

Comparative analysis reveals the expansion of mitochondrial DNA control region containing unusually high G-C tandem repeat arrays in *Nasonia vitripennis*

Zi Jie Lin¹, Xiaozhu Wang², Jinbin Wang³, Yongjun Tan⁴, Xueming Tang³, John H. Werren⁵,
Dapeng Zhang⁴, and Xu Wang^{2,6,7,8}

¹*Department of Chemistry, Columbus State University, Columbus, GA 31909*

²Department of Pathobiology, Auburn University, Auburn, AL 36849

³*Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences; Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China*

⁴Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis MO 63103

⁵Department of Biology, University of Rochester, Rochester, NY 14627

⁶*HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806*

⁷Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849

⁸Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849

Corresponding author:

Xu Wang

Phone: (334) 844-7511

Fax: (334) 844-2618

E-mail: xzw0070@auburn.edu

Muscidifurax

1
2
3
4 25 **Abstract**
5
6
7 26 Insect mitochondrial DNA (mtDNA) ranges from 14 to 19 Kbp, and the size difference is
8
9 27 attributed to the AT-rich control region. Jewel wasps have a parasitoid lifestyle, which may
10
11 28 affect mitochondria function and evolution. We sequenced, assembled, and annotated
12
13 29 mitochondrial genomes in *Nasonia* and outgroup species. Gene composition and order are
14
15 30 conserved within *Nasonia*, but they differ from other parasitoids by two large inversion events
16
17 31 that were not reported before. We observed a much higher substitution rate relative to the nuclear
18
19 32 genome and mitochondrial introgression between *N. giraulti* and *N. oneida*, which is consistent
20
21 33 with previous studies. Most strikingly, *N. vitripennis* mtDNA has an extremely long control
22
23 34 region (7,665 bp), containing twenty-nine 217 bp tandem repeats and can fold into a super-
24
25 35 cruciform structure. In contrast to tandem repeats commonly found in other mitochondria, these
26
27 36 high-copy repeats are highly conserved (98.7% sequence identity), much longer in length
28
29 37 (approximately 8 Kb), extremely GC-rich (50.7%), and CpG-rich (percent CpG 19.4% vs. 1.1%
30
31 38 in coding region), resulting in a 23 Kbp mtDNA beyond the typical size range in insects. These
32
33 39 *N. vitripennis*-specific mitochondrial repeats are not related to any known sequences in insect
40
41 40 mitochondria. Their evolutionary origin and functional consequences warrant further
42
43 41 investigations.
44
45
46 42
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 43 **1. Introduction**
5
6

7 44 Parasitoids are insects that deposit their eggs on or into other arthropods, where the young
8
9 45 develop, eventually killing the host. Parasitoids are used extensively in biological control as an
10
11 46 alternative to using pesticides to control agricultural pest insect population [1, 2]. *Nasonia* (also
12
13 47 known as jewel wasps) are parasitoids of fly pupae that are also widely used as the model system
14
15 48 for genetics and parasitoid biology [3, 4]. The *Nasonia* genus consists of four closely-related
16
17 49 species: *N. vitripennis*, *N. giraulti*, *N. longicornis*, and *N. oneida* [4-6]. They all share a
20
21 50 haplodiploidy system of sex determination, in which unfertilized eggs will develop into males
22
23 51 while fertilized eggs will develop into females. Four *Nasonia* species are not cross-fertile due to
24
25 52 the action of infected *Wolbachia*; however, they can be cross-hybridized to create F1 progenies
26
27 53 after curing them with antibiotics [7]. Multiple studies revealed that *Nasonia* utilize DNA
30
31 54 methylation, which is absent in the primary genetic model insect species, *Drosophila*
32
33 55 *melanogaster* [8-11].
35
36 56

38 57 *Nasonia* mitochondrial genomes experience an unusually high rate of evolution, approximately
39
40 58 30-40 times faster than that of the nuclear genome in *Nasonia* based on limited sequence data
41
42 59 sets available at that time [12]. This finding supports the hypothesis of compensatory feedback in
43
44 60 the nuclear genome of *Nasonia*, where the nuclear-encoded genes of the oxidative
45
46 61 phosphorylation pathway underwent positive selection to compensate for the deleterious
47
48 62 mutations in the mitochondria-encoded proteins due to rapid mutations [12-14]. As expected
49
50 63 from this elevated mutation rate, nuclear-mitochondrial incompatibilities play a significant role
51
52 64 in hybrid lethality among *Nasonia* species [7, 15-17]. None of the previously-sequenced
53
54 65 mitochondrial DNA (mtDNA) of *Nasonia* has been circularized. This is most likely due to its
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 66 highly repetitive region, similar to *Pteromalus puparum*, which belongs in the same family
5
6 67 of Pteromalidae [18]. Despite the efforts, the circularization of the mitochondrial genomes
7
8 68 of *Nasonia* remained a challenge.
9
10
11 69
12
13
14 70 The mitochondrial control region, or the 'D-loop region' in animals, is a critical element in
15
16 71 regulating transcription and DNA replication [19, 20]. The control region in insects is generally
17
18 72 rich in A+T content, with 85% in most insect mitochondrial genomes [21]. It varies in size and
19
20 73 nucleotide composition even among species of the same genus [21]. For example, the size of the
21
22 74 control region in *Drosophila yakuba* is 1,077 bp, while the one in *D. melanogaster* is 4,601 bp
23
24 75 [21]. The size variation is mainly due to the tandem repeats found in the control region. Tandem
25
26 76 repeats in the control region not only vary between and within species, but even within
27
28 77 individuals. Length heteroplasmy can occur in individuals when the copy number of tandem
29
30 78 repeats differs between cells and tissues [21]. The mechanism for the generation of tandem
31
32 79 repeat units is still incompletely understood. However, it has been hypothesized that replication
33
34 80 slippage could be the root cause of this phenomenon [22-25].
35
36
37
38
39
40
41 81
42
43 82 In this work, we presented the assembly and annotation of ten mitochondrial genomes, including
44
45 83 eight *Nasonia* strains from four species, the closely related species *Trichomalopsis sarcophagae*,
46
47 84 and *Muscidifurax raptorellus*. These are then used in a comparative study of mitochondrial
48
49 85 genome evolution in this group of insects that have rapid mitochondrial sequence evolution. All
50
51 86 these species occur in the parasitoid family Pteromalidae. We conducted phylogenetic analyses
52
53 87 on the protein-coding genes of six wasp species to determine their evolutionary relationship
54
55 88 using the mitochondrial genomes and to compare rates of substitution to their nuclear genomes.
56
57
58
59
60
61
62
63
64
65

1
2
3
4 89 We have discovered a series of unusual properties of the mitochondrial genome
5
6 90 of *N. vitripennis*, which enrich the current understanding of insect mtDNA structure and
7
8 91 evolution.
9
10
11 92
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 93 **2. Materials and Methods**
5
6

7 94 **2.1. Sample collection and genomic DNA extraction.**
8
9

10 95 All ten wasp strains sequenced in this study are highly inbred and maintained at 25°C with
11 96 constant light. For *Nasonia vitripennis* (*Nv*), four strains were sequenced: LabII, a standard
12 97 laboratory strain originally derived from the Netherlands; AsymCx, a *Wolbachia*-free strain
13 98 produced from LabII by antibiotic treatment [7]; R5-11, collected in Rochester, New York and
14 99 V12.1, derived from R5-11 after having lost of one *Wolbachia* strain [26]. In addition, we
15 100 utilized a strain (R16A) with an *Nv* mtDNA mitochondrial genome in a *Nasonia giraulti* (*Ng*)
16
17 101 nuclear genome background. The R16A strain was produced by 16 generations of back-crossing
18 102 of the *Nv* AsymCx strain approximately 25 years ago [7]. For the other species, we utilized the
19 103 *Ng* RV2X(u) strain with *Ng* mtDNA [27], *Nasonia longicornis* (*Nl*) IV7(u) strain with *Nl*
20
21 104 mtDNA, *Nasonia oneida* (*No*) NONY strain with *No* mtDNA [28], *Trichomalopsis sarcophagae*
22
23 105 (*Ts*) Tsarc strain with *Ts* mtDNA, and *Muscidifurax raptorellus* (*Mell*) Chile strain. High
24
25 106 molecular weight (HMW) genomic DNA (gDNA) was isolated from each strain using the
26
27 107 MagAttract HMW DNA Mini Kit (Qiagen, MD). The quality and size distribution of extracted
28
29 108 gDNA were examined on a Qubit 3.0 Fluorometer (Thermo Fisher Scientific, USA) and on
30
31 109 Agilent TapeStation 4200 (Agilent Technologies, CA) using the genomic DNA kit.
32
33 110

34 48 111 **2.2. Genomic DNA sequencing.**
35
36 112 A 10X Genomics® library for each strain was prepared with the Chromium Genome Reagent
37
38 113 Kits v2 on the 10X Genomics® Chromium Controller (10X Genomics Inc., CA). HMW gDNA
39
40 114 was diluted from its original concentration to 0.8~0.9 ng/μl with EB buffer. The diluted
41
42 115 denatured gDNA, sample master mix, and gel beads were loaded to the genomic chip, then ran
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 116 on the 10X Genomics® Chromium Controller to create Gel Bead-In-EMulsions (GEMs). The
5
6 117 obtained GEMs were used for the subsequent incubation and cleanup. Chromium i7 Sample
7
8 118 Index was used as the library barcode. Quality control of post library construction was accessed
9
10 119 with Qubit 3.0 Fluorometer for the final library concentration and Agilent TapeStation 4200 for
11
12 120 the final library size distribution. The prepared 10X Genomics® library for each strain was
13
14 121 sequenced on a HiSeq X or a NovaSeq 6000 sequencer. On average, we obtained 476,368,658
15
16 122 reads per strain, with mean haploid genome coverage of 334.95X (Table S1).
17
18
19 123
20
21
22
23
24 124 **2.3. Assembly and annotation of mitochondrial genome in wasp species.**
25
26 125 The 10X Genomics® sequencing reads were first checked for sequence quality using FastQC
27
28 126 [29]. The *de novo* assembly of each strain was constructed with customized parameters using
29
30 127 Supernova 2.0 [30]. To identify the mitochondrial scaffolds from the draft whole genome
31
32 128 assembly of each strain, previous *Nv* mitochondrial draft assemblies (NCBI accession number:
33
34 129 EU746609.1 and EU746613.1) were aligned to each *de novo* assembly using BLAT [31]. The
35
36 130 scaffolds with identities larger than 85% were kept as potential mitochondrial scaffolds for each
37
38 131 species. These scaffolds were then further checked for their read coverage and GC-content. To
39
40 132 distinguish true mitochondrial DNA and NuMTs (nuclear mitochondrial DNA), only scaffolds
41
42 133 with a coverage greater than 5,000X were kept for the draft mitochondrial genome assembly of
43
44 134 each species (Table 1 and Table S1).
45
46
47
48 135
49
50
51 136 The *Nv* mtDNA repeat region and the two palindromic arms were initially characterized using
52
53 137 10X Genomics® data and the Sanger sequencing scaffolds in the *Nv* reference genome [16]
54
55
56 138 AsymCx strain assembly v2.1 (Scaffold2008 and Scaffold1962 in assembly GCA_000002325.2).
57
58
59
60
61
62
63
64
65

1
2
3
4 139 The *Nv* AsymCx mtDNA was circularized using sequencing read data from *Nv* PSR1.1 assembly
5
6 140 derived from AsymCx background with NCBI accession number PRJNA575073 [32]. The
7
8 141 PacBio and ONT (Oxford Nanopore technology) reads were BLATed against with our mtDNA
9
10 142 assembly using 10X Genomics® technology, and 196 reads aligned to the palindromic arms were
11
12 143 identified. Among these reads, four were informative to close the mtDNA assembly (Table S2).
13
14
15 144
16
17
18 145 The initial draft mitochondrial genome assemblies of *N. giraulti*, *N. longicornis*, *N. oneida*, and
19
20 146 *T. sarcophagae* contained a few gap regions with unidentified sequences. Additionally, *T.*
21
22 147 *sarcophagae* had several fragmented/duplicated regions. To further improve the mitochondrial
23
24 148 assemblies, problematic regions were extracted for manual improvement. The sequencing reads
25
26 149 were aligned to these regions with BWA-MEM [33], and the aligned reads were extracted to
27
28 150 generate contigs using MEGAHIT [34]. The mapped reads were used as additional evidence to
29
30 151 improve the mitochondrial assemblies of all five species. The final assembly versions were
31
32 152 manually curated using the Geneious platform [35]. We used MITOS [36] to annotate the open
33
34 153 reading frames (ORFs) in the mitochondrial genome of all five species (Table 2). The NCBI
35
36 154 GenBank accession numbers are included in Table S3.
37
38
39 155
40
41 156 **2.4. Phylogenetic analysis of mitochondrial genes.**
42
43
44 157 To detect the evolutionary relationships of mitochondrial genes among ten wasp species,
45
46 158 phylogenetic analyses of 13 core mitochondrial genes (*atp6*, *atp8*, *cob*, *cox1*, *cox2*, *cox3*, *nad1*,
47
48 159 *nad2*, *nad3*, *nad4*, *nad4l*, *nad5*, and *nad6*) and concatenated nucleotide sequences of these core
49
50 160 genes was performed. Another parasitoid species, *Muscidifurax raptorellus* (Mell), was selected
51
52 161 as an outgroup for this analysis. It is a closely related species, belongs to the family of
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 162 Pteromalidae, and similarly, this species is also Dipteran parasitoid. Additionally, the 2-fold and
5
6 163 4-fold degenerate sites were extracted from the alignment of all protein-coding genes as well as
7
8 164 the concatenated sequences (Figure S1). The cut-off for the minimum number of 4-fold
9
10 165 degenerate sites was 10; therefore, *atp8* was excluded from the 4-fold degenerate site analysis.
11
12 166 The coding sequences from the ten strains, including four different *Nv* strains (AsymCx, LabII,
13
14 167 V12.1, and R5-11), were aligned using the MUSCLE alignment tool v3.8 [37]. The phylogenetic
15
16 168 tree was constructed with coding sequences of mitochondrial genes using the Maximum-
17
18 169 Likelihood (ML) method in MEGA version X [38]. The substitution model was selected based
19
20 170 on the lowest BIC values produced by MEGA-X. Bootstrap tests with 1,000 replicates were used
21
22 171 to evaluate the phylogenetic trees. For specific substitution models used for each gene, please see
23
24 172 Table S4. The nuclear genome trees were generated by concatenating 8,133 single-copy
25
26 173 orthologs using RAxML v8.2 [39] with the VT protein model (best fit model identified by
27
28 174 ProtTest 3) and 1,000 rapid bootstrap replicates [27].
29
30
31
32
33
34
35
36 175
37
38 176 **2.5. Identification and characterization of the tandem repeat array in the *Nv* mitochondrial**
39
40
41 177 **genome.**
42
43 178 In the *Nv* mitochondrial genome, a large region containing tandem repetitive sequences was
44
45 179 identified. To further characterize this region and determine if this repeat array is *Nv*-specific, we
46
47 180 aligned sequencing reads from all wasp species to the assembled *Nv* mitochondrial genome. The
48
49 181 mitochondria replacement strain R16A is especially informative, as it has the *Ng* nuclear genome
50
51 182 but *Nv* mitochondria background, which was generated through 16 generations of back-crossing
52
53 183 [7]. This strain allowed us to separate reads from the mitochondrial and nuclear genomes,
54
55 184 including potential nuclear insertions of mitochondrial DNA (NuMTs). Sequence alignments of
56
57
58
59
60
61
62
63
64
65

1
2
3
4 185 the 29 repeat units from the *Nv* AsymCx strain generated a 217 bp consensus sequence, which
5
6 186 was further aligned to the consensus sequences of four other strains with *Nv* mtDNA (Table S5).
7
8 187 The coding probability of the repeat unit was inferred using CAPT v3.0.2 [40]. Read coverage in
9
10 188 the repeat regions was quantified to estimate the repeat unit copy number within the five *Nv*
11
12 189 mtDNA strains (AsymCx, LabII, V12.1, R5-11, and R16A). GC-content, CpG percentages and
13
14 190 ratios of observed/expected CpGs were calculated for the mtDNA tandem repeats (Table S6) and
15
16 191 non-control region. DNA methylation percentages were quantified at CpG positions in the repeat
17
18 192 units using adult whole-body whole-genome bisulfite sequencing (WGBS-seq) data [10] (Table
19
20 193 S7).
21
22
23
24
25
26 194
27
28
29 195 We used the pairwise BLASTn program to examine the sequence similarity pattern of the
30
31 196 mitochondrial DNA control region with *Nv* mtDNA repeat array. The dot-matrix plot was
32
33 197 generated using the R package v3.8. Potential DNA structures were predicted by using the Mfold
34
35
36 198 DNA folding server [41], in which the folding temperature is set to 25 °C, given that insects are
37
38 199 cold-blooded animals.
39
40
41 200
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 201 **3. Results**
5
6
7 202 **3.1. Mitochondrial genome assembly and annotation in five jewel wasp species.**
8
9
10 203 By using a linked-reads technology, we assembled the mitochondrial (MT) genomes of ten
11 strains of six related parasitoid species, including *N. vitripennis* (*Nv*), *N. giraulti* (*Ng*), *N.*
12 204 *longicornis* (*Ng*), *N. oneida* (*No*), and the outgroup species *Trichomalopsis sarcophagae* (*Ts*) and
13 205 *Muscidifurax raptorellus* (*Mell*) (Table 1). The *Nv* AsymCx strain mtDNA was circularized
14 206 using additional information from PSR1.1 genome ONT reads (see Materials and Methods). The
15 207 *Nv* MT genome size is 22,956 bp (GenBank accession number MT635402). The mitochondrial
16 208 genome size of *Ng*, *No*, *Ng* and *Ts* is 15,310 bp (MT611422), 14,811 bp (MT762278), 14,925 bp
17 209 (MT755966) and 15,042 bp (MT611423), respectively. The A-T rich control regions were not
18 210 closed in these four MT genomes, and the size estimates were based on incomplete control
19 211 regions (Table 1). It is noted that the GC-content and CpG density of *Nv* mitochondria are
20 212 significantly higher than other species (Table 1), which was not driven by differences in the
21 213 genic region.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

215
216 In all assembled wasp mitochondrial genomes, we successfully identified the two rRNA genes
217 (12S and 16S rRNA) and all 13 protein-coding genes encoding the hydrophobic subunits of
218 respiratory chain complexes, including *atp6*, *atp8*, *cob*, *cox1*, *cox2*, *cox3*, *nad1*, *nad2*, *nad3*,
219 *nad4*, *nad4l*, *nad5*, and *nad6* (Figure 1). In addition, 22 tRNAs were annotated in *Nv*, *Ng*, and *Ts*,
220 as well as 21 tRNAs were identified in *Ng* (missing *trnQ*) and *No* (missing *trnM*). The gene
221 coordinates in each mitochondrial genome are listed in Table 2. Gene order and protein length
222 are conserved among these related parasitoid species.

1
2
3
4 224 **3.2. Significant mitochondrial genome rearrangement in *Nasonia* and *Trichomalopsis***
5
6

7 225 **compared to other insects.**

8
9 226 Although the MT gene content is conserved in insect species, there is substantial gene order
10
11 227 rearrangement in different insect orders. Parasitoid wasps share a large inversion event
12
13 228 encompassing six protein-coding genes (*nad3-cox3-atp6-atp8-cox2-cox1*) [18] compared to the
14
15 229 ancestral insect MT genome [42] (Figure 1A). With the newly assembled MT genomes, we
16
17 230 discovered two additional major MT gene order rearrangements in *Ts* and the *Nasonia* genus
18
19 231 compared to other Hymenopteran clades (Figure 1B-D). Previous comparative studies assumed
20
21 232 the gene order is the same in all jewel wasps [18], because the *Nasonia* MT genome was
22
23 233 assembled as two fragments. In this study, the complete *Nasonia* MT genome assembly revealed
24
25 234 the major *Nasonia-Ts*-specific inversion event involving 12 of the 13 protein-coding genes
26
27 235 compared to Chalcidoidea (Figure 1D-E), followed by another inversion of the *nad2* gene and
28
29 236 four neighboring tRNAs (Figure 1E-F). Gene order analysis in two outgroup species *Mell* and
30
31 237 *Pteromalus puparum* (*Ppup*) [18] suggested this event occurred after the 6-gene inversion in all
32
33 238 parasitoids, and it is *Nasonia-Ts*-specific assuming parsimony (Figure 1F-J). The rapid gene
34
35 239 organization evolution we observed in the *Nasonia* MT genome can be explained by
36
37 240 intrachromosomal recombination.

41 241
42
43 242 **3.3. Phylogenetic analysis of protein-coding genes in five mitochondrial genomes.**
44
45
46

47
48 243 We concatenated the coding sequences of all 13 protein-coding genes in each species and
49
50 244 performed phylogenetic analyses to investigate the evolutionary relationship of mitochondrial
51
52 245 genomes of these five wasp species. The phylogenetic tree of concatenated sequences confirms a
53
54 246 similar evolutionary relationship of the five wasp species to the phylogeny based on nuclear
55
56
57
58
59
60
61
62
63
64

1
2
3
4 247 genes, but with a much faster evolutionary rate (Figure 2) [9]. We also conducted phylogenetic
5 analyses on each individual gene, and three tree topologies were discovered (Figure S1 and
6
7 248 Table S4). Five genes, *cox2*, *nad4*, *nad2*, *nad5*, and *cob*, show similar patterns as the
8 concatenated mitochondrial sequences (Figure S1A). Six MT genes, *atp6*, *atp8*, *cox3*, *nad3*,
9 250 *cox1*, and *nad6*, have a tree topology with *Nv* and *Ts* on the same branch (Figure S1B). Lastly,
10
11 251 *nad4l* and *nad1* have *Nv* placed farther from the three *Nasonia* species than *Ts*. In these trees, *Ts*
12
13 252 was more closely related to *Ng*, *No*, and *Nl* (Figure S1C). A prior nuclear gene-based
14
15 253 phylogenetic analysis of the genera used [43] here to support the finding that *T. sarcophagae* is
16
17 254 closely related to the *Nasonia* clade, and provide an estimated divergence time of approximately
18
19 255 2.6 million years ago, and 4.9 million years ago for *Muscidifurax*. Discrepancies in topology for
20
21 256 the different genes will require future analysis of the pattern of selection and divergence in the
22
23 257 different gene sets.
32
33
34 259
35
36 260 **3.4. Characterization of palindromic tandem repeat array in the *Nv* mitochondrial genome.**
37
38 261 An intriguing finding in *Nv* mitochondrial genome is an unusually large control region
39
40 262 containing two extremely GC-rich and highly similar tandem repeat arrays (repeatR and repeatF,
41
42 263 see Figure 3A). The individual repeat unit is 217 bp in length. The 3,767 bp repeatR array is
43
44 264 upstream of the 12S rRNA gene, containing 16 complete and two partial repeat units (Figure
45
46 265 3B). The 2,317 bp repeatF array is downstream the *cob* gene with nine full-length and two partial
47
48 266 repeat units in it (Figure 3B). Immediately adjacent to the two repeat arrays are two identical 533
49
50 267 bp A-T rich palindromic arms, which are connected by a sequence of 515 bp consisting of (AC)n
51
52 268 and (AT)n simple dinucleotide repeats (Figure 3).
53
54
55 269
56
57
58
59
60
61
62
63
64
65

1
2
3
4 270 The *Nv* MT tandem repeats were not found in any of the other closely related *Nasonia* species,
5
6 271 nor in *Ts* or *Mell*, with zero reads mapped to the repeat region (Figure 4A), despite the high
7
8 272 sequencing depth in all species (Figure 4B). BLASTn search against the NCBI NR database did
9
10 273 not retrieve any other sequences than *Nv* MT itself at an E-value cut-off of 1×10^{-2} . The coding
11
12 274 probability of these tandem repeat units is 0.047, and it was inferred to be noncoding. BLASTn
13
14 275 identified a 645 bp ORF, which encodes a hypothetical protein LOC107981453 annotated as
15
16 276 *cob*-like by the NCBI automated eukaryotic genome annotation pipeline. However, this
17
18 277 prediction was labeled as low quality, and close examination found that this misannotation was
19
20 278 due to partial sequence from the *cob* gene immediately upstream of the repeats. Therefore, these
21
22 279 repeat units have minimal protein-coding ability.
23
24
25
26
27
28
29 280
30

31 281 To confirm these repeats are truly specific to the *Nv* MT genome, we compared the repeat
32
33 282 coverage profile in *Nv*, *Ng*, and an MT replacement strain R16A (*Ng* nuclear and *Nv* MT
34
35 283 background). *Ng* has zero repeat read depth, indicating the absence of these repeats in the *Ng*
36
37 284 nuclear genome or *Ng* MT genome (Figure 4A), despite extensive genome sequencing depth in
38
39 285 all parasitoid genomes (Figure 4B). R16A has similar repeat coverage, which indicates that the
40
41 286 repeats are only present in its MT genome (Figure 4A), which is the MT genome from *Nv*. Thus,
42
43 287 we could exclude the possibility that the aligned reads may come from the nuclear genome. The
44
45 288 8 Kb species-specific repeat region only exists in the *Nasonia vitripennis*, and the sister species
46
47 289 of *Nasonia* and *Ts* lack such features in their MT genomes.
48
49
50
51
52
53 290
54
55
56 291 To quantify the repeat copy number and relative abundance, we calculated the read counts in
57
58 292 three separate regions in the MT genome, the non-control region, forward repeat region
59
60
61
62
63
64
65

1
2
3
4 293 (repeatF), and reverse repeat region (repeatR). Four of the five *Nv* strains, AsymCx, LabII,
5
6 294 V12.1, and R16A, have 702,006~943,354 reads mapped to the repeat regions, and the estimated
7
8 295 total MT repeat length is 308-547 Kb, which is 0.15%-0.27% of the entire nuclear genome length
9
10 296 (Table S1). The R5-11 strain has 161 Kb MT repeats per haploid nuclear genome, about half
11
12 297 compared to other *Nv* strains (Table S1). The variations in total repeat length are not due to copy
13
14 298 number variations within the MT genome. The repeatR array, repeatF array, and the non-control
15
16 299 region have similar coverage within strains, indicating that the repeat copy number is conserved
17
18 300 within species (Figure 4C). One exception is the LabII strain, in which the repeat region
19
20 301 coverage is three times higher than the non-control region, suggesting potential recent copy
21
22 302 number expansion (Figure 4C). This is also not found in the AsymCx strain, which was derived
23
24 303 from LabII approximately 30 years ago or approximately 780 generations [44], suggesting that
25
26 304 the expansion occurred after that time.
27
28
29
30
31
32
33
34
35
36 305
37
38 306 **3.5. The *Nv* MT repeats are extremely GC-rich and CpG rich but lack DNA methylation.**
39
40 307 Overall, *Nv* has a much higher GC-content (25.8%) and percent CpG (5.9%) compared to the
41
42 308 mtDNA of other parasitoid species examined in this study (Table 1), and this is driven entirely
43
44 309 by the repeat arrays. The non-repetitive region of the *Nv* mitochondrial genome has a low GC-
45
46 310 content (16.5%) and low percent CpG (1.1%), which is similar to that of the other mitochondrial
47
48 311 genomes (Table 1). In contrast, the repeat unit is extremely GC-rich (50.7%), which is even
49
50 312 higher than the *Nv* nuclear genome (41.7%). Furthermore, the average ratio of observed/expected
51
52 313 CpGs of the whole repetitive region is 1.61 (Table S6), which is much higher than that of the
53
54 314 non-repetitive region (0.80). The high ratio of observed/expected CpGs is caused by the large
55
56 315 number of CpGs in the repeats. In *Nasonia*, CpG clusters tend to be methylated in the nuclear
57
58
59
60
61
62
63
64
65

1
2
3
4 316 genome, but genes with high observed/expected CpG ratio are often non-methylated [10]. We
5
6 317 checked the methylation status at all CpG sites in these repeats and found no methylation on the
7
8 318 region (Table S7).
9
10
11 319
12
13
14 320 **3.6. Sequence and structural characteristics of the *Nv* MT control region.**
15
16 321 We next sought to examine the sequence and structural characteristics of this *Nv* MT repeat
17
18 322 region. Pairwise BLASTn comparisons of the region revealed a striking similarity pattern with
19
20 323 two blocks of tandem repeats, as indicated by diagonal lines and reverse diagonal lines (Figure
21
22 324 5A). This pattern is a hallmark of an ultra-sized palindromic DNA sequence of 7,665 base pairs.
23
24
25 325 A palindrome of a double-stranded DNA/RNA sequence is defined by containing
26
27 326 complementary strands being palindromic of each other. One of its important characteristics is
28
29 327 the potential of forming single-stranded stem-loop cruciform structures [45]. Indeed, we
30
31 328 confirmed the presence of such super-cruciform structures in the *Nv* MT repeat arrays using
32
33 329 Mfold [41]. The two strands in the normal double-stranded state can separate to form a super-
34
35 330 cruciform structure, with a new double helix structure formed by the same strand from the
36
37 331 upstream portion (armF+repeatF) and the downstream portion (armR+repeatR) (Figure 5B). The
38
39 332 un-paired central regions will become single-stranded loops. Additionally, as there are uneven
40
41 333 numbers of repeatF (11 units) and repeatR (18 units), the pairing pattern between repeat units
42
43 334 could vary, which would result in up to seven repeat units from the downstream portion being
44
45 335 unpaired (Figure 5B). As single-stranded repeats are not stable, we wanted to know whether it
46
47 336 can be further folded into stable secondary structures. Indeed, by using the minimum energy
48
49 337 folding prediction, we found the single repeat unit can also self fold into a stable hairpin (Figure
50
51 338 5C), as supported by the top three thermostable structures. Thus, we show that the control region
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 339 of *Nv* MT is an ultra-sized DNA palindrome, with the potential to form a super-cruciform
5
6 340 structure. In this structure, the stems are made from the repeat regions (palindromic arm and
7
8 341 repeats), and the loops consist of the unpaired central (AC)_n and (AT)_n simple dinucleotide
9
10 342 repeats, with many unpaired repeat units protruding as standalone hairpins (Figure 5B).
11
12 343
13
14 344 **3.7. Homogenization among the *Nv* MT repeats.**
15
16 345 From the 29 tandem repeat units in *Nv* AsymCx laboratory strain, we identified 217 bp
17
18 346 consensus sequence and compared it to other lab strains V12.1 and R16A mitochondrial
19
20 347 genomes, as well as their original field strains LabII and R5-11, through sequencing read
21
22 348 alignments (see Materials and Methods). R16A and LabII have an identical consensus as
23
24 349 AsymCx (Figure 6), which is consistent with the fact that AsymCx and R16A are both derived
25
26 350 from LabII with the Netherlands origin. The North American strains R5-11 and V12.1 have four
27
28 351 substitutions in the consensus sequence, which is highly similar to the AsymCx strain (98.2%
29
30 352 identity). We also investigated the 29 individual repeat units AsymCx, and the sequence identity
31
32 353 is very high (98.6%-100%), indicating the high sequence homogenization among these tandem
33
34 354 repeats (Figure 6). There are three singletons and four shared segregating polymorphisms among
35
36 355 different tandem repeat units (Figure 6). Tandem arrays undergo homogenization by various
37
38 356 processes, including unequal recombination and rolling circle replication [46-48]. In addition,
39
40 357 palindromic arms tend to have abundant gene conversion events, which can repair the point
41
42 358 mutations and lower the divergence between the palindromic sequences [51, 52]. Indeed, we
43
44 359 discovered potential recombination-associated sequence motifs within the *Nv* MT repeat (Figure
45
46 360 S2), similar to the *E. coli* Chi recombination hotspot sequence [53], and known sequences
47
48 361 associated with recombination in the human nuclear genome [54] and mtDNA [55]. The two
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 362 palindromic repeat arrays (repeatF and repeatR) can pair into a super-cruciform structure,
5
6
7 363 allowing the gene conversion events to occur (Figure 5B). We discovered compensatory
8
9 364 variations in the repeat monomers near the loop structure (units 1-2-3-4 and 29-28-27-26)
10
11 365 (Figure 5B and Figure 6), providing evidence for repair after gene conversions.
12
13
14 366
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 367 **4. Discussion**
5
6
7 368 **4.1. Major inversion events in *Nasonia* MT genomes compared to other wasp species.**
8
9 369 The importance of mitochondria in cellular energy production makes it a revealing research topic
10
11 370 in biology. As the mitochondrion has its own independent genome, an assembled MT genome
12
13 371 may provide novel insights into the biological function, development, and evolution of
14
15 372 mitochondrion. The *Nv* reference genome paper published in 2010 [9] reported two MT
16
17 373 fragments; however, the complete MT genome assembly is still missing. In this study, we
18
19 374 reported high-quality assemblies of MT genomes in five jewel wasp species, including *N.*
20
21 375 *vitripennis*, *N. giraulti*, *N. longicornis*, *N. oneida*, and *Trichomalopsis sarcophagae*. We also
22
23 376 revised the *Nasonia* genus' gene order, which was incorrectly inferred in a previous assembly of
24
25 377 the *Pteromalus puparum* MT genome due to incomplete *Nv* MT genome [18]. Comparing to the
26
27 378 insect ancestral MT genome, the parasitoid *P. puparum* and *M. raptorellus* genomes underwent a
28
29 379 six-gene inversion event. Interestingly, we discovered a major subsequent inversion involving 12
30
31 380 protein-coding genes (from *cob* to *nad2*) in *Nasonia* and *Trichomalopsis*, which occurred after
32
33 381 they diverged from *Muscidifurax*. This is unusual because most MT gene order alterations in
34
35 382 insects do not involve *nad2*, located next to the control region. In the *Nasonia* genus, the protein-
36
37 383 coding gene at the coding-control region boundary is *cob*. Orientations of *nad2* and surrounding
38
39 384 tRNA genes underwent a subsequent inversion event, which has led to this genus-specific gene
40
41 385 order. Interestingly, all inversions occurred in the noncoding regions, either within a tRNA gene
42
43 386 cluster or near the control region boundary (Figure 1), suggesting that secondary structures
44
45 387 played a role in mediating these events. Similar to the repeats. Our findings indicate a rapid MT
46
47 388 genome reorganization in *Nasonia* and *Trichomalopsis*.
48
49
50
51
52
53
54
55
56
57
58 389
59
60
61
62
63
64
65

1
2
3
4 390 **4.2. Phylogenetic relationships of mitochondrial genomes in the *Nasonia* genus.**
5
6
7 391 The phylogenetic analysis of concatenated protein-coding sequences in five wasp species
8
9 392 indicated that the mitochondrial gene tree and nuclear gene tree have the same topology, in
10
11 393 which *Ng* and *No* are the closest sister species with *Nl* in the near branch and *Nv* in the further
12
13 394 away branch [9]. Interestingly, the *Ts* node for 8 MT gene trees is located in between *Nv* and
14
15 395 other *Nasonia* species, and the bootstrap support is only 81 for *Ts* being the outgroup in the MT
16
17 396 concatenated tree (Figure 2). In the nuclear gene tree, the support of *Ts* as an outgroup was not
18
19 397 significant (bootstrap value less than 50). The finding is consistent with what is known in the
20
21 398 previous studies, in which *Ts* is closely related to the *Nasonia* genus with a divergence time of
22
23 399 approximately 2.6 million years ago [43, 56].
24
25
26
27
28 400
29
30
31 401 For the sister species pair *Ng* and *No*, their nuclear genome divergence is about half of the *Ng*-*Nl*
32
33 402 divergence. In contrast, *Ng* and *No* MT genomes are highly similar, and the divergence is only
34
35 403 10% of *Ng*-*Nl* MT divergence (Figure 2). This discrepancy suggests recent introgression between
36
37 404 *Ng* and *No* MT genomes, presumably through recent hybridization. This has been reported
38
39 405 previously [6], but we provide genome-level evidence here. We found rapid evolution of *atp8* in
40
41 406 *Nv*, based on the fact that *Ts* is more closely grouped with other *Nasonia* species in its MT gene
42
43 407 tree, which is also consistent with previous research [12].
44
45
46
47
48 408
49
50
51 409 **4.3. A unique GC-rich tandem repeat array exists in the *Nasonia vitripennis* MT genome.**
52
53 410 The *Nv* MT genome is unique in many ways. The genome size is 23 Kb, an outlier relative to the
54
55 411 typical insect genome range. The GC-content is 25.8%, which is significantly higher than other
56
57 412 closely related wasp genomes (16.9% on average). These striking differences are not due to the
58
59
60
61
62
63
64
65

1
2
3
4 413 genic regions, but the presence of tandem repeat arrays in the mtDNA control region. The
5
6 414 control regions are known to contain tandem repeats in several species, whose nucleotide
7
8 415 composition of this region was extremely AT-rich [21]. These tandem repeats vary widely in
9
10 416 length from 4~82 bp in a moth species *Epirlita autumnata* [57], to 196 bp in bees [58], and
11
12 417 0.8~2.0 Kb in bark weevils [59]. Recently, an even larger control region was found in the
13
14 418 mitochondrial genome of *Pteromalus puparum* in the same Pteromalidae family as *Nasonia*,
15
16 419 which also contains a palindromic tandem repeat region [18]. However, the *Nv* control region
17
18 420 repeats are 2.5 times larger than those in *P. puparum*.
19
20
21
22
23
24 421
25
26 422 **4.4. The origin of the tandem repeat arrays in the *Nasonia vitripennis* MT genome.**
27
28 423 The GC-rich MT repeats we identified in *N. vitripennis* MT genome has yet to be observed in
29
30 424 any other bilaterians, including closely related *Nasonia* species or *T. sarcophagae*. Although the
31
32 425 repeat region is specific to *Nv*, MT coding region is relatively conserved among *Nasonia* species
33
34 426 and *Ts*, in terms of protein sequence, gene order, and GC-content. This suggests that the *Nv*
35
36 427 repeat arrays were acquired by *N. vitripennis* after its speciation from the common ancestors of
37
38 428 the other three *Nasonia* species, which was estimated to be 1.6 million years ago [43]. Five *Nv*
39
40 429 strains isolated from different geographic locations share similar repeat copy numbers,
41
42 430 suggesting the repeat arrays originated and fixed in the *Nv* population before the global radiation.
43
44
45 431
46
47
48 432 Since we cannot find any other similar repeats beyond *Nv* species, the exact source of the repeats
49
50 433 was unclear. To search for a potential source of these repeats, we aligned the repeat unit against
51
52 434 all assembled genomes in NCBI and identified a 291 bp scaffold (accession number
53
54 435 AERW01000434) in the *Nv* *Wolbachia* endosymbiont *wVitB* assembly, which is a B supergroup
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 436 *Wolbachia* strain in *Nv* and contains 1.34 repeat units with 98.97% sequence identity [60]. The
5
6 437 *Wolbachia pipipientis* genome is enriched for repetitive sequences, including palindromic repeats
7
8 438 [61]. All *Nv* laboratory strains had *Wolbachia* infections when they were isolated from the field.
9
10 439 Transfer of *Wolbachia* repeat sequences into mtDNA could be mediated by *Wolbachia* plasmid,
11
12 440 which was discovered recently [62]. One plausible explanation is that the *Nv* MT came from the
13
14 441 *Wolbachia* endosymbiont genome or *Wolbachia* plasmid genome. However, we cannot exclude
15
16 442 the possibility that the wVitB genome assembly has some MT sequence contamination during
17
18 443 the genomic DNA purification [63, 64]. Otherwise, the source of this GC-rich insertion remains
19
20 444 a mystery.
21
22
23
24
25
26 445
27
28
29 446 **4.5. Biased gene conversion may result in the extremely high GC-content in the Nv MT**
30
31 447 **repeats.**
32
33
34 448 The MT tandem repeats we discovered in this research are extremely GC-enrich (50.7%)
35
36 449 compared to *P. puparum* ones (16.5% GC), which is even higher than the nuclear genome GC-
37
38 450 content (40.6%) [16]. A possible explanation for the enriched GC-content is GC-biased gene
39
40 451 conversion (gBCG) [65, 66]. GC-biased gene conversion arises from the fact that the repair
41
42 452 mechanism for the double-strand breaks within the palindromic sequences preferentially uses GC
43
44 453 nucleotides as the template. Long palindromic sequences can induce double-strand breaks, which
45
46 454 will be resolved by recombination or gene conversion [67]. gBCG frequently occurs within the
47
48 455 palindromic sequences with a higher chance of recombination, such as mammalian Y-
49
50 456 chromosome and plastome palindromes [68-70]. In these cases, the palindromic sequences have
51
52 457 been observed with higher than normal GC-content. The *Nv* MT repeat array can fold into large
53
54 458 palindromic structures (Figure 5), which is prone to gBCG. This will not only result in the
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 459 homogenization of the inverted repeats but also the increased GC-content. Therefore, we propose
5
6 460 that GC-enrichment evolved from a low GC sequence context through GC-biased gene
7
8 461 conversion. However, we could not exclude an alternative possibility, which is the repeat
9
10 462 sequences came from an unknown source of origin with high GC-content at the time of
11
12 463 acquisition.
13
14
15
16 464
17
18
19 465 **4.6. Potential function and evolutionary fixation of the repeat array in the *Nv* MT genome.**
20
21 466 Here we proposed two potential explanations for the evolutionary fixation of the large repeat
22
23 467 arrays causing a 50% increase in the MT genome size, which is a considerable burden to an A-T
24
25 468 rich MT genome. One possibility is that the repeat array has converted the ancestral replication
26
27 469 origin (*ori*) in *Nv* into a more efficient version, which facilitates the repeat array-containing MT
28
29 470 genomes to outcompete the original control region and rapidly reached fixation in the population.
30
31
32 471 Compared to other *Nasonia* species (*Ng*, *No*, and *Nl*), which have specialized hosts in nature with
33
34 472 much smaller habitat in the US, *Nv* is a cosmopolitan species found worldwide with broader host
35
36 473 preferences. The fitness advantages of the repeat-containing MT genome may explain the
37
38 474 fixation of the repeat arrays in the *Nv* MT genome. Another plausible explanation is that the MT
39
40 475 repeat array may function as a molecular driver [71, 72] to convert the MT genomes through an
41
42 476 unknown mechanism. These two mechanisms are not mutually exclusive. The repeat array can
43
44 477 serve as a strong molecular driver with a fitness advantage to *Nv*, resulting in rapid fixation and
45
46 478 maintenance of this repeat array in the MT genome.
47
48
49
50
51
52
53 479
54
55 480 **4.7. Possible mechanisms for copy number expansion in the *Nv* MT repeat arrays.**
56
57
58
59
60
61
62
63
64
65

1
2
3
4 481 Replication slippage, rolling-circle replication, and unequal sister chromatid exchange are
5
6 482 considered to be the primary mechanism for the expansion and maintenance of tandem repeats in
7
8 483 the genome [21, 47, 73]. However, slippage replication typically occurs in the case of short
9
10 484 tandem repeats [74]. It has been predicted that rolling-circle replication can lead to the
11
12 485 accumulation of "relic" sequences at the ends of tandem repeat arrays and greater
13
14 486 homogenization within the central region [47, 49, 50]. We tested this hypothesis by examining
15
16 487 the distribution of polymorphisms distributed across the repeat arrays and did not observe
17
18 488 significant differences in divergence. Therefore, it is likely the third mechanism, unequal
19
20 489 exchanges in recombination [55], have contributed to the expansion and maintenance of this
21
22 490 unusual repeat array. The *Nv* MT repeat unit contains sequence motifs that are similar to known
23
24 491 sequences associated with recombination in *E. coli* [53], human mtDNA [55], and human nuclear
25
26 492 genome [54] sequences (Figure S2). The hairpin and cruciform structure formed by palindromic
27
28 493 sequences could often induce double-strand breaks [75], and the subsequent repair mechanism
29
30 494 can lead to gene conversion and homologous recombination [54, 76]. The intra-chromosomal
31
32 495 homologous recombination between the two arms of the palindromic repeat regions can facilitate
33
34 496 unequal crossovers within the mitochondrial chromosome, causing the repeat array expansion.
35
36 497 The hypothesis is supported by the compensatory nucleotide variations in the repeats (Figure 6),
37
38 498 which could provide an explanation for how the control region in *Nv* has expanded to such a
39
40 499 length that it has now increased MT genome size by 50%. However, the evolutionary origin,
41
42 500 maintenance, and potential functions of the *Nv*-specific repeat arrays still warrant further study.

51
52
53 501
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 502 **Acknowledgments**
5
6
7 503 This project is supported by an Auburn University Intramural Grant Program Award to X.W.
8
9 504 (AUIGP 180271) and the USDA National Institute of Food and Agriculture Hatch project
10
11 505 1018100. X.W. is supported by National Science Foundation EPSCoR RII Track-4 Research
12
13 506 Fellowship (NSF OIA 1928770), an Alabama Agriculture Experiment Station (AAES) ARES
14
15 507 Agriculture Research Enhancement, Exploration and Development (AgR-SEED) award, and a
16
17 508 laboratory start-up fund from Auburn University College Veterinary Medicine. Z.J.L. is
18
19 509 supported by an NSF-REU award 1560115. J.W. is supported by Shanghai Academy of
20
21 510 Agricultural Sciences Program for Excellent Research Team visiting scholars. Y.T. and D.Z. are
22
23 511 supported by the Saint Louis University start-up fund. The authors thank the Auburn Hopper
24
25 512 supercomputer clusters for computational support.
26
27
28
29 513
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 514 **Reference**
5
6 515 [1] M.R. Strand, Editorial overview: Parasites/parasitoids/biological control: The study of
7 516 parasitoid physiology begins to mature, *Curr Opin Insect Sci* 6 (2014) vi-ix.
8
9 517 [2] A. Kapranas, A. Tena, Encyrtid parasitoids of soft scale insects: biology, behavior, and their
10 518 use in biological control, *Annu Rev Entomol* 60 (2015) 195-211.
11
12 519 [3] J.A. Lynch, The Expanding Genetic Toolbox of the Wasp *Nasonia vitripennis* and Its
13 520 Relatives, *Genetics* 199(4) (2015) 897-904.
14
15 521 [4] J.H. Werren, D.W. Loehlin, The parasitoid wasp *Nasonia*: an emerging model system with
16 522 haploid male genetics, *Cold Spring Harb Protoc* 2009(10) (2009) pdb em0134.
17
18 523 [5] L. Beukeboom, C. Desplan, *Nasonia*, *Curr Biol* 13(22) (2003) R860-R860.
19
20 524 [6] R. Raychoudhury, C.A. Desjardins, J. Buellesbach, D.W. Loehlin, B.K. Grillenberger, L.
21 525 Beukeboom, T. Schmitt, J.H. Werren, Behavioral and genetic characteristics of a new species of
22 526 *Nasonia*, *Heredity* 104(3) (2010) 278-288.
23
24 527 [7] J.A.J. Breeuwer, J.H. Werren, Hybrid Breakdown between Two Haplodiploid Species: The
25 528 Role of Nuclear and Cytoplasmic Genes, *Evolution* 49(4) (1995) 705-717.
26
27 529 [8] X. Wang, J.H. Werren, A.G. Clark, Genetic and epigenetic architecture of sex-biased
28 530 expression in the jewel wasps *Nasonia vitripennis* and *giraulti*, *P Natl Acad Sci USA* 112(27)
29 531 (2015) E3545-E3554.
30
31 532 [9] L. Viljakainen, D.C. Oliveira, J.H. Werren, S.K. Behura, Transfers of mitochondrial DNA to
32 533 the nuclear genome in the wasp *Nasonia vitripennis*, *Insect molecular biology* 19 Suppl 1 (2010)
33 534 27-35.
34
35 535 [10] X. Wang, D. Wheeler, A. Avery, A. Rago, J.H. Choi, J.K. Colbourne, A.G. Clark, J.H.
36 536 Werren, Function and Evolution of DNA Methylation in *Nasonia vitripennis*, *Plos Genet* 9(10)
37 537 (2013).
38
39 538 [11] X. Wang, J.H. Werren, A.G. Clark, Allele-Specific Transcriptome and Methylome Analysis
40 539 Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in *Nasonia*, *PLoS Biol* 14(7)
41 540 (2016) e1002500.
42
43 541 [12] D.C.S.G. Oliveira, R. Raychoudhury, D.V. Lavrov, J.H. Werren, Rapidly evolving
44 542 mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp
45 543 *Nasonia* (Hymenoptera : Pteromalidae), *Mol Biol Evol* 25(10) (2008) 2167-2180.
46
47 544 [13] D.M. Rand, R.A. Haney, A.J. Fry, Cytonuclear coevolution: the genomics of cooperation,
48 545 *Trends Ecol Evol* 19(12) (2004) 645-653.
49
50 546 [14] Z.C. Yan, G.Y. Ye, J.H. Werren, Evolutionary Rate Correlation between Mitochondrial-
51 547 Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects, *Mol Biol Evol*
52 548 36(5) (2019) 1022-1036.
53
54 549 [15] C.K. Ellison, O. Niehuis, J. Gadau, Hybrid breakdown and mitochondrial dysfunction in
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 550 hybrids of *Nasonia* parasitoid wasps, *J Evol Biol* 21(6) (2008) 1844-51.
5

6 551 [16] J.H. Werren, S. Richards, C.A. Desjardins, O. Niehuis, J. Gadau, J.K. Colbourne, G.
7 552 *Nasonia* Genome Working, J.H. Werren, S. Richards, C.A. Desjardins, O. Niehuis, J. Gadau,
8 553 J.K. Colbourne, L.W. Beukeboom, C. Desplan, C.G. Elsik, C.J. Grimmelikhuijzen, P. Kitts, J.A.
9 554 Lynch, T. Murphy, D.C. Oliveira, C.D. Smith, L. van de Zande, K.C. Worley, E.M. Zdobnov, M.
10 555 Aerts, S. Albert, V.H. Anaya, J.M. Anzola, A.R. Barchuk, S.K. Behura, A.N. Bera, M.R.
11 556 Berenbaum, R.C. Bertossa, M.M. Bitondi, S.R. Bordenstein, P. Bork, E. Bornberg-Bauer, M.
12 557 Brunain, G. Cazzamali, L. Chaboub, J. Chacko, D. Chavez, C.P. Childers, J.H. Choi, M.E. Clark,
13 558 C. Claudianos, R.A. Clinton, A.G. Cree, A.S. Cristina, P.M. Dang, A.C. Darby, D.C. de Graaf,
14 559 B. Devreese, H.H. Dinh, R. Edwards, N. Elango, E. Elhaik, O. Ermolaeva, J.D. Evans, S. Foret,
15 560 G.R. Fowler, D. Gerlach, J.D. Gibson, D.G. Gilbert, D. Graur, S. Grunder, D.E. Hagen, Y. Han,
16 561 F. Hauser, D. Hultmark, H.C.t. Hunter, G.D. Hurst, S.N. Jhangiani, H. Jiang, R.M. Johnson, A.K.
17 562 Jones, T. Junier, T. Kadowaki, A. Kamping, Y. Kapustin, B. Kechavarzi, J. Kim, J. Kim, B.
18 563 Kiryutin, T. Koevoets, C.L. Kovar, E.V. Kriventseva, R. Kucharski, H. Lee, S.L. Lee, K. Lees,
19 564 L.R. Lewis, D.W. Loehlin, J.M. Logsdon, Jr., J.A. Lopez, R.J. Lozano, D. Maglott, R. Maleszka,
20 565 A. Mayampurath, D.J. Mazur, M.A. McClure, A.D. Moore, M.B. Morgan, J. Muller, M.C.
21 566 Munoz-Torres, D.M. Muzny, L.V. Nazareth, S. Neupert, N.B. Nguyen, F.M. Nunes, J.G.
22 567 Oakeshott, G.O. Okwuonu, B.A. Pannebakker, V.R. Pejaver, Z. Peng, S.C. Pratt, R. Predel, L.L.
23 568 Pu, H. Ranson, R. Raychoudhury, A. Rechtsteiner, J.T. Reese, J.G. Reid, M. Riddle, H.M.
24 569 Robertson, J. Romero-Severson, M. Rosenberg, T.B. Sackton, D.B. Sattelle, H. Schluns, T.
25 570 Schmitt, M. Schneider, A. Schuler, A.M. Schurko, D.M. Shuker, Z.L. Simoes, S. Sinha, Z.
26 571 Smith, V. Solovyev, A. Souvorov, A. Springauf, E. Stafflinger, D.E. Stage, M. Stanke, Y.
27 572 Tanaka, A. Telschow, C. Trent, S. Vattathil, E.C. Verhulst, L. Viljakainen, K.W. Wanner, R.M.
28 573 Waterhouse, J.B. Whitfield, T.E. Wilkes, M. Williamson, J.H. Willis, F. Wolschin, S. Wyder, T.
29 574 Yamada, S.V. Yi, C.N. Zecher, L. Zhang, R.A. Gibbs, Functional and evolutionary insights from
30 575 the genomes of three parasitoid *Nasonia* species, *Science* 327(5963) (2010) 343-8.
31

32 576 [17] J.D. Gibson, O. Niehuis, B.R. Peirson, E.I. Cash, J. Gadau, Genetic and developmental basis
33 577 of F2 hybrid breakdown in *Nasonia* parasitoid wasps, *Evolution* 67(7) (2013) 2124-32.
34

35 578 [18] Z.C. Yan, Q. Fan, Y. Tian, F. Wang, X.X. Chen, J.H. Werren, G.Y. Ye, Mitochondrial DNA
36 579 and their nuclear copies in the parasitic wasp *Pteromalus* puparum: A comparative analysis in
37 580 Chalcidoidea, *Int J Biol Macromol* 121 (2019) 572-579.
38

39 581 [19] D.A. Clayton, Replication of Animal Mitochondrial-DNA, *Cell* 28(4) (1982) 693-705.
40

41 582 [20] D.A. Clayton, Replication and Transcription of Vertebrate Mitochondrial-DNA, *Annu Rev
42 583 Cell Biol* 7 (1991) 453-478.
43

44 584 [21] D.X. Zhang, G.M. Hewitt, Insect mitochondrial control region: A review of its structure,
45 585 evolution and usefulness in evolutionary studies, *Biochem Syst Ecol* 25(2) (1997) 99-120.
46

47 586 [22] R.E. Broughton, T.E. Dowling, Length Variation in Mitochondrial-DNA of the Minnow
48 587 Cyprinella-SpiLOPTERA, *Genetics* 138(1) (1994) 179-190.
49

50 588 [23] N.E. Buroker, J.R. Brown, T.A. Gilbert, P.J. Ohara, A.T. Beckenbach, W.K. Thomas, M.J.
51 589 Smith, Length Heteroplasmy of Sturgeon Mitochondrial-DNA - an Illegitimate Elongation
52 590 Model, *Genetics* 124(1) (1990) 157-163.
53

1
2
3
4 591 [24] K. Hayasaka, T. Ishida, S. Horai, Heteroplasmy and Polymorphism in the Major Noncoding
5 592 Region of Mitochondrial-DNA in Japanese Monkeys - Association with Tandemly Repeated
6 593 Sequences, *Mol Biol Evol* 8(4) (1991) 399-415.
7
8 594 [25] D.M. Rand, R.G. Harrison, Molecular Population-Genetics of Mtdna Size Variation in
9 595 Crickets, *Genetics* 121(3) (1989) 551-569.
10
11 596 [26] M.J. Perrot-Minnot, L.R. Guo, J.H. Werren, Single and double infections with Wolbachia in
12 597 the parasitic wasp *Nasonia vitripennis*: effects on compatibility, *Genetics* 143(2) (1996) 961-72.
13
14 598 [27] X. Wang, Y.D. Kelkar, X. Xiong, E.O. Martinson, J. Lynch, C. Zhang, J.H. Werren, X.
15 599 Wang, Genome Report: Whole Genome Sequence and Annotation of the Parasitoid Jewel Wasp
16 600 *Nasonia giraulti* Laboratory Strain RV2X[u], G3 (Bethesda) 10(8) (2020) 2565-2572.
17
18 601 [28] X. Wang, X. Xiong, W. Cao, C. Zhang, J.H. Werren, X. Wang, Genome Assembly of the A-
19 602 Group Wolbachia in *Nasonia oneida* Using Linked-Reads Technology, *Genome Biol Evol*
20 603 11(10) (2019) 3008-3013.
21
22 604 [29] S. Andrews, FastQC: a quality control tool for high throughput sequence data, 2010.
23
24 605 [30] N.I. Weisenfeld, V. Kumar, P. Shah, D.M. Church, D.B. Jaffe, Direct determination of
25 606 diploid genome sequences (vol 27, pg 757, 2017), *Genome Res* 28(4) (2018) 606-606.
26
27 607 [31] W.J. Kent, BLAT - The BLAST-like alignment tool, *Genome Res* 12(4) (2002) 656-664.
28
29 608 [32] E. Dalla Benetta, I. Antoshechkin, T. Yang, H.Q.M. Nguyen, P.M. Ferree, O.S. Akbari,
30 609 Genome elimination mediated by gene expression from a selfish chromosome, *Sci Adv* 6(14)
31 610 (2020) eaaz9808.
32
33 611 [33] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform,
34 612 *Bioinformatics* 25(14) (2009) 1754-60.
35
36 613 [34] D. Li, C.M. Liu, R. Luo, K. Sadakane, T.W. Lam, MEGAHIT: an ultra-fast single-node
37 614 solution for large and complex metagenomics assembly via succinct de Bruijn graph,
38 615 *Bioinformatics* 31(10) (2015) 1674-6.
39
40 616 [35] M. Kearse, R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A.
41 617 Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes, A. Drummond, Geneious
42 618 Basic: An integrated and extendable desktop software platform for the organization and analysis
43 619 of sequence data, *Bioinformatics* 28(12) (2012) 1647-1649.
44
45 620 [36] M. Bernt, A. Donath, F. Juhling, F. Externbrink, C. Florentz, G. Fritzsch, J. Putz, M.
46 621 Middendorf, P.F. Stadler, MITOS: Improved de novo metazoan mitochondrial genome
47 622 annotation, *Mol Phylogenet Evol* 69(2) (2013) 313-319.
48
49 623 [37] R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high
50 624 throughput, *Nucleic Acids Res* 32(5) (2004) 1792-1797.
51
52 625 [38] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular Evolutionary
53 626 Genetics Analysis across Computing Platforms, *Mol Biol Evol* 35(6) (2018) 1547-1549.
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 627 [39] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
5 628 phylogenies, *Bioinformatics* 30(9) (2014) 1312-3.
6
7 629 [40] L. Wang, H.J. Park, S. Dasari, S. Wang, J.P. Kocher, W. Li, CPAT: Coding-Potential
8 630 Assessment Tool using an alignment-free logistic regression model, *Nucleic Acids Res* 41(6)
9 631 (2013) e74.
10
11 632 [41] M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, *Nucleic
12 633 Acids Res* 31(13) (2003) 3406-15.
13
14
15 634 [42] S.L. Cameron, Insect mitochondrial genomics: implications for evolution and phylogeny,
16 635 *Annu Rev Entomol* 59 (2014) 95-117.
17
18 636 [43] E.O. Martinson, Mrinalini, Y.D. Kelkar, C.H. Chang, J.H. Werren, The Evolution of Venom
19 637 by Co-option of Single-Copy Genes, *Curr Biol* 27(13) (2017) 2007-2013 e8.
20
21 638 [44] J.A.J. Breeuwer, J.H. Werren, Microorganisms associated with chromosome destruction and
22 639 reproductive isolation between two insect species, *Nature* 346(6284) (1990) 558-560.
23
24
25 640 [45] K. Mizuuchi, M. Mizuuchi, M. Gellert, Cruciform structures in palindromic DNA are
26 641 favored by DNA supercoiling, *J Mol Biol* 156(2) (1982) 229-43.
27
28
29 642 [46] G.P. Smith, Evolution of repeated DNA sequences by unequal crossover, *Science* 191(4227)
30 643 (1976) 528-35.
31
32 644 [47] B. Charlesworth, P. Sniegowski, W. Stephan, The evolutionary dynamics of repetitive DNA
33 645 in eukaryotes, *Nature* 371(6494) (1994) 215-20.
34
35 646 [48] G. Dover, Concerted evolution, molecular drive and natural selection, *Curr Biol* 4(12)
36 647 (1994) 1165-6.
37
38 648 [49] B.F. McAllister, J.H. Werren, Evolution of tandemly repeated sequences: What happens at
39 649 the end of an array?, *J Mol Evol* 48(4) (1999) 469-81.
40
41
42 650 [50] D.E. Khost, D.G. Eickbush, A.M. Larracuente, Single-molecule sequencing resolves the
43 651 detailed structure of complex satellite DNA loci in *Drosophila melanogaster*, *Genome Res* 27(5)
44 652 (2017) 709-721.
45
46
47 653 [51] S. Rozen, H. Skaletsky, J.D. Marszalek, P.J. Minx, H.S. Cordum, R.H. Waterston, R.K.
48 654 Wilson, D.C. Page, Abundant gene conversion between arms of palindromes in human and ape
49 655 Y chromosomes, *Nature* 423(6942) (2003) 873-6.
50
51 656 [52] A. Helgason, A.W. Einarsson, V.B. Guethmundsdottir, A. Sigurethsson, E.D. Gunnarsdottir,
52 657 A. Jagadeesan, S.S. Ebenesersdottir, A. Kong, K. Stefansson, The Y-chromosome point mutation
53 658 rate in humans, *Nat Genet* 47(5) (2015) 453-7.
54
55
56 659 [53] S.K. Amundsen, G.R. Smith, Chi hotspot activity in *Escherichia coli* without RecBCD
57 660 exonuclease activity: implications for the mechanism of recombination, *Genetics* 175(1) (2007)
58 661 41-54.
59
60 662 [54] A.J. Jeffreys, V. Wilson, S.L. Thein, Hypervariable 'minisatellite' regions in human DNA,
61
62
63
64
65

1
2
3
4 663 Nature 314(6006) (1985) 67-73.
5
6 664 [55] D.R. Johns, S.L. Rutledge, O.C. Stine, O. Hurko, Directly repeated sequences associated
7 with pathogenic mitochondrial DNA deletions, Proc Natl Acad Sci U S A 86(20) (1989) 8059-
8 666 62.
9
10 667 [56] B.C. Campbell, J.D. Steffen-Campbell, J.H. Werren, Phylogeny of the Nasonia species
11 complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and
12 28S rDNA sequences, Insect molecular biology 2(4) (1993) 225-37.
13
14 670 [57] N. Snall, K. Huoponen, M.L. Savontaus, K. Ruohomaki, Tandem repeats and length
15 variation in the mitochondrial DNA control region of *Epirrita autumnata* (Lepidoptera :
16 Geometridae), Genome 45(5) (2002) 855-861.
17
18 673 [58] J.M. Cornuet, L. Garnery, M. Solignac, Putative Origin and Function of the Intergenic
19 Region between Coi and Coii of *Apis-Mellifera* L Mitochondrial-DNA, Genetics 128(2) (1991)
20 393-403.
21
22 676 [59] T.M. Boyce, M.E. Zwick, C.F. Aquadro, Mitochondrial-DNA in the Bark Weevils - Size,
23 Structure and Heteroplasmy, Genetics 123(4) (1989) 825-836.
24
25 678 [60] B.N. Kent, L. Salichos, J.G. Gibbons, A. Rokas, I.L. Newton, M.E. Clark, S.R. Bordenstein,
26 Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by
27 targeted genome capture, Genome Biol Evol 3 (2011) 209-18.
28
29 681 [61] H. Ogata, K. Suhre, J.M. Claverie, Discovery of protein-coding palindromic repeats in
30 Wolbachia, Trends Microbiol 13(6) (2005) 253-5.
31
32 683 [62] J. Reveillaud, S.R. Bordenstein, C. Cruaud, A. Shaiber, O.C. Esen, M. Weill, P.
33 Makoundou, K. Lolans, A.R. Watson, I. Rakotoarivony, S.R. Bordenstein, A.M. Eren, The
34 Wolbachia mobilome in *Culex pipiens* includes a putative plasmid, Nat Commun 10(1) (2019)
35 1051.
36
37 687 [63] J. Pascar, C.H. Chandler, A bioinformatics approach to identifying Wolbachia infections in
38 arthropods, PeerJ 6 (2018) e5486.
39
40 689 [64] X. Wang, X. Xiong, W. Cao, C. Zhang, J.H. Werren, X. Wang, Phylogenomic analysis of
41 Wolbachia strains reveals patterns of genome evolution and recombination, Genome Biology and
42 Evolution (2020).
43
44 692 [65] C.F. Mugal, C.C. Weber, H. Ellegren, GC-biased gene conversion links the recombination
45 landscape and demography to genomic base composition: GC-biased gene conversion drives
46 genomic base composition across a wide range of species, Bioessays 37(12) (2015) 1317-26.
47
48 695 [66] E. Pessia, A. Popa, S. Mousset, C. Rezvov, L. Duret, G.A. Marais, Evidence for widespread
49 GC-biased gene conversion in eukaryotes, Genome Biol Evol 4(7) (2012) 675-82.
50
51 697 [67] F. Nasar, C. Jankowski, D.K. Nag, Long palindromic sequences induce double-strand
52 breaks during meiosis in yeast, Mol Cell Biol 20(10) (2000) 3449-58.
53
54 699 [68] S. Glémin, P.F. Arndt, P.W. Messer, D. Petrov, N. Galtier, L. Duret, Quantification of GC-
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 700 biased gene conversion in the human genome, *Genome Res* 25(8) (2015) 1215-1228.
5
6 701 [69] Z. Niu, Q. Xue, H. Wang, X. Xie, S. Zhu, W. Liu, X. Ding, Mutational Biases and GC-
7 Biased Gene Conversion Affect GC Content in the Plastomes of *Dendrobium* Genus, *Int J Mol*
8 703 Sci 18(11) (2017) 2307.
9
10 704 [70] B. Trombetta, F. Cruciani, Y chromosome palindromes and gene conversion, *Human*
11 705 *Genetics* 136(5) (2017) 605-619.
12
13 706 [71] G. Dover, Molecular drive: a cohesive mode of species evolution, *Nature* 299(5879) (1982)
14 707 111-7.
15
16 708 [72] G. Dover, Molecular drive, *Trends Genet* 18(11) (2002) 587-9.
17
18 709 [73] D.E. Axelrod, K.A. Baggerly, M. Kimmel, Gene amplification by unequal sister chromatid
19 710 exchange: probabilistic modeling and analysis of drug resistance data, *J Theor Biol* 168(2)
20 711 (1994) 151-9.
21
22 712 [74] H. Fan, J.Y. Chu, A brief review of short tandem repeat mutation, *Genomics Proteomics*
23 713 *Bioinformatics* 5(1) (2007) 7-14.
24
25 714 [75] D.R. Leach, Long DNA palindromes, cruciform structures, genetic instability and secondary
26 715 structure repair, *Bioessays* 16(12) (1994) 893-900.
27
28 716 [76] Z.-H. Zhou, E. Akgün, M. Jasin, Repeat expansion by homologous recombination in the
29 717 mouse germ line at palindromic sequences, *Proceedings of the National Academy of Sciences*
30 718 98(15) (2001) 8326.
31
32 719
33 720

1
2
3
4 721 **List of tables**
5
6
7 722 **Table 1.** Mitochondrial genome assemblies of five wasp species.
8 723
9 724 **Table 2.** Mitochondrial gene annotations of five jewel wasp species.
10
11 725
12
13 726 **Figure legends**
14
15 727 **Figure 1. Mitochondrial gene annotation and genome organization in seven wasp species**
16 **and comparison to the ancestral insect mitochondrial genome.**
17 Mitochondrial genome annotations of (A) insect ancestral mtDNA, adapted from Cameron 2014;
18 (B) *Apis mellifera*, recreated from GenBank accession number MT859135.1; (C) *Ppup*
19 (*Pteromalus puparum*), recreated from Yan et al. 2019; (D) *Muscidifurax raptorellus* (*Mell*); (E)
20 a hypothetical ancestral *Nasonia* mtDNA; (F) *T. sarcophagae* (*Ts*); (G) *N. giraulti* (*Ng*); (H) *N.*
21 *oneida* (*No*); (I) *N. longicornis* (*Nl*); (J) *N. vitripennis* (*Nv*). The *A. mellifera* gene order and
22 orientations for protein-coding genes are the same as the ancestral insect mtDNA. Both the *Mell*
23 and *Ppup* have identical gene order, which differs from the ancestral insect mtDNA by having an
24 inversion between the tRNA genes *trnE* and *trnC*, and a translocation event of *trnC*. The exact
25 location of the inversion event is less defined for the tRNAs when including *A. mellifera*, but it is
26 clear that there is an inversion between *cox1* and *nad3* (Event I). The genic inversion is indicated
27 by dark solid lines. (E) is the hypothetical ancestral *Nasonia* mtDNA intermediate between
28 *Mell/Ppup* gene order and *Ts* and *Nasonia*. A single inversion event occurred between *trnQ* and
29 *trnM*, which involves 12 protein-coding genes (Event II). Using the hypothetical intermediate
30 mtDNA as a reference, there is an additional inversion that have occurred between *trnQ* and *trnR*
31 (Event III). A simplified phylogenetic relationship is shown on the right, and the time of three
32 inversion events is labeled.
33
34
35
36
37
38
39 746 **Figure 2. Comparison of phylogenetic relationship of five jewel wasp species using nuclear**
40 **genome and mitochondrial genome sequences.**
41 The phylogenetic tree for mitochondrial genes is constructed using MEGA-X with 1000
42 bootstraps on concatenated protein-coding genes. The nuclear gene tree is generated using
43 RAxML with 1,000 bootstraps on concatenated single-copy orthologs.
44
45
46
47 752 **Figure 3. *Nasonia vitripennis* mitochondrial DNA complete sequence, gene, and tandem**
48 **repeat array annotation.**
49 The structure of the *Nasonia vitripennis* mitochondrial genome and zoomed-in and linear view of
50 the control region. (A) The circular mitochondrial genome of *Nv*. Green indicates protein-coding
51 genes; red indicates ribosomal RNAs, and pink indicates tRNAs. GC% of the entire genome is
52 represented as a blue graph beneath the genome annotations. The gray circles serve as a
53 reference for the GC% as 0%, 50%, and 100%. (B) The elaborated and linear view of the control
54 region, including GC percentage. Yellow indicates the individual repeat units, and green
55 indicates the palindromic arms that are complementary to each other.
56
57
58
59 762 **Figure 4. *Nasonia vitripennis* repeat region coverage in five *Nv* MT strains and five other**
60 **wasp species.**
61
62
63
64
65

1
2
3
4 764 (A) Repeat read counts per million mapped reads to the *Nv* genome for ten jewel wasp strains.
5 765 (B) Haploid nuclear genome coverage of all ten wasp strains. (C) Coverage of reads from all
6 766 jewel wasps in all three regions of the *Nv* mitochondrial genome per 1X haploid nuclear genome
7 767 coverage.
8 768
9 769 **Figure 5. Sequence and structural features of *N. vitripennis* MT control region.**
10 770 (A) Dot-matrix plot of pairwise BLASTn comparison analysis indicates the presence of an ultra-
11 771 sized palindromic DNA sequence in the control region. (B) Models of representative structures
12 772 of the control region, including the normal double-stranded state and two other potential states
13 773 with super-cruciform structures. The blue arrows indicate the forward tandem repeats while the
14 774 light blue arrows are complementary copies. The purple arrow and light purple arrow are the pair
15 775 of central palindromic sequence repeat. (C) The potential hairpin structure formed by the single
16 776 repeat unit.
17 777
18 778 **Figure 6. Alignments of 29 tandem repeat units in the *Nasonia vitripennis* (*Nv*)**
19 779 **mitochondrial genome indicate high sequence similarity.**
20 780 (A) The alignment of all 29 repeat units from the *Nv* AsymCx strain mitochondrial control
21 781 region. The red highlight indicates the substitution of A, blue indicates C, green indicates T, and
22 782 yellow indicates G. For alignment purposes, the direction of repeat units 18-29 is reversed. The
23 783 compensatory nucleotide variations in repeats 1-2-3-4 and 26-27-28-29 were labeled in gray
24 784 boxes. (B) The consensus repeat unit sequences in five *Nv* strains (AsymCx, LabII, R16A, R5-
25 785 11, and V12.1).
26 786
27 787
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

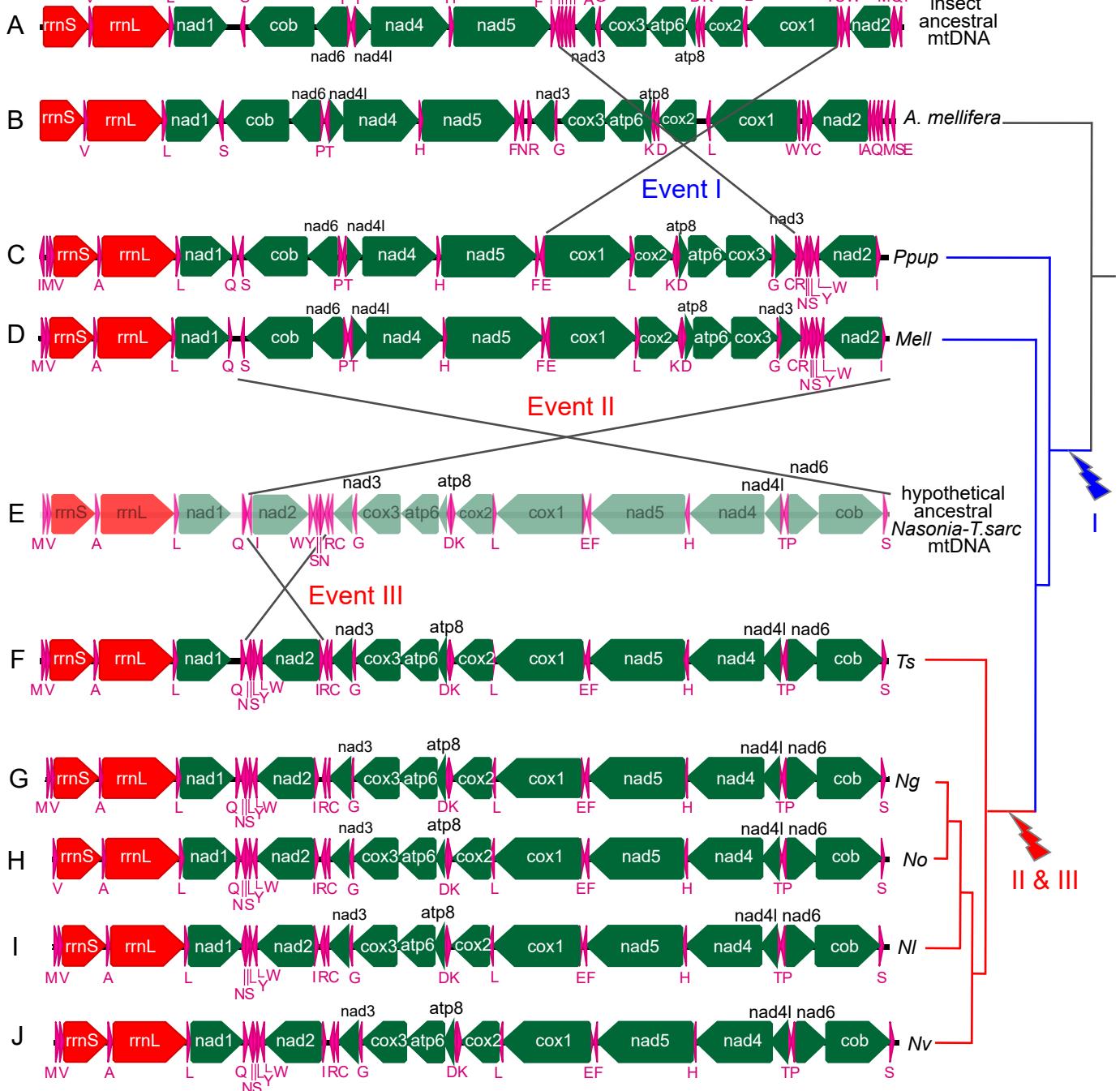
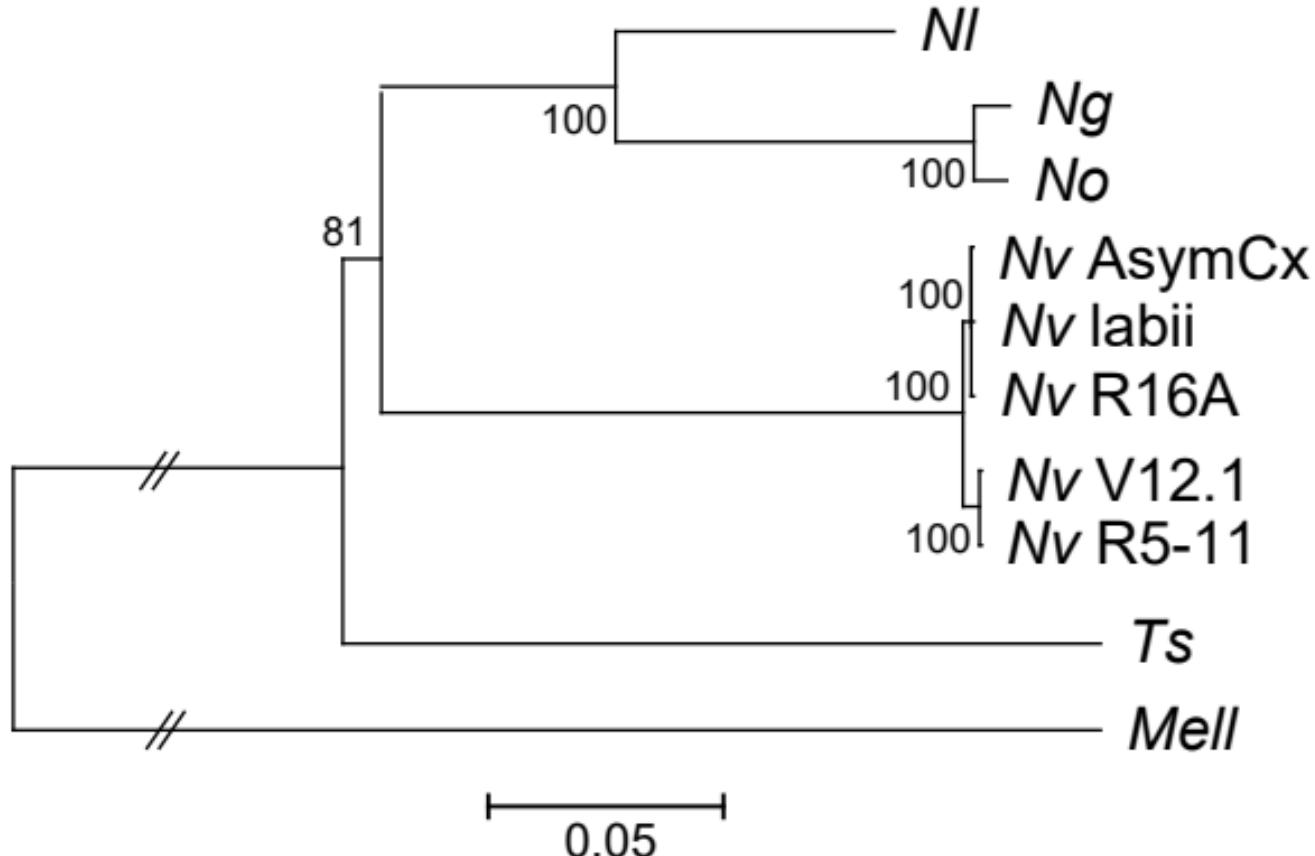



Figure 2

Mitochondria genes

Click here to access/download;Figure;Figure2_v2.pdf

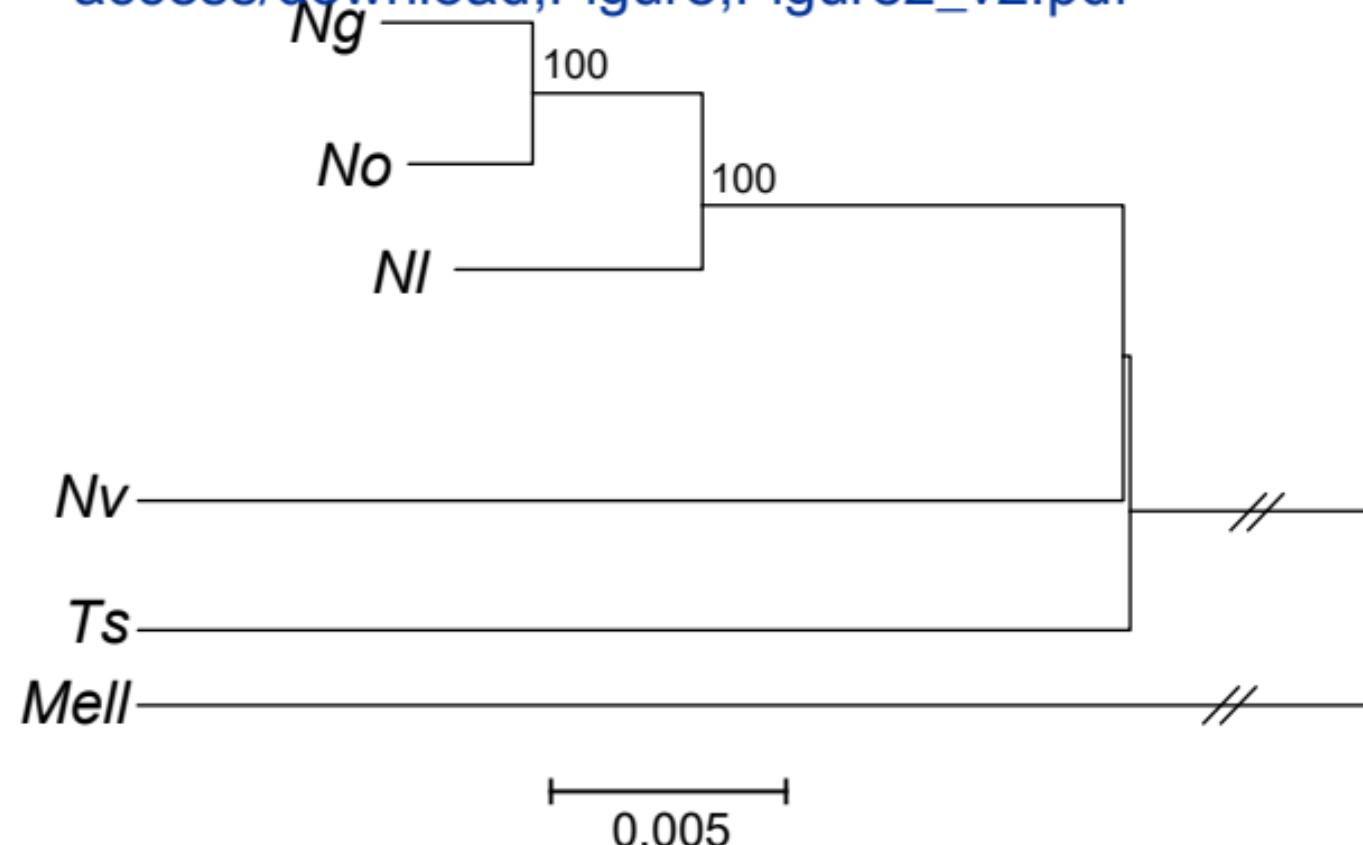
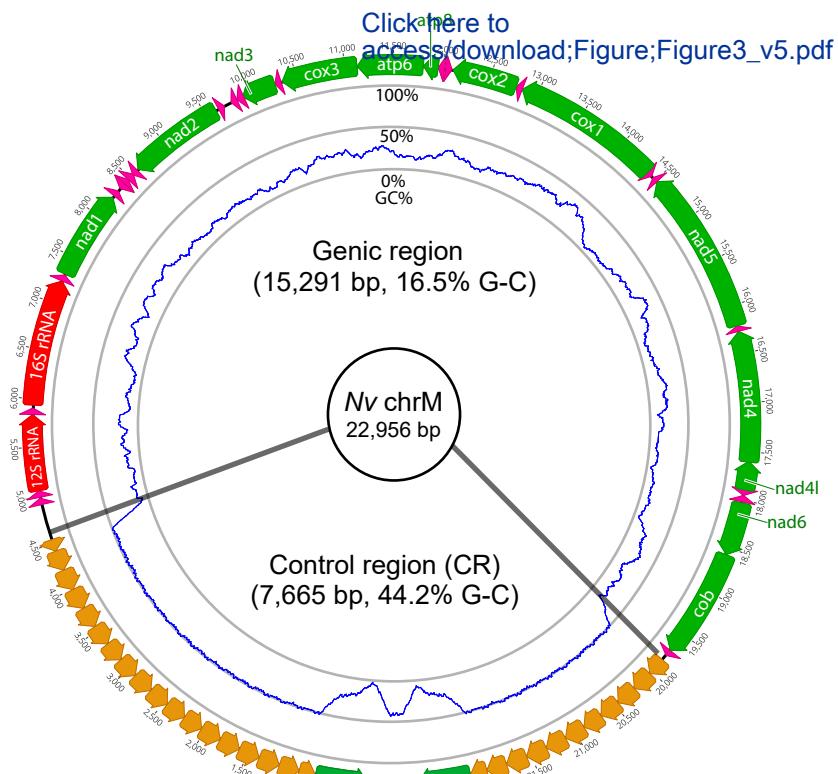



Figure 3

A

B

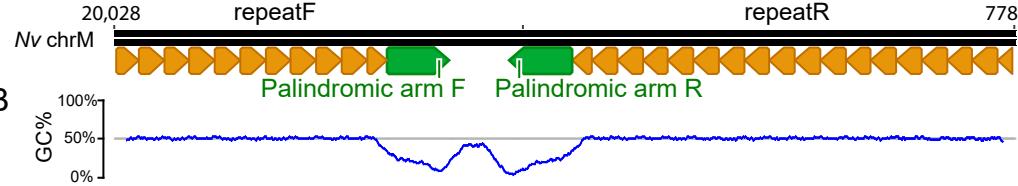
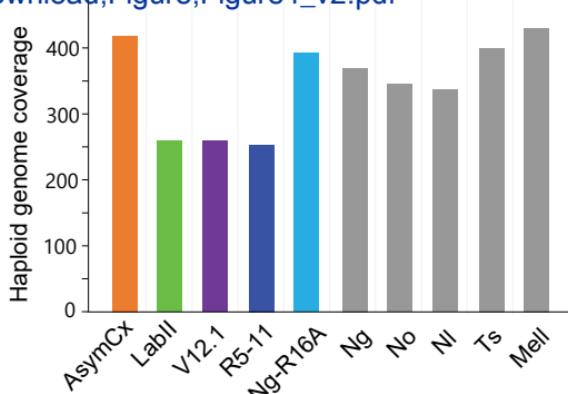
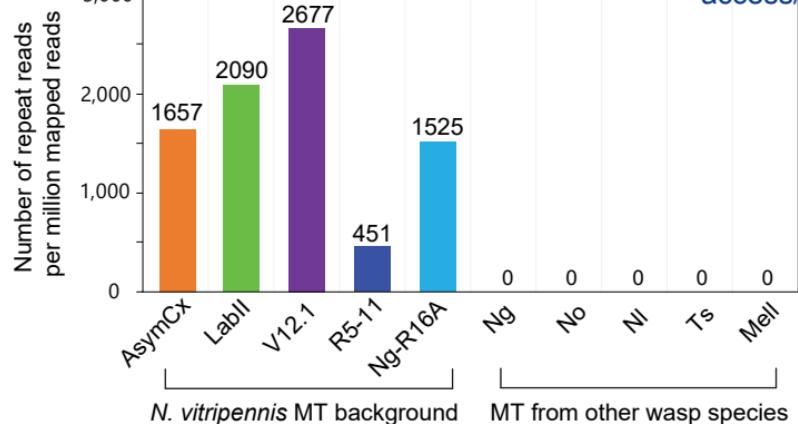




Figure 4 A Click here to access/download;Figure;Figure4_v2.pdf ☰

C

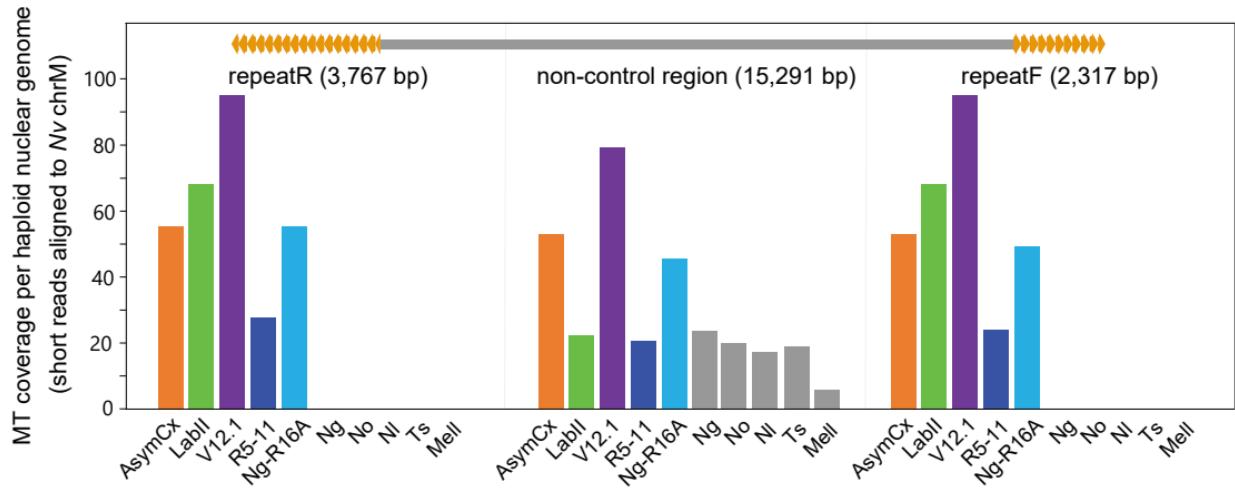
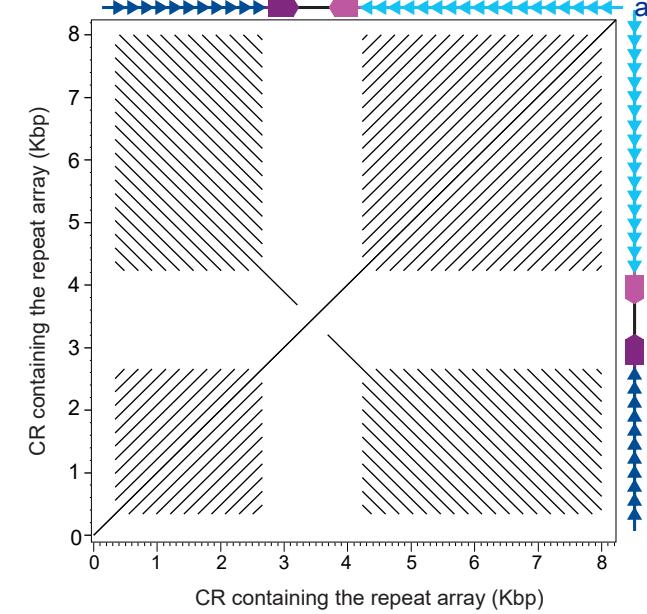
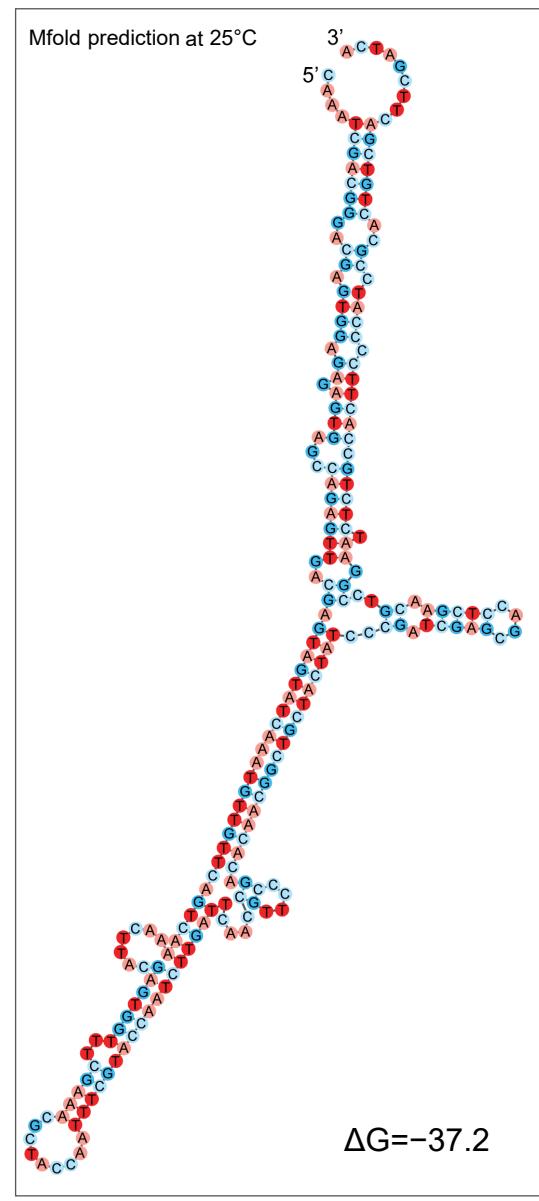
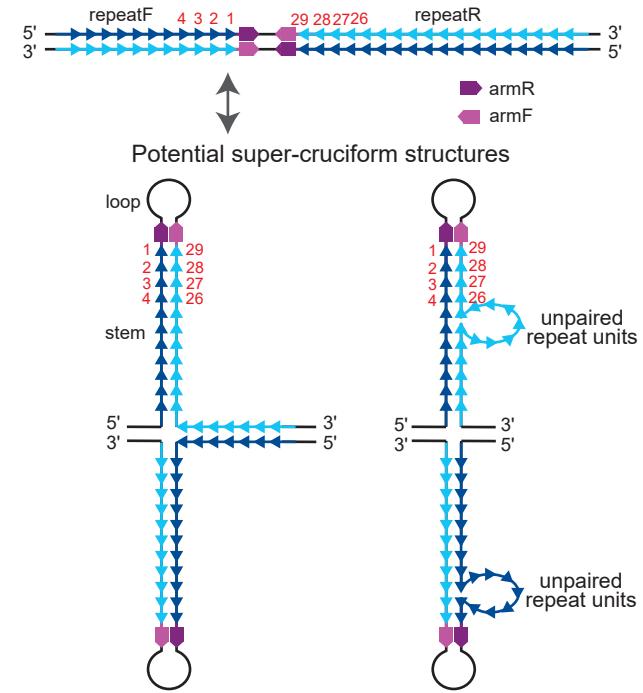
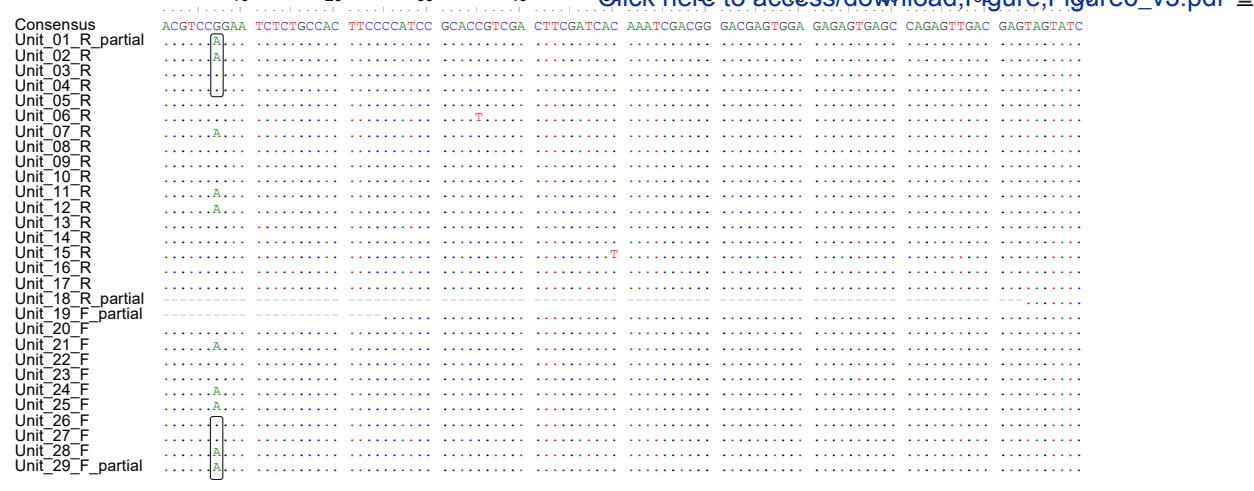
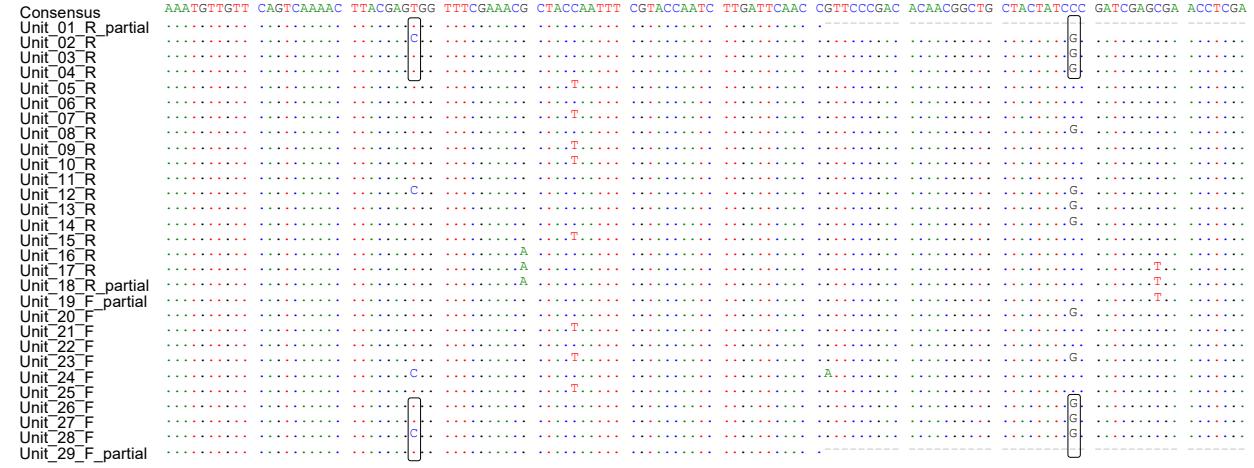



Figure 5 Dot matrix view of BLASTN comparison

Click here to
access/download;Figure;Figure5_v4.pdf

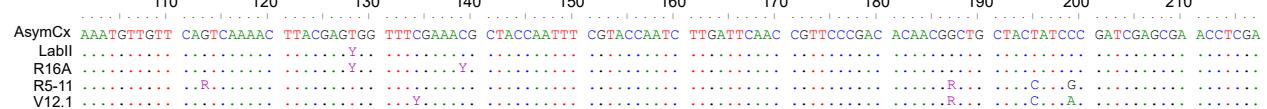
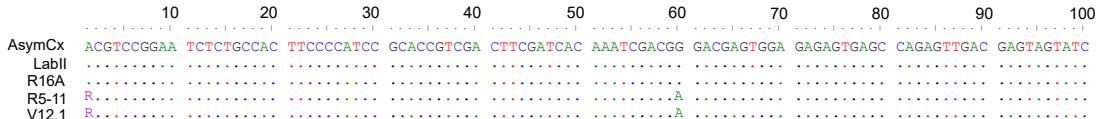
B Normal double stranded structure of CR


Figure 6

A

AsymCx (1-100 bp)

AsymCx (101-217 bp)

B

Nv strain consensus

Table 1. Mitochondrial genome assemblies of five wasp species.

mtDNA	Length (bp)	Depth (X)	GC%	CpG%	Completion status
<i>Nv</i> (AsymCx)	22,956	21433.1	25.8%	5.9%	Circularized
<i>Ng</i>	15,310	54221.9	18.0%	1.7%	CR not closed
<i>No</i>	14,811	33091.9	16.5%	1.1%	CR not closed, missing trnM
<i>Nl</i>	14,925	24097.0	15.8%	1.1%	CR not closed, missing trnQ
<i>Ts</i>	15,042	32079.1	17.1%	1.1%	CR not closed

Table 2. Mitochondrial gene annotations of five jewel wasp species.

Type	Gene	N _v start	N _v end	N _g start	N _g end	N _o start	N _o end	N _l start	N _l end	T _s start	T _s end
rRNA	12 S rRNA	5,053	5,836	395	462	94	871	285	1,063	203	981
	16 S rRNA	5,927	7,234	466	535	953	2,260	1,149	2,506	1,081	2,388
Protein coding genes	nad1	7,308	8,234	536	1,312	2,338	3,264	2,534	3460	2,461	3,387
	nad2	8,612	9,616	1,326	1,389	3,625	4,627	3,734	4,736	3,951	4,950
	nad3	9,923	10,273	1,390	2,700	4,920	5,269	5,010	5,360	5,190	5,539
	cox3	10,344	11,129	2,701	2,771	5,344	6,129	5,430	6,215	5,608	6,393
	atp6	11,132	11,806	2,778	3,704	6,130	6,802	6,216	6,888	6,394	7,066
	atp8	11,800	11,958	3,751	3,822	6,796	6,954	6,882	7,046	7,060	7,218
	cox2	12,105	12,773	3,855	3,921	7,103	7,771	7,192	7,860	7,366	8,034
	cox1	12,837	14,378	3,924	3,985	7,838	9,374	7,927	9,463	8,102	9,638
	nad5	14,520	16,205	3,987	4,054	9,506	11,194	9,594	11,282	9,762	11,448
	nad4	16,271	17,609	4,053	4,118	11,258	12,596	11,347	12,685	11,517	12,855
tRNA	nad4l	17,603	17,890	4,119	5,121	12,590	12,877	12,679	12,966	12,849	13,136
	nad6	18,028	18,576	5,149	5,218	13,018	13,566	13,102	13,644	13,276	13,824
	cob	18,578	19,715	5,279	5,348	13,567	14,704	13,645	14,782	13,824	14,961
	trnM	4,910	4,981	5,354	5,421	-	-	147	215	61	130
	trnV	4,985	5,052	5,422	5,771	24	93	216	284	136	202
	trnA	5,840	5,903	5,772	5,837	885	948	1,072	1,137	987	1,050
	trnL1(UAG)	7,235	7,301	5,846	6,631	2,261	2,331	2,458	2,527	2,389	2,457
	trnQ	8,249	8,320	6,632	7,304	3,267	3,338	-	-	3,592	3,659
	trnN	8,345	8,411	7,298	7,456	3,361	3,427	3,473	3,539	3,682	3,748
	trnS1	8,414	8,473	7,458	7,524	3,430	3,491	3,540	3,602	3,750	3,813
	trnY	8,476	8,543	7,529	7,601	3,493	3,560	3,604	3,669	3,819	3,886
	trnW	8,542	8,608	7,605	8,273	3,559	3,624	3,668	3,733	3,885	3,950
	trnI	9,644	9,704	8,274	8,339	4,655	4,724	4,764	4,832	4,976	5,043
	trnR	9,784	9,854	8,340	9,876	4,777	4,846	4,872	4,942	5,050	5,119
	trnC	9,857	9,923	9,871	9,935	4,852	4,919	4,944	5,010	5,124	5,189
	trnG	10,274	10,341	9,942	10,006	5,270	5,335	5,361	5,427	5,540	5,605
	trnD	11,960	12,024	10,008	11,696	6,956	7,022	7,048	7,113	7,220	7,286
	trnK	12,028	12,101	11,697	11,759	7,027	7,099	7,117	7,189	7,291	7,363
	trnL2(UAA)	12,774	12,841	11,760	13,098	7,772	7,837	7,861	7,926	8,035	8,101
	trnE	14,373	14,442	13,092	13,379	9,369	9,433	9,458	9,523	9,633	9,699
	trnF	14,456	14,520	13,378	13,441	9,440	9,505	9,530	9,593	9,698	9,761
	trnH	16,206	16,270	13,442	13,507	11,195	11,257	11,283	11,346	11,449	11,516
	trnT	17,890	17,954	13,521	14,069	12,877	12,940	12,966	13,030	13,136	13,199
	trnP	17,890	17,954	14,070	15,207	12,941	13,005	13,031	13,096	13,201	13,267
	trnS2	19,716	19,782	15,208	15,275	14,705	14,772	14,783	14,850	14,962	15,029

-: the gene was not found in the current mitochondrial genome assembly.

Author statements

Zi Jie Lin: Methodology, Software, Validation, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization. **Xiaozhu Wang:** Software, Investigation, Writing - Original Draft. **Jinbin Wang:** Investigation. **Yongjun Tan:** Methodology, Software, Formal analysis, Data Curation, Writing - Review & Editing. **Xueming Tang:** Resources, Supervision. **John H. Werren:** Conceptualization, Resources, Writing- Reviewing and Editing. **Dapeng Zhang:** Methodology, Software, Formal analysis, Data Curation, Writing - Review & Editing, Visualization, Supervision. **Xu Wang:** Conceptualization, Methodology, Software, Formal analysis, Resources, Data Curation, Writing - Original Draft, Writing- Reviewing and Editing, Visualization, Supervision, Funding acquisition.

Click here to access/download
Supplementary Material
FigureS1-S2.pdf

Click here to access/download
Supplementary Material
Table_S1-S7.pdf