
Computers & Graphics 87 (2020) 103–110

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

An output-driven approach to design a swarming model for

architectural indoor environments

✩

C. D. Tharindu Mathew

∗, Bedrich Benes , Daniel G. Aliaga

Purdue University, Computer Science 305 N University St West Lafayette, IN 47907, United States

a r t i c l e i n f o

Article history:

Received 17 October 2019

Revised 14 January 2020

Accepted 9 February 2020

Available online 14 February 2020

Keywords:

Swarms

Architectural indoor environments

Output-driven

a b s t r a c t

We introduce a novel tool for designing a swarming behavior model for a set of virtual agents to au-

tomatically capture an initially unknown indoor architectural environment. Our key idea is to use an

output-driven optimization to create targeted swarming behavior. The input to our model is a sim-

ple rectangular proxy of the target area and desired acquisition indicator values. The final outputs are

the parameters for a swarming behavior model that is autonomous and decentralized, uses only local

exploration, and is robust to agent failure. We show and compare the swarming performance in sev-

eral simulated environments of up to several hundred square meters, 100 agents, and under various

conditions.

© 2020 Elsevier Ltd. All rights reserved.

1

c

a

v

s

(

p

r

a

t

i

i

b

S

s

(

a

e

m

(

o

a

b

e

l

H

t

c

M

r

a

t

a

e

b

(

a

p

(

e

w

c

a

t

t

w

h

0

. Introduction

Capturing and reconstructing interior or exterior spaces is a

hallenging task that has been addressed by a variety of passive

nd active methodologies in computer graphics and in computer

ision. One option that has received significant attention is to

warm and to capture the environment with a set of agents

 e.g., drones or other mobile agents). While the swarms provide

arallelism, they are quite challenging to control automatically and

obustly so as to produce a high quality result of complex interior

nd exterior floor-plans.

We focus on an inverse modeling approach to design an au-

onomous swarming model specialized to capturing architectural

ndoor environments. The seminal work of [1] introduced swarm-

ng model in computer graphics and allowed to reproduce the

asic geometric behavior of flocking birds and schools of fish.

ignificant progress has been made in imitating through a simple

et of swarming rules the behaviors of other insects and animals

 e.g., [2]), adding noise, velocity models, and control (e.g., [3,4]),

nd stochastic models (e.g., [5]). Efficient exploration of unknown

nvironments has been also studied by using mobile agents, and

ost of such setups assume some form of global communication

 e.g., [6] focused on indoor spaces and the flying drone system

f [7]). Computational swarming approaches are robust, scalable,

nd inherently parallel. At its core, a swarming approach assumes
✩ This article was recommended for publication by M. Wimmer.
∗ Corresponding author.

E-mail addresses: mathewc@purdue.edu (C. D.T. Mathew),

benes@purdue.edu (B. Benes), aliaga@cs.purdue.edu (D.G. Aliaga).

c

t

w

l

I

ttps://doi.org/10.1016/j.cag.2020.02.003

097-8493/© 2020 Elsevier Ltd. All rights reserved.
ach agent to individually follow a simple set of rules, with only

ocal interactions, but globally coordinated behaviors emerges.

owever, these swarm intelligence frameworks do not provide

he behavior needed for swarming a set of agents (or mobile

apture devices) for acquiring the geometry of a 3D environment.

oreover, we seek a solution where each agent follows simple

ules and no map sharing nor centralized control is needed during

cquisition. This approach can also be applied to hundreds of in-

elligent agents in a simulation (e.g., NPCs in video games), as each

gent only processes local information, making it computationally

fficient and parallelizable.

Our key idea is to build upon output-driven modeling that has

een used for images (e.g., [8,9]), 3D models (e.g., [10]), trees

 e.g., [11]) and urban models (e.g., [12–14]). In particular, we use

n output-driven optimization to design, during a preprocessing

hase, a swarming behavior model that yields a desired behavior

i) for an arbitrary number of mobile agents, (ii) that is able to

xplore an initially unknown architectural indoor environment

ithout needing to share map information nor have centralized

ontrol, and (iii) that obtains a desired multi-viewpoint sampling

nd coverage as shown in Fig. 1 .

Altogether, our swarming-behavior design approach consists of

wo main components (Fig. 2). First, we define a swarming model

hat assumes individual agents have a fixed sensing radius within

hich they can sense the environment (e.g., perform laser scans,

apture focused pictures at a suitable resolution) and can sense

he presence of other agents but do not need to communicate

ith them. Our swarming model is built on the intuition that a

arge number of agents having a set of low-cost sensors (such as

R) can use data fusion to obtain 360 ◦ field of view input. Further,

https://doi.org/10.1016/j.cag.2020.02.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.02.003&domain=pdf
mailto:mathewc@purdue.edu
mailto:bbenes@purdue.edu
mailto:aliaga@cs.purdue.edu
https://doi.org/10.1016/j.cag.2020.02.003

104 C. D.T. Mathew, B. Benes and D.G. Aliaga / Computers & Graphics 87 (2020) 103–110

Fig. 1. Swarming Architectural Indoor Environments: Our output-driven approach consists of a novel swarming model component and an optimization component which

uses a set of indicators to specify desired acquisition behavior. (a) Visualization of the capture process of a swarm of 100 agents through a 750 m

2 environment. Wall coloring

indicates level of sampling (red = high) and shading indicates that the location has been visited. This global map is in fact not visible to the individual agents and it is only

for visualization purposes. (b) A depiction of the map of a single agent early on in the capture and (c) is the map of the same agent near the end. During the acquisition,

the agents do not actually share map information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Explore Procedure

MCMC

Indicator Models yes
Done?

no

Output-driven Op�miza�on

floorplan proxy

ini�al params
Dynamic Procedure

Swarming Model

new parametersdesired indicators

Fig. 2. System Pipeline: The swarming model uses proxies and initial parameters to build the optimization that generates the input parameters of the swarm.

n

e

c

s

s

i

u

t

g

a

m

i

i

d
although a large sensor observation radius helps to explore faster,

we focus on short-range sensors (e.g., 1 m) to show that it still

allows the system to explore the area rapidly when using a swarm.

It is common for sophisticated agents (e.g., self-driving cars) to

have multiple sensors to cover a 360 ◦ field of view. Similarly,

many simple ground robots use multiple IR or ultrasound sensors

to cover a 360 ◦ field of view. Hence, we assume the fused sen-

sor data that results in a 360 ◦ field of view is an input to the

swarming algorithm and the sensing distance is not necessarily

large. Second, we define an optimization that uses a set of output-

behavior indicators (e.g., capture time, coverage, surface sampling,

and grouping) to discover the most suitable swarming model

parameters. Each agent is only aware of its local surroundings and

reacts based only on its neighborhood thus scalable to a large

number of agents, though in our current implementation we do

address how each agent localizes itself. We do not assume agents
eed to share exploration maps nor have an initial map of the

nvironment. Only at the end of acquisition would agents coalesce

aptured data for subsequent processing.

We have analyzed and evaluated our design approach by

imulating acquisition in a variety of synthetic 2D floor plans

panning up to several thousand square feet. The swarming behav-

or models produced by our approach demonstrate to be robust to

nexpected and sporadic failure of individual agents throughout

he acquisition and are able to dynamically adapt to unexpected

eometry and occlusion. Further, we also compare our method to

 traditional swarming model [1] and to a multi-agent exploration

odel with centralized control (e.g., [7]).

We claim the following main contributions: (1) a novel swarm-

ng behavior model suitable for robust acquisition of architectural

ndoor spaces, (2) an output-driven optimization approach for

etermining swarming behavior model parameters, and (3) a

C. D.T. Mathew, B. Benes and D.G. Aliaga / Computers & Graphics 87 (2020) 103–110 105

p

m

2

c

r

3

c

i

d

m

e

s

e

n

S

s

p

I

s

a

a

i

a

w

h

s

o

t

p

V

B

s

s

l

C

l

u

m

t

u

u

i

r

a

a

p

i

t

v

s

a

b

e

d

h

s

r

t

o

g

a

m

e

o

a

a

d

a

a

w

e

d

t

o

b

3

o

(

o

s

s

p

s

o

c

s

a

(

c

v

c

a

e

t

(

c

M

E

w

t

4

e

i
ractical design tool for predicting the suitability of a set of a

obile sensors in a target environment.

. Related work

Our method builds off of work in multi-agent exploration,

omputational swarming, and inverse modeling. In terms of 3D

econstruction methods, Seitz et al. [15] compare many multi-view

D reconstruction methods suitable for a variety of image-based

apture mechanisms. Even though, these methods promote the

dea of sampling a space with multiple viewpoints, they do not ad-

ress autonomous swarming-based capture for 3D reconstruction.

Multi-agent exploration and simultaneous localization and

apping (SLAM) focus on constructing a map of an unknown

nvironment while also localizing the agents. Recent work extends

olutions to work with multiple agents in a computationally

fficient manner (e.g., [16,17]) but the focus is usually on a small

umber of sensor-heavy devices and often a centralized server.

ome methods, such as Fox et al. [18] , circumvent a centralized

erver by sharing map information between nearby agents (and

erforming a rendezvous operation to mutually register the maps).

n contrast, we focus on designing an autonomous decentralized

warming behavior model suitable for many simple agent-like

cquisition devices including support for scalability, robustness to

gent failure, and simple local control logic. Nonetheless, we antic-

pate our work can be used in conjunction with other exploration

nd SLAM methods. Our method allows to explore large maps,

here the area is limited only by an agent’s memory capacity to

old the map data. Further, simple compression techniques and

elective storage (e.g., storing only the points of interest) make use

f storage efficient.

Computational swarming is being used in a variety of con-

exts today. The ability of simple agents to produce com-

lex swarm behavior was demonstrated by Reynolds [1] and

icsek et al. [3] , amongst many others. More recently,

erman et al. [19] and Dorigo et al. [20] study heterogeneous

warms. Kushleyev et al. [21] and Vásárhelyi et al. [22] demon-

trated swarming systems of aerial agents carrying out intel-

igent tasks using a global planner. Rubenstein et al. [23] and

ucu et al. [24] show 10 0 0+ simple agents that operate only on

ocal rules to exhibit global swarm behavior, including making

se of the agent itself to form structures. While some swarming

odels explore unknown environments (e.g., Dirafzoon and Loba-

on [25] discover the environment topology), swarming approaches

sually do not center on comprehensively mapping an initially

nknown environment. A decentralized method are advantageous

n hazardous environments, where agents can explore without

elying on external server communication and coordination. Our

lgorithm could steer the agents to complete the task even if some

gents were lost.

To date, optimization-based, or output-driven, swarming ap-

roaches are less investigated. Some of related prior work in

nverse modeling centers on discovering a 3D city configuration

hat produces a desired set of urban form and function indicator

alues [12] , a 3D parameterized model that corresponds to a

imple digital sketch [13] , and a 2D walkway layout that yields

 desired crowd behavior [14] . Relevant to swarming are data-

ased approaches (e.g. Wagner and Choset [26]). In particular, the

xample-based approach of Wang et al. [2] uses the trajectory

ata of actual swarms to create a swarming model. Also, swarms

ave been demonstrated by Saska et al. [27] in carrying out a

urveillance task for aerial agents. Lee et al. [28] show a swarm

obot-based mapping of an environment through a structured

riangulation. The algorithm iteratively builds out a triangulation

f the environment where each robot acts as a vertex of trian-

le. Mahadev et al. [29] introduced a particle swarm mapping
nd coverage algorithm that is controlled by a uniform input to

ap tissue and vascular systems. In this algorithm each particle

xperiences the same applied force (such as a magnetic field) as

pposed to individual control. Ramachandran et al. [30] introduced

 mapping algorithm for a stochastic robot swarm. The dynamics

re modeled using a set of advection-diffusion-reaction partial

ifferential equations. The map is incorporated into the model,

nd the system is solved as a optimization problem offline using

 gradient descent algorithm. In contrast to the aforementioned

orks, our solution seeks to comprehensively explore an unknown

nvironment without a centralized server, to create clusters when

esired, to sample surfaces multiple times, and to reduce capture

ime. At the conclusion of capture, data is coalesced and processed

ffline. Further note, we are not attempting to imitate swarm

ehavior in nature but instead acquire environment geometry.

. Overview

Fig. 2 shows an overview of our system pipeline. The input to

ur swarming behavior design tool is a simple floor plan proxy

 e.g., an approximate 2D floor plan with only major walls and

bstacles), the desired acquisition indicator values (e.g., values for

imultaneous sampling, coverage and time taken), and an initial

et of swarm agent parameters (e.g., number of agents, starting

ositions). Note that the floor plan proxy is not needed for the

warming model. The output of our design tool are the parameters

f our autonomous decentralized swarming behavior model that

an be used during an actual acquisition where the agents use our

warming behavior model.

The first block shows the swarming model that uses explore

nd dynamics procedures to move through the input floor plan

 Section 4). The explore procedure executes steps related to de-

iding the next location. The dynamics procedure combines five

elocity components (i.e., explore , obstacle avoidance , alignment ,

luster and separation) to form the final velocity of motion for each

gent a i , i = 0 , 1 , . . . , | a | .
The second block describes the optimization approach that it-

ratively modifies the parameters of our swarming model in order

o yield agent behaviors that result in the desired indicator values

 Section 5). The parameters of the swarming model are the five

oefficients of each velocity component which are found via an

CMC-based optimization and numerous acquisition simulations.

ach simulation moves the agents throughout a discretized grid,

ith each grid cell being denoted as g xy .

We assume the agents in our model (and the comparison) have

he following characteristics:

1. The motion is restricted to the 2D ground plane

2. The union of sensors of an agent is able to sense objects and

agents within a radius of 1m (diameter of 2 m), within a total

circular arc, i.e., 360 ◦. The swarming algorithm receives the

output after completing sensor fusion (simply, the union of the

sensors). This radius of the fused sensor is configurable, but for

our experimental purposes it is chosen to have a short-range

to emulate a set of low-cost sensors.

3. The average speed of motion of each agent is 1 ms −1 (ini-

tialized from a normal distribution, N (1 , 0 . 1 2) , with the

maximum being 4 ms −1 .

4. Velocity updates are bounded and happen at 30 Hz hence re-

stricting the maximum acceleration to beneath a desired value.

. Swarming model

Our approach designs a swarming behavior model that can

fficiently explore and sense an initially unknown architectural

ndoor environment. We assume each agent will be equipped with

106 C. D.T. Mathew, B. Benes and D.G. Aliaga / Computers & Graphics 87 (2020) 103–110

occupied empty unvisited

,

,

Fig. 3. Explore Procedure: (a) Our procedure uses a combination of breadth-first-

search and A ∗ to explore grid cells. (b) If an agent i encounters an agent j , the other

agents sensing area is consider occupied in i s map and it visits elsewhere. agent j s

map, shown in gray-scale, is not known to agent i it simply marks all the gray-scale

area as occupied.

occupied empty unvisited

Fig. 4. Dynamics Procedure . We depict the five velocity types of our dynamics model

and the underlying grid cell and its potential cell flag values.

o

i

a

o

a

t

t

f

v

a

�

w

o

r

m

a

t

f

b

w

w

m

t

v

i

c

u

c

a

o

b

t

t

a

m

F

w

T

t

g

V

a
some form of environment sensing (e.g., a range-detecting system

or an image-based system with color and/or depth capture). While

the environment does not strictly need to be indoors, we do as-

sume it is bounded and it can be described by an interconnected

space of polygon-shaped rooms, corridors, and obstacles that can

be modeled with a simple planar interconnection graph. Given a

number of agents and a prioritization of the relative importance

of minimizing acquisition time, achieving a certain level of surface

sampling, a wanted coverage percentage, and a desired amount

of grouping, our optimization model computes a suitable set of

swarming model parameters. Then, as verification we simulate

how the agents explore and navigate through the environment.

4.1. Swarming behavior model

Our approach defines a swarming behavior model that collec-

tively acquires a target environment. In the following, we describe

our exploration and dynamics procedures.

Exploration: During our exploration procedure, each agent

explores the initially unknown scene with the help of a 2D grid

assumed to be big enough to capture the environment. Each grid

cell is represented by its centroid; initially all cells are marked as

unvisited and later a cell can be marked as empty or occupied. We

denote each agent by an index i or j and our per-agent variable

notation is as follows: p i is the position of agent i (in the grid), v i
is the velocity of i th agent, and r i is the sensing radius of an agent.

All agents start exploration from a tight formation. As each

agent i explores the environment, it marks its explored cells as

empty (i.e., free space) or occupied (i.e., wall or object as per

sensor readings) (Fig. 3). The details of the dynamics procedure

are explained below, but essentially either agent i follows agent

j to achieve a desired level of simultaneous sampling, or agent i

explores on its own to increase sampling coverage. An agent may

explore on its own if its explore velocity component overwhelms

the others. This is especially true if the agent’s map contains

unexplored areas that are away from the other agents. If an agent

i explores on its own and encounters another agent j , then all

grid cells within agent j s sensing radius are marked as occu-

pied in agent i s grid. If the width of any part of the explorable

environment is less than or equal to r and the interconnection

graph of the interior spaces is single-connected (i.e., there is no

bi-connected subgraph or, intuitively, there is only one pathway

to access each room), then the aforementioned logic will prevent

agent i from unnecessarily capturing the area already sampled by

agent j . In practice, we can relax the single-connected constraint

because the presence of other agents k 1 , l 2 , . . . , k q will typically

block agent i s access to areas sampled by agent j (e.g., it will

rarely occur that agent i arrives to the space behind agent j by

another route through the environment without encountering
ther agents. If this were to happen after agent i observes agent j

t would explore another location.

The acquisition is complete when the space accessible to each

gent is marked as occupied (either through own exploration or

ccupied by walls/obstacles or occupied by other agents sensing

reas).

Dynamics: The dynamics procedure determines a agents mo-

ion by making use of a weighted sum of five different velocity

ypes (Fig. 4). During each iteration, all velocities are recomputed

or each agent. The iterations terminate when the explore velocity

 i = 0 (i.e., there is nothing left to explore). The velocity update for

gent i is:

v i = k e (f V e (V e) −V i) + k o f V o (V o) + k a (f V a (V a) −V i)

+ k c f V c (V c) + k s f V s (V s) , (1)

here the subscripts e , o , a , c and s correspond to explore,

bstacle-avoidance, alignment, cluster, and separation velocities,

espectively. The velocity weights k e , k o , k a , k c and k s are the pri-

ary parameters that determine a agents behavior. f V e , f V o , f V a , f V c ,

nd f V s are sensitivity functions that scale the effect of the velocity

ype for the different velocity types.

Inspired by Reynolds [31] , each sensitivity function has the

orm:

f (V) = | V | x V | V | , (2)

ut x varies according to the velocity type. For our five types,

e found x e = 2 , x o = −2 , x a = −2 , x c = −2 , and x s = −2 to work

ell. For example, x e = 2 implies that the exploration velocity is

ore sensitive (i.e., larger) for large distances and x s = −2 implies

he separation velocity is larger for small distances. The current

elocity is subtracted from the exploration and alignment veloc-

ties because those velocities are used in a corrective goal-seeking

apacity.

Our procedure uses an explore velocity V e to wander into new

nexplored areas. Selecting goal grid cell g e xy and computing the

orresponding explore velocity vector is performed using a search

lgorithm. A breadth-first-search (BFS) of the cells in the map

f agent i is performed starting at p i . The closest unvisited cell

ecomes u i . The A

∗ search algorithm and the current grid are used

o determine a path to u i . The next grid cell along the A

∗ path

o u i becomes g e xy . To save on compute time, the A

∗ algorithm,

nd selection of u i , is re-computed only when some cell is newly

arked as occupied (i.e., the map has changed significantly).

urther, for the A

∗ computation, we give a cell adjacent to a

all/obstacle a higher weight than other empty/unknown cells.

his encourages the algorithm to compute a path that goes close

o the walls/obstacles but not too close (when possible). Then,

iven g e xy the explore velocity is:

 e = g e xy − p i . (3)

In order to avoid walls or objects, our model uses an obstacle

voidance velocity V o . The computed velocity essentially avoids

C. D.T. Mathew, B. Benes and D.G. Aliaga / Computers & Graphics 87 (2020) 103–110 107

h

a

V

w

d

s

v

c

o

c

a

d

a

a

a

a

V

V

w

C

s

d

T

V

r

a

4

t

A

v

r

g

a

v

o

w

w

S

o

5

m

i

i

5

l

a

a

a

m

f

t

t

s

m

t

a

m

c

s

w

f

i

a

S

C

e

e

s

t

c

t

C

w

t

t

a

t

H

(

e

i

a

i

h

m

a

l

a

G

a

G

w

i

t

t

5

s
itting (or reaching) the obstacle. One definition of an obstacle

voidance velocity is

 o =

1

N

o
i

∑

‖ p i −g o xy ‖≤r

(p i − g o xy) , (4)

here N

o
i
is the number of grid cells marked as occupied within a

istance r of p i and g
o
xy represents an occupied grid within a sen-

or radius. Note that we use ray casting to only include obstacles

isible with an unobstructed line of sight. This formula basically

omputes the averaged vector that moves the agent away from the

bstacle. In our implementation, we use a variation of Eq. (4) spe-

ific to rectangular grids where given a agent moving nearly par-

llel to the obstacle, it can continue moving in the same general

irection but swerves away from the obstacle. Our method uses

n alignment velocity V a and a cluster velocity V c to encourage

gents to move in unison and to cluster together. It is computed

s the average velocity/position (from the previous iteration) of all

gents within distance r of p i . We call this cluster C i . Thus,

 a =

1

| C i |
∑

j∈ C i
v j (5)

 c =

1

| C i |
∑

j∈ C i
(̂ p i − p j) , (6)

here | C i | is the size of cluster C i and ˆ p i is the centroid of cluster

i .

Finally, to avoid agents colliding with each other, we use a

eparation velocity V s . This velocity is inversely proportional to the

istance between agent i and other agents within distance r n < r .

he separation velocity for agent i is

 s =

∑

‖ p i −p j ‖≤r n

(p i − p j) . (7)

This velocity moves agent i away from other agents j . In the

are case agent i is surrounded symmetrically by various agents,

gent i will not move - instead the other agents will.

.2. Discussion

Let us consider the case where a single agent explores an arbi-

rary floor plan with obstacles. BFS is used to find goal cells, and

∗ is used to find the path. If we assume the obstacle avoidance

alue is set to a value that does not repel the agent away before it

eaches the cells close to an obstacle, then the explore procedure

uarantees that all reachable positions will be explored. If multiple

gents are exploring, a pathological case occurs when the cluster

elocity (which attracts agents to adjacent agents) overwhelms all

ther velocities and it results in all agents staying in one place

ithout any exploration. Though theoretically possible, in practice

e have not encountered this scenario and instead show (see

ection 5) multiple sets of parameters that achieve varying desired

utcomes.

. Optimization model

We use an optimization approach to determine the swarming

odel parameters that will best yield desired target values for an

ntuitive set of indicators tailored to 3D acquisition. In the follow-

ng, we describe the indicators and the optimization method used.

.1. Simultaneous sampling

We seek to control multiple agents so as to achieve a desired

evel of simultaneous surface sampling of the scene, denoted

s S . Prior work has shown that the quality and robustness of
 3D reconstruction increases with multiple viewpoints. Given

 single (mobile) sensor, we could collect sensor readings from

ultiple viewpoints of each scene surface. In preliminary work we

ound that if we considered multiple samples over time, agents

ended to stay near a grid cell for some time in order to satisfy

he multiplicity. Instead, for multiple (mobile) sensors we define

imultaneous sampling to be the desired property of acquiring

ore than one sensor reading of a scene surface at any given time.

Simultaneous samples imply the number of agents for which

he cell was within the sensor distance (and in line-of-sight) of a

gent during the same iteration of the update loop. We label the

aximum number of simultaneous samples of an occupied grid

ell g k to be s k and it is computed as:

 k = max t [count (| g xy − p t i | ≤ r)] , (8)

here count() provides a tally of the number of expressions satis-

ying the conditional, g xy is the grid cell marked as occupied and

p t
i
is the position of a agent at time (or iteration) t ∈ [0, T] where T

s the simulation time so far. The total simultaneous sampling for

ll grid cells is

 =

∑

k

s k , (9)

overage: The user can also control the coverage C of the target

nvironment. This enables performing a tradeoff between cov-

rage and other indicators such as time taken and simultaneous

ampling (e.g., agents can be directed to avoid sampling small

ime-consuming spaces).

The coverage is measured as a ratio between the sampled grid

ells marked as empty/occupied (i.e., different than unvisited) and

he total number of grid cells:

 =

count(g k � = un v isited)

G

, (10)

here G is the actual (or estimated) total number of grid cells

hat should be marked as empty/occupied. The correctness of

his coverage quantity depends on the accuracy of the grid cell

rray. If the grid cell array nearly matches the shape and size of

he actual floorplan, then a true coverage indicator is computed.

owever, in our simulations the grid cell array is a simple proxy

 e.g., a rectangle) thus the coverage quantity is only a coarse

stimation. Nonetheless, in both cases selecting the coverage level

s a beneficial indicator.

Time taken: Time taken T is a measure of how fast the agents

chieve a desired scene coverage. The number of time steps keeps

ncreasing until the explore velocities of all agents are zero.

Grouping: We define a grouping indicator G which measures

ow well defined are groups of agent clusters. This behavior

ay be beneficial to simultaneous sampling, to agents occupying

 more compact footprint, and, in future work, to assist with

ocalized pose and orientation estimation. The grouping indicator

t time t is

 t =

∑

i count(| p t i − p t
j
| ≤ r)

NN

t
i

(11)

nd the overall average grouping indicator is

 =

1

T

∑

G t , (12)

here G t is the average number of agents within r of each agent

 at time step t ∈ [1, T], N is the total number of agents, and N

t
i
is

he number of agents within r of agent i at time t . p t
i
and p t

j
are

he positions of agents i and j at time t .

.2. Optimization

The objective function for use during our optimization of the

warming behavior model parameters is formed by a weighted

108 C. D.T. Mathew, B. Benes and D.G. Aliaga / Computers & Graphics 87 (2020) 103–110

0

2

4

6

8

10

5 10 25 50

gnilp
maS .lu

miS

Number of agents

SS=4

SS=8

Fig. 6. Simultaneous Sampling: Solution optimized to reach a target simultaneous

sampling. As seen, too few or too many agents can make reaching the goal not

possible or too easy.

0

10

20

30

40

50

10 50 90

e
mit noitalu

miS (x
10

3
�m

es
te

ps
)

Coverage (%)

Fig. 7. Coverage: Solution optimized to different coverage levels. The time taken

may change non-linearly due to the complexity of the environment.

Fig. 8. Grouping . We compare a solution optimized for a low grouping indicator

value (a) to one of high grouping (b). Both results use 25 agents and are shown at

same time step.

e

a
combination of the aforementioned four indicators:

�(S,C,K,T) = γs (S − S d)
2 + γc (C −C d)

2 + γk (G − G d)
2 + γt T

2 ,

(13)

where S d , C d , and G d are desired indicator values (while usually

for time taken the expected value is zero). Combining these four

indicators and coefficients, we form the optimization function to

minimize as:

argmin k e ,k o ,k a ,k c ,k s �(S,C,K,T) . (14)

Since the solution space is nonlinear, a straightforward gradient

descent type method will probably fall into a local minimum.

Instead, we use a controlled randomized walk methodology, such

as a Markov Chain Monte Carlo (MCMC) [32] . In particular, we use

the Metropolis Hastings algorithm [33,34] to generate potential

state changes using a per-parameter probability density function.

This methodology essentially enables us to explore the solution

space and, under the right conditions, has in fact been proven to

find the optimal solution. Based on experimentation, we found a

reasonable MCMC setup using 100 simultaneous chains running

at four temperatures and typically for 10 0 0 steps. The normalized

objective value reaches a value of 10 −3 upon convergence. An

experimental attempt to reuse a set of fixed values for each map

yields sub-par results. These values could always be improved

through our optimization approach, due to the fact that obstacle

avoidance velocity and exploration velocity can have differing val-

ues that respond to differing map characteristics (e.g., open spaces

vs thin corridors). Furthermore, the different requirements within

the same map such as a combined simultaneous sampling and

time taken requirement would need a tedious and time-consuming

manual tuning of the parameters.

6. Results and discussion

We have applied our approach to a variety of floorplans in

simulation. Our prototype implementation was developed in C/C++

and runs on a PC with 3 GHz Intel i7 Processor, 16 GB RAM, and

a NVidia GTX 970 GPU. All visualization is done using custom

OpenGL code and optimization is performed using an in-house

MCMC engine.

Our swarming behavior model is accelerated by the use of

spatial-indexing to quickly determines cells adjacent to a agent.

Further, we make use of jump point search [35] to significantly ac-

celerate our A

∗ computations. In practice, our swarming simulator

runs a single agent at realistic velocities through a several thou-

sand square foot environment in under one second of computation

time and a 50 agent swarm in ten seconds.

Our optimization performs a MCMC-based optimization to

find the swarming behavior model parameter values. Currently,

to define a fixed relative scale of the solution vector we fix k o
to a constant value and optimize only the other four parameters.

On our computer, it takes an average of 5–15 min to compute a

solution for a typical floor plan.
0

10

20

1 3 5 10 25

e
mit noitalu

mi S (x
10

3
�m

es
te

ps
)

Number of agents

Simula�on �me

Fig. 5. Simulation time: Solution computed to minimize time taken to sample en-

tire environment.

t

(

v

a

6

F

t

(

n

Note that while our figures may show the floorplan for an

xample, the floorplan is in fact not known to the swarming

gents. However, for coverage we do use the outer rectangle of

he floorplan as the boundaries of a rectangular grid cell array

as discussed in Section 4 , using an over-fitted grid works but the

alue of the coverage indicator does not precisely correspond to

ctual coverage values).

.1. Indicators

Figs. 5–7 show the effect of altering indicator values.

ig 5 shows results of using 1, 3, 5, 10, and 25 agents to capture

he environment in Fig. 1 with a simultaneous sampling of one

i.e., at least every wall/object is seen once). As expected, a greater

umber of agents produce a faster acquisition.

C. D.T. Mathew, B. Benes and D.G. Aliaga / Computers & Graphics 87 (2020) 103–110 109

Fig. 9. Swarming Diverse Architecture Spaces: (a) Environment used for simultaneous sampling (SS) and coverage results (shown near completion for SS = 4 and 25 agents).

(b) Environment with various furniture pieces (shown with 100 agents optimized for maximum coverage in minimum time). (c) Environment with small rooms (shown with

50 agents optimized for high grouping).

Table 1

Fault tolerance . Our model supports agents randomly dying, even at high percent-

ages. These are shown for 25 agents with a desired surface sampling (SS) of four.

Death Rate (%) Sim. time SS Coverage (%)

0 1704 4.07 100

10 1741 3.9 100

20 1814 3.63 100

50 4871 3.55 100

Table 2

Comparison: We compare our approach (bottom) to original boids (did not complete

even after 50,0 0 0 steps), an optimized version of boids (using components of our

solution), and a global sharing method. All results use 10 agents with a goal simul-

taneous sampling (SS) of 4.

Method Sim. time (x103 steps) SS Coverage (%)

Original Boids 50 ∗ 3.51 45

Opt. Boids 11.193 2.48 100

Global 6.067 4.05 100

Local (Ours) 8.467 4.18 100

s

a

e

s

t

s

t

e

s

c

a

c

d

g

c

c

d

w

6

a

p

o

v

o

s

l

m

t

m

d

t

v

k

H

p

c

t

6

t

c

r

m

r

a

i

t

7

r

t

t

m

w

c

d

o

c

e

e

S

o

r

d

m

a

Simultaneous sampling control is shown in Fig. 6 . We show

everal optimized solutions computed for different numbers of

gents and different simultaneous sampling targets through the

nvironment (Fig. 9 a). Note that our optimization determines the

warming model parameters that should yield the desired simul-

aneous sampling. But, recall the agents do not share maps thus

aid sampling is not a guaranteed outcome. The balance between

he simultaneous sampling demand, the number of agents, and

nvironment complexity affects whether the target simultaneous

ampling is not reached, reached, or exceeded. We can vary the

overage indicator in order to permit trading-off performance for

cquisition incompleteness. Fig. 7 shows the results for various

overage values of the floorplan in Fig. 9 a.

Table 1 shows the robustness of our method when agents die

uring the acquisition process. Fig. 8 demonstrates usage of the

rouping indicator. When desired agents can be designed to stay

loser together forming groups which may be beneficial in some

ases (e.g., pose estimation algorithms). Fig. 9 shows snapshots

uring the simulated capture though three different floor plans

ith 25 agents.

.2. Comparison

Table 2 shows the comparison of our method to alternative

pproaches. We compare the efficiency of our method to an ap-

roximation of the original Boids model [1] . Our implementation

f the Boids model uses our infrastructure with hand-picked

elocity weights and no explore velocity. We also compare to an

ptimized Boids models. We use our optimization to find the most
uitable velocity weights but still do not include our explore ve-

ocity notion. Finally, we adapted our method to send all captured

ap information to a centralized server which then coordinates

he distribution of goal grid cells for exploring. In this case, our

ethod should ideally achieve a similar level of efficiency but

oes so without requiring a centralized server. As compared to

hese methods, our approach performs well.

Amongst all our demonstrated results, the velocity weight

alues determined by our optimization vary significantly e.g., k e ,

 a , k c , and k s vary by up to 59%, 83%, 35%, and 83%, respectively.

owever, the weights tend to not vary much between similar floor

lans optimized with the same indicator objectives. Hence, we

ompute the solution for a floor plan and then use those weights

o capture unknown, but expected to be similar, environments.

.3. Limitations

Our method has a few limitations. First, our method assumes

he same swarming behavior is adequate during all stages of

apture. Second, our method may not have an advantage for

apidly exploring environments with big open spaces, as a simpler

ethod of dispersing in different directions may provide good

esults. Third, as mentioned previously, our method cannot guar-

ntee a prescribed simultaneous sampling goal or coverage value

s attained, but our simulated results show at least values similar

o the desired ones are obtained.

. Conclusions and future work

We have shown our output-driven swarming approach to envi-

onment exploration. Our parameterized swarming model is con-

rolled by an optimization that discovers the best parameter values

o yield a desired swarming behavior. Subsequently, our swarming

odel can be used to sample an architectural indoor environment

ithout requiring a centralized server or map sharing – this is

onducive to high scalability. Further, our optimization model

efines and uses a set of output-based indicators that enable the

perator to predetermine how the environment will be acquired.

As future work, we see several avenues. First, our method

urrently assumes an external position and orientation (i.e., pose)

stimation per agent. We would like to incorporate relative pose

stimation by using nearby agents and perhaps additional sensors.

econd, we would like to train a neural network with the results

f our system so as to permit very fast estimation of behavior pa-

ameters and could, in theory, optimize behavior as the agents are

iscovering a scene. Third, we would like to apply our swarming

odel to real-world agents and reconstruction, as well perform

dditional analysis.

110 C. D.T. Mathew, B. Benes and D.G. Aliaga / Computers & Graphics 87 (2020) 103–110

[

[

[

[

[

[

[

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgments

This research was funded in part by National Science Founda-

tion grant 10 0 01387, Functional Proceduralization of 3D Geometric

Models and National Science Foundation grant 1835739, U-Cube: A

Cyberinfrastructure for Unified and Ubiquitous Urban Canopy Param-

eterization .

Supplementary material

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.cag.2020.02.003 .

References

[1] Reynolds CW . Flocks, herds and schools: a distributed behavioral model, 21.
ACM; 1987 .

[2] Wang X , Ren J , Jin X , Manocha D . Bswarm: biologically-plausible dy-
namics model of insect swarms. In: Proceedings of the 14th ACM

SIGGRAPH/Eurographics symposium on computer animation. ACM; 2015.
p. 111–18 .

[3] Vicsek T , Czirók A , Ben-Jacob E , Cohen I , Shochet O . Novel type of phase tran-
sition in a system of self-driven particles. Phys Rev Lett 1995;75(6):1226 .

[4] Hartman C, Benes B. Autonomous BOIDS. Comput Animat Virtual Worlds

2006;17(3–4):199–206. https://doi.org/10.1002/cav.v17:3/4 .
[5] Correll N , Hamann H . Probabilistic modeling of swarming systems. In: Springer

handbook of computational intelligence. Springer; 2015. p. 1423–32 .
[6] Simmons R , Apfelbaum D , Burgard W , Fox D , Moors M , Thrun S , et al. Co-

ordination for multi-robot exploration and mapping. In: Proceedings of the
AAAI/IAAI; 20 0 0. p. 852–8 .

[7] Scaramuzza D , Achtelik MC , Doitsidis L , Friedrich F , Kosmatopoulos E , Mar-

tinelli A , et al. Vision-controlled micro flying robots: from system design to
autonomous navigation and mapping in gps-denied environments. IEEE Robot

Autom Mag 2014;21(3):26–40 .
[8] Beck A , Teboulle M . Fast gradient-based algorithms for constrained total vari-

ation image denoising and deblurring problems. IEEE Trans Image Process
2009;18(11):2419–34 .

[9] Šť ava O, Pirk S, Kratt J, Chen B, M ̌ech R, Deussen O, et al. Inverse procedural

modelling of trees. Comput Graph Forum 2014;33(6):118–31. doi: 10.1111/cgf.
12282 .

[10] Weissenberg J , Riemenschneider H , Prasad M , Van Gool L . Is there a procedu-
ral logic to architecture?. In: Proceedings of the IEEE conference on computer

vision and pattern recognition; 2013. p. 185–92 .
[11] Šť ava O, Benes B, M ̌ech R, Aliaga DG, Krištof P. Inverse procedural modeling

by automatic generation of l-systems. Comput Graph Forum 2010;29(2):665–

74. doi: 10.1111/j.1467-8659.2009.01636.x .
[12] Vanegas CA , Garcia-Dorado I , Aliaga DG , Benes B , Waddell P . Inverse design of

urban procedural models. ACM Trans Grap (TOG) 2012;31(6):168 .
[13] Nishida G , Garcia-Dorado I , Aliaga DG , Benes B , Bousseau A . Interactive sketch-

ing of urban procedural models. ACM Trans Graph (TOG) 2016;35(4):130 .
[14] Mathew CDT , Knob PR , Musse SR , Aliaga DG . Urban walkability design using

virtual population simulation. In: Proceedings of the computer graphics forum,

38. Wiley Online Library; 2019. p. 455–69 .
[15] Seitz SM , Curless B , Diebel J , Scharstein D , Szeliski R . A comparison and eval-
uation of multi-view stereo reconstruction algorithms. In: Proceedings of the

2006 IEEE computer society conference on computer vision and pattern recog-
nition (CVPR’06), 1. IEEE; 2006. p. 519–28 .

[16] Atanasov N , Le Ny J , Daniilidis K , Pappas GJ . Decentralized active information
acquisition: theory and application to multi-robot slam. In: Proceedings of the

2015 IEEE international conference on robotics and automation (ICRA). IEEE;
2015. p. 4775–82 .

[17] Indelman V , Nelson E , Michael N , Dellaert F . Multi-robot pose graph localiza-

tion and data association from unknown initial relative poses via expectation
maximization. In: Proceedings of the 2014 IEEE international conference on

robotics and automation (ICRA). IEEE; 2014. p. 593–600 .
[18] Fox D , Ko J , Konolige K , Limketkai B , Schulz D , Stewart B . Distributed multi-

robot exploration and mapping. Proc IEEE 2006;94(7):1325–39 .
[19] Berman S , Kumar V , Nagpal R . Design of control policies for spatially inho-

mogeneous robot swarms with application to commercial pollination. In: Pro-

ceedings of the 2011 IEEE international conference on robotics and automation.
IEEE; 2011. p. 378–85 .

[20] Dorigo M , Floreano D , Gambardella LM , Mondada F , Nolfi S , Baaboura T ,
et al. Swarmanoid: a novel concept for the study of heterogeneous robotic

swarms. IEEE Robot Autom Mag 2013;20(4):60–71 .
[21] Kushleyev A , Mellinger D , Powers C , Kumar V . Towards a swarm of agile micro

quadrotors. Autom Robot 2013;35(4):287–300 .

22] Vásárhelyi G , Virágh C , Somorjai G , Tarcai N , Szörényi T , Nepusz T , et al. Out-
door flocking and formation flight with autonomous aerial robots. In: Proceed-

ings of the 2014 IEEE/RSJ international conference on intelligent robots and
systems. IEEE; 2014. p. 3866–73 .

23] Rubenstein M , Cornejo A , Nagpal R . Programmable self-assembly in a thou-
sand-robot swarm. Science 2014;345(6198):795–9 .

[24] Cucu L , Rubenstein M , Nagpal R . Towards self-assembled structures with mo-

bile climbing robots. In: Proceedings of the 2015 IEEE international conference
on robotics and automation (ICRA). IEEE; 2015. p. 1955–61 .

25] Dirafzoon A , Lobaton E . Topological mapping of unknown environments using
an unlocalized robotic swarm. In: Proceedings of the 2013 IEEE/RSJ interna-

tional conference on intelligent robots and systems. IEEE; 2013. p. 5545–51 .
26] Wagner G , Choset H . Gaussian reconstruction of swarm behavior from partial

data. In: Proceedings of the 2015 IEEE international conference on robotics and

automation (ICRA). IEEE; 2015. p. 5864–70 .
[27] Saska M , Vonásek V , Chudoba J , Thomas J , Loianno G , Kumar V . Swarm distri-

bution and deployment for cooperative surveillance by micro-aerial vehicles. J
Intell Robot Syst 2016;84(1–4):469–92 .

28] Lee SK, Becker A, Fekete SP, KrÃ¶ller A, McLurkin J. Exploration via structured
triangulation by a multi-robot system with bearing-only low-resolution sen-

sors. In: Proceedings of the 2014 IEEE international conference on robotics and

automation (ICRA); 2014. p. 2150–7. doi: 10.1109/ICRA.2014.6907155 .
29] Mahadev A, Krupke D, Fekete SP, Becker AT. Mapping and coverage with

a particle swarm controlled by uniform inputs. In: Proceedings of the 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS);

2017. p. 1097–104. doi: 10.1109/IROS.2017.8202280 .
[30] Ramachandran RK , Elamvazhuthi K , Berman S . An optimal control approach

to mapping GPS-denied environments using a stochastic robotic swarm. In:
Robotics Research. Springer; 2018. p. 477–93 .

[31] Reynolds CW . Steering behaviors for autonomous characters. In: Proceedings

of the game developers conference, 1999. Citeseer; 1999. p. 763–82 .
32] Gilks WR , Richardson S , Spiegelhalter D . Markov chain Monte Carlo in practice.

Chapman and Hall/CRC; 1995 .
[33] Metropolis N , Rosenbluth AW , Rosenbluth MN , Teller AH , Teller E . Equa-

tion of state calculations by fast computing machines. J Chem Phys
1953;21(6):1087–92 .

[34] Hastings WK . Monte Carlo sampling methods using Markov chains and their

applications. Oxford University Press; 1970 .
[35] Harabor DD , Grastien A . Improving jump point search. In: Proceedings of the

24th international conference on automated planning and scheduling; 2014 .

https://doi.org/10.1016/j.cag.2020.02.003
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0003
https://doi.org/10.1002/cav.v17:3/4
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0008
https://doi.org/10.1111/cgf.12282
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0010
https://doi.org/10.1111/j.1467-8659.2009.01636.x
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0027
https://doi.org/10.1109/ICRA.2014.6907155
https://doi.org/10.1109/IROS.2017.8202280
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0058a
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0058a
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30020-0/sbref0034

	An output-driven approach to design a swarming model for architectural indoor environments
	1 Introduction
	2 Related work
	3 Overview
	4 Swarming model
	4.1 Swarming behavior model
	4.2 Discussion

	5 Optimization model
	5.1 Simultaneous sampling
	5.2 Optimization

	6 Results and discussion
	6.1 Indicators
	6.2 Comparison
	6.3 Limitations

	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References

