Computers & Graphics 87 (2020) 103-110

journal homepage: www.elsevier.com/locate/cag

Contents lists available at ScienceDirect

N |

Computers
&Graphics

Computers & Graphics 1)
b

.

Technical Section

An output-driven approach to design a swarming model for ’ n

architectural indoor environments ~

Check for
updates

C.D. Tharindu Mathew*, Bedrich Benes, Daniel G. Aliaga

Purdue University, Computer Science 305N University St West Lafayette, IN 47907, United States

ARTICLE INFO ABSTRACT

Article history:

Received 17 October 2019

Revised 14 January 2020
Accepted 9 February 2020
Available online 14 February 2020

Keywords:

Swarms

Architectural indoor environments
Output-driven

conditions.

We introduce a novel tool for designing a swarming behavior model for a set of virtual agents to au-
tomatically capture an initially unknown indoor architectural environment. Our key idea is to use an
output-driven optimization to create targeted swarming behavior. The input to our model is a sim-
ple rectangular proxy of the target area and desired acquisition indicator values. The final outputs are
the parameters for a swarming behavior model that is autonomous and decentralized, uses only local
exploration, and is robust to agent failure. We show and compare the swarming performance in sev-
eral simulated environments of up to several hundred square meters, 100 agents, and under various
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1. Introduction

Capturing and reconstructing interior or exterior spaces is a
challenging task that has been addressed by a variety of passive
and active methodologies in computer graphics and in computer
vision. One option that has received significant attention is to
swarm and to capture the environment with a set of agents
(e.g., drones or other mobile agents). While the swarms provide
parallelism, they are quite challenging to control automatically and
robustly so as to produce a high quality result of complex interior
and exterior floor-plans.

We focus on an inverse modeling approach to design an au-
tonomous swarming model specialized to capturing architectural
indoor environments. The seminal work of [1] introduced swarm-
ing model in computer graphics and allowed to reproduce the
basic geometric behavior of flocking birds and schools of fish.
Significant progress has been made in imitating through a simple
set of swarming rules the behaviors of other insects and animals
(e.g., [2]), adding noise, velocity models, and control (e.g., [3.4]),
and stochastic models (e.g, [5]). Efficient exploration of unknown
environments has been also studied by using mobile agents, and
most of such setups assume some form of global communication
(e.g, [6] focused on indoor spaces and the flying drone system
of [7]). Computational swarming approaches are robust, scalable,
and inherently parallel. At its core, a swarming approach assumes
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each agent to individually follow a simple set of rules, with only
local interactions, but globally coordinated behaviors emerges.
However, these swarm intelligence frameworks do not provide
the behavior needed for swarming a set of agents (or mobile
capture devices) for acquiring the geometry of a 3D environment.
Moreover, we seek a solution where each agent follows simple
rules and no map sharing nor centralized control is needed during
acquisition. This approach can also be applied to hundreds of in-
telligent agents in a simulation (e.g., NPCs in video games), as each
agent only processes local information, making it computationally
efficient and parallelizable.

Our key idea is to build upon output-driven modeling that has
been used for images (e.g, [8,9]), 3D models (e.g, [10]), trees
(e.g., [11]) and urban models (e.g, [12-14]). In particular, we use
an output-driven optimization to design, during a preprocessing
phase, a swarming behavior model that yields a desired behavior
(i) for an arbitrary number of mobile agents, (ii) that is able to
explore an initially unknown architectural indoor environment
without needing to share map information nor have centralized
control, and (iii) that obtains a desired multi-viewpoint sampling
and coverage as shown in Fig. 1.

Altogether, our swarming-behavior design approach consists of
two main components (Fig. 2). First, we define a swarming model
that assumes individual agents have a fixed sensing radius within
which they can sense the environment (e.g., perform laser scans,
capture focused pictures at a suitable resolution) and can sense
the presence of other agents but do not need to communicate
with them. Our swarming model is built on the intuition that a
large number of agents having a set of low-cost sensors (such as
IR) can use data fusion to obtain 360° field of view input. Further,
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Fig. 1. Swarming Architectural Indoor Environments: Our output-driven approach consists of a novel swarming model component and an optimization component which
uses a set of indicators to specify desired acquisition behavior. (a) Visualization of the capture process of a swarm of 100 agents through a 750 m? environment. Wall coloring
indicates level of sampling (red=high) and shading indicates that the location has been visited. This global map is in fact not visible to the individual agents and it is only
for visualization purposes. (b) A depiction of the map of a single agent early on in the capture and (c) is the map of the same agent near the end. During the acquisition,
the agents do not actually share map information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. System Pipeline: The swarming model uses proxies and initial parameters to build the optimization that generates the input parameters of the swarm.

although a large sensor observation radius helps to explore faster,
we focus on short-range sensors (e.g, 1 m) to show that it still
allows the system to explore the area rapidly when using a swarm.
It is common for sophisticated agents (e.g., self-driving cars) to
have multiple sensors to cover a 360° field of view. Similarly,
many simple ground robots use multiple IR or ultrasound sensors
to cover a 360 ° field of view. Hence, we assume the fused sen-
sor data that results in a 360 ° field of view is an input to the
swarming algorithm and the sensing distance is not necessarily
large. Second, we define an optimization that uses a set of output-
behavior indicators (e.g., capture time, coverage, surface sampling,
and grouping) to discover the most suitable swarming model
parameters. Each agent is only aware of its local surroundings and
reacts based only on its neighborhood thus scalable to a large
number of agents, though in our current implementation we do
address how each agent localizes itself. We do not assume agents

need to share exploration maps nor have an initial map of the
environment. Only at the end of acquisition would agents coalesce
captured data for subsequent processing.

We have analyzed and evaluated our design approach by
simulating acquisition in a variety of synthetic 2D floor plans
spanning up to several thousand square feet. The swarming behav-
ior models produced by our approach demonstrate to be robust to
unexpected and sporadic failure of individual agents throughout
the acquisition and are able to dynamically adapt to unexpected
geometry and occlusion. Further, we also compare our method to
a traditional swarming model [1] and to a multi-agent exploration
model with centralized control (e.g., [7]).

We claim the following main contributions: (1) a novel swarm-
ing behavior model suitable for robust acquisition of architectural
indoor spaces, (2) an output-driven optimization approach for
determining swarming behavior model parameters, and (3) a
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practical design tool for predicting the suitability of a set of a
mobile sensors in a target environment.

2. Related work

Our method builds off of work in multi-agent exploration,
computational swarming, and inverse modeling. In terms of 3D
reconstruction methods, Seitz et al. [15] compare many multi-view
3D reconstruction methods suitable for a variety of image-based
capture mechanisms. Even though, these methods promote the
idea of sampling a space with multiple viewpoints, they do not ad-
dress autonomous swarming-based capture for 3D reconstruction.

Multi-agent exploration and simultaneous localization and
mapping (SLAM) focus on constructing a map of an unknown
environment while also localizing the agents. Recent work extends
solutions to work with multiple agents in a computationally
efficient manner (e.g, [16,17]) but the focus is usually on a small
number of sensor-heavy devices and often a centralized server.
Some methods, such as Fox et al. [18], circumvent a centralized
server by sharing map information between nearby agents (and
performing a rendezvous operation to mutually register the maps).
In contrast, we focus on designing an autonomous decentralized
swarming behavior model suitable for many simple agent-like
acquisition devices including support for scalability, robustness to
agent failure, and simple local control logic. Nonetheless, we antic-
ipate our work can be used in conjunction with other exploration
and SLAM methods. Our method allows to explore large maps,
where the area is limited only by an agent’s memory capacity to
hold the map data. Further, simple compression techniques and
selective storage (e.g., storing only the points of interest) make use
of storage efficient.

Computational swarming is being used in a variety of con-
texts today. The ability of simple agents to produce com-
plex swarm behavior was demonstrated by Reynolds [1] and
Vicsek et al. [3], amongst many others. More recently,
Berman et al. [19] and Dorigo et al. [20] study heterogeneous
swarms. Kushleyev et al. [21] and Vasarhelyi et al. [22] demon-
strated swarming systems of aerial agents carrying out intel-
ligent tasks using a global planner. Rubenstein et al. [23] and
Cucu et al. [24] show 1000+ simple agents that operate only on
local rules to exhibit global swarm behavior, including making
use of the agent itself to form structures. While some swarming
models explore unknown environments (e.g., Dirafzoon and Loba-
ton [25] discover the environment topology), swarming approaches
usually do not center on comprehensively mapping an initially
unknown environment. A decentralized method are advantageous
in hazardous environments, where agents can explore without
relying on external server communication and coordination. Our
algorithm could steer the agents to complete the task even if some
agents were lost.

To date, optimization-based, or output-driven, swarming ap-
proaches are less investigated. Some of related prior work in
inverse modeling centers on discovering a 3D city configuration
that produces a desired set of urban form and function indicator
values [12], a 3D parameterized model that corresponds to a
simple digital sketch [13], and a 2D walkway layout that yields
a desired crowd behavior [14]. Relevant to swarming are data-
based approaches (e.g. Wagner and Choset [26]). In particular, the
example-based approach of Wang et al. [2] uses the trajectory
data of actual swarms to create a swarming model. Also, swarms
have been demonstrated by Saska et al. [27] in carrying out a
surveillance task for aerial agents. Lee et al. [28] show a swarm
robot-based mapping of an environment through a structured
triangulation. The algorithm iteratively builds out a triangulation
of the environment where each robot acts as a vertex of trian-
gle. Mahadev et al. [29] introduced a particle swarm mapping

and coverage algorithm that is controlled by a uniform input to
map tissue and vascular systems. In this algorithm each particle
experiences the same applied force (such as a magnetic field) as
opposed to individual control. Ramachandran et al. [30] introduced
a mapping algorithm for a stochastic robot swarm. The dynamics
are modeled using a set of advection-diffusion-reaction partial
differential equations. The map is incorporated into the model,
and the system is solved as a optimization problem offline using
a gradient descent algorithm. In contrast to the aforementioned
works, our solution seeks to comprehensively explore an unknown
environment without a centralized server, to create clusters when
desired, to sample surfaces multiple times, and to reduce capture
time. At the conclusion of capture, data is coalesced and processed
offline. Further note, we are not attempting to imitate swarm
behavior in nature but instead acquire environment geometry.

3. Overview

Fig. 2 shows an overview of our system pipeline. The input to
our swarming behavior design tool is a simple floor plan proxy
(e.g., an approximate 2D floor plan with only major walls and
obstacles), the desired acquisition indicator values (e.g., values for
simultaneous sampling, coverage and time taken), and an initial
set of swarm agent parameters (e.g, number of agents, starting
positions). Note that the floor plan proxy is not needed for the
swarming model. The output of our design tool are the parameters
of our autonomous decentralized swarming behavior model that
can be used during an actual acquisition where the agents use our
swarming behavior model.

The first block shows the swarming model that uses explore
and dynamics procedures to move through the input floor plan
(Section 4). The explore procedure executes steps related to de-
ciding the next location. The dynamics procedure combines five
velocity components (i.e., explore, obstacle avoidance, alignment,
cluster and separation) to form the final velocity of motion for each
agent a;,i=0,1,...,]a|.

The second block describes the optimization approach that it-
eratively modifies the parameters of our swarming model in order
to yield agent behaviors that result in the desired indicator values
(Section 5). The parameters of the swarming model are the five
coefficients of each velocity component which are found via an
MCMC-based optimization and numerous acquisition simulations.
Each simulation moves the agents throughout a discretized grid,
with each grid cell being denoted as gy.

We assume the agents in our model (and the comparison) have
the following characteristics:

1. The motion is restricted to the 2D ground plane

2. The union of sensors of an agent is able to sense objects and
agents within a radius of 1m (diameter of 2 m), within a total
circular arc, ie., 360°. The swarming algorithm receives the
output after completing sensor fusion (simply, the union of the
sensors). This radius of the fused sensor is configurable, but for
our experimental purposes it is chosen to have a short-range
to emulate a set of low-cost sensors.

3. The average speed of motion of each agent is 1 ms~! (ini-
tialized from a normal distribution, A’(1, 0.1%), with the
maximum being 4 ms~1.

4. Velocity updates are bounded and happen at 30 Hz hence re-
stricting the maximum acceleration to beneath a desired value.

4. Swarming model

Our approach designs a swarming behavior model that can
efficiently explore and sense an initially unknown architectural
indoor environment. We assume each agent will be equipped with
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Fig. 3. Explore Procedure: (a) Our procedure uses a combination of breadth-first-
search and A* to explore grid cells. (b) If an agent i encounters an agent j, the other
agents sensing area is consider occupied in is map and it visits elsewhere. agent js
map, shown in gray-scale, is not known to agent i it simply marks all the gray-scale
area as occupied.

some form of environment sensing (e.g., a range-detecting system
or an image-based system with color and/or depth capture). While
the environment does not strictly need to be indoors, we do as-
sume it is bounded and it can be described by an interconnected
space of polygon-shaped rooms, corridors, and obstacles that can
be modeled with a simple planar interconnection graph. Given a
number of agents and a prioritization of the relative importance
of minimizing acquisition time, achieving a certain level of surface
sampling, a wanted coverage percentage, and a desired amount
of grouping, our optimization model computes a suitable set of
swarming model parameters. Then, as verification we simulate
how the agents explore and navigate through the environment.

4.1. Swarming behavior model

Our approach defines a swarming behavior model that collec-
tively acquires a target environment. In the following, we describe
our exploration and dynamics procedures.

Exploration: During our exploration procedure, each agent
explores the initially unknown scene with the help of a 2D grid
assumed to be big enough to capture the environment. Each grid
cell is represented by its centroid; initially all cells are marked as
unvisited and later a cell can be marked as empty or occupied. We
denote each agent by an index i or j and our per-agent variable
notation is as follows: p; is the position of agent i (in the grid), v;
is the velocity of ith agent, and r; is the sensing radius of an agent.

All agents start exploration from a tight formation. As each
agent i explores the environment, it marks its explored cells as
empty (i.e., free space) or occupied (i.e., wall or object as per
sensor readings) (Fig. 3). The details of the dynamics procedure
are explained below, but essentially either agent i follows agent
j to achieve a desired level of simultaneous sampling, or agent i
explores on its own to increase sampling coverage. An agent may
explore on its own if its explore velocity component overwhelms
the others. This is especially true if the agent’s map contains
unexplored areas that are away from the other agents. If an agent
i explores on its own and encounters another agent j, then all
grid cells within agent js sensing radius are marked as occu-
pied in agent is grid. If the width of any part of the explorable
environment is less than or equal to r and the interconnection
graph of the interior spaces is single-connected (i.e., there is no
bi-connected subgraph or, intuitively, there is only one pathway
to access each room), then the aforementioned logic will prevent
agent i from unnecessarily capturing the area already sampled by
agent j. In practice, we can relax the single-connected constraint
because the presence of other agents ki,l,..., kg will typically
block agent is access to areas sampled by agent j (e.g., it will
rarely occur that agent i arrives to the space behind agent j by
another route through the environment without encountering

occupied H empty []unvisited

Fig. 4. Dynamics Procedure. We depict the five velocity types of our dynamics model
and the underlying grid cell and its potential cell flag values.

other agents. If this were to happen after agent i observes agent j
it would explore another location.

The acquisition is complete when the space accessible to each
agent is marked as occupied (either through own exploration or
occupied by walls/obstacles or occupied by other agents sensing
areas).

Dynamics: The dynamics procedure determines a agents mo-
tion by making use of a weighted sum of five different velocity
types (Fig. 4). During each iteration, all velocities are recomputed
for each agent. The iterations terminate when the explore velocity
v; = 0 (i.e., there is nothing left to explore). The velocity update for
agent i is:

AV; = ke(fy, (Ve) = Vi) + ko fv, Vo) + ka(fy, Vo) — Vi)
+ ke fu, (Vo) + ks fy, (Vs), (1)

where the subscripts e, o, a, ¢ and s correspond to explore,
obstacle-avoidance, alignment, cluster, and separation velocities,
respectively. The velocity weights ke, ko, kg, kc and ks are the pri-
mary parameters that determine a agents behavior. fy,, fy,. fv,. fv..
and fy, are sensitivity functions that scale the effect of the velocity
type for the different velocity types.

Inspired by Reynolds [31], each sensitivity function has the
form:

%

V)=V g 2)

but x varies according to the velocity type. For our five types,
we found xe =2,%Xy=—2,X3 = —2,Xc =—2, and Xx; = —2 to work
well. For example, x, = 2 implies that the exploration velocity is
more sensitive (i.e., larger) for large distances and x; = —2 implies
the separation velocity is larger for small distances. The current
velocity is subtracted from the exploration and alignment veloc-
ities because those velocities are used in a corrective goal-seeking
capacity.

Our procedure uses an explore velocity V. to wander into new
unexplored areas. Selecting goal grid cell g;, and computing the
corresponding explore velocity vector is performed using a search
algorithm. A breadth-first-search (BFS) of the cells in the map
of agent i is performed starting at p;. The closest unvisited cell
becomes u;. The A* search algorithm and the current grid are used
to determine a path to u;. The next grid cell along the A* path
to u; becomes gf,. To save on compute time, the A* algorithm,
and selection of u;, is re-computed only when some cell is newly
marked as occupied (i.e, the map has changed significantly).
Further, for the A* computation, we give a cell adjacent to a
wall/obstacle a higher weight than other empty/unknown cells.
This encourages the algorithm to compute a path that goes close
to the walls/obstacles but not too close (when possible). Then,
given g5, the explore velocity is:

Ve :giy_pi~ (3)

In order to avoid walls or objects, our model uses an obstacle
avoidance velocity V,. The computed velocity essentially avoids
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hitting (or reaching) the obstacle. One definition of an obstacle
avoidance velocity is

Vo = No Z (pl _ggy)’ (4)

Ullpi-gyll=r

where N? is the number of grid cells marked as occupied within a
distance r of p; and g3, represents an occupied grid within a sen-
sor radius. Note that we use ray casting to only include obstacles
visible with an unobstructed line of sight. This formula basically
computes the averaged vector that moves the agent away from the
obstacle. In our implementation, we use a variation of Eq. (4) spe-
cific to rectangular grids where given a agent moving nearly par-
allel to the obstacle, it can continue moving in the same general
direction but swerves away from the obstacle. Our method uses
an alignment velocity V,; and a cluster velocity V. to encourage
agents to move in unison and to cluster together. It is computed
as the average velocity/position (from the previous iteration) of all
agents within distance r of p;. We call this cluster C'. Thus,

1
Va = @ ZU]' (5)
jeCl
1 o
VCZWZ(pi_pj)7 (6)
jeCi

where |Ci| is the size of cluster C' and ; is the centroid of cluster
C.

Finally, to avoid agents colliding with each other, we use a
separation velocity Vs. This velocity is inversely proportional to the
distance between agent i and other agents within distance r, <r.
The separation velocity for agent i is

Vs = Z (pi — pj)- (7)

llpi—pjll<ra

This velocity moves agent i away from other agents j. In the
rare case agent i is surrounded symmetrically by various agents,
agent i will not move - instead the other agents will.

4.2. Discussion

Let us consider the case where a single agent explores an arbi-
trary floor plan with obstacles. BFS is used to find goal cells, and
A* is used to find the path. If we assume the obstacle avoidance
value is set to a value that does not repel the agent away before it
reaches the cells close to an obstacle, then the explore procedure
guarantees that all reachable positions will be explored. If multiple
agents are exploring, a pathological case occurs when the cluster
velocity (which attracts agents to adjacent agents) overwhelms all
other velocities and it results in all agents staying in one place
without any exploration. Though theoretically possible, in practice
we have not encountered this scenario and instead show (see
Section 5) multiple sets of parameters that achieve varying desired
outcomes.

5. Optimization model

We use an optimization approach to determine the swarming
model parameters that will best yield desired target values for an
intuitive set of indicators tailored to 3D acquisition. In the follow-
ing, we describe the indicators and the optimization method used.

5.1. Simultaneous sampling
We seek to control multiple agents so as to achieve a desired

level of simultaneous surface sampling of the scene, denoted
as S. Prior work has shown that the quality and robustness of

a 3D reconstruction increases with multiple viewpoints. Given
a single (mobile) sensor, we could collect sensor readings from
multiple viewpoints of each scene surface. In preliminary work we
found that if we considered multiple samples over time, agents
tended to stay near a grid cell for some time in order to satisfy
the multiplicity. Instead, for multiple (mobile) sensors we define
simultaneous sampling to be the desired property of acquiring
more than one sensor reading of a scene surface at any given time.

Simultaneous samples imply the number of agents for which
the cell was within the sensor distance (and in line-of-sight) of a
agent during the same iteration of the update loop. We label the
maximum number of simultaneous samples of an occupied grid
cell g to be s, and it is computed as:

Sk = max.[count(|gxy — pi| < 1)], (8)

where count() provides a tally of the number of expressions satis-
fying the conditional, gxy is the grid cell marked as occupied and
pf is the position of a agent at time (or iteration) te [0, T] where T
is the simulation time so far. The total simultaneous sampling for
all grid cells is

5=Y s (9)
k

Coverage: The user can also control the coverage C of the target
environment. This enables performing a tradeoff between cov-
erage and other indicators such as time taken and simultaneous
sampling (e.g., agents can be directed to avoid sampling small
time-consuming spaces).

The coverage is measured as a ratio between the sampled grid
cells marked as empty/occupied (i.e., different than unvisited) and
the total number of grid cells:

count (g, # unvisited)

C ,
where G is the actual (or estimated) total number of grid cells
that should be marked as empty/occupied. The correctness of
this coverage quantity depends on the accuracy of the grid cell
array. If the grid cell array nearly matches the shape and size of
the actual floorplan, then a true coverage indicator is computed.
However, in our simulations the grid cell array is a simple proxy
(e.g, a rectangle) thus the coverage quantity is only a coarse
estimation. Nonetheless, in both cases selecting the coverage level
is a beneficial indicator.

Time taken: Time taken T is a measure of how fast the agents
achieve a desired scene coverage. The number of time steps keeps
increasing until the explore velocities of all agents are zero.

Grouping: We define a grouping indicator G which measures
how well defined are groups of agent clusters. This behavior
may be beneficial to simultaneous sampling, to agents occupying
a more compact footprint, and, in future work, to assist with
localized pose and orientation estimation. The grouping indicator
at time ¢ is

G — i count (|p; — pil < 1)
NN!
and the overall average grouping indicator is

1
G= TZGf, (12)

where G; is the average number of agents within r of each agent
i at time step te[1, T], N is the total number of agents, and NIF is
the number of agents within r of agent i at time t. pg and pj. are
the positions of agents i and j at time t.

C= (10)

(11)

5.2. Optimization

The objective function for use during our optimization of the
swarming behavior model parameters is formed by a weighted
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combination of the aforementioned four indicators:

P(S,CKT) = ¥5(S = Sa)® + e (C = C)* + (G = Gg)* + e T2,
(13)

where S;, C4, and G; are desired indicator values (while usually
for time taken the expected value is zero). Combining these four
indicators and coefficients, we form the optimization function to
minimize as:

argming, . . .k, P(S,CKT). (14)

Since the solution space is nonlinear, a straightforward gradient
descent type method will probably fall into a local minimum.
Instead, we use a controlled randomized walk methodology, such
as a Markov Chain Monte Carlo (MCMC) [32]. In particular, we use
the Metropolis Hastings algorithm [33,34] to generate potential
state changes using a per-parameter probability density function.
This methodology essentially enables us to explore the solution
space and, under the right conditions, has in fact been proven to
find the optimal solution. Based on experimentation, we found a
reasonable MCMC setup using 100 simultaneous chains running
at four temperatures and typically for 1000 steps. The normalized
objective value reaches a value of 10~3 upon convergence. An
experimental attempt to reuse a set of fixed values for each map
yields sub-par results. These values could always be improved
through our optimization approach, due to the fact that obstacle
avoidance velocity and exploration velocity can have differing val-
ues that respond to differing map characteristics (e.g., open spaces
vs thin corridors). Furthermore, the different requirements within
the same map such as a combined simultaneous sampling and
time taken requirement would need a tedious and time-consuming
manual tuning of the parameters.

6. Results and discussion

We have applied our approach to a variety of floorplans in
simulation. Our prototype implementation was developed in C/C++
and runs on a PC with 3 GHz Intel i7 Processor, 16 GB RAM, and
a NVidia GTX 970 GPU. All visualization is done using custom
OpenGL code and optimization is performed using an in-house
MCMC engine.

Our swarming behavior model is accelerated by the use of
spatial-indexing to quickly determines cells adjacent to a agent.
Further, we make use of jump point search [35] to significantly ac-
celerate our A* computations. In practice, our swarming simulator
runs a single agent at realistic velocities through a several thou-
sand square foot environment in under one second of computation
time and a 50 agent swarm in ten seconds.

Our optimization performs a MCMC-based optimization to
find the swarming behavior model parameter values. Currently,
to define a fixed relative scale of the solution vector we fix ko
to a constant value and optimize only the other four parameters.
On our computer, it takes an average of 5-15 min to compute a
solution for a typical floor plan.

Simulation time

Simulation time
(x103 timesteps)
o &5

Number of agents

Fig. 5. Simulation time: Solution computed to minimize time taken to sample en-
tire environment.
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Fig. 6. Simultaneous Sampling: Solution optimized to reach a target simultaneous
sampling. As seen, too few or too many agents can make reaching the goal not
possible or too easy.
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Fig. 7. Coverage: Solution optimized to different coverage levels. The time taken
may change non-linearly due to the complexity of the environment.
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Fig. 8. Grouping. We compare a solution optimized for a low grouping indicator
value (a) to one of high grouping (b). Both results use 25 agents and are shown at
same time step.

Note that while our figures may show the floorplan for an
example, the floorplan is in fact not known to the swarming
agents. However, for coverage we do use the outer rectangle of
the floorplan as the boundaries of a rectangular grid cell array
(as discussed in Section 4, using an over-fitted grid works but the
value of the coverage indicator does not precisely correspond to
actual coverage values).

6.1. Indicators

Figs. 5-7 show the effect of altering indicator values.
Fig 5 shows results of using 1, 3, 5, 10, and 25 agents to capture
the environment in Fig. 1 with a simultaneous sampling of one
(i.e., at least every wall/object is seen once). As expected, a greater
number of agents produce a faster acquisition.
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Fig. 9. Swarming Diverse Architecture Spaces: (a) Environment used for simultaneous sampling (SS) and coverage results (shown near completion for SS=4 and 25 agents).
(b) Environment with various furniture pieces (shown with 100 agents optimized for maximum coverage in minimum time). (c¢) Environment with small rooms (shown with

50 agents optimized for high grouping).

Table 1
Fault tolerance. Our model supports agents randomly dying, even at high percent-
ages. These are shown for 25 agents with a desired surface sampling (SS) of four.

Death Rate (%) Sim. time SS Coverage (%)
0 1704 4.07 100
10 1741 39 100
20 1814 3.63 100
50 4871 3.55 100

Table 2

Comparison: We compare our approach (bottom) to original boids (did not complete
even after 50,000 steps), an optimized version of boids (using components of our
solution), and a global sharing method. All results use 10 agents with a goal simul-
taneous sampling (SS) of 4.

Method Sim. time (x103 steps) SS Coverage (%)
Original Boids 50 3.51 45

Opt. Boids 11.193 2.48 100

Global 6.067 4.05 100

Local (Ours) 8.467 418 100

Simultaneous sampling control is shown in Fig. 6. We show
several optimized solutions computed for different numbers of
agents and different simultaneous sampling targets through the
environment (Fig. 9a). Note that our optimization determines the
swarming model parameters that should yield the desired simul-
taneous sampling. But, recall the agents do not share maps thus
said sampling is not a guaranteed outcome. The balance between
the simultaneous sampling demand, the number of agents, and
environment complexity affects whether the target simultaneous
sampling is not reached, reached, or exceeded. We can vary the
coverage indicator in order to permit trading-off performance for
acquisition incompleteness. Fig. 7 shows the results for various
coverage values of the floorplan in Fig. 9a.

Table 1 shows the robustness of our method when agents die
during the acquisition process. Fig. 8 demonstrates usage of the
grouping indicator. When desired agents can be designed to stay
closer together forming groups which may be beneficial in some
cases (e.g, pose estimation algorithms). Fig. 9 shows snapshots
during the simulated capture though three different floor plans
with 25 agents.

6.2. Comparison

Table 2 shows the comparison of our method to alternative
approaches. We compare the efficiency of our method to an ap-
proximation of the original Boids model [1]. Our implementation
of the Boids model uses our infrastructure with hand-picked
velocity weights and no explore velocity. We also compare to an
optimized Boids models. We use our optimization to find the most

suitable velocity weights but still do not include our explore ve-
locity notion. Finally, we adapted our method to send all captured
map information to a centralized server which then coordinates
the distribution of goal grid cells for exploring. In this case, our
method should ideally achieve a similar level of efficiency but
does so without requiring a centralized server. As compared to
these methods, our approach performs well.

Amongst all our demonstrated results, the velocity weight
values determined by our optimization vary significantly e.g., ke,
ka, ke, and ks vary by up to 59%, 83%, 35%, and 83%, respectively.
However, the weights tend to not vary much between similar floor
plans optimized with the same indicator objectives. Hence, we
compute the solution for a floor plan and then use those weights
to capture unknown, but expected to be similar, environments.

6.3. Limitations

Our method has a few limitations. First, our method assumes
the same swarming behavior is adequate during all stages of
capture. Second, our method may not have an advantage for
rapidly exploring environments with big open spaces, as a simpler
method of dispersing in different directions may provide good
results. Third, as mentioned previously, our method cannot guar-
antee a prescribed simultaneous sampling goal or coverage value
is attained, but our simulated results show at least values similar
to the desired ones are obtained.

7. Conclusions and future work

We have shown our output-driven swarming approach to envi-
ronment exploration. Our parameterized swarming model is con-
trolled by an optimization that discovers the best parameter values
to yield a desired swarming behavior. Subsequently, our swarming
model can be used to sample an architectural indoor environment
without requiring a centralized server or map sharing - this is
conducive to high scalability. Further, our optimization model
defines and uses a set of output-based indicators that enable the
operator to predetermine how the environment will be acquired.

As future work, we see several avenues. First, our method
currently assumes an external position and orientation (i.e., pose)
estimation per agent. We would like to incorporate relative pose
estimation by using nearby agents and perhaps additional sensors.
Second, we would like to train a neural network with the results
of our system so as to permit very fast estimation of behavior pa-
rameters and could, in theory, optimize behavior as the agents are
discovering a scene. Third, we would like to apply our swarming
model to real-world agents and reconstruction, as well perform
additional analysis.
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