso [2] 
and CoCoLasso [3] in terms of prediction error and coefficient 
bias. Technically, the MEBoost algorithm is developed for 
Normal, Poisson, Gamma and Wald regression models.  

The first step in considering measurement error for 
generalized linear regression models is to create suitable 
corrected likelihood and score functions. Nakamura [7] 
proposes corrected score functions based on generalized linear 
models (i.e., Normal, Poisson, Gamma and Wald regression 
models). These corrected score functions are applied by Brown 
et al. [6]. Moreover, Novick and Stefanski [8] propose a 
corrected score estimation method using complex variable 
simulation extrapolation, and Agustin [9] proposes an exact 
corrected log-likelihood function for a Cox’s proportional 
hazards model. However, the exact corrected score functions 
for some probability distributions widely used in reliability, 
such as Weibull and Lognormal, have not been well studied.  

This paper studies regression models for reliability 
evaluation based on the Weibull and Lognormal distributions. 
The corresponding statistical methods analyze ALT data 
involving multiple candidate accelerating variables subject to 
measurement errors. The statistical models and estimation 
procedure are tested using an ALT data from the literature [10].  



The remainder of this paper is organized as follows. In 
Section 2, the basic regression technique in the presence of 
covariate measurement error is provided, and the MEBoost 
method for variable selection is introduced. In Section 3, the 
Weibull and Lognormal regression models are presented, and 
the corresponding statistical inference methods are addressed. 
In Section 4, an ALT data set from the literature is modified and 
analyzed to demonstrate the capability of the proposed models 
and estimation methods in improving parameter estimation and 
covariate selection. Finally, Section 5 draws conclusions. 

2 BACKGROUND 

2.1 Regression in the presence of covariate measurement 
error 

Modeling covariate error has been treated in two ways in 
the literature. The first approach focuses on functional models 
by assuming the covariates are fixed [11]. The second method 
is to use structural models by assuming the covariates are 
random quantities. This method is utilized in this study. 

The usual regression model is ௡ܻൈଵ ൌ ௣ൈଵߚ௡ൈ௣ࢄ ൅ ߳௡ൈଵ, 
where ௡ܻൈଵ is the response vector, ࢄ௡ൈ௣ is the matrix of 
covariates, ߚ௣ൈଵ is the coefficient vector, and ߳௡ൈଵ is the vector 
of independent and identically distributed random errors. In the 
presence of covariate measurement errors, it is assumed that 
instead of observing ࢄ௡ൈ௣, an “error-prone” matrix ࢃ௡ൈ௣ is 
observed. Specifically, when the measurement errors are 
additive, ࢃ௡ൈ௣ can be expressed as:  

௡ൈ௣ࢃ ൌ ௡ൈ௣ࢄ ൅  ௡ൈ௣,                                       (1)ࢁ

where ࢁ௡ൈ௣ is a random covariate error matrix. We define Λ as 
the covariance matrix of the measurement error matrix ࢁ௡ൈ௣. 
In this work, the elements of ࢁ௡ൈ௣ are assumed to be 
independent and normally distributed as ܰሺ0, Λሻ where Λ is a 
diagonal matrix. Clearly, a naïve model may be used by 
ignoring the measurement errors in covariates, but this could 
result in biased coefficient estimates and model parameters [6]. 

2.2 Variable selection in the presence of measurement error 

In the literature, only a few models have been developed to 
handle variable selection with measurement errors. Ma and Li 
[12] study variable selection in the presence of measurement 
errors via a penalty function. While presenting good quality for 
general applications, the drawback of this method is mainly the 
computational inefficiency for high-dimensional problems. 
Faster methods such as the work by Sørensen et al. [2] analyze 
the presence of measurement errors using Lasso. In a more 
recent work by Datta and Zou [3], a correction of Lasso is 
proposed and referred to as CoCoLasso. It has been shown that 
CoCoLasso is less computationally intensive in comparison to 
the previous methods. The most recent work by Brown et al. [6] 
is called MEBoost algorithm, which is more computationally 
efficient and has a better performance than the previous 
methods. The method is developed based on the idea of 
ThrEEBoost [13] and uses corrected score functions [7]. The 
MEBoost algorithm is applied in this work due to its superior 

properties. Algorithm 1 shows the general form of the MEBoost 
algorithm, where the algorithm is stated for a regression model. 
The threshold parameter ߬ ∈ ሾ0,1ሿ provides possibility to 
update only coefficients with significant score function values. 
In particular, when ߬ ൌ 0 all the parameters will be updated. 
The set ࡶ௧ determines the coefficients to be updated, and ߛ is 
the step size for updating the coefficients. As ߛ becomes larger, 
some precision will be lost. On the other hand, choosing a small 
value for ߛ will increase the computational time but can 
guarantee more accurate estimation results. ߠ represents the 
vector of model parameters (e.g., the scale parameter in Weibull 
or Lognormal) excluding the regression coefficients, ߚ is the 
vector of regression coefficients, and ܵ∗ሺܻ,ࢃ,  ሻ∗ is theߚ
corrected score function.  

Algorithm 1: MEBoost 

Procedure MEBoost 

Set ߚ଴ ൌ 0 

Set initial value for model parameters 

 for ݐ ൌ 0,… , ܶ do 

  Compute ݒ ൌ ,ࢃ,ሺܻ∗ࡿ  ೟షభࢼୀࢼሻߚ

   Identify ܬ௧ ൌ ሼ݆: |௝ݒ| ൒ ߬.max
௝
|௝ݒ| 	ሽ 

  for all ݆௧ ∈  ௧ doࡶ

   update ߚ௝೟
ሺ௧ሻ ൌ ௝೟ߚ

ሺ௧ିଵሻ ൅ .ߛ  ௝೟ሻݒሺ݊݃݅ݏ

  end for 

  Compute ߠ෠ ൌ ሼߠ:
డ௟∗

డఏ
ൌ 0ሽ 

 end for 

end procedure 

2.3 Corrected score functions 

Nakamura [7] proposes corrected score functions based on 
a number of generalized linear models. The corrections were 
derived based on a rule that the expectation of the corrected 
score function should be equal to the naïve score function. In 
this work, corrected score functions are derived for the Weibull 
and Lognormal distributions.  

3 PROPOSED MODELS 

3.1 Weibull regression model 

In this study, a corrected score function is provided for the 
Weibull regression model considering covariate measurement 
errors. In this work, the log-location-scale parameterization of 
Weibull distribution is used. The probability density function 
(pdf) denoted as ݂ሺ. ሻ and cumulative distribution function 
(CDF) denoted as ܨሺ. ሻ are as follows:  

݂ሺݕሻ ൌ
ଵ

ఙ௬
߶௦௘௩ ቀ

୪୭୥௬ିఓ

ఙ
ቁ,              (2) 

ሻݕሺܨ ൌ Φ௦௘௩ ቀ
୪୭୥௬ିఓ

ఙ
ቁ,   (3) 

where ߤ is the location parameter, ߪ is the scale parameter, and  
߶௦௘௩ and Φ௦௘௩ are the pdf and CDF of smallest extreme value 



distribution: 

߶௦௘௩ሺݕሻ ൌ expሺݕ െ expሺݕሻሻ,      (4) 

Φ௦௘௩ሺݕሻ ൌ 1 െ expሺെexpሺݕሻሻ.    (5) 

Our regression model considers a linear relationship ߤ௜ ൌ
݅ ,௜ (failure/censoring timeݕ ௜, for data pointݓ்ߚ ൌ 	1, 2, … , ݊), 
where ݓ௜ is the vector of covariates with a first element equal 
to one, ߚ is the vector of regression coefficients. In this 
formulation, the model parameter excluding the coefficients is 
ߠ ൌ ሺߪሻ. Throughout the paper, we denote ܽ௜ ൌ log ௜ݕ െ  .௜ݓ்ߚ
Then the pdf of failure time and the reliability function at ݕ௜ can 
be defined as: 

݂ሺݕ௜ሻ ൌ 	
ଵ

ఙ௬೔
߶௦௘௩ ቀ

௔೔
ఙ
ቁ,              (6) 

ܴሺݕ௜ሻ ൌ 1 െ Φ௦௘௩ ቀ
௔೔
ఙ
ቁ.                           (7) 

Clearly, the naïve log-likelihood function for the regression 
model without considering measurement errors can be 
expressed as: 

݈ሺܻ,ࢃ, ሻߚ ൌ 	∑ ௜ሺߥ
௡
௜ୀଵ െ log ௜ݕ െ log ߪ ൅

௔೔
ఙ
െ exp

௔೔
ఙ
ሻ ൅

ሺ1 െ ௜ሻሺെߥ exp
௔೔
ఙ
ሻ      (8) 

where ߥ௜ ൌ ሼ1, if	ݕ௜	is	a	failure	time; 0, otherwiseሽ is an 
indicator function. To deal with measurement errors, the 
following corrected log-likelihood function is used (the detailed 
derivation is omitted): 

݈∗ሺܻ,ࢃ, ሻߚ ൌ 	∑ ௜ሺߥ
௡
௜ୀଵ െ log ௜ݕ െ log ߪ ൅

௔೔
ఙ
ሻ െ

expሺ
௔೔
ఙ
െ

ఉ೅ஃఉ

ଶఙమ
ሻ.      (9) 

Technically, the corrected score function can be obtained by 
differentiating  ݈∗ with respect to ߚ as follows: 

						ܵ∗ሺܻ,ࢃ, ሻߚ ൌ ∑ ௜ሺߥ
௡
௜ୀଵ െ

௪೔
	ఙ
ሻ െ

																									ቀെ
௪೔
	ఙ
െ

ఉ೅ஃ	

ఙమ
ቁ expሺ

௔೔
ఙ
െ

ఉ೅ஃఉ

ଶఙమ
ሻ.                       (10) 

The corrected estimate of ߪ is calculated by solving  
డ௟∗

డఙ
ൌ

0. Indeed, the following equation is solved numerically: 

           ∑ ௜ሺߥ
௡
௜ୀଵ െ

ଵ

ఙ
െ

௔೔
ఙమ
ሻ െ ቀ

ି൫୪୭୥௬೔ିఉ
೅௪೔൯

ఙమ
൅

																				
ఉ೅ஃఉ

஢య
ቁ ݌ݔ݁ ቀ

୪୭୥௬೔ିఉ
೅௪೔

ఙ
െ

ఉ೅ஃఉ

ଶఙమ
ቁ ൌ 0.                 (11) 

In particular, a bisection search method can be used for this 
purpose. Note that the derived formulas in equations (10)-(11) 
will be substituted in Algorithm 1. 

3.2 Lognormal regression model 

The pdf of Lognormal distribution is: 

݂ሺݕሻ ൌ
ଵ

௬ఙ√ଶగ
exp ቀെ

ሺ୪୭୥௬ିఓሻమ

ଶఙమ
ቁ.                    (12) 

Let ݕ௜ (݅ ൌ 1,2, … , ݊) be the failure/censoring time. The pdf and 
reliability function for the regression model with ߤ௜ ൌ  ௜ canݓ்ߚ
be expressed as: 

݂ሺݕ௜ሻ ൌ
ଵ

௬೔ఙ√ଶగ
exp	ሺെ

ሺ௔೔ሻ
మ

ଶఙమ
ሻ,              (13) 

ܴሺݕ௜ሻ ൌ
ଵ

ଶ
െ

ଵ

ଶ
erf ቀ

௔೔
√ଶఙ

ቁ,	                  (14) 

The log-likelihood function of the naive regression model 
is given by: 

݈ሺܻ,ࢃ, ሻߚ ൌ 	∑ ௜ߥ ቂെlog ௜ݕ െ logߪ െ
ଵ

ଶ
logሺ2ߨሻ െ௡

௜ୀଵ

ሺ௔೔ሻ
మ

ଶఙమ
ቃ ൅ ሺ1 െ ௜ሻߥ ቂlog ቀ

ଵ

ଶ
െ

ଵ

ଶ
erf ቀ

௔೔
√ଶఙ

ቁቁቃ .	     (15) 

Again, the vector of model parameters other than the 
coefficients is ߠ ൌ ሺߪሻ. To ease presentation, we denote ௜݃ ൌ

	
ଵ

ଶ
െ

ଵ

ଶ
erf ቀ

୪୭୥௬೔ିఉ
೅௪೔

√ଶఙ
ቁ for the rest of this paper. 

For the lognormal model, we can define the corrected log-
likelihood function as (the detailed derivation and 
approximation are omitted): 

݈∗ሺܻ,ࢃ, ሻߚ ൌ 	∑ ௜ߥ ቂെlog ௜ݕ െ log ߪ െ
ଵ

ଶ
logሺ2ߨሻ െ௡

௜ୀଵ

ሺ௔೔ሻ
మ

ଶఙమ
൅

ఉ೅ஃఉ

ଶఙమ
ቃ ൅ ሺ1 െ ௜ሻߥ ቂlogሺ ௜݃ሻ 	൅	

ఉ೅ஃఉ

ଶఙమ
expሺെ

௔೔
మ

ଶఙమ
ሻቃ .    

(16) 

It is worth pointing out that the obstacle for finding the 
estimate of ߪ is caused by the presence of censored data. For 
cases with non-censored failure-time data, the equations are 
much simpler, and the estimate can be obtained without relying 
on a numerical method. For a case involving censoring times, 
the bisection search method is utilized to obtain the estimate ߪො 
in every iteration of the algorithm. The corrected score function 
and  ߪො are obtained based on the following equations:  

ܵ∗ሺܻ,ࢃ, ሻߚ ൌ ∑ ௜ߥ ቂ
ଵ

ఙమ
ሺݓ௜ܽ௜ሻ ൅

ఉ೅ஃ

ఙమ
ቃ ൅ ሺ1 െ௡

௜ୀଵ

௜ሻሾߥ
ଵ

௚೔
exp ቀെ

ሺ௔೔ሻమ

ଶఙమ
ቁ

௪೔

√ଶగఙ
൅

ఉ೅ஃ

ఙమ
exp ቀെ

௔೔
మ

ଶఙమ
ቁ ൅

௔೔௪೔ఉ೅ஃఉ

ఙర
exp	ሺെ ܽ݅

2

2ߪ2
ሻሿ.         

(17) 

డ௟∗ሺ௒,ࢃ,ఉሻ

డఙ
ൌ ௜ߥ ቂ

ିଵ

ఙ
൅

ሺ௔೔ሻ
మ

ఙయ
െ

ఉ೅ஃఉ

ఙయ
ቃ ൅ ሺ1 െ

௜ሻߥ													 ൤
ଵ

௚೔
exp ቀെ

ሺܽ݅ሻ2

2ߪ2
ቁ

ܽ݅

ߪߨ2√
൅

																					െ
ఉ೅ஃఉ

ఙయ
exp ቀെ

ሺܽ݅ሻ2

2ߪ2
ቁ ൅

ܽ݅
ߚΛܶߚ2

4ߪ
exp ൬െ ܽ݅

2

2ߪ2
൰൨ ൌ 0.	(18) 

4 NUMERICAL STUDY 

4.1 Real-world example 

The reliability data set from an ALT experiment for 
tantalum electrolytic capacitors with temperature and voltage as 
the covariates [10] is modified and studied in this work. The 
original data consists of 2204 data points with 2164 censored 
data and only 40 failure times. To demonstrate the capability of 
the model in variable selection, a new covariate (called Cov 3) 
is randomly added to the data to mimic a real-world case. It is 
expected that the model can identify this covariate as being 
insignificant. Moreover, some random errors ࢜ࢾ and ࢚ࢾ are 
added to the existing covariates (i.e., voltage and temperature). 
The random errors are generated from ܰሺ0,0.15ሻ distribution, 
where 0.15 is the assumed variance of measurement error on 
each covariate. Table 1 shows the modified ALT data. Then, 
the proposed method is tested to find how well it is capable of 
eliminating the unimportant covariate(s) and to investigate the 
capability of the proposed method in dealing with random 
measurement errors in these covariates.  

As the first step, by using the mean covariates (e.g., 35 



Volts, 57 Volts, etc.) in the modified data, probability plots are 
used to roughly guide the selection of underlying failure-time 
distribution. Figures 1 and 2 illustrate the Weibull probability 
plot and the Lognormal probability plot, respectively. One can 
see that the Weibull distribution is more appropriate in 
explaining the data. 
 
Table 1 ALT data for tantalum electrolytic capacitors modified from 
[10] by adding random errors to voltage and temperature levels and 
adding randomly an extra covariate (Cov 3) (note: in the table, ߜ௩  and 
,௧ were randomly generated from ܰሺ0ߜ 0.15ሻ for each data point). 

Hours Status Numb. 
devices 

Voltage 
(Volts) 

Temp. 
(°C) 

Cov 3 

20 Failure 1 35+0 ࢚ࢾ+85 ࢜ࢾ 
90 Failure 1 35+5 ࢚ࢾ+85 ࢜ࢾ 

700 Failure 1 35+10 ࢚ࢾ+85 ࢜ࢾ 
37000 Failure 1 35+0 ࢚ࢾ+85 ࢜ࢾ 
37000 Censored 996 35+5 ࢚ࢾ+85 ࢜ࢾ 

… … … … … … 
8900 Failure 1 57+10 ࢚ࢾ+45 ࢜ࢾ 
8900 Censored 49 57+5 ࢚ࢾ+45 ࢜ࢾ 

 
Note that the random errors were added to the covariate 

values before transformation to mimic real-world practice. The 
transformations of the covariates are done based on the ALT 
model addressed in [14] where ݓଵ ൌ log	ሺݐ݈݋ݒሻ and ݓଶ ൌ
11605/ሺ݌݉݁ݐ ൅ 273.15ሻ. Moreover, ݓଷ representing the third 
covariate is the normalized form of Cov 3. In this work, two 
different values of ݎܽݒ௎ (i.e., 0.15 [true] and 0.75) are 
considered for the variance of measurement errors when 
estimating the model parameters. The goal is to show the impact 
of misspecification of this important quantity on the overall 
estimation accuracy. 

The hyperparameters in the proposed parameter estimation 
and variable selection procedure, including ߛ, ܶ  and ߬ , can have 
significant impact on the final ALT model. As a result, they 
have to be chosen wisely. In particular, ߛ is the step size that 
determines how much the value of the parameters can be 
updated in each iteration. It is conceivable that as the value of 
 increases, some estimation precision will be lost, but a small ߛ
value of ߛ may require more iterations. In practice, it is 
basically a trade-off between precision and computational time. 
In this work, an adaptive step size is suggested. This technical 
treatment is based on the idea of learning rate decay in neural 
networks. Let ݐ be the iteration number, ݐ ൌ 0,… , ܶ, and ݀ݎ be 
the decay rate, then ߛ௧ can be defined as: 

௧ߛ ൌ
1

1 ൅ ݐ ∙ ݎ݀
 

The value of ݀ݎ can be determined based on the requirements 
of a specific problem. To avoid overfitting and excess 
calculation time, ܶ is determined based on the convergence of 
the model. In other words, a large value is considered for ܶ, but 
the model stops when the solution converges. Moreover, a 
variety of values of ߬ (0.2 and 0.6) are used in this study for 
comparing the effect of this parameter on parameter estimation 
in different problem settings.  

Tables 2 and 3 show the results of model estimation and 
variable selection considering measurement errors for the 
Weibull model and the Lognormal model, respectively.  The 
estimated coefficients and parameter values for each solution 
are presented.  For comparison, the estimation results of the 
Naïve models using the modified data and the models (called 
original model) using the original data from [10] without adding 
the extra covariate and measurement errors are also presented. 

To select the resulting ALT model, the log-likelihood 
values are considered. The resulting model should have the 
higher log-likelihood value for each setting of ݎܽݒ௎. In 
addition, to verify the effectiveness of the proposed method for 
model parameter estimation, the estimated parameters are 
compared with the ones of the original model. To this end, the 
combined absolute percentage error (CAPE) is calculated by 

∏ |
஼೔ି஼೚ೝ೔೒ష೔
஼೚ೝ೔೒ష೔

|௜ 	, where ܥ௜ represents the estimated 

coefficient/parameter of the current model and ܥ௢௥௜௚ି௜ is the 
corresponding coefficient/parameter of the original model.  

From Table 2, one can see that the best Weibull model 
(highlighted in bold), when the variance of measurement errors 
is correctly specified (ݎܽݒ௎ = 0.15), is obtained with the log-
likelihood of -522.78 using ߬ ൌ 0.2. The corresponding CAPE 
value is quite small. Clearly, the method identifies that the extra 
covariate Cov 3 with coefficient of 0.02 is insignificant. 
However, when the value of ݎܽݒ௎ is misspecified (ݎܽݒ௎ = 0.75), 

Figure 2- Lognormal multiple probability plots for the 
tantalum capacitors dataset 

Figure 1- Weibull multiple probability plots for the 
tantalum capacitors dataset 



the estimation results are misleading. Therefore, it is extremely 
important to know the characteristics of measurement errors in 
covariates when dealing with such ALT data. More 
importantly, the Naïve model without considering 
measurement errors results in a lower log-likelihood and cannot 
identify the insignificant extra covariate. This shows the 
significant practical value of our proposed method in 
identifying unimportant covariates with measurement errors. In 
addition, the selection of ߬ can be clearly seen. Indeed, a higher 
value of ߬ reduces computational time, but in the case of 
Weibull model, a higher value of ߬ reduces our capability in 

covariate selection. In other words,  ߬  is an extremely important 
hyperpaprameter, and thus should be selected carefully.  

Table 3 shows that although the Lognormal model is less 
appropriate than the Weibull model for the original data (see the 
corresponding log-likelihood values), when the variance of 
measurement errors is correctly specified (ݎܽݒ௎ = 0.15), the 
Lognormal model to be selected becomes a better choice in 
terms of log-likelihood value. Moreover, when the variance of 
measurement errors is misspecified, the estimation results are 
misleading. The Naïve model results in a lower log-likelihood 
and cannot identify the insignificant extra covariate. 

 
Table 2 Coefficients and parameters estimated for Weibull regression model with different parameters of the MEBoost algorithm as compared 
to the original and naïve models. 

Variable Original model ݎܽݒ௎ ൌ 0.15 ௎ݎܽݒ ൌ 0.75 Naïve 
model ߬ ൌ 0.2 ߬ ൌ 0.6 ߬ ൌ 0.2 ߬ ൌ 0.6 

Intercept 77.37 81.20 80.10 80.00 80.00 80.00 
Voltage -16.99 -17.32 -19.44 -27.76 -27.72 -13.22 

Temperature 0.18 0.04 0.36 -0.82 0.04 -0.02 
Cov 3 - 0.02 -0.12 -0.18 0 0.22 
 ො 2.21 1.91 2.02 3.00 4.41 4.68ߪ

CAPE - 0.00010 0.00044 0.043 0.017 0.0094 
Log-likelihood* -538.83 -522.78 -527.17 518.78 -69.68 -579.50 

Table 3 Coefficients and parameters estimated for Lognormal regression model with different parameters of the MEBoost algorithm as compared 
to the original and naïve models. 

Variable Original model ݎܽݒ௎ ൌ ௎ݎܽݒ 0.15 ൌ 0.75 Naïve model 
߬ ൌ 0.2 ߬ ൌ 0.6 ߬ ൌ 0.2 ߬ ൌ 0.6 

Intercept 82.46 80.57 80.46 80.42 79.21 80.64 
Voltage -17.25 -19.35 -17.53 -22.14 -21.96 -15.02 

Temperature 0.16 0.35 0.13 0.53 0.57 0.24 
Cov 3 - -0.06 -0.04 0.07 0 0.2 
 ො 5.87 3.54 3.36 10 10 10ߪ

CAPE - 0.0013 3.12E-05 0.011 0.020 0.0010 
Log-likelihood* -540.81 -426.87 -456.23 705.87 683.18 -588.69 

5 CONCLUSIONS 

Although measurement errors and variable selection have 
been studied by statisticians and reliability engineers, the 
combination of the two problems has not been broadly 
investigated. In this work, the effects of measurement errors in 
covariates in ALT are considered. Our numerical study 
illustrates that appropriately dealing with measurement errors 
in covariates can result in more accurate reliability estimation 
for a product of interest. To use the MEBoost algorithm for 
Welbull and Lognormal regression models in the presence of 
measurement errors in covariates, the corrected log-likelihood 
and score functions are developed for analyzing ALT data. 
Indeed, the proposed method can be used for reliability 
estimation using field data where more covariates may be 
available with measurement errors and some of the covariates 
may not be significantly influential. From a practical point of 
view, this method, if appropriately applied, can assist a 

practitioner in eliminating those unimportant covariates and 
provide an accurate reliability estimate instead of resulting in a 
more complex model with detrimental power in data 
interpretation.  
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