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The goal of this work was to design a low-cost computing facility that can support the development of an
open source digital pathology corpus containing 1M images [1]. A single image from a clinical-grade digital
pathology scanner can range in size from hundreds of megabytes to five gigabytes. A 1M image database
requires over a petabyte (PB) of disk space. To do meaningful work in this problem space requires a
significant allocation of computing resources. The improvements and expansions to our HPC (high-
performance computing) cluster, known as Neuronix [2], required to support working with digital
pathology fall into two broad categories: computation and storage. To handle the increased computational
burden and increase job throughput, we are using Slurm [3] as our scheduler and resource manager. For
storage, we have designed and implemented a multi-layer filesystem architecture to distribute a filesystem
across multiple machines. These enhancements, which are entirely based on open source software, have
extended the capabilities of our cluster and increased its cost-effectiveness.

Slurm has numerous features that allow it to generalize to a number of different scenarios. Among the most
notable is its support for GPU (graphics processing unit) scheduling. GPUs can offer a tremendous
performance increase in machine learning applications [4] and Slurm’s built-in mechanisms for handling
them was a key factor in making this choice. Slurm has a general resource (GRES) mechanism that can be
used to configure and enable support for resources beyond the ones provided by the traditional HPC
scheduler (e.g. memory, wall-clock time), and GPUs are among the GRES types that can be supported by
Slurm [5]. In addition to being able to track resources, Slurm does strict enforcement of resource allocation.
This becomes very important as the computational demands of the jobs increase, so that they have all the
resources they need, and that they don’t take resources from other jobs. It is a common practice among
GPU-enabled frameworks to query the CUDA runtime library/drivers and iterate over the list of GPUs,
attempting to establish a context on all of them. Slurm is able to affect the hardware discovery process of
these jobs, which enables a number of these jobs to run alongside each other, even if the GPUs are in
exclusive-process mode.

To store large quantities of digital pathology slides, we developed a robust, extensible distributed storage
solution. We utilized a number of open source tools to create a single filesystem, which can be mounted
by any machine on the network. At the lowest layer of abstraction are the hard drives, which were split into
4 60-disk chassis, using 8TB drives. To support these disks, we have two server units, each equipped with
Intel Xeon CPUs and 128GB of RAM. At the filesystem level, we have implemented a multi-layer solution
that: (1) connects the disks together into a single filesystem/mountpoint using the ZFS (Zettabyte File
System) [6], and (2) connects filesystems on multiple machines together to form a single mountpoint using
Gluster [7].

ZFS, initially developed by Sun Microsystems, provides disk-level awareness and a filesystem which takes
advantage of that awareness to provide fault tolerance. At the filesystem level, ZFS protects against data
corruption and the infamous RAID write-hole bug by implementing a journaling scheme (the ZFS intent
log, or ZIL) and copy-on-write functionality. Each machine (1 controller + 2 disk chassis) has its own
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separate ZFS filesystem. Gluster, essentially a meta-filesystem, takes each of these, and provides the means
to connect them together over the network and using distributed (similar to RAID 0 but without striping
individual files), and mirrored (similar to RAID 1) configurations [8].

By implementing these improvements, it has been possible to expand the storage and computational power
of the Neuronix cluster arbitrarily to support the most computationally-intensive endeavors by scaling
horizontally. We have greatly improved the scalability of the cluster while maintaining its excellent
price/performance ratio [1].
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Abstract

« NEDC is currently developing an open source
corpus of 1M digital pathology images as part of its
NSF-funded Major Research Instrumentation grant.

* This project required a cost-effective approach to
hosting and backing up 1 Petabyte of online storage.

 Purchasing cloud-based storage typically costs
$0.01 — 0.02/GB/month, while our on-premises
solution costs $0.06/GB. This is a much lower cost
when prorated over a three or five-year period.

 To implement this storage platform, we purchased
two storage nodes, each connected to 960TB of raw
disk space to house the pathology corpus, as well as
a 96TB storage node to provide additional storage
space for our computing environment.

 Because our network is heterogenous, we created a
Storage Area Network (SAN) using GlusterFS, with
individual storage nodes using ZFS. Although the
storage nodes in the SAN run Linux, the storage
pool can be used by Windows machines.

 To handle the management of compute resources
and improve job throughput, we are using SLURM as
our job submission platform.

Introduction

* Digital pathology presents unique computational
demands due to the high resolution images required
(e.g., 5K x 5K pixels consuming 5GB in disk space).

* Much of the software which supports clinical and
research use cases of digital pathology has been
written specifically for Windows.

 However, many of the open source HPC, machine
learning and storage toolkits and platforms are
designed to work on Linux/UNIX systems, so a
storage platform which could work equally well with
Windows and Linux systems is required.

Fig. 1: A heterogeneous storage solution

* This system must be able to function in a hospital
setting, where the system has to span multiple
HIPAA-secured networks and firewalls, and reside in
multiple physical locations.

« The Samba interface can be configured to
authenticate against local credentials or can use an
organization’s existing LDAP database, allowing
physicians to have a single sign-on.

Cross-platform Petabyte-scale Storage

« At the hardware level, each storage node is attached

via a SAS 8644 cable to two external chassis which
can hold 60x 8TB HDD, for a total of 480 TB/chassis.

« ZFS was then used to provide the backend
filesystem, as well as the RAID implementation.
Each storage node has a separate ZFS filesystem.

 To create the SAN, GlusterFS was used. Volumes are
distributed (combines the available disk space of all
nodes) or replicated (data is written to all nodes).

 Two separate pools in the
same SAN were created: the

primary pool and the backup
pool. Either pool can be

mounted from either machine. Fig. 2: The primary pool
mounted on both Windows

. and Linux machines.
* A Gluster pool is mounted

from a Windows machine using a Samba share.

Managing Compute Resources

* Due to the computationally-demanding deep
learning algorithms we use to process the data, a
powerful and flexible job scheduler is needed.

« Support for scheduling GPUs as a separate item is a
necessity, since many of our machines have multiple
GPUs on a single motherboard.

« A typical compute node has 384 GB of RAM and 4x
NVIDIA Tesla P40 GPUs (24GB DDR5 RAM.

 Asingle-threaded machine learning job needs to
use multiple GPUs, so the scheduler needs to be
able to effectively timeshare jobs that use different
numbers of GPUs.

« SLURM allows users to request resources according
to a number of parameters (e.g. number of CPU
cores or number of GPUs), ensuring that jobs do not
experience resource bottlenecks.

Fig. 3: Example of resource selection in SLURM on the Neuronix cluster

* In the example above, a user can, with a single
command, select a partition (queue), the number of
CPU cores allocated for it (see Fig. 4).

« With job accounting, long-term usage statistics can
be collected to find bottlenecks.

Job Scheduling

* In addition to handling compute resources, the
other important function performed by SLURM is
scheduling jobs.

« In cluster computing settings, it is very common for
multiple users, or groups of users, to run jobs on
the same resources, so it is important that the job
scheduler be able to schedule jobs to run in a fair
and reasonable manner.

« SLURM has multiple mechanisms to support
different scheduling scenarios, including grouping
users into accounts and organizations, with the
ability to set job priority for a specific user, group,
or organization.

« Beyond a user’s association, SLURM can determine
job priority and schedule according to any number
of parameters, including how long the job has been
queued, the amount of resources requested, which
queue the job was submitted to, and the user’s
history of resource usage.

The Neuronix Use Case

« Using SLURM as our job manager, we can exert a
very fine degree of control over the physical
resources that a job will have allocated to it.

Fig. 4: Running a job via ssh (left), and via SLURM (right)

* Neuronix compute nodes are grouped by function as
SLURM partitions. Within a particular partition,
nodes with specific features can be chosen, or
nodes can be selected from a general resource
(GRES) pool (e.g. GPUs).

Fig. 5: A map of the Neuronix compute nodes

« Using the ZFS/GlusterFS storage pool, the total
storage available to our HPC cluster is 96TB, with all
7 dedicated compute nodes able to access the pool
without needing any of their own local storage.

A modest file server (2x Intel® Xeon® E5-2620 v4,
128GB RAM) is able to support the 96TB volume and
handle requests from the entire cluster.

« Cost effectiveness: the two petabyte machines were
purchased for $90k in total, which yields $0.045/GB
of raw disk space, and $0.06/GB of usable filesystem
space. This compares very favorably to cloud-based
solutions, especially at this scale where prices can
exceed $10K/month for high-availability storage.

Scalability and Future Expansions

* Both solutions discussed were designed with
horizontal scalability in mind, which comes with the
advantage of not having to decommission old
hardware after an expansion.

 When the storage nodes are fully loaded, identical
machines can be configured the same way with ZFS,
and added to the Gluster pool.

 When a node is added to the storage pool, Gluster
can re-balance it to distribute the storage load.

 The Neuronix cluster’s storage space has been
expanded to 96 TB using the same strategy as the
petabyte machines, so the total available storage
can be expanded indefinitely.

 We are investigating switching from 1Gb/s Ethernet
to Infiniband, which provides extremely high
network throughput with low latency.

« SLURM can be configured to work with cloud-based
compute nodes, and custom hooks can be written to
allocate and release resources on platforms like
AWS or Azure as jobs start and stop, allowing for the
integration of techniques like bursting.

Summary

A new system architecture was developed using
open-source tools that can scale to meet the needs
of our digital pathology research.

« ZFS, Gluster and Samba were used to create a
petabyte-scale storage platform that is both highly
scalable and cross-platform.

« SLURM allows compute resources to be demarcated
for specific types of jobs, which ensures that jobs
requiring more computing power are able to request
the appropriate resources and nodes.

 Both the computing and storage systems developed
can be easily implemented from low-cost
commodity components to accommodate almost
any type of computing or workload-requirement.
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