Human-Robot Collaboration and Dialogue for
Fault Recovery on Hierarchical Tasks

Janelle Blankenburg!, Mariya Zagainova', S. Michael Simmons?, Gabrielle
Talavera!, Monica Nicolescu', and David Feil-Seifer!

! Department of Computer Science & Engineering University of Nevada, Reno, Reno,
NV, 89557 jjblankenburg@nevada.unr.edu
2 Department of Computer Science, Brigham Young University, Provo, Utah, 84602

Abstract. Robotic systems typically follow a rigid approach to task ex-
ecution, in which they perform the necessary steps in a specific order,
but fail when having to cope with issues that arise during execution.
We propose an approach that handles such cases through dialogue and
human-robot collaboration. The proposed approach contributes a hierar-
chical control architecture that 1) autonomously detects and is cognizant
of task execution failures, 2) initiates a dialogue with a human helper
to obtain assistance, and 8) enables collaborative human-robot task exe-
cution through extended dialogue in order to 4) ensure robust execution
of hierarchical tasks with complex constraints, such as sequential, non-
ordering, and multiple paths of execution. The architecture ensures that
the constraints are adhered to throughout the entire task execution, in-
cluding during failures. The recovery of the architecture from issues dur-
ing execution is validated by a human-robot team on a building task.

Keywords: human-robot collaboration - human-robot dialogue - dialogue-
based fault recovery - hierarchical planning.

1 Introduction

Fault recovery in autonomous robot systems is an essential component for en-
suring that any unexpected circumstances can be handled without the complete
failure of a task. The goal of this work is to develop a control architecture for
hierarchical tasks which is able to recover from faults during execution through
dialogue and human-robot collaboration. The proposed architecture is cognizant
of failures and can initiate a dialogue to resolve an issue. Extended dialogue be-
tween the robot and human, rather than a single request for help, allows for
multiple ways of resolving a fault. Failures are autonomously detected through a
combination of views from multiple cameras. The architecture ensures that the
task constraints are held throughout the entire task execution, even during fail-
ures. This allows for a robust execution of a hierarchical task with multiple types
of constraints such as sequential, non-ordering, and multiple paths of execution.
We provide an extension to our previously developed control architecture [8] to
allow for fault recovery, to allow for a smooth interaction between a human and
robot collaborating on a complex, hierarchical task.

2 J. Blankenburg et al.

2 Related Work

Joint assembly tasks employ several elements in order for the system to ac-
quire/learn a model of the task, to monitor its progress, and to repair the system
when things fail. Task construction is an essential part of this process, demon-
strated through human-robot collaboration [5] or dialogue-based systems [17].
Human demonstrations can be used to learn a hierarchical plan [10]. Task de-
scription can also be manually specified by using a graphical user interface [15].
However, failure resolution was not done when collisions occurred in these works,
the robots would generally defer to what their partner wanted to do.

Task verification is critical in joint assembly tasks for robotic systems. It has
been implemented in single [14] and multiple [2] robot systems that use computer
vision for task verification. In the 2016 Amazon Picking Challenge, a vacuum
sensor was used to receive boolean feedback on the grasp of an object [12]. The
proposed approach uses multiple on-board sensors to ensure proper completion
of each task step and that constraints are upheld during resolution.

When a robot fails a task it is important that the team can resolve the
problem autonomously [18]. Fong et. al. found that dialogue makes human users
more aware of the problems robots face [7]. When plans fail, it can help when
a system can explain why it made certain decisions [11]. Unlike these works,
the proposed work seeks to resolve conflicts in hierarchical tasks with complex
constraints by utilizing an extended dialogue between a human and robot.

Several studies have had robots initiate communication with humans when a
problem arose [7, 6]. Fong et. al. had a robot explore a room via teleoperation and
ask a remote human about how to proceed when confronted with uncertainty [7].
Extensions of this work had a team of robots conduct a surveillance task, illumi-
nating that dialogue improved the human’s ability to deal with context switching
[6]. Both [7, 6] focused on collaborative teleoperation based tasks. These studies
primarily focused on how humans interact with robots asking questions. How-
ever, humans primarily offered additional information to the robot but were not
capable of helping the robot complete the task, which our work allows.

Robots have also asked humans for assistance in building a piece of IKEA
furniture [14]. The robots identified the causes of their problems and initiated
a dialogue to solve it. This work is most similar to ours but has several key
differences: their architecture was bound by a rigid instruction set; the system
required an external Vicon system to perform the fault-detection whereas we
utilize on-board sensors; and it focuses on the complexity of the robots’ requests
for help whereas we focus on an extended dialogue between human and robot.

3 Control Architecture with Fault Recovery

3.1 Distributed Control Architecture

This work extends the control architecture developed in [8] to incorporate a
dialogue-based management system of task faults capable of autonomously de-
tecting and resolving issues through human-robot collaboration and dialogue.

Human-Robot Collaboration and Dialogue for Fault Recovery 3

The architecture uses a behavior-
based paradigm [1], which allows com-
munication and connectivity between
sub-tasks. It encodes tasks into a hi-
erarchical structure capable of incor-
porating multiple types of constraints,
namely sequential, non-ordering, and
multlple paths of execution (as shown Fig. 1. The task tree for the EKET build-
in Figure 1). The structures are com- 1ng task. Internal nodes are goal nodes and
posed of two types of nodes. Goal leaves are behavior nodes.

Nodes provide the base goal control behaviors of the hierarchical task struc-
ture used to encode task constraints: sequential (THEN), non-ordering (AND),
and alternative paths of execution (OR). Behavior Nodes are leaf nodes that
encode the robot’s physical behaviors.

Each node maintains a state consisting of several components (activation
level, activation potential, active, and done), which is used for communication
and connectivity between nodes. Each node’s state is continuously updated to
perform top-down and bottom-up activation spreading, which guarantees proper
execution of the task with respect to its constraints. To execute a task, activa-
tion spreading messages are sent from the root node towards its children, thereby
performing a top-down spreading of the activation level throughout the tree. Si-
multaneously, each nodes sends status messages (encoding a node’s current state)
to its parent node, thereby performing a bottom-up spreading of the activation
potential. Each node’s state is maintained via an update loop that performs a
series of checks at each cycle. This loop uses the activation potential information
to activate the node that has the highest potential [8].

PickAndPlace
green_leg
PickAndPlace
pink_bar

PickAndPlace
yellow_bar

3.2 Interfacing with the Control Architecture

To allow the architecture to handle interruptions that come from the fault de-
tection system, the update loop of the nodes from [8] was modified by adding a
checking mechanism that allows the loop to continue as normal unless a failure
is detected. In case of a detected fault, a Robot Operating System (ROS) [16]
message is published to the corresponding node’s issue topic. Once the node re-
ceives such a message, the node’s issue callback function is triggered (Figure 2).
In this function, a ROS message is published on the dialogue topic to initialize
the dialogue that corresponds to the specific failure that was detected. This initi-
ates the dialogue between the robot and human and allows the human to provide
assistance (Section 3.3). After the dialogue is initialized, a while loop stops the
current behavior in the architecture, as well as the physical motion of the robot,
from finishing until a resolution has been reached through the dialogue between
the robot and human. Since the node that the robot is working on is active at
the time of the detected failure, no other nodes can be activated until that node
is done or reset, allowing the entire architecture, and therefore task progress, to
be paused from within a single node. This pause ensures that no task constraints
are broken during the handling of the fault.

4 J. Blankenburg et al.

Once a resolution message is re- Noissemss
ceived from the dialogue system,

changes are made to the node’s state fesve publaned

based on the type of resolution. If the Diclogue

Returns to initialized*

resolution involves either the human, update loop No resoluion msg

[
robot, or both, to complete the task msg_mw ety
5 . node - resolution
then the node’s state is set to done

and its activation level is set to zero.
In the case that the resolution is hu-
man_finish, the human will perform
the required work to complete the
task. If the resolution is robot_finish,
then the robot will continue on with
the remaining work required to finish Fig. 2. State machine diagram of architec-
the task, after being briefly assisted ture flow upon issue detection.

by the human (i.e. the human hands the robot an object that is out of its reach).
Once the human completes the action, the robot is able to finish the task with-
out further help. This assistance varies based on the task at hand and the issue
found. If the resolution is collab_finish, then the human must work together with
the robot simultaneously to complete the task (i.e., the human must hold and
align an object as the robot connects another object). This resolution requires
both agents to work together at the same time to fully complete the task.

Lastly, if the robot is required to retry the execution (robot_retry), the node
gets deactivated. This deactivation sets the node’s state back to what it was
before the node was activated, thereby ensuring that the task constraints encoded
by the task tree are still upheld after the conflict is resolved. The node’s state
is set to mot done and its activation level is reset to its original level upon
activation. If a node is deactivated, it can be chosen for activation at a later
time and the robot can attempt the execution of that behavior again.

Pause and deactivate ensures that our architecture is able to maintain the
task constraints during the entire task execution. The various resolution mes-
sages allow the architecture to utilize multiple ways to resolve a conflict, thus
being able to handle different levels of conflict. Some resolutions only require a
temporary pause of the architecture until the work is completed (minor fault),
while others require the robot to retry (major fault, as it requires both pausing
and deactivating the node, which in turn resets part of the task tree).

msg = collab_finish msg = human_finish ~ msg = robot_finish

Robot
finishes
action

Human
finishes
action

Collaborate
to finish
action

3.3 Dialogue Module

When a ROS message is published to the dialogue topic, the dialogue is initial-
ized, as shown in Figure 2. This initiates a communication between the robot and
human. The high-level flow-chart for the initiated dialogue (Figure 3) illustrates
the major interactions that occur between the human and robot that encompass
the extended dialogue. There are two main components to this interaction that
are specific to the failure that was detected: Detected issue (the name of the
issue detected) and Action (the action that needs to be performed).

Human-Robot Collaboration and Dialogue for Fault Recovery 5

Additionally, there are two internal checks which affect the outcome of the
dialogue: 1) Human collaboration required? and 2) Should robot complete task
now? The first checks if collaboration is required to complete the task, i.e. the
human and robot must work together simultaneously to finish the task. The
second checks whether the robot should complete the task at the current time.

(Detected issue)
msg published
Explain the (detected issue)

If the issue does mnot
require human collaboration
the robot will ask if it should
complete the task. If the hu-
man replies with yes, the
robot will provide the human M
with instructions on how to
reset the objects so the robot - o

— ~

Will human do (action)?

Human
collaboration
required?

Yes

‘Ask human for help,
thank human

can complete the task on its
own. Then, depending on the
second check, the robot will
either finish the task at the e

Explain what human must do to
allow robot to complete (action)

Should robot
complete
task now?

current time or inform the ro No vds
human that it will retry the [obotwi iy facton) agan [Tk o R o darg |
task again later and the corre- Meg = robot_retry Msg = human_frsh

SpOHleg resolution message Msg = robot_finish Msg = collab_finish —

is published. If the human Fig. 3. Flow-chart of the dialogue initiated between
replies with a no, then the robot and human when an issue is detected.
robot will ask if the human will complete the task. If the human again responds

with no, the resolution message is published to enable the robot to retry and the
human is notified. If the human responds with yes, the robot thanks the human
and the resolution message for the human completing the task is published.

The robot utilizes an on-board speaker and the sound_play [9] software to
communicate with the human. PocketSphinx [13] is used to recognize the hu-
man’s yes or no responses. Once a response is recognized, the dialogue flow
between robot and human continues accordingly.

This approach provides a simple way for new issues to be added into the
system. Although specific details (such as the exact dialogue exchanges) will
vary based on the issue, this flow outlines all of the necessary interactions that
would occur between the human and the robot for any simple issue that could be
added, emphasizing the generality of the proposed dialogue-based management
system for fault recovery. The faults currently detected by our system for the
assembly scenario (Section 4) are summarized below:

Positioning: The positioning issue message is raised if a robot needs assistance
with precisely positioning an object as it is placed. The robot asks the human
for help placing the object and thanks the human. The motion of the robot is
then slowed down and the human can assist with the positioning of the object.

Missed: The missed issue message is raised when the robot misses an object
during pick-up. The robot explains it missed the object and asks to try again.
If the human agrees, the robot will ask the human to move the object to its

6 J. Blankenburg et al.

original position on the table, and says it will try picking it again later. If the
human disagrees, the robot asks if the human will place the object. If the human
says yes, they will place it to the final location. Otherwise, the robot says it will
try again later.

Dropped: The dropped issue message is raised when the robot drops an object
after picking it up. The dialogue flow is the same as in the missed case, indicating
drop instead of missed.

Unreachable: The unreachable issue message is raised if a robot is unable to
reach an object. The robot will ask if the human can hand the object to the robot.
If the human complies, the robot will grab the object and finish completing the
task. If the human refuses, the robot will ask if the human will place the object.
If the human says yes, the human will place the object to its final location.
Otherwise, the robot says it will try again later.

3.4 Fault Detection System

In order for the architecture to detect issues, a fault-monitoring system has
been added to each node in the task tree for the base control architecture [8].
Once a node gets activated, the system begins monitoring for faults during the
execution of the node’s work. In our work, this occurs during the execution of
the PickAndPlace, which performs the following steps, in order: 1) move above
the pick position, 2) move to the pick position, 3) close the gripper, 4) move
back above the pick position, 5) move above the place position, 6) move to the
place position, 7) open the gripper, and 8) move back above the place position.
To ensure the arm is not colliding with objects as it moves between pick and
place locations, the arm is moved above (positive z-offset) the pick and place
position after opening/closing the gripper.

During this sequence of steps, the monitoring system checks for various fault
cases using a combination of the robot’s on-board sensors. In the dropped and
missed cases, the robot’s motion along this path is interrupted and the arm is
moved to a neutral location to wait until a resolution is reached.

In order to extend this monitoring system to new issues, we only need to de-
fine the start/stop step along the PickAndPlace sequence, which will begin/end
the monitoring. However, the sensors used to check if the issue has occurred will
vary based on the specifics of the issue. Additionally, these sensors might require
specific settings, such as locations of objects in a particular camera.

For the unreachable fault, the starting and stopping steps are the first step
in the sequence (i.e. move to above pick location). Before this motion occurs, the
system checks if the object is within the robot’s graspable range using a simple
distance check from the robot to the object’s initial location as detected from
the Kinect on the PR2 robot’s head.

A simple color blob detector implemented with OpenCV [4] is used to find
objects in an image. HSV-segmentation of pre-trained color histograms, com-
bined with morphological open/close operations, isolates large regions of color
in the image to represent each object. The monitoring system uses these trained

Human-Robot Collaboration and Dialogue for Fault Recovery 7

colors to identify whether or not the object is in the gripper by using the RGB
image from the PR2’s right forearm camera. The fault detection system searches
the image for the color blob of the object’s respective color. If the center of the
blob is not within a predefined range of values in the image, it registers either
the missed or dropped fault, depending on which part of the motion was being
executed when the fault was detected.

The fault-monitoring system checks for a missed fault between the two above
pick location steps (steps 1-4). If the color blob detection does not detect the
object in the correct location in the forearm camera, it registers a missed fault.
The system then checks for a dropped issue between the second above pick loca-
tion step and the first above place location step (steps 4-5). At any point between
these steps in the execution, if the color-blob detection does not detect the object
in the correct location in the forearm camera, it registers a dropped issue.

The positioning issue is only checked at the first above place location (step
5). The system checks whether the carried object is in the list of predefined
objects which require assistance. If the object requires help, the system registers
a positioning issue: the robot slows down the movement from the above place
location to the place location (steps 5-6), which allows the human ample time to
align the necessary object as the robot connects the new object. The robot then
moves to the above place location (step 8) and returns to regular speed.

The dropped, missed, and unreachable failures represent major issues as they
require a complete interrupt of the robot motion and the architecture. Without
human assistance, the robot would be unable to complete the task. On the other
hand, the positioning issue is a lesser fault. The robot requires assistance to align
the objects perfectly, but neither the robot motion nor the architecture need to
be interrupted in this case. Thus, our dialogue-based management system for
fault recovery allows the architecture to recover from faults of varying degrees.

4 Experimental Validation

The proposed architecture has been validated with a robot-human team in a
scenario specifically designed to illustrate the key proposed contribution: a con-
trol architecture that 1) autonomously detects and is cognizant of task execution
failures, 2) initiates a dialogue with a human helper to obtain assistance, and
3) enables collaborative human-robot task execution through extended dialogue
in order to 4) ensure robust execution of hierarchical tasks with complex con-
straints, such as sequential, non-ordering, and multiple paths of execution. Most
of the proposed additions to the architecture are outlined by general methods,
S0 a concrete scenario with example cases for each addition is utilized to validate
the combined functionality of the architecture.

The task used to validate the architecture involves building a modified EKET
base from IKEA, with all parts painted in different colors for disambiguation.
The task structure is shown in Figure 1, representing inherent constraints for
attaching the parts. The task is performed as follows: 1) place the green leg in
front of the robot, 2) attach the pink and yellow bars in either order, 3) attach

8 J. Blankenburg et al.
= .

Fig. 4. Execution of the task with issues and assistance provided by the human.

the blue leg, and 4) place either the purple or orange top on top. Step 2 reflects
the non-ordering constraints of the task since the order of placing the pink and
yellow bars does not matter. Step 4 reflects the alternate paths of execution in
the task since either one of the tops can be placed.

The parts are placed on a table in front of the PR2 robot. The PickAndPlace
behavior nodes get their respective pick locations from an initial detection of
objects using the Kinect by applying the same type of color blob detection
utilized on the forearm cameras as discussed in Section 3.4. The respective place
locations of the PickAndPlace behavior nodes are set as pre-specified locations
in order to allow the objects to be attached together. End-effector trajectories
to the pick/place locations are generated using the Movelt library [19].

During the experiment, the robot determines the order of actions to take
based on the activation spreading mechanism in our previously developed archi-
tecture [8]. This mechanism creates a dynamic ordering in which to complete
the sub-tasks based on the environmental conditions and guarantees this order-
ing adheres to the constraints of the task. To validate the fault recovery of the
proposed architecture, a human simulates each of the possible fault cases by
interrupting robot during this task.

4.1 Task Execution

The execution of the experiment is shown in Figure 4. To illustrate the recovery
and collaboration capabilities of the proposed architecture, the human interfered
by stealing several objects during the execution of the task, causing the robot
to detect the various types of faults handled by the architecture.

Human-Robot Collaboration and Dialogue for Fault Recovery 9

The task begins with the robot performing the PickAndPlace(green_leg) be-
havior in pictures (a) and (b) in Figure 4. This sub-task completed correctly
without any faults, illustrating that the control architecture is able to perform
as usual under normal conditions. Next, the control architecture specifies that
the robot must place the pink and yellow bars in any order. The pink bar is
closer to the robot’s gripper so the architecture tells the robot to grab it first
using the activation mechanism in [8]. Thus, in (c¢) the robot begins the PickAnd-
Place(pink_bar) behavior. However, the human steals the pink bar right before
the robot places the object (d). After the human steals the object the fault
detection system detects a fault as described in Section 3.4. At this point, the
vision system running on the forearm camera no longer detects the object in the
robot’s gripper. The fault detection system then uses the point during execution
at which the object was lost to determine which fault occurred. Since the robot
was en route to the place location, the fault system triggers a dropped issue to
be published, which then causes the robot to begin a dialogue with the human
as described in Figure 3. The human follows the branch of the dialogue flow that
leads to the human placing the pink bar as shown in (e).

After the fault is resolved and the object is placed, the robot continues the
task by beginning the PickAndPlace(yellow_bar) behavior in (f). After the robot
picks up the yellow bar, the human immediately steals it as shown in (g). Again,
the fault detection system loses track of the object after the robot had success-
fully grasped the object so it triggers the dropped issue to be published, which
causes the robot to begin a dialogue with the human. This illustrates that the
dropped issue can get triggered in multiple parts of a sub-task’s execution. This
time however, the human follows the dialogue path that leads to the robot hav-
ing to try again. In (g) the human places the yellow bar back on the table, as
prompted by the dialogue, and the architecture resets the corresponding part of
the task. Due to the task constraints, both the pink bar and yellow bar must
be placed before moving on to the next part of the task, so the robot attempts
the PickAndPlace(yellow_bar) behavior again in (i). During the placement of
the yellow bar (j-k), the fault detection system determines that the object is one
which was specified to require human assistance for placement. It then raises the
positioning issue and asks the human for help in placing the object as described
in the rightmost branch in Figure 3. Once the object has been placed with the
human’s assistance, the robot continues to the next part of the task.

In (1) the human steals the blue leg right before the robot picks it up dur-
ing the PickAndPlace(blue_leg) behavior. At this point during the execution, the
fault detection system expects the object to be detected in the gripper. How-
ever, the object is not detected which means that the robot did not successfully
grasp the object. Thus, the fault detection system triggers the missed issue to
be published, which causes the robot to begin a dialogue with the human. The
human follows the dialogue flow which leads to the robot trying again. In (m) the
human places the blue leg back on the table, as prompted by the dialogue, and
the architecture resets the corresponding part of the task. Due to the sequential
task constraints, the blue leg must be placed before the next part of the task

10 J. Blankenburg et al.

can happen, so the robot attempts the PickAndPlace(blue_leg) behavior again
as shown in (n). In (o-p) the fault detection system once again triggers the posi-
tioning issue and asks the human for help since this object was also determined
to be one which was specified to require assistance.

Based on the task constraints, the robot can choose to place either the orange
or the purple top. Since the purple top is closer to the robot’s gripper, the purple
top is placed. In (q) the robot begins the PickAndPlace(purple_top) behavior.
The fault detection system discovers that the purple top is out of the robot’s
reachable space since the distance check described in Section 3.4 fails. It then
raises an unreachable issue. This triggers the dialogue and the human follows the
flow that results in a hand-off between the human and robot (Figure 3, left-most
path) in (r). The robot finishes placing the purple top in (s). Finally, (t) shows
the completed task with the fully assembled EKET base.

4.2 Discussion of Experiment

The execution of the experiment (Section 4.1) validates that our proposed ar-
chitecture effectively utilizes the dialogue-based management system for fault
recovery of hierarchical tasks. The detection of faults is done entirely with sen-
sors on-board the robot through a combination of views from multiple cameras.
The robot was able to complete the PickAndPlace(green_leg) behavior without
fault. This shows the architecture can complete tasks without assistance when
no faults occur (Section 3.1). The execution of the PickAndPlace(pink_bar) and
PickAndPlace(yellow_bar) behaviors both illustrate examples of a dropped fail-
ure. These objects were detected as dropped along the behaviors’ execution
which demonstrates the system is able to detect and resolve faults at various
points, as long as they occur between the start and stop steps during which
the issue is monitored. Furthermore, they illustrate that failures can be resolved
through either human assistance or another attempt from the robot. The exe-
cution of the PickAndPlace(blue_leg) behavior demonstrated that the system is
able to both detect and handle a missed failure. The steps for placing the blue
leg and the yellow bar demonstrated that the dialogue-based management sys-
tem is able to handle various major faults which require it to reset parts of the
control architecture. This shows that the task constraints are upheld after the
architecture is reset, since the architecture completed the placements of these
objects before moving on (as defined by the task tree constraints). Lastly, the
PickAndPlace(purple_top) behavior illustrates that the system is able to manage
the unreachable fault and negotiate a hand-off between the human and robot.
The various behaviors demonstrate that the dialogue-based system is able
to assist with the task execution in multiple resolution cases by utilizing the
extended dialogue between the human and the robot. By showing each of these
failure cases in a single scenario, it shows that the proposed system is able to
robustly handle faults that occur during the execution of complex, hierarchical
tasks. The robot is able to autonomously detect faults occurring from execution
failures, begin a dialogue with the human to resolve these faults, and resume the
normal task execution upon fault recovery without breaking any constraints.

Human-Robot Collaboration and Dialogue for Fault Recovery 11

5 Conclusion and Future Work

This paper presents an extension to our previous control architecture [8], which
incorporates a dialogue-based management system for fault recovery of hierarchi-
cal tasks through the use of human-robot collaboration. The contribution of this
approach is a control architecture that 1) autonomously detects and is cognizant
of task execution failures, 2) initiates a dialogue with a human helper to obtain
assistance, and 3) enables collaborative human-robot task execution through ex-
tended dialogue in order to 4) ensure robust execution of hierarchical tasks with
complex constraints. This method is able to autonomously detect faults occurring
from execution failures, begin a dialogue with the human to resolve these faults,
and resume normal task execution upon recovery. Furthermore, the architecture
is able to uphold all task constraints while faults are being handled. Extended
dialogue with the human allows for multiple avenues to resolve a detected fault,
instead of a single request for help. Faults are detected autonomously with on-
board sensors, through the robot’s multiple cameras. The proposed approach is
validated on a building task with a human-robot team. The system can robustly
detect and recover from faults that occur during the execution of a complex,
hierarchical task through the use of human-robot collaboration and dialogue.

An immediate extension of this work is to incorporate the proposed fault
handling system into our multi-robot control architecture [3]. This extension
will allow for humans to collaborate with multi-robot teams working on a joint
task. For this extension, each robot’s control architecture would be modified to
incorporate our dialogue-based fault detection system as described in Section 3.2
for a single robot. This would allow each of the robots to initiate a dialogue with
the human when a fault is detected. Additionally, the dialogue-based system
could be modified to give the robots the option to ask each other for assistance
to recover from faults as well. Furthermore, other fault types which may arise
from translating to multi-robot teams can be easily implemented in this system,
as they would follow the same general framework outlined in Section 3.

Acknowledgment

This work was supported by the National Science Foundation (I11S-1757929) and
by the Office of Naval Research (ONR) award #N00014-16-1-2312.

References

1. Arkin, R.C.: An Behavior-based Robotics. MIT Press, Cambridge, MA, USA, 1st
edn. (1998)

2. Beetz, M., Klank, U., Kresse, I., Maldonado, A., Md&senlechner, L., Pangercic, D.,
Riihr, T., Tenorth, M.: Robotic roommates making pancakes. In: 2011 11th IEEE-
RAS International Conference on Humanoid Robots. pp. 529-536 (Oct 2011)

3. Blankenburg, J., Banisetty, S.B., Alinodehi, S.P.H., Fraser, L., Feil-Seifer, D., Nico-
lescu, M., Nicolescu, M.: A distributed control architecture for collaborative multi-
robot task allocation. In: 2017 IEEE-RAS 17th International Conference on Hu-
manoid Robotics (Humanoids). pp. 585-592 (Nov 2017)

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Blankenburg et al.

Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV
library. 7 O’Reilly Media, Inc.” (2008)

Breazeal, C., Hoffman, G., Lockerd, A.: Teaching and working with robots as a
collaboration. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems-Volume 3. pp. 1030-1037. IEEE Com-
puter Society (2004)

Fong, T., Thorpe, C., Baur, C.: Multi-robot remote driving with collaborative
control. IEEE Transactions on Industrial Electronics 50(4), 699-704 (Aug 2003)
Fong, T., Thorpe, C., Baur, C.: Robot, asker of questions. Robotics and
Autonomous Systems 42(3), 235 — 243 (2003). https://doi.org/10.1016/S0921-
8890(02)00378-0, socially Interactive Robots

Fraser, L., Rekabdar, B., Nicolescu, M., Nicolescu, M., Feil-Seifer, D., Bebis, G.:
A compact task representation for hierarchical robot control. In: 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids). pp. 697-704
(Nov 2016). https://doi.org/10.1109/HUMANOIDS.2016.7803350

Gassend, B.: sound_play ros package, http://wiki.ros.org/sound_play

. Hayes, B., Scassellati, B.: Autonomously constructing hierarchical task networks

for planning and human-robot collaboration. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA). pp. 5469-5476. IEEE (2016)

Hayes, B., Shah, J.A.: Improving robot controller transparency through au-
tonomous policy explanation. In: 2017 12th ACM/IEEE International Conference
on Human-Robot Interaction (HRI. pp. 303-312. IEEE (2017)

Hernandez, C., Bharatheesha, M., Ko, W., Gaiser, H., Tan, J., van Deurzen, K.,
de Vries, M., Van Mil, B., van Egmond, J., Burger, R., Morariu, M., Ju, J., Ger-
rmann, X., Ensing, R., Van Frankenhuyzen, J., Wisse, M.: Team delft’s robot
winner of the amazon picking challenge 2016. In: Behnke, S., Sheh, R., Sariel, S.,
Lee, D.D. (eds.) RoboCup 2016: Robot World Cup XX. pp. 613—-624. Springer
International Publishing, Cham (2017)

Huggins-Daines, D., Kumar, M., Chan, A., Black, A.W., Ravishankar, M., Rud-
nicky, A.L.: Pocketsphinx: A free, real-time continuous speech recognition system
for hand-held devices. In: 2006 IEEE International Conference on Acoustics Speech
and Signal Processing Proceedings. vol. 1, pp. I-1. IEEE (2006)

Knepper, R.A., Tellex, S., Li, A., Roy, N., Rus, D.: Recovering from failure by
asking for help. Autonomous Robots 39(3), 347-362 (Oct 2015)

Mohseni-Kabir, A., Rich, C., Chernova, S., Sidner, C.L., Miller, D.: Interactive
hierarchical task learning from a single demonstration. In: Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction. pp.
205-212. ACM (2015)

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA workshop on
open source software. vol. 3 (2009)

Rybski, P.E., Yoon, K., Stolarz, J., Veloso, M.M.: Interactive robot task training
through dialog and demonstration. In: Proceedings of the ACM/IEEE international
conference on Human-robot interaction. pp. 49-56. ACM (2007)

Schillinger, P., Kohlbrecher, S., von Stryk, O.: Human-robot collaborative high-
level control with application to rescue robotics. In: 2016 IEEE International Con-
ference on Robotics and Automation (ICRA). pp. 2796-2802. IEEE (2016)
Sucan, I.A., Chitta, S.: Moveit! Online at http://moveit. ros. org (2013)

