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ABSTRACT. We consider criteria for the differentiability of functions with con-
tinuous Laplacian on the Sierpiriski Gasket and its higher-dimensional variants
SGn, N > 3, proving results that generalize those of Teplyaev [1]. When SGxn
is equipped with the standard Dirichlet form and measure p we show there is
a full p-measure set on which continuity of the Laplacian implies existence of
the gradient Vu, and that this set is not all of SG. We also show there is a
class of non-uniform measures on the usual Sierpinski Gasket with the property
that continuity of the Laplacian implies the gradient exists and is continuous
everywhere, in sharp contrast to the case with the standard measure.

1. INTRODUCTION

In analysis on fractals the basic differential operator is a Laplacian obtained
either by probabilistic methods [2] or as a renormalized limit of graph Lapla-
cians [3]. There are then various approaches to defining a gradient, or first de-
rivative, such as those in [4, 5, 6, 7, 8], and related questions remain an active area
of research [9, 10, 11]. The results of this paper are a contribution to understanding
what connection there is between smoothness measured using the Laplacian and
the pointwise existence of a gradient, as the situation is very different than in the
setting of Euclidean spaces or manifolds.

A fundamental result relating the regularity of the Laplacian and existence of a
gradient was proven by Teplyaev in [1], who gave an example in which functions
with continuous Laplacian are differentiable a.e. but can fail to be differentiable at
a countable dense set of points. The innovative idea was not the example itself,
which was just the standard Sierpinski gasket with its usual Laplacian and Bernoulli
measure, but a concrete description of the gradient which allowed the points of
differentiability to be described fairly precisely. It should be noted that, on the
Sierpinski gasket, Teplyaev’s gradient can be identified with that of Kusuoka [4].

In Section 2 we introduce the N-vertex Sierpinski Gasket SGy and its analytic
structure, and in Section 3 we review Teplyaev’s gradient and some basic results
from [1]. In Section 4 we then build on Teplyaev’s work to show how the structure of
the measure affects the connection between Laplacian regularity and existence of a
gradient. Theorem 4.1 shows that, in contrast with the previously mentioned results
from [1], if we equip the Sierpinski gasket with a suitably chosen self-similar measure
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having unequal weights, then we find that functions with continuous Laplacian are
not only differentiable everywhere but the gradient is continuous. The discontinuity
of natural gradients in the case of the standard measure is well-known, and it is
rather unexpected that a continuous gradient can be obtained with such a simple
modification of the measure.

Section 5 is concerned with differentiability results on the gaskets SG. We show
that if the self-similar Laplacian and measure are symmetric under the symmetries
of the underlying simplex then the results proved in [1] can be generalized to SGy,
though the description of the points of differentiability is less explicit and some
proofs are correspondingly more complicated.

2. HIGHER DIMENSIONAL SIERPINSKI GASKETS

Let N € N with N > 3. We largely follow [6, 12] in the following definitions
and basic results. Note that, in the definition below, SG3 is the usual Sierpinski
Gasket.

Definition 2.1. Let {pi}il\fol be the vertices of a reqular N simplex in RN~ such
that |p; —pk| = 1 if j # k. Let {F; il\i_ol, with F; : RVN=1 — RN1 be the
iterated function system defined by Fj(x) = 3(x—p;)+p;. Then the N-dimensional
Sierpinski Gasket, denoted SGp, is the unique non-empty compact set such that

SGn =), Fi(SGw).

Definition 2.2. Let Sy = {0,1,...,N — 1} and Qn = SN be the collection of
one-sided infinite words over Sy. Similarly, a finite word of length m € N is an
element of the n-fold product Sy .

For simplicity, we often omit the index IV in Qy and Sy and write €2, S respec-
tively. SGy is post-critically finite with post-critical set Vo = {po,...,pn-1}. We
write F, = Fy,, o...0 F,, , where w = w; ... w,y, is a finite word of length m over
the alphabet S. Let V;, = J,cgm Fuw(Vo) and consider these points as vertices of
a graph in which adjacency x ~,, y means there is a word w of length m such that
z,y € Fi,(Vp). A non-negative definite, symmetric, quadratic form on SGy may
be defined as a limit of graph energies as follows.

Definition 2.3. Let u,v be continuous functions on SGy. The bilinear form

N +2\"
) = (372) X (wlo) - ) (ola) — o)
@~y
defines the graph energy of level m.
We write &,,(u) = &, (u,u). Then {&,(u)} is a nondecreasing sequence of

graph energies, so &(u) = limy, 00 &m(u) is well-defined; setting its domain to be
dom& = {u: SGn — R|&(u) < oo} one obtains a non-negative definite, symmetric
quadratic form that extends to the completion of U,,V,,, which can be shown to
be SGy, and the domain is uniform-norm dense in the continuous functions. For
proofs of these facts see [3]. By construction this form is also self-similar in the
sense that

N+2 N-1

(2.1) EN=("5") L b eFfoF)

1=
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We equip SGy with a Bernoulli measure p with weights {0 < p; < 1}z 0 ,
> ;i = 1, at which point (&,dom &) is a Dirichlet form and we may define the
Dirichlet u-Laplacian as follows (see [3, 13]):

Definition 2.4. Let u € dom &, and let f be continuous. Then u € dom A, with
Ayu=fif
& (u,v) = — fvdp for all v € domy &,
SGN
where domg & is the subspace of dom & consisting of functions that vanish at V.

A function h € dom & is called harmonic if it has specified values on V and
minimizes the graph energies &,(u) for all n > 1. We can calculate hly,, ., from
h|y,, using harmonic extension matrices.

Definition 2.5. Let h be a harmonic function on SGy. The harmonic extension
matrices { A;}N o' are defined by

h(Fi(po)) h(po)
z o
h(Fi(pn-1)) h(pn-1)
The harmonic extension matrices for SG are derived in [12], and given by
1 N+2 0
2.2 Ay = ——
(22) O7 N+2 ( 2 IN—1+JN—1)

where Iny_1 is the (N — 1) x (N — 1) identity matrix, Jy_1 is the (N —1) x (N —1)
matrix with all entries equal 1, and 0 and 2 are the (N — 1) size vectors with all
entries 0 and 2 respectively. All other harmonic extension matrices can be found
with cyclic row and column permutations.

Let A; be a harmonic extension matrix of SGy and o(A4;) the set of eigenvalues
of A;. Then the eigenspace of A € og(A;), denoted by E;[)\], is the subspace of
RY spanned by the eigenvectors of A; corresponding to A. We need an elementary
lemma.

Lemma 2.6. Let A; be a harmom'c extension matriz for SGn. Then, the eigen-
values of A; are o(4;) = }. The corresponding eigenspaces have the
following dimensions:

{1 %7 Nt+2o N+2

dim E;[1] = 1
dim E; [ ~ +2} 1
dsz[NJrz} = N-—-2.
Proof. Tt can be easily verified that that (1,...,1)T is a simple eigenvector with
eigenvalue 1, (0,1,...,1)T is a simple eigenvector with eigenvalue NL-&Q and that

(---,0,1,=1,0,...)" are N — 2 eigenvectors corresponding to the eigenvalue 1.

Let 5% denote the space of harmonic functions. Since these are determined by
their values on Vj this space is N-dimensional. Let W C J be the subspace of
constant functions and P : 7 — /W = . A be the quotient map. As W is
the elgenspace for the eigenvalue 1 we have A;(W) = {Aw|we W} C W for
i€ {0,...,N —1} and thus there is A; : # — H, such that A; 0 P = Po A,.
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We call {A4,;}¥5! the induced harmonic extension matrices. The energy &(-,) is a
bilinear form on 4# and &(u,u) = 0 if and only if u is a constant function on SGy,
so the restriction of &(-,-) on J is a well-defined inner product that makes H a
Hilbert space. The following is an immediate consequence of Lemma 2.6.

Corollary 2.7. Let A; be a induced harmonic extension matriz for SGy. Then,
~—1 ~

the eigenvalues of A;  are o(A; ') = {8E2 N +2}. The corresponding eigenspaces

have the following dimensions:

dim B[] = 1
dim E;[N+2] = N-2.

Remark 2.8. A simple calculation shows that the eigenspaces E; [%] and B; [N—!—

2] of ;1;1 are orthogonal subspaces in (H,&).

3. HARMONIC GRADIENTS IN THE SENSE OF TEPLYAEV

We define a harmonic gradient on SGy following the approach and notation of
Teplyaev [1], which is closely related to work of Kusuoka [4]. We require some no-
tation for a cell containing a point described by an infinite word and for a harmonic
approximation to the function on such a cell.

Definition 3.1. For w = wiws--- € Qu the truncated word [w], € S¥ is [w], =
Wiwg * + - Wp .

Definition 3.2. The n-level harmonic approximation at word w € ) is
~—1 ~
Vo f(w) = Ay, H(f o Fy,),

where H(g) = PH(g), and H(g) is the unique harmonic function that coincides
with g on the boundary of SGn. The harmonic gradient at w is defined to be

Vfw)= ILm Vo f(w)
if the limits exist in J.

Observe that the preceeding is analogous to the way in which secants converge to
a tangent in elementary calculus, with harmonic functions playing the role of linear
functions (because the latter are harmonic on R). The n-level harmonic gradient of
f at a point z is akin to a secant modulo constant functions because it is the unique
globally harmonic function modulo constants that agrees with f at the boundary
points of a cell containing the point. The matrices ;l[:j are used simply to find the
boundary values of this harmonic function from data on the cell at scale n. Then
the limit of the harmonic approximations as the scale goes to zero is the harmonic
gradient.

The following theorems are essential to our treatment of the topic, and were
proved for a resistance form satisfying the identity

N—-1
(3.1) Ef )= 1 ' E(foFi,foF)
=0

and a Bernoulli measure with weights 0 < p; < 1 in [1].
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FIGURE 1. SG3 Level 1 (left) and 2 (right) with respect to the IFS
{Fi;}ijes. Cells shaded according to their measure weights.

Theorem 3.3 ([1, Theorem 1]). Suppose f € domA,. Then, Vf(w) exists for
every w € € such that

Dl el 1A, I < 00

n>1

Corollary 3.4 ([1, Corollary 5.1]). Suppose that f € domA,,. Then, V f(w) exists
for all w € Q if

ringl| A7 < 1
For j=1,...,N. Moreover, in this case, V f(w) is continuous in Q.

Teplyaev [1] points out that Corollary 3.4 is not applicable to the Sierpinski
Gasket when p is the standard (uniform) Bernoulli measure. The same is true for
SGy for any N > 3 because one may readily compute that ||A]_1|| = N+ 2 for
each j = 0,...,N — 1, while each u; = N~! and, as previously noted (see (2.1)),
each r; = NL-',-W so that rjujHAj_lH = 1. Teplyaev shows that one can apply
Theorem 3.3 to certain points on the Sierpinski Gasket, but their description is
rather complicated.

4. A MEASURE ON SG3 FOR WHICH FUNCTIONS WITH CONTINUOUS LAPLACIAN
HAVE CONTINUOUS GRADIENT

On the standard Sierpiniski Gasket SGs with its usual self-similar resistance form
(as defined in Section 2) we consider the Laplacian associated to a non-uniform
Bernoulli measure defined using the iterated function system of the second level,
meaning that the similarities are compositions Fj; = F; o F; of the usual three
contractions on SGjs. The following theorem gives a condition on the measure
sufficient to ensure functions with continuous Laplacian have continuous gradients.

Theorem 4.1. Let p be the Bernoulli measure on SG3 with the weights {1i;}: jes
corresponding to the iterated function system {F;; = F; o Fj}; jes, so

pA) =Y iy n(F(A)

i,jES
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for any Borel set A C SGs. If {pij}ijes satisfy

1 . .

1 i=j
(4.1) Nij<{9 1 it

V1T+4v13

then u € dom A, implies that Vu(w) exists and is continuous for all w € Q.

Remark 4.2. The theorem provides examples because \/ 17 4+ 4+/13 < 9, so there
are many choices of pi; satisfying both (4.1) and »_, ;g pij = 1.

Proof. We apply Corollary 3.4, for which purpose we need the values of 75, f;

and an estimate of the norms of the matrices Ai_jl where Aij is the reduced har-
monic extension matrix of the composition Fj; = F; o F;. The pu;; values are given
in (4.1) and r;; = (%)2 because the energy scaling for any F; is %, as is apparent
by comparing equations (2.1) and (3.1).

We can calculate the spectral radius p((;ll_]l)*;l;l) for each 7 and j, using the
description in Corollary 2.7 and Mathematica, to obtain

t=17

~—1 1 ~—l~—1_  ~—1~—1 25
Vol A, = ela 14,y (4 A, >1{29Wm e

Thus, we see that

~—1 ~—1 9/‘L74] 7 = ]
Tijlij Ai‘ *Ai‘ = s
JHij p[( ]) j] {Mij 17—‘,—4\/@ 275]
and hence from (4.1) that Corollary 3.4 is applicable because the spectral radius
dominates the norm. It follows that if v € domA, then Vu(w) exists and is
continuous for all w € Q. In Figure 4, we illustrate one such p. (]

A similar argument works on SGy for any N > 3, though we do not know a
convenient procedure for determining the optimal weights (corresponding to those
n (4.1)) if N > 3.

5. GRADIENTS ON SG WITH THE STANDARD BERNOULLI MEASURE

As we noted at the end of Section 3, Corollary 3.4 is not applicable to the
Sierpinski gasket or any SGy, N > 3 when they are equipped with the standard
(fully symmetric) measure and Dirichlet form. Hence in this setting there may
be functions uw with continuous Laplacian but for which Vu fails to exist, at least
at some points. Indeed, in [1], Teplyaev gives an example which may be used to
construct a function v with continuous Laplacian such that Vu is undefined on a
countable dense set. This example may readily be generalized to SGy, N > 3.
However, Teplyaev also proves there is a full y-measure set of words w € 2 for
which continuity of Awu implies existence of Vu(w). The purpose of this section is
to prove a generalization of this result to SGy, N > 3.

The key idea in Teplyaev’s proof of the result mentioned above is that harmonic
functions have an improved scaling behavior near points defined by words that
are asymptotically sufficiently non-constant. An appropriate generalization to our
context uses the following concept.
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Definition 5.1. A k-block for an alphabet Sy = {0,1,.... N — 1} is a length k
word w with k distinct letters, meaning w = wiws - - - wg such that each w; € Sy
and w; # wj for all i # j.

The key scaling behavior for an (N — 1)-block is the following estimate.
Lemma 5.2. Fiz N. There is fy < 1 such that for any (N — 1)-block w € S5

1 HA—1H1/(N*1) <3

N2l =

Proof. Since the set of (N — 1)-blocks is finite it suffices to show the estimate for
~-1 -1 ~ -1

an arbitrary (N — 1)-block w = wy ... wnx_1. Then A, = A, ---A, and the

~—1

maximal eigenvalue for each A, is N + 2, so the result is true unless there is a
~—1

vector common to the (N +42)-eigenspaces of all of the A,, . However we determined

these eigenspaces explicitly in the proof of Lemma 2.6. Recalling that passage from

A; to A; eliminated the constant eigenspace (which was common to all A4;), we see

that the eigenvectors of A; with eigenvalue N + 2 correspond to vectors in R
that are orthogonal to the constants and to the unit vector in the i*" direction. A

~—1
vector common to the eigenspaces of all A, would then need to be orthogonal to

the constants and to the unit vector in the w; direction for j =1,..., N — 1, thus
to all of RY. This shows the estimate for an arbitrary (N — 1)-block and proves
the lemma. (]

Remark 5.3. One can compute By explicitly, but we do not know an elementary
way to do this for general N. In [1] it is shown that B3 = 1/ 7%@.

The significance of a (N — 1)-block from our perspective is that the harmonic
gradient exists at the point F,,(X) if w has sufficient asymptotic density of (N —1)-
blocks. The density is counted using the following.

Definition 5.4. The block counting function Cn: Q x N = NU{0} is defined
for w e Q by

Cn(w,n)=#{ieN|i<n—(N-2), [i,i+N —2] is an (N — 1)-block}.

The following theorem now provides a criterion sufficient for existence of the
harmonic gradient.

Theorem 5.5. Let u: SGny — R and suppose A, u is continuous, where y is the
standard Bernoulli measure. Then Vu(w) is defined at every w € Q such that

.. .Cn(w,n) 1
5.1 | f .
(5-1) e~ Tiog Bn]

Lemma 5.6. Let w € Qpn. Then
1A, [l < (N +2)m a5 .

Proof. The proof is inductive with base case n = 1, for which Cn(w,1) = 0 (by

~—1
definition) and we are bounding the norm of A, by its maximal eigenvalue. For
the inductive step we consider two cases.
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If the last N — 1 letters of [w],+1 do not form a (N — 1)-block then Cy(w,n) =

Cn(w,n+ 1) and bounding the norm of A;iﬂ by the maximal eigenvalue (N + 2)
we have from the induction hypothesis

n+1

~—1
HA[w]

(N+2) HAUJ] H < N—|—2)n+1501\1(w m) (N—I—Q)”J'_lﬁg]v(w””rl).

In the other case, where the last N — 1 letters form a (N — 1)-block, we instead use
Lemma 5.2 on this block and the inductive bound on for n+1 — (N — 1) to obtain

HA[w]nJrl

~—1 ~—1
S HA[W]an#»Z HAUJ7L7N+3 e Wn+1

< (N + z)n—N+26]€N(w7”*N+2)(N + 2)N_1ﬁ%_1
n Cn(wn—N4+2)+N—-1
< (N + 2) +1/6NN( )

< (N2 gErenty,

where we also used the fact that Cny(w,n+1) — Cn(w,n — N +2) < N — 1, which
is immediate from the definition. O

Proof of Theorem 5.5. For the standard Bernoulli measure and Dirichlet form on
the higher dimensional Sierpiniski Gasket we have ry,, g, = ﬁ, as noted
after Corollary 3.4. Inserting this and the result of Lemma 5.6 we compute, using
that 0 < By < 1 that

o0

Z Pla] K] A[Zul]n H < Z B](\:;N(w»n) < Z n—CN(w,n)\ log Bn|/ logn

n=1 n=1 n=1

which is convergent because

Ol 0813 | L |y g Corlomlog ]
logn 2 logn
for all sufficiently large n. This gives the result by Theorem 3.3. g

Theorem 5.7. Let u: SGny — R and suppose A, u is continuous, where u is the
standard Bernoulli measure. Then Vu(w) is defined p-a.e.

Proof. We give a crude but sufficient lower bound on the set of words for which
C(w,n) satisfies the estimate in Theorem 5.5. Suppose we split a word of length
n — (N — 2) up into disjoint intervals of length N — 1. Evidently there are at
least k = 7 — 2 of these. The probability of any one such interval being an

N — 1 block is py = (N!)N~ so the probability that Cy(w,n) < |1<1)Ogg5nN\ =
I does not exceed that of having [ successes in k binomial trials where success
has probability py. Using Chernoff’s inequality to bound the stated probability
by exp(—(kpn — 1)?/(2kpy)) and taking n large enough that kpy > 20 we have
probability less than exp(—kpn /8) = exp(—ngn) for a gy > 0 that does not depend
on n. The latter is summable over n, so the bound required in Theorem 5.5 follows

from the first Borel-Cantelli lemma. O

It is perhaps interesting to note that the preceding reasoning allows one to bound
the Hausdorff dimension of the set of points at which Vu is undefined by a value
strictly less than the Hausdorff dimension of SG; we omit the details.
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