
GT-SAGA: A fast incremental gradient method
for decentralized finite-sum minimization

Ran Xin†, Boyue Li†, Soummya Kar†, and Usman A. Khan‡
†Carnegie Mellon University, Pittsburgh, PA, USA, ‡Tufts University, Medford, MA, USA

Abstract— In this paper, we study decentralized solutions for
finite-sum minimization problems when the underlying training
data is distributed over a network of nodes. In particular,
we describe the GT-SAGA algorithm that combines variance
reduction and gradient tracking to achieve both robust perfor-
mance and fast convergence. Variance reduction is implemented
locally to asymptotically estimate each local batch gradient at
each node, while gradient tracking fuses the local estimated
gradients across the nodes. Combining variance reduction and
gradient tracking thus enables linear convergence to the optimal
solution of strongly-convex problems while keeping a low per-
iteration computation complexity at each node. We cast the
convergence and behavior of GT-SAGA and related methods in
the context of certain practical tradeoffs and further compare
their performance over a logistic regression problem with
strongly convex regularization.

Index Terms— Stochastic optimization, first-order methods,
decentralized algorithms, variance reduction.

I. INTRODUCTION

Many machine learning, inference, and data science prob-
lems entail massive amounts of data collected or stored at
a large number of devices. Any such practical setup comes
with its own set of communication constraints that limit the
amount of data that can be communicated to a potentially
far-away server for centralized processing. Decentralized
training of the corresponding machine learning models are
thus found to be of significant interest where the nodes
(devices) in a network cooperate to solve the underlying
optimization and learning problems without relying on any
central processor. Moreover, in many large-scale problems,
each node typically possesses hundreds of thousands to
millions of data samples comprising the batch data at each
device. Handling all this data at once is practically infea-
sible and stochastic methods where the batch data is used
efficiently are preferable.

In this paper, we consider finite-sum minimization prob-
lems, i.e., minx

∑m
j=1 fj(x), where fj : Rp → R is a

loss function that quantifies the modeling error incurred
by the jth data sample. Such problems commonly arise
in machine learning [2], signal processing [3], [4], and
control [5]–[7]. Among first-order methods for finite-sum

The work of RX and SK has been partially supported by NSF under
grant CCF-1513936. The work of UAK has been partially supported by
NSF under grants CMMI-1903972 and CBET-1935555. The author email
addresses are: {ranx,boyuel,soummyak}@andrew.cmu.edu and
khan@ece.tufts.edu.

An expanded version of this paper is available on Arxiv [1], where we
discuss a unified framework to cast different variance reduction methods
in a decentralized framework. In contrast, this paper only discusses one
particular instantiation (GT-SAGA) of the framework.

minimization, the well known gradient descent (GD) operates
on the entire batch of data and computes m gradients to
compute the descent direction

∑
j ∇fj . It can be shown

that [8] GD requires O(mκlnε−1) to reach an ε-accuracy of
the optimal x∗, when f = 1

m

∑m
j=1 fj is smooth and strongly

convex, where κ is the condition number of f . Clearly, a
challenge with GD is when m is large in which case the
amount of computation required is quite extensive.

A computationally-efficient alternative of GD is stochastic
gradient descent (SGD) that operates on random samples
of the true gradient. In finite-sum problems, SGD samples
uniformly at random one (or more) data samples from
the batch and compute one gradient at each iteration. It
can be shown that [8] SGD requires O(κ2ε−1) gradient
computations to reach an ε-accuracy of the optimal for
smooth and strongly convex objectives. It can be argued
that SGD is often more preferable in the big data regimes
where m is very large and GD may be practically infeasible
to implement [2]. Clearly, SGD is sublinear, and in order
to recover the linear convergence of GD, variance reduc-
tion methods have been developed. The key idea behind
variance reduction is to estimate the batch gradient from
randomly sampled stochastic gradients. Relevant variance
reduced methods include SAG [9], SAGA [10], SVRG [11],
SARAH [12], and SPIDER [13]. It can be shown that
SAGA, for example, achieves ε-accuracy of the optimal
with O(max{m,κ}lnε−1) and thus linearly converges to x∗.

The aforementioned centralized methods face certain chal-
lenges when the data is distributed as in many large-scale
learning and control problems. Decentralized stochastic first-
order methods are thus preferable where the decentralized
nature ensures that long-distance communication of large-
dimensional vectors is avoided while the stochastic nature
ensures computational efficiency. The minimization problem
now is described over a network of n agents and is given
by min

∑n
i=1

∑m1

j=1 fi,j , where fi,j is the loss incurred by
the jth data sample at node i. Early work along these lines
includes distributed stochastic gradient descent (DSGD) and
can be found in [14]–[17], which extend SGD by adding a
network fusion term on the iterates. More recent progress
includes GT-DSGD [18]–[20] that incorporates a certain
gradient tracking technique [21]–[25], where the (spatial)
uncertainty across the nodes is overcome by implementing
gradient fusion over the network. It can be shown that DSGD
achieves ε-accuracy of the solution in O(ε−1) gradient
computations and certain aspects of it are improved with the
addition of gradient tracking, see [4] for a detailed tutorial.



GT-DSGD, by adding gradient tracking, shows perfor-
mance improvement over DSGD, however, the convergence
is still sublinear. This is because a local stochastic gradient is
employed at each iteration whose variance does not vanish.
In this paper, we describe a novel algorithm GT-SAGA that
uses variance reduction to remove the uncertainty due to
local stochastic gradients. In particular, GT-SAGA is based
on the SAGA method [10] for variance reduction. We show
that GT-SAGA requires O(max{m, κ2

(1−λ)2 }lnε
−1) parallel

component gradient evaluations to achieve an ε-accuracy
of x∗, where m is the number of data samples at each node
and λ ∈ [0, 1) is a network parameter. We note that in a big-
data regime, i.e., m � κ2

1−λ2 , the complexity of GT-SAGA
becomes O(mlnε−1), which is independent of the network,
and is n times faster than that of centralized SAGA. Clearly,
in this “big-data” regime, GT-SAGA acts effectively as a
means for parallel computation and achieves a linear speed-
up compared with its centralized counterpart.

Existing decentralized VR methods include DSA [26] that
combines EXTRA [27] with SAGA [10], diffusion-AVRG that
combines exact diffusion [28] and AVRG [29], DSBA [30]
that adds proximal mapping [31] to each iteration of DSA,
ADFS [32] that applies an accelerated randomized proximal
coordinate gradient method [33] to the a dual problem,
and Network-SVRG/SARAH [34] that implements variance-
reduction in the decentralized DANE framework based on
gradient tracking. As discussed before, in a big-data scenario
where m is very large, GT-SAGA improves upon the conver-
gence rate of these methods in terms of the joint dependence
on κ and m, with the exception of DSBA and ADFS, which
require a computation of the proximal maps.

We now describe the rest of the paper. Section II
describes the decentralized stochastic optimization prob-
lem and the necessary assumptions. Section III provides
the GT-SAGA algorithm and the main results on convergence
and performance. The convergence analysis is available in
Section IV. Finally, numerical experiments are detailed in
Section V while Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a network of n nodes such that each node i
possesses a local loss function fi : Rp → R that is further
decomposed over mi component functions associated to
its local data samples. The nodes cooperate to solve the
following finite-sum minimization problem:

P1: min
x∈Rp

1

n

n∑
i=1

fi(x), fi ,
1

mi

m1∑
j=1

fi,j(x),

where F ,
∑
i fi denotes the global loss. We assume

that each local fi is private to node i and is thus cannot
be communicated to any other node. The nodes exchange
information over a graph G = {V, E}, where V = {1, . . . , n}
is the set of nodes and E is the set of ordered pairs (i, r)
such that node i and j can exchange information. In order
to solve Problem P1, we make the following assumptions:

Assumption 1. There exists a set of weights {wir} such
that wir = 0, for each (i, r) /∈ E , and W = {wir} is
primitive and doubly-stochastic.

We thus have W∞ = 1
n11

>. Note that the weight matrix is
not required to be symmetric and is applicable to directed
graphs that admit doubly-stochastic weights [35].

Assumption 2. The global function F is µ-strongly-convex,
i.e., ∀x,y ∈ Rp and for some µ > 0, we have

F (y) ≥ F (x) +
〈
∇F (x),y − x

〉
+
µ

2
‖x− y‖2,

where ∇F : Rp → Rp is the gradient of F and 〈x,y〉 is the
inner product of two vectors.

Assumption 3. Each local function fi,j is L-smooth,
i.e., ∀x,y ∈ Rp and for some L > 0, we have

‖∇fi,j(x)−∇fi,j(y)‖ ≤ L‖x− y‖.

Clearly, under Assumption 2, the global function F has
a unique minimizer, denoted as x∗, which is the optimal
solution of Problem P1. Moreover, under Assumption 3, the
global objective F is also L-smooth and L ≥ µ. We use κ ,
L/µ to denote the condition number of F . With the help of
these assumptions, we now describe the proposed GT-SAGA
algorithm and main results next.

III. GT-SAGA: ALGORITHM AND MAIN RESULTS

We now systematically introduce the GT-SAGA algorithm.
To this aim, let xik denote the estimate of the optimal
solution x∗ at node i and iteration k and consider DGD [14]:

xk+1
i =

n∑
r=1

wirx
k
r − αk∇fi(xki ), (1)

where αk are the step-sizes. DGD converges linearly to an
error ball around x∗ with a constant step-size and converges
sublinearly to x∗ with decaying step-sizes [14], [15]. The
reason behind this inexact linear convergence is that x∗ is
not a fixed point of DGD because ∇fi(x∗) 6= 0p, in general;
recall that

∑
i∇fi(x∗) = 0p. One way to recover the exact

linear convergence is to replace the local gradient ∇fi(xki )
with an estimate of the global gradient ∇F . The resulting
algorithm GT-DGD is written as

xk+1
i =

n∑
r=1

wirx
k
r − αyki , (2)

yk+1
i =

n∑
r=1

wiry
k
r +∇fi(xk+1

i )− fi(xki ), (3)

where yki ∈ Rp estimates the global gradient [21]–[24],
[36]. It can be shown that GT-DGD linearly converges to the
optimal solution and requires O(mmax{κ, (1−λ)−1}lnε−1)
gradient computations per node per iteration to achieve an ε-
accurate solution (for positive semi-definite weights) [37],
where m = mi, ∀i, is the total data samples at each node
and λ is the second-largest singular value of W . Clearly, the
complexity of GT-DGD increases with the number of data
samples m and thus may be infeasible when m is large.



A stochastic implementation of GT-DGD that does not
require computing m gradients at each iteration is thus of
significant value. Along these lines, stochastic extensions
have been studied in [18] over undirected graphs and in [19],
[20] over directed graphs. The GT-DSGD algorithm [18] over
undirected graphs is given as follows:

xk+1
i =

n∑
r=1

wirx
k
r − αkyki , (4)

yk+1
i =

n∑
r=1

wiry
k
r +∇fi,ski (x

k+1
i )− fi,ski (x

k
i ), (5)

where ski is an index chosen uniformly at random from the
index set {1, . . . ,mi} at each node i. We note here that yik
does not estimate the global gradient anymore due to the use
of stochastic gradients. As a result, GT-DSGD loses the exact
linear convergence with a constant step-size and converges
sublinearly to the optimal with decaying step-sizes.

A. GT-SAGA

Recall that variance-reduced methods estimate the local
batch gradient ∇fi from stochastic gradients ∇fi,ski . Thus,
a natural extension of GT-DSGD is to replace the stochastic
gradient ∇fi,ski with a gradient estimator gik. Any gradient
estimation technique potentially works here and in this
paper we explore the gradient estimator that comes from
SAGA [10]. Intuitively, gki → ∇fi due to which yik → ∇F
and GT-SAGA linearly converges to x∗.

Algorithm 1 GT-SAGA at each node i
Require: x0

i ∈ Rp; α; {wir}nr=1; y0
i = g0

i = ∇fi(x0
i );

x̂i,j = xi0, ∀j; Gradient table {∇fi,j(x̂i,j)}mi
j=1.

1: for k = 0, 1, 2, · · · do
2: Update the local estimate of the solution:

xk+1
i =

∑n
r=1w̃irx

k
r − αyki ;

3: Select sk+1
i uniformly at random from {1, · · · ,mi};

4: Update the local stochastic gradient estimator:

gk+1
i = ∇fi,sk+1

i

(
xk+1
i

)
−∇fi,sk+1

i

(
zk+1

i,sk+1
i

)
+ 1

mi

∑mi

j=1∇fi,j
(
zk+1
i,j

)
;

5: Update the sk+1
i -th entry in the gradient table:

∇fi,sk+1
i

(
x̂i,sk+1

i

)
→ ∇fi,sk+1

i

(
xk+1
i

)
;

6: Update the local gradient tracker:

yk+1
i =

∑n
r=1w̃iry

k
r + gk+1

i − gki ;

7: end for

GT-SAGA, formally described in Algorithm 14, requires
a gradient table that stores mi gradients at each node i,
i.e., {∇fi,j(x̂i,j)}mi

i=1, where x̂i,j represents the most recent
iterate where the gradient of fi,j was last evaluated. At each
iteration k, a random index sk+1

i is generated and ∇fi,sk+1
i

,
last evaluated and recorded at some x̂i,sk+1

i
, is replaced

with ∇fi,sk+1
i

now evaluated at the current iterate xk+1
i .

B. Main results

The main convergence result of GT-SAGA is summarized
in the following theorem. To this aim, let m , minimi

and M , maximi.

Theorem 1. Let Assumptions 1, 2 and 3 hold. If the step-
size α is such that

0 < α ≤ α , min
{
O
(

1
µM

)
,O
(
m
M

(1−λ2)2

Lκ

)}
,

then GT-SAGA linearly converges (in the mean-square
sense) to the optimal solution x∗ of Problem P1. If α = α,
then GT-SAGA achieves ε-accuracy of x∗ in

O
(
max

{
M, Mm

κ2

(1−λ2)2

}
ln 1
ε

)
parallel local component gradient computations.

The formal proof of GT-SAGA is deferred to the next
section. We now discuss some of its salient features.

(i) Intuitively, GT-SAGA performs two fusion operations.
One is a fusion at the node-level, where the stochastic
gradients are used to estimate the entire local gradi-
ent ∇fi. In fact, it can be shown that as xki and zki,j
approach to an agreement on x∗, the variance of the
gradient estimator decays to zero [1]. The other is
fusion across the nodes where gradient tracking is
used to estimate the global gradient ∇F from the
local estimated gradients; we note here that gradient
tracking is related to dynamic average consensus [38].
The variable yik thus goes to ∇F , at each node.

(ii) GT-SAGA relies on stochastic gradients and thus has
a low per-iteration computation complexity and con-
verges linearly to the exact optimal x∗. It can be
thus considered as an appropriate counterpart of cen-
tralized SAGA [10]. Note that both gradient tracking
and variance reduction are needed to establish linear
convergence, i.e., the classical DSGD does not ensure
linear convergence with any one of these two features.

(iii) It was shown in [37] that the best case complexity
of GT-DGD is O(M max{κ, (1 − λ)}lnε−1), which
reduces to O(mκlnε−1) for well-connected net-
works. GT-SAGA, with complexity of O(M lnε−1),
thus improves the joint dependency on the number of
samples M and the condition number κ.

(iv) In large-scale problems, i.e., when M ≈ m� κ2

(1−λ2)2 ,
the convergence is independent of the network and is n
times faster than SAGA. GT-SAGA thus achieves a
linear speedup in terms of the total number of nodes.

(v) The performance improvement in GT-SAGA comes at
a price of additional storage O (mip) at each node.
It is noteworthy that this storage cost can be reduced
to O(mi) for certain problems of interest, for example,
logistic regression and least squares, by exploiting the
structure of the objective functions [9], [10]. When ad-
ditional storage is not feasible, other variance-reduction
methods like SVRG [1], [11] can be employed that
do not require extra storage but they have their own
implementation constraints.



IV. CONVERGENCE ANALYSIS

We now provide the convergence analysis of GT-SAGA.
Our approach to is to first use standard arguments to obtain
an LTI system to describe the algorithm. We then study
the convergence properties of this LTI system to establish
convergence guarantees of GT-SAGA. The said LTI system
describes the evolution of the following vector, with p = 1
assumed for simplicity,

uk =


E
[∥∥xk −W∞xk

∥∥2]
E
[
n
∥∥xk − x∗

∥∥2]
E
[
tk
]

E
[
L−2

∥∥yk −W∞yk
∥∥2] ,


where: the first term, the agreement error, quantifies how far
the network vector xk , [x1

k . . . xnk ]
> is from the average

xk ,W∞xk; the second term, the optimality gap, quantifies
the gap between the average and the optimal x∗; and the last
term is the gradient tracking error with yk , [y1

k . . . ynk ]
>.

For the third term, we define x̂ki,j as the most recent iter-
ate (xki ) where the component gradient ∇fi,j was evaluated
before iteration k (i.e., at some iteration k ≤ k) and define

tki ,
1
mi

∑mi

j=1

∥∥x̂ki,j − x∗
∥∥2 , tk ,

∑n
i=1 t

k
i . (6)

In other words, tik quantifies the average optimality gap w.r.t
to the iterates that are present in the gradient table at time k.
We have the following proposition on the evolution of uk.

Proposition 1. Let Assumptions 1, 2, and 3 hold. If the step-
size α follows 0 < α ≤ µ(1−λ)

16L2 , we have, ∀k ≥ 1,

uk+1 ≤



1 + λ2

2
0 0

2α2L2

1− λ2
2L2α

µ
1− µα

2

2L2α2

n
0

2

m

2

m
1− 1

M
0

104

1− λ2
71

1− λ2
19

1− λ2
3 + λ2

4


uk, (7)

compactly written as uk+1 , Gαu
k, where m = minimi

and M = maximi.

The proof of the constituent inequalities in (7) is beyond
the scope of this paper. In [1], we provide a unified frame-
work to incorporate different variance reduction methods
in the GT-DSGD framework and the proof of (7) can be
deduced from there. The corresponding arguments use the
strong convexity (Assumption 2) and L-smooth (Assump-
tion 3) inequalities in addition to some standard bounds and
inequalities from linear systems. It is however clear that an
R-linear convergence of GT-SAGA is readily established if
we can show that ρ(Gα) < 1 for a certain range of the step-
size α. To this aim, we recall the following lemma from [39],
which will be used to show that ρ(Gα) < 1.

Lemma 1. Let A be a non-negative matrix and x be positive,
i.e., x > 0. If Ax ≤ βx for β > 0, then ρ(A) ≤ β.

A. Proof of Theorem 1

To show ρ(Gα) < β, for some β < 1, we note from
Lemma 1 that it suffices to show that Gαε ≤ βε, for a
positive vector ε = [ε1 ε2 ε3 ε4]

> and for a valid range of
the step-size α. Here, we choose β = 1 − µα

4 leading to
find α such that the following inequalities hold:

µα

4
+

2L2

1− λ2
ε4
ε1
α2 ≤ 1− λ2

2
(8)

2L2

n
ε3α ≤

µ

4
ε2 −

2L2

µ
ε1 (9)

µα

4
≤ 1

M
− 2

m

ε1
ε3
− 2

m

ε2
ε3

(10)

µα

4
≤ 1− λ2

4
− 104

1− λ2
ε1
ε4
− 71

1− λ2
ε2
ε4
− 19

1− λ2
ε3
ε4

(11)

Clearly, that (9)–(11) hold for some feasible range of α is
equivalent to the RHS of (9)–(11) being positive. Based on
this observation, we will next fix the values of ε1, ε2, ε3, ε4
that are independent of α.

First, for the RHS of (9) to be positive, we set ε1 = 1, ε2 =
8.5κ2, where recall that κ = L/µ ≥ 1. Second, the RHS
of (10) being positive is equivalent to

ε3 >
2M

m
ε1 +

2M

m
ε2 =

2M

m
+

17Mκ2

m
. (12)

We therefore set ε3 = 20Mκ2

m . Third, we note that the RHS
of (11) being positive is equivalent to

ε4 >
4

(1− λ2)2
(104ε1 + 71ε2 + 19ε3) ,

which is satisfied by ε4 = 8700
(1−λ2)2

Mκ2

m .
We now solve for the range of α from (8)–(11) given the

previously fixed ε1, ε2, ε3, ε4. From (9), we have that

α ≤ n

2L2ε3

(
µ

4
ε2 −

2L2

µ
ε1

)
=
m

M

n

320κL
. (13)

Moreover, it is straightforward to verify that if α satisfies

0 < α ≤ m

M

(1− λ2)2

320κL
(14)

then (8) holds. Next, to make (10) hold, it suffices to have

α ≤ 1

5µM
. (15)

Finally, to make (11) hold, it suffices to make

α ≤ 1− λ2

2µ
. (16)

To summarize, combining (13)–(16), we conclude that if the
step-size α satisfies

0 < α ≤ α := min

{
1

5µM
,

m

320M

(1− λ2)2

Lκ

}
, (17)

then ρ (Gα) ≤ 1− µα
4 by Lemma 1, and if α = α, we have

ρ (Gα) ≤ 1−min

{
1

20M
,

m

1280M

(1− λ2)2

κ2

}
,

which completes the proof. �



V. NUMERICAL EXPERIMENTS

We next consider decentralized logistic regression, where
the goal is to classify hand-written digits {3, 8} from the
MNIST dataset [40]. For image classification, each node i
possesses mi labeled images. The jth image at node i is
vectorized as a feature vector θj ∈ R784 and ζj is its
corresponding binary label (+1 or −1). The nodes cooperate
to solve the following smooth and strongly-convex problem:

min
w,b

F (w, b) =
1

nm

n∑
i=1

m∑
j=1

fi,j(w, b),

where each local cost function is

fi,j(w, b) = ln
[
1 + exp

{
−(w>θj + b)ζj

}]
+
λ

2
‖w‖22,

where the optimization variable is x = [w> b]>.

Fig. 1. Directed exponential graph with n = 32 nodes.

In the first experiment, we consider the directed exponen-
tial graphs [41], shown in Fig. 1. The class of directed expo-
nential graphs is weight-balanced (therefore admits doubly-
stochastic weights), sparsely-connected (low-communication
per node), and possesses a strong algebraic connectivity. We
divide the total number of 11968 training samples evenly
among all nodes, i.e., mi = m = 374. Each training sample
is normalized to a unit vector. We set the regularization
parameter λ = 1

nm [9]. The optimal solution is found
by centralized Nesterov gradient descent. Fig. 2 plots the
average residual 1

n

∑n
i=1

(
F (xik)− F ∗

)
across all nodes

and compares the proposed GT-SAGA (with both gradient
tracking and variance reduction) with GT-DSGD (without
variance reduction) and DSGD (without gradient tracking and
variance reduction). The hyper-parameters for all algorithms
are tuned manually for best performances. We can clearly
observe that although DSGD and GT-DSGD have comparable
performance, GT-SAGA linearly converges to the optimal so-
lution. Next, we compare the accuracy of the three algorithms
in Fig. 3 over test data with 1200 images. Here again, we
observe that GT-SAGA outperforms the other algorithms.

In the next experiment, we consider a geometric (nearest-
neighbor) graph with n = 100 nodes, see Fig. 4 (left).
Each node possesses a different number of data samples; the
sample distribution at the nodes is shown in Fig. 4 (right).
This unbalanced data distribution over a geometric graph
models ad hoc wireless networks where the connectivity is

Fig. 2. Convergence rate comparison over the directed exponential graph.

Fig. 3. Test accuracy comparison over the directed exponential graph.

range-based and the nodes have resource constraints. Perfor-
mance comparison among GT-SAGA, GT-DSGD, and DSGD
is shown in Fig. 5. As before, GT-SAGA linearly con-
verges to the optimal and outperforms the other algorithms.
Of importance here is that, in this unbalanced data sce-
nario, GT-DSGD outperforms DSGD; this is consistent with
the theory, see [4] for a detailed discussion and precise
technical statements.

Fig. 4. (Left) Random undirected geometric graph with n = 100 nodes.
(Right) Unbalanced data distribution across the nodes.

VI. CONCLUSIONS

In this paper, we discuss decentralized, stochastic, first-
order methods to solve finite-sum minimization problems.
In particular, we describe GT-SAGA where each node em-
ploys a stochastic gradient at each iteration computed from
random samples of its local data batch. GT-SAGA uses
variance reduction to asymptotically estimate each local
batch gradient and fuses the local estimated gradients across
the nodes with the help of gradient tracking. We show
that GT-SAGA converges linearly to the optimal solution of
smooth and strongly-convex problems while maintaining a
low per-iteration computation complexity. Finally, we note



that non-convex extensions of the variance reduction and
gradient tracking have been recently developed in [42], [43]
and references therein.

Fig. 5. Convergence rate comparison over the geometric graph.

REFERENCES

[1] R. Xin, U. A. Khan, and S. Kar, “Variance-reduced de-
centralized stochastic optimization with accelerated convergence,”
arXiv:1912.04230, Dec. 2019.

[2] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–
311, 2018.

[3] H. Raja and W. U. Bajwa, “[cloud k-svd: A] collaborative dictionary
learning algorithm for big, distributed data,” IEEE Transactions on
Signal Processing, vol. 64, no. 1, pp. 173–188, 2016.

[4] R. Xin, S. Kar, and U. A. Khan, “Decentralized stochastic optimization
and machine learning,” IEEE Signal Processing Magazine, May 2020,
to appear.

[5] S. Safavi, U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed
localization: A linear theory,” Proceedings of the IEEE, vol. 106, no.
7, pp. 1204–1223, Jul. 2018.

[6] S. Pu and A. Garcia, “A flocking-based approach for distributed
stochastic optimization,” Operations Research, vol. 1, pp. 267–281,
2018.

[7] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, 2019.

[8] Y. Nesterov, Lectures on convex optimization, vol. 137, Springer,
2018.

[9] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” Mathematical Programming, vol. 162,
no. 1-2, pp. 83–112, 2017.

[10] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental
gradient method with support for non-strongly convex composite
objectives,” in NeurIPS, 2014, pp. 1646–1654.

[11] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent us-
ing predictive variance reduction,” in Advances in neural information
processing systems, 2013, pp. 315–323.

[12] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “SARAH: a
novel method for machine learning problems using stochastic recursive
gradient,” in ICML. JMLR. org, 2017, pp. 2613–2621.

[13] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “Spider: Near-optimal
non-convex optimization via stochastic path-integrated differential
estimator,” in NeurIPS, 2018, pp. 689–699.

[14] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. on Autom. Control, vol. 54, no. 1,
pp. 48, 2009.

[15] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM J. on Optim., vol. 26, no. 3, pp. 1835–1854,
Sep. 2016.

[16] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal
of Optim. Theory and Appl., vol. 147, no. 3, pp. 516–545, 2010.

[17] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for
distributed optimization and learning over networks,” IEEE Trans.
on Sig. Process., vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[18] Shi Pu and Angelia Nedić, “A distributed stochastic gradient tracking
method,” in 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 963–968.

[19] U. A. Khan R. Xin, A. K. Sahu and S. Kar, “Distributed stochastic op-
timization with gradient tracking over strongly-connected networks,”
in 58th IEEE Conference of Decision and Control, Nice, France, 2019.

[20] M. I. Qureshi, R. Xin, S. Kar, and U A. Khan, “On the convergence of
decentralized stochastic optimization over strongly-connected directed
graphs,” IEEE Letters to Control System Society, 2020.

[21] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in IEEE 54th Annual Conference on Decision and Control,
2015, pp. 2055–2060.

[22] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimiza-
tion,” IEEE Trans. on Sig. and Information Processing over Networks,
vol. 2, no. 2, pp. 120–136, 2016.

[23] C. Xi, R. Xin, and U. A. Khan, “ADD-OPT: Accelerated distributed
directed optimization,” IEEE Transactions on Automatic Control, vol.
63, no. 5, pp. 1329–1339, May 2018.

[24] R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Systems
Letters, vol. 2, no. 3, pp. 315–320, 2018.

[25] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization
over time-varying directed graphs with row and column-stochastic
matrices,” IEEE Transactions on Automatic Control, Dec. 2019.

[26] A. Mokhtari and A. Ribeiro, “DSA: decentralized double stochastic
averaging gradient algorithm,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2165–2199, 2016.

[27] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: an exact first-order
algorithm for decentralized consensus optimization,” SIAM J. Optim.,
vol. 25, no. 2, pp. 944–966, 2015.

[28] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning Part I: Algorithm development,”
IEEE Trans. on Sig. Process., vol. 67, no. 3, pp. 708–723, 2018.

[29] B. Ying, K. Yuan, and A. H. Sayed, “Variance-reduced stochastic
learning under random reshuffling,” arXiv:1708.01383, 2017.

[30] Z. Shen, A. Mokhtari, T. Zhou, P. Zhao, and H. Qian, “Towards
more efficient stochastic decentralized learning: Faster convergence
and sparse communication,” arXiv:1805.09969, 2018.

[31] A. Defazio, “A simple practical accelerated method for finite sums,”
in Advances in neural information processing systems, 2016, pp. 676–
684.

[32] H. Hendrikx, F. Bach, and L. Massoulié, “Asynchronous accelerated
proximal stochastic gradient for strongly convex distributed finite
sums,” arXiv:1901.09865, 2019.

[33] Q. Lin, Z. Lu, and L. Xiao, “An accelerated randomized proximal co-
ordinate gradient method and its application to regularized empirical
risk minimization,” SIAM J. Optim., vol. 25, no. 4, pp. 2244–2273,
2015.

[34] B. Li, S. Cen, Y. Chen, and Y. Chi, “Communication-
efficient distributed optimization in networks with gradient tracking,”
arXiv:1909.05844, 2019.

[35] B. Gharesifard and J. Cortés, “Distributed strategies for generating
weight-balanced and doubly stochastic digraphs,” European Journal
of Control, vol. 18, no. 6, pp. 539–557, 2012.

[36] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Trans. on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2017.

[37] S. A. Alghunaim, K. Yuan, and A. H. Sayed, “A linearly con-
vergent proximal gradient algorithm for decentralized optimization,”
arXiv:1905.07996, 2019.

[38] M. Zhu and S. Martı́nez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[39] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University
Press, Cambridge, 1985.

[40] Y. LeCun, “The MNIST database of handwritten digits,” http://yann.
lecun. com/exdb/mnist/, 1998.

[41] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient
push for distributed deep learning,” arXiv:1811.10792, 2018.

[42] R. Xin, U. A. Khan, and S. Kar, “An improved convergence analysis
for decentralized online stochastic non-convex optimization,” arXiv
preprint arXiv:2008.04195, 2020.

[43] R. Xin, U. A. Khan, and S. Kar, “A near-optimal stochastic gradient
method for decentralized non-convex finite-sum optimization,” arXiv
preprint arXiv:2008.07428, 2020.


