


behavior is largely motivated by concerns about obeying
constraints of the common goal. On the other hand, the
agent with only partial state perception has utility that is
only dependent on its own decisions; we therefore refer to
this as the introspective agent—its attention is exclusively on
its own state and utility.

More specifically, SLiCC models the prosocial–
introspective cooperation problem as a partially observable
stochastic game (POSG) composed of Stackelberg bimatrix
games. Decomposing a POSG into Stackelberg bimatrix
games allows the use of the Stackelberg equilibrium at each
decision step to approximate the POSG equilibrium. With
the insight that an agent’s payoff function is equivalent
to their Q-value function, we use deep RL to learn
payoff matrices, capitalizing on the function approximation
capabilities of deep learning to do so even in settings with
continuous state spaces. The Stackelberg equilibrium can
then be derived from the agents’ payoff matrices and used
to inform the agents’ actions, serving as a mechanism for
negotiated decision-making.

Our contributions are as follows:

1) Introduce SLiCC, a method for cooperative control of
bi-agent systems in partially observable settings based
on an asymmetric prosocial–introspective cooperation
framework that links state perception with agents’
decision-making strategies.

2) Provide an improved Stackelberg game–based architec-
ture to enhance the agents’ policy learning capabilities
under POSG settings.

3) Demonstrate that a SLiCC policy learned in simulation
can be used to control real robots without additional
training.

The rest of the paper has the following structure. To
begin with, Section II presents an overview of the relevant
literature. Following a description of the problem setting in
Section III, we elucidate the proposed SLiCC method in Sec-
tion IV: we begin with a brief treatment of POSGs, and then
explain how we bridge the POSG setting and our prosocial–
introspective framework using the Stackelberg equilibrium.
Next, Section V discusses key differences of SLiCC com-
pared with other learning paradigms. The advantages of
SLiCC detailed in this section are consequential in real-world
applications of cooperative control. Section VI follows with
our experimental setup and results. Besides evaluating SLiCC
in simulation, we also validate our proposed method with real
robots. Finally, Section VII concludes the paper and provides
an inventory of future directions.

II. RELATED WORK

Multi-robot cooperative control has traditionally been
pursued from the perspective of control theory [11]–[13].
Indeed, multi-agent scenarios present peculiar challenges and
constraints for RL-based solutions [6], which has limited
their relevance for the field despite recent successes of deep
RL. Methods such as policy search enable robots to learn
complex real-world skills in single-agent settings (e.g., door
opening [14] and map-less navigation [15]). Unfortunately,

it is difficult to extend these methods to multi-robot ap-
plications. Doing so with a centralized learning paradigm
leads to exponentially increasing state and action spaces
[16], and consequently, infeasible computational needs. Con-
versely, agent decentralization–based RL approaches are not
guaranteed to result in stable policies [17]. However, there is
a promising line of research with game-theoretic RL: policy
updates can be based on stochastic game equilibria, with
the goal of improving state-value function estimates and
reducing learning instability. This has been demonstrated as
an effective solution that incorporates agent–agent interaction
in multi-agent RL [18]–[20], and these approaches are seeing
increasing interest across different communities [21]–[23].

Nonetheless, this direction is not without limitations.
Stochastic games typically assume that all agents have com-
plete observations [18]–[20], which is a limiting constraint
for some settings—and in particular for multi-agent applica-
tions. This point provides an opportune segue into partially
observable stochastic games (POSGs), which arise naturally
from asymmetry in agent-specific preferences, cooperation
responsibilities, or observation scopes. In previous work, the
POSG learning process has been approximated with a series
of Bayesian games and common payoffs, using belief spaces
to compensate for missing observations [24]. Methods like
Joint Equilibrium–based Search for Policies (JESP) [25] have
also been used to alternately optimize the agents’ objective.
Improved flexibility in the decentralized learning process
has furthermore been achieved via modeling an opponent’s
policy through recursive reasoning [26].

These works motivate us to further consider how to
coordinate asymmetric agent roles engendered by robots
with different perceptual capabilities. Previous research in
this area attempted to do so by incorporating Stackelberg
games into RL techniques [27]–[29]. Similar approaches
have been applied in human–robot interaction [21] and smart
microgrids [30], but they dictate a common state space for all
agents. Inspired by recent work applying Stackelberg games
to partially observable scenarios [31], we present a novel
improvement for robot learning by integrating Stackelberg
games with POSGs and reducing the prerequisite of complete
state observations through our prosocial–introspective frame-
work. In order to optimize the performance of game-theoretic
RL approaches, we investigate agent roles in a multi-robot
cooperation problem with asymmetric information. In the
rest of the paper, we demonstrate the potential of game-
theoretic RL approaches with SLiCC as an exemplar.

III. PROBLEM SETTING AND GENERALIZABILITY

For convenience, in this work we consider a bi-agent sys-
tem composed of two mobile robots—although the proposed
method can generally be applied to a variety of multi-robot
scenarios. The state of each robot is denoted with a tuple
(xk, yk, θk, vk), where xk and yk are the robot’s coordinates
in the 2-dimensional plane, and θk is the robot’s orientation
about the z-axis. Furthermore, the magnitude of the agent’s
linear velocity vk in the 2-dimensional plane is given by the
L2-norm of the time derivatives of xk and yk.





B. Prosocial–Introspective Framework

Under the POSG setting, each agent makes decisions
based on its observations. The prosocial agent (Agent P ) has
complete observation of the system (i.e. perfect perception),
but the introspective agent (Agent I) only observes its own
state. Specifically for our problem setting, the state of agent
k is sk = (xk, yk, θk, vk). Thus, the observations of the two
agents are oP = (sP , sI) and oI = sI . The reward function
of each agent depends on its observation and action spaces:
rk : Ok ×Ak → R.

C. Stackelberg Game

We use a Stackelberg game formulation as the intermedi-
ary between our prosocial–introspective framework and the
POSG model, as shown in Fig. 2. We express each decision
step of the POSG as a partially observed bimatrix game GSG,
where

GSG(s) =
{

N , (Qk(·))k∈N , (πk)k∈N , s
}

. (8)

Here, Qk refers to the payoff matrix of Agent k. Note that
an agent’s payoff matrix is also its Q-table: respectively,
QP

(

oP , aP , aI
)

and QI
(

oI , aI
)

are the Q-values for the
Agents P and I when observing oP and oI [28]. To derive a
Stackelberg equilibrium solution and actions at each decision
step t, the agents use the following steps:

1) Agent P , using its own QP , determines the expected
action pair that maximizes QP :

(aPe , a
I
e) = argmax

uP
∈AP

uI
∈AI

QP (oPt , u
P , uI). (9)

2) Agent P receives QI from Agent I , and derives an
actual action aP by minimizing the difference between
the Q-values obtained from the actual and expected
action pairs:

aP = argmin
uP∈AP

|QP (oPt , u
P , argmax

uI∈AI

QI(oIt , u
I))

−QP (oPt , a
P
e , a

I
e)|. (10)

3) Agent I , using its own QI , determines its actual action
aI that maximizes QI :

aI = argmax
uI∈AI

QI(oI , uI). (11)

D. Algorithm Overview

The SLiCC method is described in Algorithm 1. First,
both Agent P and Agent I initialize their respective neural
networks to approximate QP and QI respectively. Then, dur-
ing each episode, the agents use the Stackelberg equilibrium
to guide their action choices, i.e. using Eqs. (10) and (11).
Finally, the agents update their Q-value functions:

QP
t+1

(

oPt , a
P , aI

)

= (1− αt) ·Q
P
t

(

oPt , a
P , aI

)

+ αt

[

rPt + γ max
uP∈AP

QP
t

(

oPt+1, u
P , F I

t (o
I
t+1)

)

]

, (12)

QI
t+1

(

oIt , a
I
)

= (1− αt) ·Q
I
t

(

oIt , a
I
)

+ αt

[

rIt + γ max
uI∈AI

QI
t

(

oIt+1, u
I
)

]

. (13)

For conciseness of notation in Eq. (12), we have defined:

F I
t (x) = argmax

uI∈AI

QI
t (x, u

I). (14)

From Eq. (13), we see that the Agent I’s policy learning
does not depend on Agent P ’s actions. Conversely, Eq. (12)
shows that Agent P learns to adapt to Agent I during its
Q-value updates. This reinforces our interpretation of the
prosocial–introspective framework: the introspective agent
only focuses on its own state and utility, while the prosocial
agent ensures the common objective is fulfilled by making
adaptive decisions and reconciling actions taken by the intro-
spective agent. Ultimately, the approach allows us to mediate
the agents’ perception asymmetry by means of appropriately
assigning cooperation responsibilities.

V. COMPARISON WITH OTHER LEARNING PARADIGMS

We now discuss several key aspects in which SLiCC
differs from other learning paradigms. We address them with
regard to two main themes: perceptual or communicative
requirements, and time-varying agent-specific preferences.
These have important implications when considering the
design specification and adaptability of a multi-robot system.

A. Perceptual or Communicative Requirements

SLiCC places less emphasis on the capabilities of in-
dividual agents compared to other frameworks. As previ-
ously mentioned, SLiCC does not require all agents to have
complete state observations. This means that we can avoid
equipping introspective agents with the full suite of sensors
typically required for the task. Alternatively, we can reduce
the required communication bandwidth as agents no longer
have to be in constant two-way communications with each
other to share state information. Furthermore, SLiCC oper-
ates with full effectiveness using one-way communications:
introspective agents do not need to receive information from
any other agent.

B. Time-Varying Agent-Specific Preferences

We consider here a situation that can further clarify
some advantages of the proposed SLiCC method. Imagine
a scenario where an agent suffers a mechanical malfunction,
therefore impeding its ability to carry out a certain action as
was originally determined at the design step of the problem.
In such a scenario, it would be beneficial for the agent to
modify its policy to accommodate its diminished capabilities.

1) Independent Learning: With independent learning,
each agent disregards the existence of the other agents, sub-
suming them within the environment. This approach requires
no inter-agent communication, and agents seek to maximize
their individual utilities. While independent learning might
allow to learn satisfactory policies in some multi-agent
settings, it is expected to fail in this scenario given the
additional agent–agent dynamics in the environment.



Algorithm 1 Stackelberg Learning in Cooperative Control (SLiCC)

1: Initialize neural networks Qk(·; θk) with corresponding output size (P : |AP | × |AI |, I : |AI |) and replay buffer D.
2: for episode 1 : M do

3: Initialize state s0 for all agents.
4: for t = 1, . . . , T do

5: P derives expected actions (aPe , a
I
e) = argmaxuP ,uI QP (oPt , u

P , uI ; θP ).
6: P and I simultaneously ǫ-greedily execute aP and aI respectively:

{

aP = argminuP |QP (oPt , u
P , argmaxuI QI(oIt , u

I))−QP (oPt , a
P
e , a

I
e)|,

aI = argmaxuI QI(oI , uI).

7: Both agents add their corresponding transition tuple τkt = (okt , a
k
t , r

k
t , o

k
t+1) to the replay buffer D.

8: for (τP , τ I)i in the mini-batch sample from D do

9: P calculates target as follows: ℓPi =

{

rP , if episode terminates;

rP + γmaxuP QP (oP
′

, uP , F I
t (o

I′

); θP ), otherwise (see Eq. (14)).

10: I calculates target as follows: ℓIi =

{

rI , if episode terminates;

rI + γmaxuI QI(oI
′

, uI ; θI), otherwise.

11: Update θk by minimizing the cost (ℓki −Qk((ok, ak)i; θ
k))2.

12: end for

13: end for

14: end for

2) Centralized Learning: Centralized learning utilizes a
single policy to jointly control all agents, managing the
multi-agent system as if it were a single complex agent.
This approach is, in theory, capable of adapting to this
scenario in two ways. First, the learning process can be
designed a priori to accommodate such an eventuality, by
introducing agent-specific preferences explicitly in the state
space; however, doing so for all agents quickly leads to com-
binatorial explosion. Second, the centralized policy can adapt
to the malfunctioning robot’s modified behavior and action
space through learning. Unfortunately, since the centralized
policy’s action space is the Cartesian product of all agents’
action spaces, it will take a long time to converge to the new
policy.

3) SLiCC: Introspective agents in SLiCC are able to
implicitly convey their updated agent-specific preferences in
the form of QI . Following a change in its agent-specific
preferences, an introspective agent can quickly update its
QI since the dimensionality of QI is simply equal to the
dimensionality of its action space. This stands in direct
contrast to the update situation with centralized learning
described above. Upon receiving an updated QI , Agent P

can immediately accommodate the changes in Agent I’s
agent-specific preferences (see Eq. (10)).

VI. EXPERIMENTS AND EVALUATIONS

In this section, we report on the results of our evaluation of
SLiCC with two different reward prototypes. We use SLiCC
to learn a policy for the cooperative transport task in the
Gazebo robotics simulator with a pair of TurtleBot3 Burger
mobile robots (Fig. 6a). As a baseline for comparison, we
also learn a centralized policy (see Section V-B.2) with a
deep Q-network [32], referred to hereinafter as centralized

Q-learning. Our code is publicly available on GitHub1, and
a summary video of our experiments can be accessed at
https://youtu.be/NnuhFeVTcOw.

A. Reward Structure

In our problem, the different characteristics of the agents
provide an advantageous scenario to design reward functions
to cover multiple learning responsibilities. Specifically, one
of the main advantages for our game-theoretic RL approach
is the inclusion of agent-specific preferences [19], denoted
as rap. This component characterizes agent-based concerns,
preferences, or desires, which are not affected by the other
agents or the environment. In addition, a multi-agent system
also needs to carefully balance agent–agent coordination with
the achievement of the common goal—which we hereinafter
refer to as rint and rgoal respectively.

Considering that the prosocial agent has a broader observa-
tion scope, it can respond to the introspective agent’s possibly
unexpected behaviors, without disregarding its agent-specific
preferences or the common goal. We have the following
reward prototypes:

1) RPα: The prosocial agent incorporates the global
goal, agent–agent interaction, and its agent-specific
preferences. The introspective agent focuses on the
global goal and its agent-specific preferences.

rPt (o
P
t , a

P
t ) = rPgoal + rint + rPap, (15)

rIt (o
I
t , a

I
t ) = rIgoal + rIap. (16)

2) RPβ : The prosocial agent incorporates agent–agent
interaction and its agent-specific preferences. The in-
trospective agent focuses on the global goal and its

1https://github.com/HIRO-group/SLiCC







Fig. 7: The pair of real LoCoBot mobile robots carry out the object transportation task using the policies learned on
TurtleBot3 Burger mobile robots in simulation. The photo on the far left shows the initial state of the the LoCoBot mobile
robots. From left to right, the two robots cooperatively transport the object.

hold promise for applications in more complex environments
(e.g., navigating around obstacles); these will also be pursued
in future work.
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