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SUMMARY & CONCLUSIONS

Covariates (e.g., temperature, humidity, and -electric
current) are those factors affecting the outcome under study.
Practitioners, such as reliability engineers, are often faced with
measurement errors in covariates and/or unimportant covariates
when collecting data on important variables. Such errors and
unimportant covariates usually lead to low-quality estimation
results and significantly increase computational efforts. To
make the best use of data, it is essential to reduce the negative
impact of measurement errors in covariates and eliminate those
unimportant covariates, so that an adequate model with accurate
and precise model parameter estimates can be obtained. A
typical example involving measurement errors in covariates is
accelerated life testing (ALT). Even in a laboratory testing
environment, the exact measurements of covariates cannot be
guaranteed. Moreover, the test conditions may not be perfectly
controlled, and bringing the conditions back to the required
levels may take some time. Consequently, these affect the
reliability estimation for a product under investigation.
Considering failure-time data collected from the field, the
negative impact of measurement errors in covariates is even
more significant. Besides a number of known accelerating
variables, it is beneficial to monitor some other conditions that
might also be influential on the product’s reliability. However,
it is often difficult to tell which variables are actually important
prior to data analysis. To overcome this challenge, variable
selection needs to be considered in order to reduce the model
complexity. In this work, both Weibull and Lognormal
regression models are studied for modeling ALT data with
measurement errors in covariates. The numerical results
validate the proposed method for handling measurement errors
in covariates and for eliminating unimportant covariates.

1 INTRODUCTION

Covariates are those factors affecting the outcome under
study. In the analysis of ALT data, such covariates (e.g.,
temperature, humidity, and electric current) affect the lifetime
distribution of a product. When collecting ALT data, engineers
often encounter measurement errors in covariates. Extensive
research has been conducted on the analysis of different types
of ALT data, but reliability estimation in the presence of
measurement errors in multiple covariates has not been well
studied. Moreover, it may be beneficial to monitor some other
conditions that might also be influential on the product’s

reliability. However, it is often difficult to tell which variables
are actually important prior to data analysis, especially when
measurement errors are unavoidable. Indeed, such errors and
unimportant covariates may lead to low-quality estimation
results and complex models. To facilitate data analysis in ALT,
it is essential to reduce the negative impact of measurement
errors in covariates and eliminate those unimportant covariates.

Detection of measurement error has been investigated for
other statistical purposes. Important basics of modeling
measurement error are well provided by Fuller [1]. So far, only
a few statistical methods have been employed for variable
selection in the presence of measurement error. For example, a
variant of Lasso introduced by Serensen et al. [2] considers
independent, identically and normally distributed additive
measurement errors. Another method called CoCoLasso by
Datta and Zou [3] considers additive and multiplicative
measurement errors. However, both methods focus only on
linear models rather than general regression models. Another
group of studies analyzes cases for regression models with
measurement errors without variable selection [4][5]. The
Measurement Error Boosting (MEBoost) algorithm introduced
by Brown et al. [6] usually outperforms the variant of Lasso [2]
and CoCoLasso [3] in terms of prediction error and coefficient
bias. Technically, the MEBoost algorithm is developed for
Normal, Poisson, Gamma and Wald regression models.

The first step in considering measurement error for
generalized linear regression models is to create suitable
corrected likelihood and score functions. Nakamura [7]
proposes corrected score functions based on generalized linear
models (i.e., Normal, Poisson, Gamma and Wald regression
models). These corrected score functions are applied by Brown
et al. [6]. Moreover, Novick and Stefanski [8] propose a
corrected score estimation method using complex variable
simulation extrapolation, and Agustin [9] proposes an exact
corrected log-likelihood function for a Cox’s proportional
hazards model. However, the exact corrected score functions
for some probability distributions widely used in reliability,
such as Weibull and Lognormal, have not been well studied.

This paper studies regression models for reliability
evaluation based on the Weibull and Lognormal distributions.
The corresponding statistical methods analyze ALT data
involving multiple candidate accelerating variables subject to
measurement errors. The statistical models and estimation
procedure are tested using an ALT data from the literature [10].



The remainder of this paper is organized as follows. In
Section 2, the basic regression technique in the presence of
covariate measurement error is provided, and the MEBoost
method for variable selection is introduced. In Section 3, the
Weibull and Lognormal regression models are presented, and
the corresponding statistical inference methods are addressed.
In Section 4, an ALT data set from the literature is modified and
analyzed to demonstrate the capability of the proposed models
and estimation methods in improving parameter estimation and
covariate selection. Finally, Section 5 draws conclusions.

2  BACKGROUND

2.1 Regression in the presence of covariate measurement
error

Modeling covariate error has been treated in two ways in
the literature. The first approach focuses on functional models
by assuming the covariates are fixed [11]. The second method
is to use structural models by assuming the covariates are
random quantities. This method is utilized in this study.

The usual regression model is Yy,x1 = XpupPpx1 + €nx1s
where Y., is the response vector, X;,y, is the matrix of
covariates, x4 is the coefficient vector, and €, is the vector
of independent and identically distributed random errors. In the
presence of covariate measurement errors, it is assumed that
instead of observing X;,, an “error-prone” matrix Wy, is
observed. Specifically, when the measurement errors are
additive, W, can be expressed as:

anp = anp + Unxp: (1)

where Uy, is a random covariate error matrix. We define A as
the covariance matrix of the measurement error matrix Us,p.
In this work, the elements of U,,, are assumed to be
independent and normally distributed as N(0, A) where A is a
diagonal matrix. Clearly, a naive model may be used by
ignoring the measurement errors in covariates, but this could
result in biased coefficient estimates and model parameters [6].

2.2 Variable selection in the presence of measurement error

In the literature, only a few models have been developed to
handle variable selection with measurement errors. Ma and Li
[12] study variable selection in the presence of measurement
errors via a penalty function. While presenting good quality for
general applications, the drawback of this method is mainly the
computational inefficiency for high-dimensional problems.
Faster methods such as the work by Serensen et al. [2] analyze
the presence of measurement errors using Lasso. In a more
recent work by Datta and Zou [3], a correction of Lasso is
proposed and referred to as CoCoLasso. It has been shown that
CoColLasso is less computationally intensive in comparison to
the previous methods. The most recent work by Brown et al. [6]
is called MEBoost algorithm, which is more computationally
efficient and has a better performance than the previous
methods. The method is developed based on the idea of
ThrEEBoost [13] and uses corrected score functions [7]. The
MEBoost algorithm is applied in this work due to its superior

properties. Algorithm 1 shows the general form of the MEBoost
algorithm, where the algorithm is stated for a regression model.
The threshold parameter t € [0,1] provides possibility to
update only coefficients with significant score function values.
In particular, when T = 0 all the parameters will be updated.
The set J, determines the coefficients to be updated, and y is
the step size for updating the coefficients. As y becomes larger,
some precision will be lost. On the other hand, choosing a small
value for y will increase the computational time but can
guarantee more accurate estimation results. 8 represents the
vector of model parameters (e.g., the scale parameter in Weibull
or Lognormal) excluding the regression coefficients,  is the
vector of regression coefficients, and S*(Y,W,B)* is the
corrected score function.

Algorithm 1: MEBoost

Procedure MEBoost
Set 0 =0
Set initial value for model parameters
fort =0,...,T do
Compute v = S*(Y, W, B)I,:ﬁt-1

Identify J, = {j: |v;| = 7. max
j

v

}

for all j; € J; do

update ﬁ](:) — (t-1)

. TV sign(v;,)
end for
Compute § = {G:Z—Z =0}

end for

end procedure

2.3 Corrected score functions

Nakamura [7] proposes corrected score functions based on
a number of generalized linear models. The corrections were
derived based on a rule that the expectation of the corrected
score function should be equal to the naive score function. In
this work, corrected score functions are derived for the Weibull
and Lognormal distributions.

3 PROPOSED MODELS
3.1 Weibull regression model

In this study, a corrected score function is provided for the
Weibull regression model considering covariate measurement
errors. In this work, the log-location-scale parameterization of
Weibull distribution is used. The probability density function
(pdf) denoted as f(.) and cumulative distribution function
(CDF) denoted as F(.) are as follows:

FO) = = doew (ZE2E), @
F()’) = Qg (log%)’ 3

where p is the location parameter, o is the scale parameter, and
Gser and Dg,,, are the pdf and CDF of smallest extreme value



distribution:

Bsev(¥) = exp(y — exp(y)), 4)

®sep(¥) = 1 — exp(=exp(y)). ©)

Our regression model considers a linear relationship u; =

BTw;, for data point y; (failure/censoring time, i = 1,2, ...,n),

where w; is the vector of covariates with a first element equal

to one, B is the vector of regression coefficients. In this

formulation, the model parameter excluding the coefficients is

6 = (0). Throughout the paper, we denote a; = logy; — fTw;.

Then the pdf of failure time and the reliability function at y; can
be defined as:

FO) = o-doen (%) ©)

Ry) =1- 2, (%)- (7

Clearly, the naive log-likelihood function for the regression
model without considering measurement errors can be
expressed as:

(Y, W,B) = Sy vi( — logy; — logo + % — exp %) +

@

A -v)(—expZ)  (8)
where v; = {1,if y; is a failure time; 0, otherwise} is an
indicator function. To deal with measurement errors, the

following corrected log-likelihood function is used (the detailed
derivation is omitted):

log y;

(Y, W,B) = SIyvi(~logy; —logo +%) —
i A
eXp(a; - ﬁzgzﬁ)' ©)

Technically, the corrected score function can be obtained by
differentiating [* with respect to f as follows:

S (Y, W,B) = Elyvi( =) —
i A i A
(=5 -5 e =50, (10)

The corrected estimate of ¢ is calculated by solving Z—la =
0. Indeed, the following equation is solved numerically:

1 a; logyi—B'w,
Pavi(— 2y - (st
BTAB logyi=BTw; _ BTABY _
o3 )eXp( lcr - 202 ) =0 an

In particular, a bisection search method can be used for this
purpose. Note that the derived formulas in equations (10)-(11)
will be substituted in Algorithm 1.

3.2 Lognormal regression model

The pdf of Lognormal distribution is:

__1 _ (ogy—p)?
FO) = = exn ( ).

202

(12)

Lety; (i = 1,2, ..., n) be the failure/censoring time. The pdf and
reliability function for the regression model with u; = BTw; can
be expressed as:
__1 _ (@p?
f(yl) _yio_mexp( 252 ): (13)
1 a;
R(yp) =3 —serf(2), (14)

The log-likelihood function of the naive regression model
is given by:

LY, W,B) = Zi1vi [—logyi —logo — llog(Zﬂ) -
(al) ] +(1-v) [log (———erf( ))] (15)

Again, the vector of model parameters other than the
coefficients is 8 = (o). To ease presentation, we denote g; =
1 1 logyi—B w;
3 erf (—ﬁa
For the lognormal model, we can define the corrected log-

likelihood function as (the detailed derivation and
approximation are omitted):

) for the rest of this paper.

UYL W,B) = S, v, [—1ogyl- — logo — 2log(2m) —
(a)? A
@ 4 E28) 1 (1) [loglgn) + B2 exp(— 2.

(16)
It is worth pointing out that the obstacle for finding the
estimate of ¢ is caused by the presence of censored data. For
cases with non-censored failure-time data, the equations are
much simpler, and the estimate can be obtained without relying
on a numerical method. For a case involving censoring times,
the bisection search method is utilized to obtain the estimate &
in every iteration of the algorithm. The corrected score function
and & are obtained based on the following equations:

'YW, B) = Ty v [ (wia) + 22 + (1 -
1 ( i)z i T 12 Vi A 2

vl exp (= 57) g + e (- %)+Mexp<— 22!
a7

arwwp) _ - [-1, (@? _ BTAB _

do _vl[a+a3 63]+(1
1 (ai) a;
vi) [g—ie"p (-5) 5=

BTAB @)Y, atp's a \] _

e (+42) + e (—55)| = 0.08)

4 NUMERICAL STUDY
4.1 Real-world example

The reliability data set from an ALT experiment for
tantalum electrolytic capacitors with temperature and voltage as
the covariates [10] is modified and studied in this work. The
original data consists of 2204 data points with 2164 censored
data and only 40 failure times. To demonstrate the capability of
the model in variable selection, a new covariate (called Cov 3)
is randomly added to the data to mimic a real-world case. It is
expected that the model can identify this covariate as being
insignificant. Moreover, some random errors &8, and &, are
added to the existing covariates (i.e., voltage and temperature).
The random errors are generated from N(0,0.15) distribution,
where 0.15 is the assumed variance of measurement error on
each covariate. Table 1 shows the modified ALT data. Then,
the proposed method is tested to find how well it is capable of
eliminating the unimportant covariate(s) and to investigate the
capability of the proposed method in dealing with random
measurement errors in these covariates.

As the first step, by using the mean covariates (e.g., 35



Volts, 57 Volts, etc.) in the modified data, probability plots are
used to roughly guide the selection of underlying failure-time
distribution. Figures 1 and 2 illustrate the Weibull probability
plot and the Lognormal probability plot, respectively. One can
see that the Weibull distribution is more appropriate in
explaining the data.

Table 1 ALT data for tantalum electrolytic capacitors modified from
[10] by adding random errors to voltage and temperature levels and
adding randomly an extra covariate (Cov 3) (note: in the table, §,, and
6, were randomly generated from N (0, 0.15) for each data point).

Hours Status Numb. | Voltage | Temp. | Cov3
devices | (Volts) (°C)

20 Failure 1 35+6, 85+6, 0
90 Failure 1 35+6, 85+8; 5
700 Failure 1 3546, 85+6; 10
37000 | Failure 1 3546, 85+6; 0
37000 | Censored 996 35+6, 85+6, 5
8900 | Failure 1 57+48, 45+8, 10
8900 | Censored 49 57+6, 45+8, 5

Note that the random errors were added to the covariate
values before transformation to mimic real-world practice. The
transformations of the covariates are done based on the ALT
model addressed in [14] where w; = log(volt) and w, =
11605/(temp + 273.15). Moreover, wy representing the third
covariate is the normalized form of Cov 3. In this work, two
different values of wvary (i.e., 0.15 [true] and 0.75) are
considered for the variance of measurement errors when
estimating the model parameters. The goal is to show the impact
of misspecification of this important quantity on the overall
estimation accuracy.

The hyperparameters in the proposed parameter estimation
and variable selection procedure, including y, T and 7, can have
significant impact on the final ALT model. As a result, they
have to be chosen wisely. In particular, y is the step size that
determines how much the value of the parameters can be
updated in each iteration. It is conceivable that as the value of
y increases, some estimation precision will be lost, but a small
value of y may require more iterations. In practice, it is
basically a trade-off between precision and computational time.
In this work, an adaptive step size is suggested. This technical
treatment is based on the idea of learning rate decay in neural
networks. Let t be the iteration number, t = 0, ..., T, and dr be
the decay rate, then y, can be defined as:

1
Y S 1Ytar

The value of dr can be determined based on the requirements
of a specific problem. To avoid overfitting and excess
calculation time, T is determined based on the convergence of
the model. In other words, a large value is considered for T, but
the model stops when the solution converges. Moreover, a
variety of values of T (0.2 and 0.6) are used in this study for
comparing the effect of this parameter on parameter estimation
in different problem settings.
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Figure 1- Weibull multiple probability plots for the
tantalum capacitors dataset
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Figure 2- Lognormal multiple probability plots for the
tantalum capacitors dataset
Tables 2 and 3 show the results of model estimation and
variable selection considering measurement errors for the
Weibull model and the Lognormal model, respectively. The
estimated coefficients and parameter values for each solution
are presented. For comparison, the estimation results of the
Naive models using the modified data and the models (called
original model) using the original data from [10] without adding
the extra covariate and measurement errors are also presented.
To select the resulting ALT model, the log-likelihood
values are considered. The resulting model should have the
higher log-likelihood value for each setting of vary. In
addition, to verify the effectiveness of the proposed method for
model parameter estimation, the estimated parameters are
compared with the ones of the original model. To this end, the
combined absolute percentage error (CAPE) is calculated by

[T, | “Eoertet the
orig—i

, where C; represents estimated

coefficient/parameter of the current model and C,yi4—; is the
corresponding coefficient/parameter of the original model.
From Table 2, one can see that the best Weibull model
(highlighted in bold), when the variance of measurement errors
is correctly specified (vary = 0.15), is obtained with the log-
likelihood of -522.78 using t = 0.2. The corresponding CAPE
value is quite small. Clearly, the method identifies that the extra
covariate Cov 3 with coefficient of 0.02 is insignificant.
However, when the value of vary is misspecified (vary =0.75),



the estimation results are misleading. Therefore, it is extremely
important to know the characteristics of measurement errors in
covariates when dealing with such ALT data. More
importantly, the Naive model without considering
measurement errors results in a lower log-likelihood and cannot
identify the insignificant extra covariate. This shows the
significant practical value of our proposed method in
identifying unimportant covariates with measurement errors. In
addition, the selection of T can be clearly seen. Indeed, a higher
value of 7 reduces computational time, but in the case of
Weibull model, a higher value of 7 reduces our capability in

covariate selection. In other words, 7 is an extremely important
hyperpaprameter, and thus should be selected carefully.

Table 3 shows that although the Lognormal model is less
appropriate than the Weibull model for the original data (see the
corresponding log-likelihood values), when the variance of
measurement errors is correctly specified (vary = 0.15), the
Lognormal model to be selected becomes a better choice in
terms of log-likelihood value. Moreover, when the variance of
measurement errors is misspecified, the estimation results are
misleading. The Naive model results in a lower log-likelihood
and cannot identify the insignificant extra covariate.

Table 2 Coefficients and parameters estimated for Weibull regression model with different parameters of the MEBoost algorithm as compared

to the original and naive models.

Variable Original model vary = 0.15 vary = 0.75 Naive
7=02|71=06|7=02] =06 model

Intercept 77.37 81.20 80.10 80.00 80.00 80.00
Voltage -16.99 -17.32 | -19.44 | -27.76 -27.72 -13.22
Temperature 0.18 0.04 0.36 -0.82 0.04 -0.02

Cov 3 - 0.02 -0.12 -0.18 0 0.22

o 2.21 1.91 2.02 3.00 441 4.68

CAPE - 0.00010 | 0.00044 | 0.043 0.017 0.0094
Log-likelihood* -538.83 -522.78 | -527.17 | 518.78 -69.68 -579.50

Table 3 Coefficients and parameters estimated for Lognormal regression model with different parameters of the MEBoost algorithm as compared

to the original and naive models.

Variable Original model vary = 0.15 vary = 0.75 Naive model
t=02] =06 |7=02]|7=0.6

Intercept 82.46 80.57 80.46 80.42 79.21 80.64

Voltage -17.25 -19.35 -17.53 -22.14 | -21.96 -15.02
Temperature 0.16 0.35 0.13 0.53 0.57 0.24
Cov3 - -0.06 -0.04 0.07 0 0.2
g 5.87 3.54 3.36 10 10 10

CAPE - 0.0013 | 3.12E-05 | 0.011 0.020 0.0010

Log-likelihood* -540.81 -426.87 | -456.23 | 705.87 | 683.18 -588.69

5 CONCLUSIONS

Although measurement errors and variable selection have
been studied by statisticians and reliability engineers, the
combination of the two problems has not been broadly
investigated. In this work, the effects of measurement errors in
covariates in ALT are considered. Our numerical study
illustrates that appropriately dealing with measurement errors
in covariates can result in more accurate reliability estimation
for a product of interest. To use the MEBoost algorithm for
Welbull and Lognormal regression models in the presence of
measurement errors in covariates, the corrected log-likelihood
and score functions are developed for analyzing ALT data.
Indeed, the proposed method can be used for reliability
estimation using field data where more covariates may be
available with measurement errors and some of the covariates
may not be significantly influential. From a practical point of
view, this method, if appropriately applied, can assist a

practitioner in eliminating those unimportant covariates and
provide an accurate reliability estimate instead of resulting in a
more complex model with detrimental power in data
interpretation.
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