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Nonconventional Analog Comparators
Based on Graphene and Ferroelectric
Hafnium Zirconium Oxide

Jialun Liu™, Hojoon Ryu

Abstract— Unlike transitional semiconductors, graphene
has zero bandgap and symmetric electron/hole transport,
which leads to unique V-shaped transfer characteristics.
Using this property, we design and demonstrate a new type
of comparator, which can calculate the absolute distance
between two signals, |A — B|, directly. Dual-gate graphene
transistors with ferroelectric hafnium zirconium oxide are
fabricated to serve as the basic units of the comparators.
We show that the remanent polarization of the ferroelectric
hafnium oxide can reach ~30 x.C/cm? and the output current
of the comparator can serve as a scalar indicator of the
similarity level between two signals. The embedded ferro-
electric layer can store the reference signal in situ, which
will reduce the energy consumption and latency related to
the data transport. Furthermore, we demonstrate the feasi-
bility of using ferroelectric graphene comparator in image
classification and motion detection. Using the k-nearest
neighbors (KNNs) algorithm, we show that the graphene
comparator arrays can recognize the handwritten digits in
the modified national institute of standards and technology
(MNIST) data set with over 80% accuracy. These ferroelec-
tric graphene comparators will have broad applications in
robotics, security system, self-driving vehicles, and sensor
networks.

Index Terms— Ferroelectric hafnium oxide, graphene,
image classifier, in-memory analog computing, motion
detection.

I. INTRODUCTION

SILICON transistor is typically unipolar (either n-type or
p-type), where the drain current changes monotonically
with gate voltage [1], [2]. As illustrated in Fig. 1(a), the drain
current difference between the two operating points (A and B)
is proportional to the gate voltage difference: Ip — Iy «
Vg — V4, where V4 and Vp are the gate voltages, and [,
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Fig. 1. lllustration of the transfer characteristics of (a) silicon
transistor, (b) ambipolar Schottky barrier transistor, and (c) graphene
transistor.

Ig—I,xVp =V, Ig—1Ip < |Vg =V,

and Ip are the drain current at operating points A and B,
respectively. This type of transistor can easily implement
the subtraction function (A — B), but is not convenient for
calculating the absolute distance between two signals |A — B].
Some Schottky barrier transistors based on narrow bandgap
semiconductors (such as black phosphorus and MoTe,) are
ambipolar [3]-[7], where the transfer curves are U-shaped,
as illustrated in Fig. 1(b). The drain current difference between
the operating point B and charge neutrality point A is related
to the absolute difference between the gate voltages |Vp — V4|,
if the gate voltage Vg > Vi, or Vp < Vi, where Vi,
and Vy,_, are the threshold voltages for the electrons and
holes, respectively. If the gate voltage Vp is in between the
two threshold voltages (Vin—, < Vg < Vp_p), the drain
current difference between these two points is nearly zero:
Ip — I, =~ 0, which means that the transistor cannot perform
|A — B]| calculation in this voltage range. Graphene transistors
have a V-shaped transfer characteristic due to the zero bandgap
and symmetric electron/hole transport in graphene, as shown
in Fig. 1(c). The drain current difference between operating
point B and Dirac point A is Ig — I4 o |Vp — V4| for nearly
all gate voltages, which is ideal for the |A-B| calculation. This
absolute distance function will be very useful in classification
and machine learning.

Many machine learning algorithms use distance metrics to
analyze the input data pattern to make any data-based decision.
The most commonly used distance metric is the Euclidean dis-
tance due to its simplicity [8]. The Euclidean distance between
signal A (Al,AQ,---,A,,) and B = (31,32,---,3,,)
is defined as dg(A, B) [>r A — B 191
To implement this function using silicon transistors, more
than 20 transistors are needed per pixel to construct a sub-
tracter circuit, an absoluter circuit, a squarer/divider circuit,
and a square-rooter/multiplier circuit [10]-[12]. Considering
a state-of-the-art smartphone camera with 12 million pixels,
such a distance comparator circuit will need over 200 million
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CMOS transistors. In this article, we propose to use dual-gate
graphene transistors to calculate the Manhattan distance
between signals. Here, the Manhattan distance between signal
A= (A,A,---,A,)) and B = (By, By, --- , By) is defined
as dy(A,B) = Z?:1|Ai — B;| [13]. The use of graphene
comparators endows the chip with great potential to increase
the circuit density and speed.

To further reduce the energy consumption and latency,
we propose to embed ferroelectric layers in the graphene
transistors and integrate the memory and analog computing
functions into one device, which can significantly reduce the
energy and latency related to data transportation. To ensure
the performance and reliability of the ferroelectric graphene
transistors, a high-quality ferroelectric layer is a prerequisite.
Traditionally, the ferroelectric materials are mainly based on
complex perovskites, such as lead zirconate titanate (PZT),
strontium bismuth tantalate (SBT), and lead magnesium
niobate-lead titanate (PMN-PT), and these materials have been
widely used in ferroelectric devices [14], [15]. However, these
ferroelectric materials have a limitation in thickness scaling
and are incompatible with CMOS processes. In the past few
years, doped metal oxides, including hafnium oxide (HfO,)
and zirconium oxide (ZrO;), were found to have ferroelectric
phase [16]-[22]. Ferroelectric HfO, has the advantages of
a high coercive field, excellent scalability (down to 1 nm),
and good compatibility with CMOS processing [22]-[26].
In this article, we synthesized ultrathin hafnium zirconium
oxide (HZO) with high remanent polarization and long reten-
tion time, which serves as an excellent storage layer in the
graphene comparators.

Based on the prototype ferroelectric graphene comparators,
we established the device model and simulated the functions
of the graphene comparator arrays to illustrate their potential
applications in image comparison, image classification, and
motion detection. Note that these ferroelectric graphene tran-
sistors can process any analog signals that can be converted to
voltages, including image pixel, sound, pressure, flow, temper-
ature, and many other sensor inputs. These analog comparators
will have broad applications in robotics, self-driving vehicles,
security systems, and sensor networks.

Il. EXPERIMENT

A. Device Design and Operating Principle

We propose a novel device structure: embedded-gate fer-
roelectric graphene transistor, as a basic building block for a
comparator, illustrated in Fig. 2(a). The operating principle is
as follows. The input voltage is applied to the top gate of the
graphene transistor. A typical current voltage characteristic of
a graphene transistor is illustrated in Fig. 2(b). The channel
current, Iy, increases linearly with the absolute distance
between the input voltage and the target Dirac voltage:
|Vin — Vbirac|. Here, the target Dirac voltage is determined
by the polarization in the ferroelectric layer, which can be
programmed by the pulses between the top and bottom gates,
as illustrated in Fig. 2(c). An array of these graphene tran-
sistors can be used as a comparator to recognize an image
as illustrated in Fig. 2(d) and (e). When the input image
is the same as the target image, the total output current
reaches a minimum. The value of the output current is a scalar
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Fig. 2. Device structure and operating principles of the ferroelectric
graphene transistor for analog comparison function. (a) Device structure.
(b) -V characteristics of the graphene transistor illustrating that the
output current Ioyt is determined by the distance between input voltage
and Dirac voltage |Vin — Wpiracl- (¢) lllustration of the drain current as
a function of input voltage on the top gate in the graphene transistor
with various polarizations in the ferroelectric HZO layer. (d) lllustra-
tion of graphene transistor array as comparator for image recognition.
(e) lllustration of a target image and an input image in grayscale.

indicator of the degree of matching between the input image
and the target image. In this way, each pixel will only need
one graphene transistor. When compared with the traditional
CMOS-based comparator, which needs more than 20 transis-
tors per pixel [10]-[12], this graphene comparator circuit will
consume a significantly smaller chip area and lower power.
Using ferroelectric gate dielectrics in the graphene transistor,
the information of the target image can be programmed and
stored as the level of polarization in the ferroelectric HfO,.
In this way, each graphene ferroelectric transistor will have
both storage and analog processing dual function. This local
storage of the target image will significantly reduce the power
consumption and operation latency related to the data transfer.

B. Methods

Zr-doped HfO, (HZO) is deposited by alternating the Hf
and Zr precursors with a 1:1 cycle ratio using an atomic layer
deposition (ALD) tool. Thick (40 nm) Al,O3 layer is deposited
on the 12-nm HZO film for encapsulation. The HZO/Al,O3
stacks are annealed in rapid thermal annealer (RTA) at 500 °C
for 60 s to induce ferroelectric phase transformation. Then, the
Al,O3 layer is removed using hot phosphoric acid. For HZO
capacitors, the top electrodes are formed on the HZO films
and the remanent polarization is characterized using positive-
up-negative-down (PUND) method. For the graphene/HZO
transistors, after the RTA annealing, a window is patterned
using lithography and the Al,O; layer is removed in the
channel region. CVD graphene is transferred onto the exposed
HZO in the channel region using the one-touch wet-transfer
method [27]. Then, graphene is patterned by lithography
and O, plasma. Source/drain contacts (Cr/Au) are formed
using photolithography and ebeam deposition. The 2-nm Al
is deposited on the graphene and then reoxidized to enhance
the nucleation of the top gate dielectrics. Then, 20-nm Al,O3
is deposited on top of the device using ALD. The top gate
electrode (Cr/Au) is formed on the Al,O3 layer. The dc
I —V measurements and program tests are done in Lakethore
cryogenic probe station using Keysight B-1500 analyzer.
The PUND measurements are carried out using Keithley
4225-PMU.
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Fig. 8. Polarization and Dirac voltage of a graphene transistor tested
using opposite-polarity program pulses (the first pulse scheme) on a
fresh device. (a) Polarization—voltage (P-V) loops of a capacitor with 12-
nm HZO on silicon substrate. (b) Waveform of the pulse train. Positive
and negative program pulses are applied alternatively with progressively
increasing pulse amplitudes. The pulsewidth is 4 ms and the pulse
amplitude increases from 8 to 24 V. A fast Ip—Vrg sweep is taken after
each pulse to read the Dirac voltage. (c) Transfer characteristics of the
graphene transistor before and after program pulses measured at 80 K.
The channel width/length of the graphene transistor is 10 um/4 um and
the drain voltage is 0.1 V. (d) Dirac voltage as a function of program
pulse amplitude for both positive and negative pulses. The upper left
and lower right insets illustrate the polarization charges in HZO and the
induced screening charge in graphene after positive and negative pulses,
respectively. (e) lllustration of the mechanism of the Dirac voltage shift
induced by polarization. After a positive pulse is applied on the top gate,
negative polarization charges are induced on the top surface of the HZO
layer, which attract positive screening charges in graphene. As a result,
the Dirac voltage shifts to the positive direction.

[1l. RESULTS AND DISCUSSION

A. Tunable Polarization and Dirac Voltage in Ferroelectric
Graphene FETs

High-quality ferroelectric HZO was synthesized using ALD.
As shown in Fig. 3(a), the remanent polarization in HZO
reaches 30 xC/cm?, which serves as an important foundation
for the ferroelectric graphene comparators. An Al,O3 capping
layer was deposited on the HZO layer before annealing to
facilitate the ferroelectric phase formation in HZO. The rema-
nent polarization of the HZO capacitor with the Al,O3 capping
layer is significantly higher than that without the Al,O3 cap-
ping layer during annealing. The sacrificial Al,O3 layer was
removed after annealing to increase the vertical electric field
in the HZO layer for a given gate pulse amplitude. As a result,
the remanent polarization of the capacitor after Al,O3 removal
is much higher than that without Al;O3 removal at a given
voltage range. In addition, eliminating the nonferroelectric
Al,O3 layer also helps reduce the depolarization field and
enhance the retention time of the polarization. The retention
time of the polarization in ferroelectric HfO, can exceed ten
years [28]. The ferroelectric HZO films with high remanent
polarization and long retention can provide reliable and low
power storage of the target signals, enabling the in-memory
analog computing in these devices.

Dual-gate ferroelectric graphene transistors with 12-nm
ferroelectric HZO were fabricated. Before programming, the
transfer characteristics of the ferroelectric graphene transistor

were measured. To eliminate the impact of the interface traps,
the device was measured at low temperature (80 K). The Dirac
voltage of the graphene transistor is close to zero, which is
desired for the graphene comparator application, since both
electron and hole branches are needed for the comparison
function. The hysteresis is negligible, confirming that the
interfacial trap effect is suppressed at this low temperature.

The tunability of the polarization in HZO and its impact
on the Dirac voltage of the ferroelectric graphene transistor
were studied using pulse measurements. The program pulses
were applied on the top gate, while the silicon back gate
is grounded. The vertical electric field between the top and
bottom electrodes can control the polarization reversal in
the HZO film effectively. Two pulse schemes were tested:
opposite-polarity program pulses and preset-program pulses.
In the opposite-polarity pulse scheme, a train of program
pulses with alternating polarities and incremental amplitudes
are applied between the top gate and the silicon bottom gate
on the fresh devices, as illustrated in Fig. 3(b). The transfer
curves of the graphene transistor before and after various
program pulses are measured by sweeping the top gate voltage,
as shown in Fig. 3(c). The extracted Dirac voltage is plotted
as a function of program pulse amplitude [Fig. 3(d)]. When
the pulse amplitude is below the coercive voltage, there are
negligible shifts in the Dirac voltage after program pulses.
When the pulse amplitude exceeds the coercive voltage,
the Dirac voltage shifts to the positive (negative) direction after
positive (negative) program pulses are applied. The higher
the pulse amplitude, the larger the shift in Dirac voltage.
The mechanism of this phenomenon is illustrated in Fig. 3(e).
When a positive pulse is applied on the top gate, negative
polarization charges are induced on the top surface of the
HZO layer, which attract positive mobile charges in graphene.
Therefore, the Dirac voltage shifts to the positive direction.
The reverse is true for negative pulses. Note that in this pulse
scheme, the polarization in HZO is a cumulative effect of all
the pulses that have been applied on the device previously,
since there is no reset or preset pulse in between the program
pulses.

To quantify the effect of each individual program pulse on
the polarization, a second pulse scheme is used, in which a pre-
set pulse is applied before each program pulse, as illustrated in
Fig. 4(a) and (c). In this case, the polarization of HZO is reset
to a constant level before each program pulse, which ensures
a fair comparison of the polarization switching induced by
various program pulses. Fig. 4(b) shows the transfer curves of
the graphene transistor after preset and program pulses. After a
—24 V preset pulse is applied, the graphene transistor shows
strong electron transport and the Dirac voltage is less than
—3 V. After the positive program pulses with progressively
increasing amplitude were applied on the gate, the Dirac
voltage shifts monotonically to the positive direction, which
is consistent with the mechanism illustrated in Fig. 4(d). The
Dirac voltage is plotted as a function of pulse amplitude
for both positive and negative program pulses, as shown in
Fig. 4(e). We can see that positive pulses induce positive
shifts and negative pulses induce negative shifts in Dirac
voltage. Approximately, the Dirac voltage and the program
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Fig. 4. Polarization and Dirac voltage of the graphene transistor tested
using the preset-program pulses (the second pulse scheme). (a) and (c)
Waveforms of the pulse train with positive and negative program pulses,
respectively. A preset pulse is applied before each program pulse. The
pulsewidth is 4 ms and the amplitude of the program pulse increases from
8to 24 V. Afast Ip—Vrg sweep is taken after each program pulse to read
the Dirac voltage. (b) and (d) Transfer characteristics of the graphene
transistor after positive and negative program pulses, respectively. The
Ib—V4g transfer curves shift consistently with increasing pulse amplitude
for both positive and negative pulses. (e) Extracted Dirac voltage as a
function of program pulse amplitude for positive and negative program
pulses. The Dirac voltages follow an approximate linear relationship
with the pulse amplitude for both positive and negative program pulses.
(f) Modeling of the transfer curves of the ferroelectric graphene transistor
after positive program pulses. The symbols are the measured data and
the lines are fittings. The channel width/length of the graphene transistor
is 10 um/4 um and the drain voltage is 0.1 V.

pulse amplitude follow a linear relationship for both positive
and negative pulses. Based on this correlation, we can convert
the target Dirac voltages to the program pulse voltages, which
will be essential for realizing the image comparison function.
Note that after each preset pulse (—24 V), the transfer curve
shifts back to nearly the same location [Fig. 4(b)], which
means that these preset pulses provide reliable and consistent
reset of the polarization. In addition, minimum conductance
at the charge neutrality point is nearly unchanged when we
vary the program pulse amplitudes, which will be an important
feature for image processing, so that the current from all
pixels can be equally weighted, regardless of the target voltage
value. These results indicate that the ferroelectric graphene
transistors can provide a promising hardware platform for
image classification.

The transport of the ferroelectric graphene transistor is
modeled using the following equation:

o~ ,1/‘\/(enDirac)2 + C%G(VTG - VDirac)2 (1)

where ¢ is the conductivity of the graphene channel, npjxc
is the carrier density at Dirac point, Ctg is the top gate
capacitance, Vpi,e is the Dirac voltage, Vg is the top gate
voltage, and e is the electron charge. The graphene channel

width of the graphene channel, respectively. Considering the
contact resistance R., the total resistance of the device can
be expressed as Ry = Rcnh + R.. The drain current can be
calculated from Ip = Vp/Riota1, Where Vp is the drain voltage.
Fig. 4(f) shows the measured data and the modeled result.
We can see that this model fits the experimental results very
well. Based on this model, we can predict the drain current of
the ferroelectric graphene transistor at any given input voltage
Vg for given Dirac voltage Vpine, that is, we can predict the
output current for a given pair of input and target images,
which will be discussed next.

B. Potential Application of Graphene Classifier

1) Image Comparison: Image comparison is one of the
essential processes in image analysis and artificial intelli-
gence. Measures of the similarity between images play an
important role in many image processing algorithms and
applications including retrieval, classification, change detec-
tion, quality evaluation, and registration. Based on the device
model established on the ferroelectric graphene transistor,
we evaluated the potential of the ferroelectric graphene tran-
sistor arrays in image comparison application. Three input
images with 284 x 177 pixels are compared with the target
image, as shown in Fig. 5. When the input image is the same
as the target image (case 1), the top gate voltage is equal to
the Dirac voltage at every graphene transistors in the array.
The drain current reaches minimum at every transistor. As a
result, the total output current reaches minimum I, | =
0.767 mA. If the input image is similar, but not identical, to the
target image (case 2), then the top gate voltage will be slightly
different from the Dirac voltage in some graphene transistors.
Thus, the total output current will be slightly higher at Iy, » =
0.779 mA. If the input image is very different from the target
image (case 3), then the output current is significantly higher
than that in case 1: Iy, 3 = 0.844 mA. We can see that
the total output current can serve as a scalar indicator of the
similarity between the input and output images. The higher the
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Fig. 6. Potential application of graphene comparators (2): image classi-
fication. 10 000 training images and 500 test images in the MNIST data
set are used in these tests. The KNN model is used for the classification
operation. (a) lllustration of example training and test data images. (b)
Accuracy as a function of training data size for graphene comparator and
commercial comparators based on the Euclidean distance. (c) Accuracy
as a function of k value with various training data sizes for graphene
comparators.
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similarity, the lower the total output current. Here, we assume
the drain voltage is 1 mV and the channel width/length ratio
is 4. Scaling down the drain voltage and width/length ratio
can further reduce the output current and power consumption.
The comparison function in these comparators is carried out
in one step, which can be achieved at very high speed.
Moreover, the image comparator based on graphene transistor
only needs one transistor per pixel, which can significantly
reduce the chip area. More importantly, the target image is
stored in the comparator array using a ferroelectric layer,
which is nonvolatile. This design can further reduce the
energy consumption related to data storage and transportation.
Furthermore, these graphene comparator arrays are especially
suitable for large networks, where the output current from
each transistor can be directly summed up. Regardless of
the number of units in the array, the operation time remains
constant, which will be very important for sensor network
applications.

2) Image Classification: Image classification is a vital com-
ponent in robotics, security systems, and image searching
engines. A commonly used machine learning algorithm for
image classification is the k-nearest neighbors (KNNs) algo-
rithm. For each test image, the k-nearest training images are
found, and the classification is decided by majority vote.
In KNN, the critical step is to find the distance between two
images. Traditionally, the distance between two images is cal-
culated using the Euclidean method 3"} (A% — B")Z. In this
work, we conducted image classifications using graphene
comparators. We used 10000 training images and 500 test
images in the modified national institute of standards and
technology (MNIST) data set to evaluate the accuracy of the
graphene comparators and the conventional comparators based
on the Euclidean distance. Fig. 6(a) shows some example
training and test images. The classification accuracy is plotted
as a function of training data size for these two types of
comparators [Fig. 6(b)]. We can see that the accuracy of the
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Fig. 7. Motion detection using graphene comparators. (a) lllustration
of the motion detection operation using graphene comparator. The pho-
todetector arrays detect the incoming images as a function of time. The
graphene comparators compare these image frames with the reference
image and generate output current. (b) lllustration of the change in
the output current of the graphene comparators as a function of time.
A change in the output current exceeding the threshold value constitutes
motion detection. (c) Ayt as a function of frame index for the test video.
Here, Aloyt = lout(n) — lout(1), where loyt(n) and lyi(1) are the output
current for the nth and firstimage frames, respectively. The output current
for each image frame is simulated using the graphene comparator model,
shown in Fig. 4.

graphene comparator is similar to or slightly better than that of
the commercial comparator based on the Euclidean distance.
Note that graphene comparators need many fewer transistors
per pixel, which means that the chip size and complexity
can be lower, when compared with the traditional comparator
based on the Euclidean distance calculated digitally. Fig. 6(c)
shows the accuracy as a function of k value with various
training data size for graphene comparators. Here, k is the
number of the nearest neighbors, which were used to vote.
When the training data size is 200, the optimal k value is
around 5. When the training data size exceeds 1000, the
accuracy becomes insensitive to the k values in the range we
tested here.

3) Motion Detection: Motion detection is very important
in video surveillance systems and in navigation systems of
self-driving cars, drones, and airplanes. Traditional motion
detection involves data transmission from the sensors to the
cloud and complex image processing using silicon CMOS
circuits. In this project, we show that motion detection
implemented using graphene comparators can be conducted
locally in the sensors and the operation can be completed
in one step. This ultrafast in-sensor motion detection will be
critical in navigation systems. Fig. 7(a) illustrates the oper-
ation of motion detection using graphene comparators. The
photodetector arrays capture the image frames as a function
of time. Each frame is compared with the reference image,
and an output current is generated based on the comparison.
When a moving object appears in the frame, the total output
current will increase immediately, as illustrated in Fig. 7(b).
An appropriate threshold current change Ay, is established,
and any current change exceeding the threshold constitutes
motion detection, which may trigger immediate action. The
corresponding output current as a function of frame index
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is shown in Fig. 7(c). Here, the change in the total output
current is defined as Algy = Loy (n) — Iouw (1), where oy (n)
is the output current for the nth image frame, and Iy, (1) is
the output current for the first image frame. In this experiment,
there is no moving object in the initial frame, which is taken
as the reference image. We can see that when there is a person
walking in front of the camera, the output current of the
comparator array is significantly higher than that when only
static background is in view. Since the graphene transistor can
operate at very high speed, these graphene comparators will
have great potential in ultrafast motion detection and in-sensor
computing applications.

In addition, the absolute distance calculated by the
ferroelectric graphene comparators can be used in regres-
sion analysis, compressed sensing, and frequency distribution.
Furthermore, ferroelectric graphene comparators can be inte-
grated with resistive random access memory (RRAM), phase
change memory (PCRAM), ferroelectric tunneling junctions
(FTJs), and spin transfer torque magnetic tunnel junctions
(STT-MFIJs) to form artificial neural networks for machine
learning applications. Here, the devices with tunable conduc-
tance can serve as the synapses, while graphene comparators
can calculate the residual errors and provide feedback to
the synapses. These novel devices provide a new hardware
platform for neuromorphic computing and machine learning.

IV. CONCLUSION

In summary, we demonstrated that the ferroelectric graphene
transistors can calculate the distance between two signals in
the analog domain and store the reference signal in sifu.
Graphene’s unique ambipolar characteristics and zero bandgap
lead to the V-shaped transfer characteristics of the graphene
transistor, which enable the direct calculation of the absolute
distance between two signals. We synthesized ultrathin ferro-
electric HZO with high remanent polarization (~30 xC/cm?)
and demonstrated ferroelectric graphene comparators with
tunable Dirac voltages via ferroelectric polarization. Based
on the characteristics of the prototype ferroelectric graphene
comparators, we established a device model and simulated the
functions of the graphene comparator arrays. Our results indi-
cate that ferroelectric graphene comparator array can perform
image comparison, image classification, and motion detection
effectively. In these applications, each pixel only need one
graphene transistor when compared with over 20 transistors
per pixel in CMOS comparators, which creates a new alter-
native path to reduce the chip area, power consumption, and
process latency. In addition, the nonvolatile nature of ferroelec-
tric hafnium oxide will eliminate the need for frequent image
loading/unloading, which will further reduce the power con-
sumption related to the data transfer. These analog ferroelectric
graphene comparators will have broad potential applications
including navigation system in self-driving vehicles, robotic,
security systems, and sensor networks.
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