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ABSTRACT
In this notes paper, we present an open problem to the Buildsys
community: energy data super-resolution, referring to the task of
estimating the power consumption of a home at a higher resolution
given the low-resolution power consumption. Super-resolution is
especially useful when the smart meters collect data at a very low-
sampling rate owing to a plethora of issues such as bandwidth,
pricing, old hardware, among others. The problem is motivated
by the success of image super resolution in the computer vision
community. In this paper, we formally introduce the problem and
present baseline methods and the algorithms we used to “solve”
this problem. We evaluate the performance of the algorithms on
a real-world dataset and discuss the results. We also discuss what
makes this problem hard and why a trivial baseline is hard to beat.
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1 INTRODUCTION
Energy data super-resolution refers to the task of estimating high-
resolution power consumption of a home given the low-resolution
power consumption of a home. Our inspiration comes from the
success of the super-resolution of images [2]. Super-resolution is
especially useful when the smart meters collect data at a very low-
sampling rate owing to a plethora of issues such as bandwidth, pric-
ing, old hardware, among others. In this paper, we specifically focus
on the task of 24x super-resolution: We try to estimate the hourly
power consumption of a home, given the daily power consumption
of a home. Figure 1 shows the concept of energy super-resolution.

We believe that energy super-resolution has several similarities
to the image super-resolution tasks. We expect nearby pixels in an
image to have similar values. Similarly, we expect adjacent hours
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(a) Low-resolution usage of a home
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(b) High-resolution usage of a home

Figure 1: Illustration of energy super resolution

and days to have similar energy consumption. Further, we expect
periodicity in the energy data: weekdays will likely have similar
energy consumption.

Against this background, this paper introduces the problem of
energy data super-resolution and discusses its various aspects. Our
key contributions to this paper are i) introducing this problem to the
community, ii) strong benchmarks, iii) exploring and understanding
the reasons about the hard nature of this problem.

Our benchmark algorithms are based on the intuition that homes
that are “similar” in features derived from low-resolution energy us-
age will help us identify “similar” homes in high-resolution energy
usage. The notion of “similarity” is defined differently in various
proposed algorithms.

Our evaluation on 68 homes from a publicly available data set
suggests that the super-resolution performance is not better than
a simple mean model (prediction is based on mean usage of train
homes). We believe there are several factors explaining this bot-
tleneck: i) high intra-home energy variance; ii) the intuition of
“similar” homes fails due to the absence of high-fidelity features
explaining deviation from a “routine” energy consumption pattern.

Through this note, we plan to engage with the Buildsys commu-
nity to take the problem ahead.

2 METHODOLOGY
In this section, we first describe the mathematical formulation and
then define the baseline and our proposed methods.

2.1 Mathematical Notation
We define the Proportion tensor (𝑃) as the proportion of electricity
consumed in the 𝑡𝑡ℎ hour on 𝑑𝑡ℎ day for ℎ𝑡ℎ home.
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Table 1: Notation used throughout the paper
Term Definition
H No.of homes
D No. of days
𝑋 ∈ 𝑅𝐻×𝐷 Low resolution matrix (Daily usage)
𝑌 ∈ 𝑅𝐻×𝐷×24 High resolution tensor (Hourly usage)
𝑃 ∈ 𝑅𝐻×𝐷×24 Proportion tensor
𝑌 ∈ 𝑅𝐻×𝐷×24 Predicted super-resolution usage
𝑃 ∈ 𝑅𝐻×𝐷×24 Predicted proportion tensor
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Figure 2: Dominant power consumption pattern in the train-
ing dataset

𝑃 [ℎ,𝑑, 𝑡] =
Usage at 𝑡𝑡ℎ hour for home h on day d

Total usage on day d for home h
=
𝑌 [ℎ,𝑑, 𝑡]
𝑋 [ℎ,𝑑]

Table 1 denotes the notation used in the paper.

2.2 Baseline: Mean proportion algorithm
The key assumption in this method is that every home follows
the same hourly energy consumption pattern and the homes differ
only in the scaling factor. In this algorithm, we first find the most
dominant power consumption pattern in the training data set. This
dominant pattern (𝑊 ∈ 𝑅24) can be found out by computing the
mean of tensor 𝑃 across homes and days as:

𝑊 [𝑡] =
𝐻∑
ℎ=1

𝐷∑
𝑑=1

𝑌 [ℎ,𝑑, 𝑡]
24 × 𝐷 × 𝐻

Figure 2 shows the most common power consumption pattern
in the dataset. The power consumption peaks around 5 PM and
is the minimum in the early morning hours. The hourly power
consumption for a testing home can be estimated using: 𝑌 [ℎ,𝑑, 𝑡] =
𝑋 [ℎ,𝑑] ∗𝑊 [𝑡]

2.3 Proposed Methods
In this section, we discuss our proposed approaches. Many of these
approaches have been inspired by recent literature in image super
resolution. The key idea in all these approaches is to find or curate
features from low-resolution input that can accurately estimate the
high-resolution output. Our methods are based on the premise that
“similarity” in the input features is indicative of “similarity” in the
output space. These methods will differ mostly in the design of the
features and the definition of similarity.

In most of these methods, we will be dealing with the proportion
of usage across the 24 hours to avoid scale issues (i.e. two homes

with similar patterns in hourly and aggregate usage should ideally
be considered similar though on a different scale).

2.3.1 K-Nearest Neighbors Regressor. In this method, given a test-
ing home, we find the most similar homes in the training space
and use them to estimate super-resolution usage. The similarity is
decided trivially based on the feature vector of daily energy usage
across 𝐷 days.

First, for each training home (ℎ), we compute a 24-dimensional
weights vector (𝑊ℎ) to describe the home. We can compute𝑊ℎ for
a home (ℎ) by taking the mean across the days for the proportion
usage vector. This vector𝑊ℎ denotes the dominant pattern followed
by the home h.

𝑊ℎ =
1
𝐷

𝐷∑
𝑑=1

𝑃 [ℎ,𝑑] (1)

We train a 𝐾-Nearest Neighbors regressor for each (𝑥ℎ,𝑊ℎ) in
the training dataset. Given a testing home, we find the 𝐾-Nearest
Neighbors and use the average of their weights to estimate the
usage of the testing home. The same set of weights is used across
all the days. Let the weights vector after averaging be𝑊ℎ . We can
then element-wise multiply the aggregate daily energy of a home
ℎ for the 𝑑𝑡ℎ day with𝑊ℎ to obtain the predicted hourly usage as
𝑦 [ℎ,𝑑, 𝑡] = 𝑋 [ℎ,𝑑] ×𝑊ℎ [𝑡]

2.3.2 Non-Negative Matrix Factorization (NNMF). The key intu-
ition of this method is that the energy consumption of a home is
largely spread across a small number of factors, such as: number
of occupants, square footage, among others. This method tries to
“learn” such important home energy consumption features and then
use𝐾-nearest neighbours in this latent space like earlier to estimate
the hourly usage of a test home.

We first decompose the low-resolution matrix into home feature
matrix (𝑈 ∈ 𝑅𝐻×𝑟 ) and time feature matrix (𝑉 ∈ 𝑅𝑟×𝐷 ) and 𝑟
denotes the chosen rank, using 𝑋 ≈ 𝑈𝑉, 𝑠.𝑡 .𝑈 ,𝑉 >= 0. We next
train the𝐾-nearest neighborsmodel on (𝑈ℎ,𝑊ℎ), where𝑊ℎ denotes
the weights vector that denotes the pattern followed by home h.

Given a testing home h, we compute the coefficients vector
𝑈ℎ , and then we find 𝐾-Nearest Neighbors using 𝑈ℎ and take the
average of the weights (𝑊ℎ). The super-resolution usage can be
estimated in similar way as the earlier KNN method.

2.3.3 Tensor Decomposition. Prior literature [1] has used tensor
decomposition for the task of energy disaggregation. We extend
this algorithm for the task of super-resolution. Unlike our NNMF
approach, where we first decomposed low-resolution data and then
fed the features into KNN, in this approach we directly “complete”
the tensor to obtain estimated hourly usage.

We create a three-dimensional tensor 𝑇 ∈ 𝑅𝐻×𝐷×25. This tensor
contains both the training homes and the testing homes. In the
temporal (last dimension of size 25) of tensor T, the first channel
contains the low-resolution usage for both the training homes and
the testing homes. The super-resolution usage of the training homes
for each hour is in the remaining 24 channels. For the testing homes,
we do not have access to their super-resolution usage, and we wish
to estimate it. Hence, we the last 24 channels are considered missing
in the temporal dimension. We now estimate the tensor T by com-
puting the Low-Rank Parafac Decomposition into 𝑟 components
using 𝑇 ≈ (𝐻 × 𝑟 ) ⊗ (𝐷 × 𝑟 ) ⊗ (25 × 𝑟 )
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Figure 3: An overview of triplet loss for energy super-resolution

After the loss is converged, we now have 𝑇 , which now contains
the estimated super-resolution usage of the testing homes.

2.3.4 Triplet learning. Triplet learning became popular after its
successful application in FaceNet [4]. The key idea is to project
input (images in FaceNet) into an embedding space, where similar
input have similar embeddings, and dissimilar input have dissimilar
embeddings. These embeddings are later used for classification and
clustering. The neural network used for the projection into the
embedding space is learned using triplet learning. Let M be a neural
network, which maps the input to an embedding space. Let (𝑥𝑖 , 𝑦𝑖 )
and (𝑥 𝑗 , 𝑦 𝑗 ) be the (input features, output) for two examples 𝑖 and
𝑗 . In triplet learning, we can learn a neural network𝑀 such that: if
𝑦𝑖 and 𝑦 𝑗 are similar, then 𝑀 (𝑥𝑖 ) and 𝑀 (𝑥 𝑗 ) are similar; and if 𝑦𝑖
and 𝑦 𝑗 are not similar, then𝑀 (𝑥𝑖 ) and𝑀 (𝑥 𝑗 ) are not similar.

We now discuss the algorithm for using triplet learning for en-
ergy super-resolution. Let 𝐿(ℎ,𝑑) denote the feature vector for
home ℎ on day 𝑑 . The feature vector consists of the usage of
the past 𝑘 days, the usage on 𝑑𝑡ℎ , and the usage of the next 𝑘
days. It is a feature vector of length 2k+1, given as: 𝐿(ℎ,𝑑) =

[𝑥ℎ,𝑑−𝑘 , . . . , 𝑥ℎ,𝑑−1, 𝑥ℎ,𝑑 , 𝑥ℎ,𝑑+1, . . . , 𝑥ℎ,𝑑+𝑘 ] = 𝑥ℎ,𝑑−𝑘 :𝑑+𝑘
If any of the future reading or the past reading is not available,

then it is replaced with zero. This way, we can create the feature
vector for the samples that do not have the readings for the future
days or past days.

The embedding vector of a sample home ℎ and day 𝑑 , can be
computed by doing a forward pass of the neural network on the
feature vector 𝐿(ℎ,𝑑). Let 𝑉 (ℎ,𝑑) denote the embedding vector
generated by 𝐿(ℎ,𝑑). Let us now assume we have three examples
(p,x), (q,y) and (r,z), where p,q,r denote the homes and x,y,z denote
the days. As per our definition of triplet learning, we would like,
if example 1 and 2 are closer compared to example 1 and 3 in
the output space, then, the same order should be preserved in the
embedding space. For doing these calculations, we compute four
quantities (a, b, c, d) and apply loss function as shown in Table 2.

𝑎 =

������𝑃 (𝑝, 𝑥) − 𝑃 (𝑞,𝑦)������2;𝑏 =

������𝑃 (𝑝, 𝑥) − 𝑃 (𝑟, 𝑧)������2
𝑐 =

������𝑉 (𝑝, 𝑥) −𝑉 (𝑞,𝑦)
������2;𝑑 =

������𝑉 (𝑝, 𝑥) −𝑉 (𝑞,𝑦)
������2

Table 2: Loss functions for triplet learning
S. No Condition 1 Condition 2 Loss
i a > b c > d + margin 0
ii a > b c < d + margin (𝑑 +𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑐)2
iii a < b c + margin < d 0
iv a < b c + margin > d (𝑐 +𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑)2

We use a margin in the loss function, to ensure that the sepa-
ration in the embedding spaces is significant. This way, dissimilar
examples stay farther from each other. We sample multiple triplets
spanning across multiple homes and multiple days. These samples
are used to train the neural network, which maps the features to
an embedding space. Finally, given a testing sample, we project
the sample into the embedding space and find similar neighbors
in the embedding space and use the average of their proportions
to compute the super-resolution usage. Figure 3 summarizes our
triplet learning algorithm. Figure 4 shows the architecture used
for the embedding network. This network is inspired from the
state-of-the-art NILM technique called Seq2Point [5].

3 EVALUATION AND DISCUSSION
We evaluate the performance of the algorithms on data from 68
homes over 112 days from the Dataport dataset [3]. We used 3-Fold
cross-validation and reported the mean error observed across all the
folds. For the neighbourhood based methods, we varied the K from
1 to the number of samples in the training dataset. For the rank
based models we varied the rank from 1 to 80. In the triplet learning
method, we chose the margin to be 10, so that there is significant
separation between different samples. The hyperparameters for
all the methods were optimized using nested cross-validation. The
code can be found here. 1.

From Table 3, we can observe that all the models have a sim-
ilar performance. We can say that the Mean Proportions model
is the “best” model since it has low model complexity and yet is
comparable to the best performing method. The optimal hyperpa-
rameters for the number of neighbors for the K-Nearest Neighbors,
1https://github.com/Rithwikksvr/Buildsys-2020-SR
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Feature Vector
Num. of Filters: 64

Filter size: 3
Activation: ReLU

Input Layer 1D Convolution layer

Num. of Filters: 16
Filter size: 3

Activation: ReLU

1D Convolution layer

Probability: 0.5

Dropout

Num. of Filters: 8
Filter size: 3

Activation: ReLU

1D Convolution layer

Output Neurons: 50

Dense layer

Figure 4: Embedding network architecture

Table 3: Energy super-resolution performance of the trivial
baseline (mean proportion) is comparable or better than pro-
posed sophisticated methods

Model MAE (Lower is better)
Mean proportions model 441
K-Nearest Neighbors 441
NNMF + K-Nearest Neighbors 450
Tensor Decomposition 439
Triplet learning 443
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Figure 5: Mean ± Std. dev across a single type of day for a sin-
gle home showing high intra-home energy variation mak-
ing energy super-resolution hard.

NNMF + K-Nearest Neighbors, and Triplet learning methods is high.
These models were not able to accurately estimate the weights for
each home; hence in order to minimize the loss on the validation
set, they are choosing high number of neighbors, which was the
same as Mean Proportions model. We now discuss two factors to
explain average super-resolution estimation. High-Intra home
variance: We observed that there is significant difference in the
hourly energy consumption of a home across days. Figure 5 shows
the Mean ± Standard deviation for the hourly proportion of usage
for a single home across a single day of the week (Mondays across
different weeks). These differences may be attributed to occupant
behaviour among other factors, none of which are available in our
dataset. Without these features (which may be highly occupancy or
behavior driven) the super-resolution performance is bottle-necked
to the mean proportion usage, since the intra-homes variations
are unlikely to be present across “neighbours”. Thus, solving the
energy super-resolution problem is a challenging problem given
the lack of "distinguishing signals”.
Existence of Multiple Solutions: We observed that that two
homes with similar daily usage vectors might have completely dif-
ferent hourly usage vectors and vice-versa, rendering our “neighborhood-
based” methods ineffective. Figure 6 shows the dominant usage
pattern of two homes which have the most similar low-resolution
vectors. Due to this, similar low-resolution vectors predict the same
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Figure 6: Super-resolution usage of two homes with very
similar low-resolution usage can be differentmaking energy
super-resolution hard.

super-resolution usage, which is not the actual case. We need more
features for accurately determining the type of each home.

4 CONCLUSIONS
In this work we introduced the problem of energy super resolution.
We wish to engage the community in a dialogue on the various
facets of this problem: i) what applications can we envision?; ii)
as an adversary or privacy conscious person, what should one
do to prevent accurate super-resolution?; iii) how do we solve the
information bottle-neck realistically?; iv) are there any information-
theoretic guidelines to approach this problem?; v) how can data
compression algorithms be leveraged for this problem especially
when the data bandwidth remains a concern; vi) Recent computer
vision literature has also studied the problem of colorization. An
analogue to the same in our domain could be to perform energy
disaggregation. Finally, we could combine super-resolution with
colorization, aka, disaggregate to high-resolution appliance compo-
nents using low-frequency energy components.
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