Phase-Matching Schemes for Back-Conversion Suppression in Nonlinear Wave Mixing: Towards Ultra-High Efficiency and Ultra-Broad Bandwidth

Jeffrey Moses
School of Applied and Engineering Physics
Cornell University
Ithaca, NY, USA
moses@cornell.edu

Abstract—By suppressing the conversion-back-conversion cycles typical of optical parametric processes through novel phase-matching schemes, octave-spanning frequency conversion and highly efficient parametric amplification can be achieved. Several recent developments will be reviewed.

Keywords—Frequency upconversion and downconversion; Optical parametric amplification; Adiabatic frequency conversion; Coupled parametric processes.

I. INTRODUCTION

down-conversion Frequency up-conversion and applications are limited in conversion bandwidth and suffer from an efficiency-bandwidth product limitation because of the dependence of the conversion back-conversion cycle on frequency. Over the past decade, the related concepts of adiabatic frequency conversion and autoresonance have been proposed for the suppression of back-conversion in wave mixing processes [1-4]. Recently, adiabatic frequency downconversion has enabled octave-spanning mid-infrared generation and pulse shaping. Such devices proposed and demonstrated in both quadratic nonlinear media by quasi-phase matching [5-7] and cubic nonlinear media by waveguide tapering and pressure gradients [8,9] will be reviewed.

The efficiency of optical parametric amplification also suffers greatly due to the asynchronicity of conversion-back-conversion cycles across the spatiotemporal extent of the mixing waves, which contributes heavily to the roughly order-of-magnitude drop in power incurred during conversion from pump to signal or idler in typical devices. Rather than employing spatiotemporal pulse shaping [10,11], or idler absorption [12,13], a recently proposed solution to the problem will be reviewed that uses simultaneously phase-matched optical parametric amplification and idler second harmonic generation in order to produce nonlinear evolution dynamics identical to optical parametric amplification but with damped back-conversion, making it possible to achieve highly efficient parametric amplification as well as efficient fractional harmonic up-conversion [14,15].

In summary, back-conversion suppression in three-wave mixing processes enabled by novel phase-matching schemes has expanded to a wide variety of applications and device platforms, and is a promising route to solving longstanding nonlinear optical frequency conversion device limitations.

II. REFERENCES

- [1] H. Suchowski, G. Porat, and A. Arie, Laser Photonics Revs. 8, 333–367 (2014).
- [2] C. R. Phillips, and M. M. Fejer, Opt. Lett. 35, 3093–3095 (2010).
- [3] A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, Opt. Express **26**, 4448–4458 (2018).
- [4] E. Bahar, X. Ding, A. Dahan, H. Suchowski, and J. Moses, Opt. Express **26**, 25582–25601 (2018).
- [5] J. Moses, H. Suchowski, and F. X. Kärtner, Opt. Lett. **37**, 1589–1591 (2012).
- [6] H. Suchowski, P. R. Krogen, S.-W. Huang, F. X. Kärtner, and J. Moses, Opt. Express **21**, 28892–28901 (2013).
- [7] P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, Nat. Photonics 11, 222–226 (2017).
- [8] X. Ding, M. S. Habib, R. Amezcua-Correa, and J. Moses, Opt. Lett. **44**, 1084–1087 (2019).
- [9] X. Ding, D. Heberle, K. Harrington, N. Flemens, W.-Z. Chang, T. Birks, and J. Moses, Phys. Rev. Lett. **124**, 153902 (2020).
- [10] V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, Opt. Lett. **30**, 1843-1845 (2005).
- [11] J. Moses, and S.-W. Huang, J. Opt. Soc. Am. B 28, 812-831 (2011).
- [12] J. Ma, J. Wang, P. Yuan, G. Xie, K. Xiong, Y. Tu, X. Tu, E. Shi, Y. Zheng, and L. Qian, Optica 2, 1006-1009 (2015).
- [13] R. El-Ganainy, J. I. Dadap, and R. M. Osgood, Opt. Lett. 40, 5086-5089 (2015).
- [14] N. Flemens, N. Swenson, and J. Moses, in ["Ultrafast Optics 2019: Abstract Book", Proc. SPIE 11370, Ultrafast Optics 2019, 1137001 (18 December 2019)], pp. 57-59.
- [15] J. Moses, N. Flemens, and X. Ding, Proc. SPIE 11264, Nonlinear Frequency Generation and Conversion: Materials and Devices XIX, 112640B (2 March 2020).