2002.02687v1 [eess.SY] 7 Feb 2020

arxiv

On Abstraction-Based Controller Design With Output Feedback

Rupak Majumdar
MPI-SWS, Germany

ABSTRACT

We consider abstraction-based design of output-feedback controllers
for dynamical systems with a finite set of inputs and outputs against
specifications in linear-time temporal logic. The usual procedure
for abstraction-based controller design (ABCD) first constructs a
finite-state abstraction of the underlying dynamical system, and
second, uses reactive synthesis techniques to compute an abstract
state-feedback controller on the abstraction. In this context, our
contribution is two-fold: (I) we define a suitable relation between

the original system and its abstraction which characterizes the sound-

ness and completeness conditions for an abstract state-feedback
controller to be refined to a concrete output-feedback controller for
the original system, and (II) we provide an algorithm to compute
a sound finite-state abstraction fulfilling this relation.

Our relation generalizes feedback-refinement relations from ABCD

with state-feedback. Our algorithm for constructing sound finite-
state abstractions is inspired by the simultaneous reachability and
bisimulation minimization algorithm of Lee and Yannakakis. We
lift their idea to the computation of an observation-equivalent sys-
tem and show how sound abstractions can be obtained by stopping
this algorithm at any point. Additionally, our new algorithm pro-
duces a realization of the topological closure of the input/output
behavior of the original system if it is finite-state realizable.

1 INTRODUCTION

Controller synthesis for dynamical systems against specifica-
tions in linear temporal logic is a core problem in correct-by-
construction design of cyber-physical systems. One way to solve
this problem relies on abstracting the state space to a finite-state
system, followed by algorithmic techniques from reactive synthe-
sis to compute an abstract controller which is then refined to a
concrete one for the original system [1, 7, 21, 25]. Most algorithms,
and certainly most state-of-the-art synthesis tools such as SCOTS
[22], pFaces [11], or Mascot [10], implement this abstraction-based
control design (ABCD) workflow while assuming the entire state
of the underlying system to be observable. In this paper, we relax
the condition of full state observation. We consider ABCD when
the system has a finite number of observable outputs and a con-
troller must decide its input choice (from a finite set) based solely
on the history of applied inputs and observed outputs. Such output-
feedback control is common in control design, as the observation
of the state is usually limited by the availability and precision of
the sensors.

As an example, consider the tank reactor shown in Fig. 1. It has
a finite number of water level sensors (lo, . .., I5) which indicate
whether the current water level touches the sensor or not by re-
turning true or false. Further, it can be observed (but not controlled)
whether the outlet valve is open (0 = true) or closed (0 = false).
The controller can set the inlet valve open (by applying u = +) or
closed (by applying u = 0). The actual state of the system, i.e., the
precise value of the water level, is not observable. In this example,
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Figure 1: Tank reactor modeled as a dynamical system S over
an infinite bounded state space X c R> with finite input
space U = {+,0} and finite output space Y C 2° denoting
the set of sensors o = {ly, ..., 5,0} which are currently ‘true’

a given input/output sequence of observed true sensor values and
applied inputs (e.g., v = {lo}{+}H{lo}{+}{lo, l1, 0}{0}{lp, o}{+}..))
provides a certain knowledge about the current true state (i.e., real
water level value) of the tank system, which might be sufficient to
implement a controller ensuring the satisfaction of a specification
over the observables. For example, one might want to ensure that
the tank never overflows (i.e., I never becomes true) while still
containing a limited amount of water (ie., [; is always true). We
show how finite-state abstractions of the input/output behavior of
such an infinite state dynamical system can be constructed for the
purpose of ABCD with output-feedback.

There is a rich history of output-feedback control design for con-
tinuous dynamical systems w.r.t. classical control objectives (such
as stability or tracking) based on observer design [13, 24], with re-
cent extensions to systems with finite external alphabets [6] and
estimator-based abstractions for control with partial-information
[5, 8, 15]. In the context of temporal-logic control of finite-state sys-
tems, output-feedback control gives rise to games of incomplete in-
formation [3, 5, 19]. The construction of finite-state abstractions of
input/output traces for the purpose of output-feedback control is
further enabled by so called I-complete abstractions [17, 20, 23, 29].
Here, the underlying state dynamics of the original system are typi-
cally not assumed to be known, which is in contrast to the situation
commonly handled in ABCD for dynamical systems.

In this paper we connect the above listed lines of work by build-
ing a sound ABCD framework for synthesizing output-feedback
controllers for infinite-state dynamical systems with finite input
and output sets. In this context, our contribution is two-fold.

(I) We define sound abstractions for ABCD under output feed-
back by relating states of the abstract system to the external in-
put/output traces of the original system which directly allows to re-
fine an abstract state-feedback controller to an output-feedback con-
troller on the original system. Our relation generalizes feedback-
refinement relations (FRR) [21] to systems with inputs and out-
puts and is inspired by the framework of abstract interpretation [4],
which formalizes the interpretation of a given abstraction function
over different system semantics.

(II) We provide an algorithm to compute a sound finite-state ab-
straction of the original infinite-state system, which we call KAM,
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the Knowledge-based Abstraction with Minimization algorithm. It
combines two distinct ideas. First, it utilizes the forward compu-
tation of a Knowledge-based Abstraction (KA) typically used to
solve partial observation games over finite-state systems [3, 19].
Second, it deploys a backward partition refinement algorithm for
bisimulation-equivalence [9, 18] to construct the language equiva-
lence quotient of a given system. Neither algorithm is guaranteed
to terminate for infinite-state systems, even if there exists an exact
finite-state realization of the input/output behavior of the original
system. The KAM algorithm simultaneously executes the KA algo-
rithm forward, and the Minimization of sets through refinement of
partitions backward and computes a finite-state realization of the
topological closure of the input/output behavior of the original sys-
tem if it exists. Further, stopping KAM after any finite number of
iterations returns a sound finite-state abstraction, even if no finite-
state realization exists.

The minimization part of KAM is inspired by the simultaneous
reachability and bisimulation minimization algorithm of Lee and
Yannakakis [12]. However, as we are aiming at constructing an
observation- (not bisimulation-) equivalent system, our algorithm
only applies predecessor operations and intersection with outputs,
but does not take set differences. This is, indeed, in contrast to any
algorithm that constructs bisimulation relations, and is crucial in
implementations. For example, one can implement KAM for lin-
ear dynamical systems by only manipulating convex polyhedra, as
convexity is maintained by both predecessor operations and inter-
sections, but not by set difference.

To decide when KAM should terminate it must recognize when
the current abstraction captures the reachable portion of the lan-
guage equivalence quotient, which is undecidable in general. Thus,
for infinite-state systems, KAM might not realize when it should
terminate, even though it may have constructed the language
equivalence quotient. This is also the case for the Lee-Yannakakis
algorithm and the construction of [-complete abstractions.

We tackle the termination problem similar to the I-complete
abstraction framework [17]. Since KAM always constructs sound
abstractions of the original system, we can run a synthesis pro-
cedure at any point to see if an abstract controller ensuring the
specification exists. If a controller can be found, the abstraction
construction can stop. If not, the construction continues until we
try again after a future iteration. This iterative ABCD procedure
is sound and relatively complete—if a topologically closed finite-
state abstraction that allows to construct an abstract controller for
the given specification exists, our procedure will eventually find it.

2 PRELIMINARIES

Notation. We use the symbols N, Z, R, and R ¢ to denote the sets
of natural numbers, integers, reals, and positive reals, respectively.
Given a,b € R s.t. a < b, we denote by [a, b] a closed interval and
define [a;b] = [a,b] N Z as its integer counterpart. For a set W, we
write W* and W for the sets of finite and infinite sequences over
W, respectively. For w € W*, we write |w| for the length of w and
¢ for the empty string with |¢| = 0; the length of w € W is co.
We define dom(w) = {0,...,|w| — 1} if w € W*, and dom(w) = N
if w € W®. For k € dom(w) we write w(k) for the k-th symbol of
w and wlg] for the restriction of w to the domain [0; k]. Given

two sets Aand B, f : A= B and f : A— B denote a set-valued
and ordinary map, respectively. f is called strict if f(a) # 0 for
all a € A. The inverse mapping f~! : B=3 A is defined via its
respective binary relation: f~1(b) = {a € A | b € f(a)}. By slightly
abusing notation, we lift maps to subsets of their domain in the
usual way, i.e., for a set-valued map f : A= B and @ C A we have
f(e)={b|3a € a.be f(a)}, and similarly for ordinary maps.

Systems. A system S = (X, Xo, U, F, Y, H) consists of a state space
X, a set of initial states Xo C X, a finite input space U, a strict
set-valued transition function F : X X U =% X, a finite output space
Y, and an output function H : X — Y. To simplify notation, we
assume that H respects Xy, that is, if H"!(y) N Xo # 0 we have
H™Y(y) C Xo. The system S is called finite state if X is finite.

Trace Semantics. A path of S is an infinite sequence 7 =
xouox1u1 ... such that xp € Xy and for all k € N we have
Xg41 € F(xg,up). The set of all paths over S is denoted by Paths(S).
The prefix up to x, of a path 7 over S is denoted by ny,,] With
length |7g.,)| = n + 1 and last element Last(r[o,,,]) = xn. The set
of all such prefixes is denoted by Prefs(S).

The unique external sequence of a path 7 of S is defined as
Ext(r) = youoyiui ..., where y = H(xy) for all k € N. The
sets of all external sequences over S are denoted by Ext(S) and
we define EPrefs(S) := Ext(Prefs(S)). The set Ext(S) is called topo-
logically closed (or closed for short) if for any infinite sequence
v = youpyius - .. € Y(UY)?, whenever vjg) € EPrefs(S) for all
k € N it holds that v € Ext(S). We say that S has closed external
behavior if Ext(S) is closed (see, e.g., [28] for details).

We lift the map Last to external sequences and write x €
LastXs(p) if there exists # € Prefs(S) s.t. p = Ext(r) and x =
Last(r). For a state x € X we define all prefixes of S that reach x as
Histg(x) = {m € Prefs(S) | Last(xr) = x} and all external sequences
generated by such prefixes as EHistg(x) = {p € EPrefs(S) | x €
LastXs(p)}. If the system S we are referring to is clear from the
context we omit the subscript S from the maps LastX and EHist.

Control Strategies. We define state-feedback and output-feedback
control strategies as functions CT Prefs(S)—» U and C
EPrefs(S) — U, respectively. We say that a path  of S is compliant
with C (vesp. CT) if for all k € N, we have u(k) = C(Ext(mo.k-1]))
(resp. u(k) = CJ‘-(rrlO;k_IJ)). We denote the set of all paths and
prefixes of S compliant with C by CPaths(S, C) and CPrefs(S, C),
respectively. We further use Ext(S, C) and EPrefs(S, C) to denote
the sets Ext(CPaths(S, C)) and Ext(CPrefs(S, C)), respectively. For
a state-feedback controller CT all sets are defined analogously. It
should be noted that by defining compliance of a controller C with
a system S over the set of path prefixes, the set Ext(S, C) is topo-
logically closed if Ext(S) is.

Control Problem. We consider w-regular specifications over a
finite set of atomic input and output propositions APy and APg.
We omit the standard definitions of w-regular languages (see, e.g.,
[26, 27]). To simplify notation, we assume that U = 2P and
Y = 2AP0_In this setting, an w-regular specification i can be writ-
ten as a language (¢ C Y(UY)® of desired external sequences.
Given a system S and a specification , the output-feedback con-
trol problem, written (S, ), asks to find an output-feedback con-
trol strategy C such that Ext(S,C) € (). We define W(S,¢) =



{C | Ext(S,C) € (D} as the set of all such output-feedback con-
trol strategies. For a state-feedback controller C T, we define analo-
gously the set WT(S, ).

3 ABSTRACTION-BASED CONTROLLER
DESIGN WITH OUTPUT-FEEDBACK

Abstraction-Based Controller Design (ABCD) is a well-known ap-
proach to solving a controller synthesis problem for a dynamical
system S against specifications defined by a language (/). Here,
the dynamical system S is first abstracted to a finite-state system
S and then techniques from reactive synthesis (e.g., [14, 27]) are
used to design an abstract controller for S ensuring .

In this section, we will formalize the required relation between
S and S to refine an abstract state-feedback controller CfonSto
an output-feedback controller C on S. We start our formalization
by providing a general definition of sound abstractions in Sec. 3.1
which adapts feedback refinement relations [21] to systems with
finite input and output sets. We show that for this definition the
usual refinement of an abstract state-feedback controller to a con-
crete state-feedback controller carries over from [21]. As the main
contribution of this section, we then show in Sec. 3.2 that the def-
inition of sound abstraction needs to be applied to the external
trace semantics of S rather than to its state transitions to allow for
ABCD with output feedback control.

3.1 Sound Abstractions

Given two systems we define a sound abstraction as follows.

Definition 3.1. Let S = (X,Xo,U,F,Y,H) and § =
()? Xo,U,F,Y,H) be systems. Further, let o : X=X and Yy
X =2 X be two set valued functions s.t. x € y(x) 1ff X € a(x). Then
we call S a sound abstraction of S, written S -< 1f

(A1) a(Xo) € Xo.
(A2) Vxe X,ueU. zx(F(x ) € F(a(x), u), and
(A3) Vx € X . H(y(®) € {H®)}.
S'is a sound realization of S, written S = NY S,if' S _<y SandS < S

As common in abstract interpretation [4], we make y explicit in
Def. 3.1 to emphasize that {x} C a(y(x)), where equality may not
hold. However, to simplify notation, we often omit y and write <,
and =, as y is fully determined by knowing «. Further, we write
< to indicate that there exists a s.t. <, holds.

REMARK 1. Sound abstractions are an adaptation of feedback re-
finement relations (FRR) [21, Def. V.2] to systems with finite input
and output sets in the following sense.

(A1): An FRR is defined for fully initialized systems (i.e., Xo = X),
where (A1) follows from the fact that an FRR must be a strict relation.

(A2): To simplify notation, we assume that F is a strict function!.
This implies that all inputs are enabled in every state, i.e., Enabg(x) =
{u e U | F(x,u) # 0} = U forallx € X. The definition of FRR makes
Enab(x) explicit by replacing (A2) with the two conditions
(A2.1) Vx € X . Enabg(a(x)) C Enabg(x), and

(A2.2) Vx € X,u € Enabg(a(x)) . a(F(x,u)) C Fla(x), u)

1See Rem. 2 in Sec. 4.1 for a discussion of this choice.

which coincide with (A2) if Enab(x) = U

(A3): An FRR is defined for systems with full state observation, i.e.,
Y=XY=XandH=H-=1id with id(x) = x for all x € X.
This renders Y infinite if X is infinite and does not allow the direct
interpretation of an w-regular specification over U and Y. While our
condition (A3) enables the use of a common specification for both S
and S (due to their equivalent finite input/output spaces) this is not
possible in [21], due to Y being infinite and Y = X # X=Y [21,
DefV1.2] handles this by defining a different abstract specification
from the defined FRR and the specification over the original system
S.

Observe that for a system S and its sound abstraction S, corre-
sponding states in two runs xouox; . . . and XouoX; . . . stay related
by a during arbitrarily but finite executions, if they start at related
initial states X € a(xp) (A1) and the same input sequence is ap-
plied (A2). In this case (A3) ensures that S always produces a subset
of the outputs generated by Sin every instance of the trace. This
implies that any arbitrarily but finite external sequence v generated
by & is contained in EPrefs(S). Therefore, any abstract controller
solving a given control problem over S can be guaranteed to be re-
finable to a sound controller for S, if S has closed external behavior.
If this is not the case, spurious infinite external traces generated
by this controller on S which are not contained in Ext(S) might vi-
olate the specification. Requiring S to have closed external behav-
ior is not with loss of much generality in ABCD: any finite-state
system (of the form considered in this paper) has closed external
behavior, and we require S to be finite-state in order to apply reac-
tive synthesis techniques for abstract controller design anyways.
The next theorem formalizes the above discussion for ABCD with
state feedback. The proof uses the same insights as the proof of [21,
ThmVI.3] and is therefore only provided in the appendix.

THEOREM 3.2. Let S and S be systems s.t. S has closed external
behavior. If S <, SandCt € "W}(S ) then CT = Cloa e
WS, ). Further, if S has closed external behavior and S =, S
then WH(S,9) = 0 if WIS, y) =

3.2 Sound Abstractions for Output Feedback

Now we consider the case of output feedback. Here, the only avail-
able information about the system S that we can utilize for control
are external prefixes v € EPrefs(S). With this, however, we usu-
ally cannot uniquely determine the current state of the system, i.e.,
LastX(v) is usually a set of states and not a singleton. Further, it is
well known that any state of a system S possesses the Markovian
property, that is, knowing the current state of the system is enough
to uniquely determine all its future behaviors, which is utilized in
(A2) of Def. 3.1. This is, however, not true for the output space Y.
In general, one needs to look at the entire history seen so far, i.e.,
at the generated string v € EPrefs(S), to uniquely determine all
future observable behaviors of this system. This intuition is cap-
tured by the so called external trace system S* of S in which a state
represents a finite external history of S, and the transitions extend
the external history by one step.

Definition 3.3. Given a system S = (X,Xo,U,F,Y, H),
its induced external trace system is the system S* =



(X*,Xg(, U,F*,Y,H*), where X* := EPrefs(S), Xg( = H(Xyp),
F*(p,u) = {puy | F(LastX(p),u) N H'(y) # 0} and
H*(p) := Last(p).

It should be noted that, by definition, S* has closed external be-
havior. We further have EPrefs(S) = EPrefs(S*), Ext(S) C Ext(S*),
and Ext(S) = Ext(S*) iff S has closed external behavior. That is,
Ext(S*) is the behavioral closure of Ext(S) [28].

To refine an abstract state-feedback controller to an output-
feedback controller for the original system, one needs to relate ab-
stract states to external prefixes of S. As the latter form the state
space of S*, such a refinement is possible if S is a sound abstrac-
tion of S*. More precisely, it follows from Thm. 3.2 that S* < S
implies that a state-feedback control strategy ct: Prefs(S) > U
for S can be refined into a state-feedback control strategy C*T :
Prefs(S*) — U for the external trace system S* of S. Now recall-
ing the definition of $*’s state space X* := EPrefs(S), we see that
for a string &uofug . . . & € Prefs(S*) we have §; = &k ljo;i) for all
i € [0;k]. Therefore, & carries all information needed for C *Tog
control choice. C*" can therefore be redefined into a memoryless
strategy C* : X* — U, which, by definition, is an output-feedback
control strategy for the original system S (as X* := EPrefs(S)). The
following corollary of Thm. 3.2 summarizes this observation.

COROLLARY 3.4. Let S be a system, S* its external trace system
andS a system with closed external behavior. If S* <, SandCt e
(VVT(S: ¥) then C = Cloa e W(S, ). Further, if S has closed
external behavior and S* =, S then W(S, Y)=0 lﬁ"WJ‘(:S\, ) =0.

It should be noted that S* is infinite state even when the system
S is finite state. This should not worry us too much as S is typically
also infinite state and we cannot efficiently check Def. 3.1 over S ei-
ther. The contribution of Cor. 3.4 is therefore conceptual. It shows
that the same notion of sound abstractions developed for ABCD
with state-feedback control can be utilized for output-feedback
when applied to the external trace semantics of S captured by S*.
In addition, the next section shows a construction of a finite-state
(and therefore closed) abstraction S directly from S which can be
proven to be a sound abstraction of S* and thereby allows to apply
Cor. 3.4 to obtain a sound ABCD framework for output-feedback
control without explicitly computing S*.

4 COMPUTING ABSTRACTIONS

We now turn to the algorithmic problem of computing system ab-
stractions such that designing a state-feedback controller on the
abstraction allows us, through Cor. 3.4, to construct a correspond-
ing output-feedback controller for the original system. For this we
assume that the original system has an infinite state space—e.g., de-
fined by a continuous-state dynamical system—and our goal is to
compute a finite-state abstraction on which algorithmic techniques
for state-based controller synthesis (e.g., [14, 27]) can be applied.
We first recall two well-known approaches to compute such
finite-state abstractions which were developed for the setting
where the original system has a finite state space, and show that
they may not terminate for infinite-state systems, even if a finite-
state realization of the topological closure of its external behavior
exists. Based on this insight, we provide (Sec. 4.4) an algorithm for
abstracting infinite-state systems which overcomes this problem.

Algorithm 1 KA: Knowledge-Based Abstraction

Require: S = (X,Xo,U,F,Y,H)
1 Xo — {XonH (y) € 2X\ {0} | y € Y}
: )?old —0and X — X,
. while X,;; # X do
Seold — i
forx e X .ucU,yeYdo
%« F(x,u)NnH (y)
X —XU{T}ifX #0
end for
: end while
. Define ¥’ € F(%, u) iff there exist yst. X =F(x,u)NnH (y)
: Define H(X) = yiffy € H(x)
. return SK = ()?,XO,U, Y,F,ﬁ)

R I A AT

= =
N o= O

4.1 Knowledge-Based Abstraction

A standard way to solve control-strategy synthesis problems over
finite-state systems with partial observation [3, 19, 30] is to use
a knowledge-based subset construction. Starting from the subsets
of initial states generating the same output, the knowledge-based
subset construction algorithm, given in Alg. 1, explores all inputs
to the system and successively generates subsets of states that are
indistinguishable given the full history of applied inputs and ob-
served outputs. Such subsets X of states of the original system S
become the states of the knowledge-based abstraction SK .= KA(S).
Note that every reachable state X of SK computed via Alg. 1 has the
property that all x € X have the same output; thus, we can define
H (%) as the (unique) output H(x) of some x € Xx.

REMARK 2. We restrict our attention to systems with strict tran-
sition function in this paper to simplify the discussion of the KA al-
gorithm in Alg. 1 and KAM in Alg. 2. If not all inputs are enabled
in every state, KA would need to distinguish state sets further based
on the set of available inputs. This would require the controller to
“observe” the status of currently enabled inputs. The not fully input-
enabled case can be implicitly handled by introducing an observable
‘dummy” state and redirecting all transitions with disabled inputs to
the dummy state. This indirectly observes the status of enabled inputs
and provides a system with strict transition function. Then one can
conjoin the specification with the constraint that the dummy state is
never visited to obtain the original control problem. We postpone a
more in-depth treatment of this implicit observation of enabled in-
puts to future work.

The next proposition formalizes the intuition that 5K is a use-
ful abstraction for a given output-feedback control problem over
S. With Prop. 4.1 in place, it immediately follows from Cor. 3.4
that one can compute an output feedback controller C := Cho

LastXge € W(S,¢) from an abstract state-feedback controller
Cte ’VV’(§K ), if it exists.
PROPOSITION 4.1. Let S be a system, S* its external trace system,

and SK = KA(S). Then, S* =, SK witha = LastX 5.

Proor. To simplify notation we define S:=SK.
» We first prove that LastX§(EHist§(§)) = {x}forallx € X



-’

by picking 7 = XouoX1u1...Xn and 7' = XjuoXju1...x; st
Fl(fk) = ﬁ(fl’c) for all k € [0;n] and showing X, = X}, by in-
duction. » For k = 0 we have xp, x; € Xo. As H(%p) = ﬁ(%), we
have Xo = X. > Now let k € [1;n] and assume X_; = x;_,. Then
it follows that there exists y,y’ s.t. X = F(Xp_1 tg_1) N H ()
and El/c = F(Xp_1 u—1) N H71(y’). Again, HE) = I/:I(J?;() implies
y =y’ Then it is easy to see that X} =X} .

» We now show that equality holds for (A1)-(A3) from Def. 3.1:

> (A1): By definition, Xg‘ = H(Xp); and by line 1 in Alg. 1, we have
LastX(H(Xo)) = Xo. > (A2): Let ¥ = LastXg(v) and u € U. Fur-
ther, let X, = F(x,u) N H'(y) and define Y’ = {y € Y | Xy # 0}.
Now recall that F*(v,u) = {vuy | F(Lasth(v), u)N H (y) #
0}. This implies 55; € LastX§(F*(v,u)) if y € Y’. Further, as
LastX§(EHist§(f)) = {x} we have LastX§(F*(v, u)) = Uyey/{%}.
From the definition of F, it further follows that 5?; € F(x,u) if
y € Y’ and in particular Fxu) = Uyey/{fé}. Recalling that
X = LastXg(v) this shows that LastX§(F*(v, u)) = I?(LastX§(v), u).
> (A3): Observe that y = EHistg for & = LastXg. Then H y() =
H(EHistg(x)) = H({x}), hence H({x}) = {H®)}. |

Alg. 1 incrementally constructs SK from$S by forward exploration
from the initial states. As the abstract state space X ¢ 2X con-
tains subsets of X it terminates if X is finite. This case is the one
most prominently discussed in existing literature, e.g., in [3, 30].
However, Alg. 1 might also terminate if X is infinite (see, e.g., the
example in Sec. 4.3), given that the necessary operations (in partic-
ular “Post” and “Intersect”) can be implemented if state subsets are
infinite. If X is infinite, Alg. 1 might however also not terminate
even if there exists a finite-state realization of S. This is shown in
Ex. 4.2. 1t is interesting to note that this might still be the case even
if X = Xp. This can be verified by checking that Alg. 1 does also not
terminate if all states in the system S depicted in Fig. 2 are initial.

Example 4.2. Consider the infinite state system S in Fig. 2, with
U = {u},Y = {A, B}. By omitting the trivial input, the external lan-
guage Ext(S) of this system is A(B)*(A)® | A(B)?, for which one
can construct a finite trace equivalent system, for instance, using
one of the methods discussed in the following sections. Yet, Alg. 1
will separate every state labeled with B, leading to an infinite chain
of states with observation B, and will therefore not terminate.

4.2 Bisimulation Minimization

The knowledge-based abstraction algorithm KA computes reach-
able subsets going forward, but it may fail to terminate by trying
to distinguish states that are language equivalent to already com-
puted ones, that is, states that generate the same future sequence of
outputs under the same input sequence. Thus, one could first com-
pute a bisimulation quotient [2, 9, 16] of the system S and only then
compute the knowledge-based abstraction. It is possible that an
infinite-state system has a finite bisimulation quotient; in that case,
constructing the quotient first will allow the knowledge-based ab-
straction to terminate (see Fig. 2 (bottom) for an example).

For a system S = (X, Xo, U, F, Y, H), a partition of the set X is a
set of non-empty sets of X, called blocks, that are pairwise disjoint

Figure 2: The system S (top left) has an infinite-state knowl-
edge abstraction 5K (top right) while an exact finite-state rep-
resentation of Ext(S) exists, which is correctly computed by
first computing the bisimilarity abstraction Sbi (bottom left,
see Sec. 4.2) and then applying Alg. 1 (bottom right).

and whose union is X. A partition is stable if the following proper-
ties hold. First, for each block X of the partition, every state in the
block has the same output: for all x, x” € X, we have H(x) = H(x").
Second, for each pair of blocks x, X" with y’ = H(x) for all x € X’
and for each input u € U we have either F(x,u) N H 1(y’) C X’ or
F(x,u)Nx’ = 0. Using the notion of a stable partition of X we can
define the bisimulation abstraction S = (2,20, U, F, Y, FI) of S as
follows. The set of abstract states X is the minimal stable partition
of X. The initial abstract states io are those blocks that contain
some initial states from Xj. The abstract transition function is de-
fined as F(%, u) = {¥’ € X | 3x € %.F(x, u) C ¥’ }. Moreover, since
every state in each block of the partition has the same output, we
can uniquely define H(Z) to be the output of some state in X.

A partition refinement algorithm [9, 18] can be used to com-
pute SP from S. Unlike Alg. 1, this algorithm proceeds backwards
by splitting blocks based on their predecessors, starting with the
partition defined by the outputs, i.e, {g € 2X \ {0} |y e Y .q=
H~!(y)}. This algorithm may terminate if X is infinite and the nec-
essary operations are implementable over infinite state subsets. Go-
ing back to the system described in Ex. 4.2 we see that the bisimula-
tion quotient Sbi (depicted in Fig. 2 (bottom left)) is finite, while the
original system S (depicted in Fig. 2 (top left)) and its knowledge-
based abstraction SX (depicted in Fig. 2 (top right)), are infinite.
Applying the KA algorithm on SPi returns the desired finite state
abstraction (depicted in Fig. 2 (bottom right)) which allows for out-
put feedback control. However, if S is infinite-state, the partition
refinement algorithm is not guaranteed to terminate even if the
knowledge-based abstraction of the original system is finite. This
is further illustrated by the example discussed in the next section,
which shows that knowledge-based abstraction and bisimulation
minimization are incomparable and the suggested procedure to
compute 5P first, before utilizing KA, may not terminate.

4.3 Illustrative Example

Before explaining KAM, we introduce an illustrative example. Con-
sider the infinite state system S depicted in Fig. 3 (top left) with
U={u}and Y = {A,B,C,D,E, F}. It consists of one initial state
a; which outputs A, an infinite chain of states b;, i € N, all of which
output B, and four different modules AE (light blue, dashed), AIDI



Figure 3: Infinite-state system S (top left) discussed in Sec. 4.3, its sound finite-state abstraction s (top right), part of its infinite-
state knowledge abstraction SK (bottom left) and its infinite bisimulation quotient Sbi (bottom right). The single input U = {u}
is omitted and outputs Y = {A, ..., F} are indicated next to the respective state. A state subset {¢;} denotes the set {@;};en.

(dark blue, dashed), Aé (light orange, dotted) and Ag (dark orange,
dotted), attached to one b-state each. System S is constructed s.t.
modules of type D (resp. of type E) are reachable after output B has
occurred an odd (resp. even) number of times, i.e., from all states
ngd = {bzi+1}ien (resp. from all states Xp7°" := {b2i}ien).
However, the sequence of class I and IT modules of the same type
i € {E, D} is irregular, i.e., there is no w-regular expression to de-
scribe how AII. and AII. T modules repeat.

By closely investigating the modules of the same i-type it can be
observed that modules AII. and AII.I for the same i € {D, E} are ex-
ternal language equivalent. Therefore, the regularity of alternating
between type D and type E modules is enough to obtain a sound
finite-state realization S of S depicted in Fig. 3 (top right).

KA-algorithm (Sec. 4.1). The KA algorithm computes the ab-
stract state space by combining all states with the same observable
past while going forward. For the system S in Fig. 3 (top left) it con-
structs state subsets as depicted in Fig. 3 (bottom left). We see that
the KA algorithm discovers that class I modules are a sound real-
ization of class II modules, i.e., sK
s.t. type D and type E modules are reachable from states in ngd
and X[7¢" respectively. However, the KA algorithm still does not
terminate on this example as it explores language equivalent states
unnecessarily. Le., by computing state subsets only going forward,
it computes a new, not yet explored subset of b-states in every itera-
tion. The KA-algorithm is not able to generalize and thereby merge
all states corresponding to ngd or X7?¢" due to their unique fu-

only consists of class I modules

ture.

Bisimulation-Quotient (Sec. 4.2). A partition refinement algo-
rithm computing the bisimulation quotient of S merges states with
the same observable future going backward. For the system S in
Fig. 3 (top left) it immediately discovers that all states in Xp :=
{fi}ien as well as X := {gi};en have the same observable future
(namely F® and G*, respectively). It further merges all states con-
tained in the same Aj. module into one equivalence class (see Fig. 3

(bottom right) indicated by the four color/line patterns). However,
as it proceeds backwards, it does not take into account the reach-
able portion of all state subsets and thereby considers states within
class I and II modules of the same type as different. This differ-
entiates b states depending on the class of modules they are con-
nected to (indicated by the coloring of the b-states in Fig. 3 (bottom
right)). As the partition refinement algorithm constructs equiva-
lence classes going backward, it generates a distinct equivalence
class for the left and right “color pattern” a b state “sees”. As we
assume that class I and II modules are irregularly sequenced, there
exist infinitely many such equivalence classes and the algorithm
therefore never terminates.

Combining both algorithms. For this example, running the KA
algorithm first and the partition refinement algorithm second, re-
sults in the finite state abstraction S depicted in Fig. 3 (top right).
This is, however, not practically implementable, as the KA algo-
rithm never terminates. Further, we have shown that for Ex. 4.2
one needs to execute the partition refinement algorithm first, fol-
lowed by the KA algorithm. One can therefore construct an exam-
ple where one reachable part of the state space requires executing
the KA algorithm first, while the other part requires the partition
refinement algorithm to be executed first. In this case, no order
would lead to the desired result.

4.4 Knowledge Abstraction with Minimization

We now present the Knowledge-based Abstraction algorithm with
Minimization (KAM), given in Alg. 2, which interlaces the forward
Knowledge-based Abstraction (KA) with backward refinement-
based Minimization (M). We also illustrate the algorithm using the
example from Sec. 4.3.

Algorithm Description. KAM generates a rooted, labeled tree
and a cover set Cover C 2%, The nodes of the tree are kept in
EXPx and the edges in EXPf. The edges are labeled with inputs from
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Figure 4: Exploration tree EXPr of S in Fig. 3 computed by Alg. 2 (left) and the abstract system S¥ extracted after its 5th iteration
(right). Nodes are labeled by t; (blue) for easier reference and the single input u is omitted to avoid clutter. Diamond-enclosed
numbers indicate the iteration in which this transition is explored. Dotted red arcs indicate cover block refinements in the
iteration of the main while loop depicted by the red circled number and caused by the line of REFINE indicated on its top right.
E.g., Xg of t; is refined by re-calling REFINE in line 35 after X¢ of t3; was refined in line 23 (as t; is a predecessor of t21). The
notation 35/31 in t45 indicates that its cover block X is refined by line 31 after re-calling REFINE via line 35 on node t3;.

U. The nodes are labeled with a three-tuple (v, q,c) € EXPx, con-
sisting of a sequence v of external events seen when reaching the
current node from the root of the tree, a block ¢ C X in the cur-
rent Cover, and a subset of states ¢ C X (called a cell). Intuitively,
a tuple (v,q,c) € EXPx remembers the observed input/output se-
quence from the initial states (in v), the available knowledge about
the current state (in c), and the current “guesses” on states which
are future observation-equivalent to ¢ (in q). The cells ¢ and blocks
q correspond to the data structures manipulated by the KA and the
Minimization algorithm, respectively, and are initialized similarly:
Cover is initialized with the partition induced by H on X (line 1,
see Sec. 4.2), cells are initialized with all initial cover blocks con-
taining an initial state (line 3). Note that the initialization of cells
simplifies as we have assumed that H respects the initial state set
Xo.

Example 4.3. For the example in Sec. 4.3, we see that the par-
tition induced by H on X results in the initial cover set Cover =
{Xy | y € Y} s.t. Xy collects all states of S that generate the output
Y, e.g., X4 := {a1} and X¢ := {ci};en. On the other hand, there is
only one initial cell, namely {a;} with H({a1}) = A. This results in
the initialization of EXPx with the tuple (A, X4, {a1}) as depicted
in Fig. 4 (left).

The main loop of KAM (lines 5-21) grows the tree by iterating
between a forward exploration (as in KA) and backward refine-
ment (as in bisimulation). The forward exploration picks the cur-
rent leaves (v, g, ¢) of the tree (line 7) and executes one step of KA
to generate new cells ¢’ for every u € U and y € Y (compare Alg. 1,
line 6 and Alg. 2, line 10).

For each minimal block ¢’ in the current Cover set that contains
¢’, KAM adds a new node (v, ¢’, ¢’) to the tree (line 12), where v’
extends the parents event sequence with the latest input and the
last output. The edge from the parent to the new node is labeled
with the input and stored in EXPr (line 13).

Example 4.4. The resulting exploration tree for the example in
Sec. 4.3 is depicted in Fig. 4 (left). Here, the diamond-enclosed num-
ber on the edges indicates the iteration of the while loop (in line 5-
21 of Alg. 2) in which this transition and its child are added to the
tree. When comparing Fig. 4 (left) and the KA-abstraction SK of

this example (Fig. 3 (bottom left)), we see that the third compo-
nent of all tuples generated by KAM coincides with the abstract
states generated by KA in the same iteration (i.e., in a state with
the same distance from the initial state).

Having thus created all the children for a node (v, g, c), if ¢ is
a proper subset of g, the next step in KAM is to check if g, the
current guess for the observation equivalence class for ¢, needs to
be refined. Refinement is performed by the function REFINE (Alg. 2,
line 15) and works similarly to the bisimulation algorithm.

In contrast to the usual bisimulation algorithm, REFINE((:, g, c))
only splits a block g based on its possible successors in the tree if
this split respects ¢, thereby avoiding the splitting of indistinguish-
able states, which caused the non-termination issue discussed in
Sec. 4.2. One can intuitively think of s C X computed in line 27 of
Alg. 2 as the set of all states which are equivalent to ¢ in terms of
their one-step observable future. However, in contrast to the bisim-
ulation algorithm, KAM only adds s to Cover but does not add its
complement g \ s (see line 29). This is due to the fact that this op-
eration might not respect the currently available cells and again
split indistinguishable states. If g \ s is indeed needed, it will be
discovered by another call to REFINE.

Summarizing the above description, we see that REFINE refines
the Cover set based on the one-step future of the computed cell.
Given this refinement, all previously obtained relations between
cells and blocks need to be re-evaluated as s C g implies that s
is now the minimal cover of c, if ¢ was previously related to g in
EXPy (see line 31). Thus, KAM updates its guess on the set of states
possibly external language equivalent to a state in c. This, how-
ever, might imply new block splits in cell/block pairs reaching c,
which have been checked for refinement in previous iterations of
the algorithm. This is taken care of by the recursive call to REFINE
in line 35. Note that the recursion always moves up to the parent
in the tree, and thus it eventually terminates. One can show that
after the recursive call to REFINE terminates, we always have a
single minimal cover box g for every cell ¢ computed so far. That
is, given the relation a(c) = {g € Cover | {c,q) € EXPx!} for
ExPy! = {{g,¢) | v . {v,q,c) € EXPx}, we have |a(c)| = 1 (see
Lem. A.2 in the appendix for a formal proof).



Algorithm 2 KAM: Knowledge Abstraction and Minimization

Require: S = (X,Xo,U,F,Y,H)
1: Cover « {qe2X\ {0} |FyeY.q=H ()}
. EXPr « 0;
: EXPx « {(H(c),q,c) | g € Cover Ac =qAcnXp#0};
. EXPF « 0;
: while EXPr # {(g,¢) | Iv . (v,q,c) € EXPx} do
EXPr « {(q,c) | Av. (v,q,c) € EXPx};
for (v,q,c) € EXPy s.t. |v| is maximal do
forueUyecYdo
v = vuy;
¢’ = F(c,u) N H™(y) # 0;
Q" ={q’ € Cover | ¢’ C ¢’ and ¢’ is minimal};
EXPx « EXPx U {(v',q¢’,¢") | ¢’ € O'};
EXPr — EXPr U{((v.q,c),u, (v, q".c')) | ¢" € Q'};
14: end for

O 0 N U W

e e e
@ N = O

15: if ¢ C g then REFINE((v, g, ¢));

16: end if

17: end for

18: S« ExTRACT(EXP, EXPF);

19: if TermCond() == true then return S;
20: end if

21: end while
22: return S;
23: function REFINE((v, g, ¢))

24: foru € U do

25: PostQ,—{q’ €eCover | ({(v,q,c),u,{-,q’,-)) EEXPr };

26: end for

27: s«—{xeq|YueU.F(x,u) CPostQ,};

28: if s C q then

29: Cover « Cover U {s};

30: for all (7, g, ¢) € EXPx s.t. ¢ = g do

31: if ¢ c s then change (¥,q9,¢) to (V,s,¢) in
EXPr, x, F;

32: end if

33: end for

34; for all ((#/,q’,¢"), -, (1, G, €))EEXPF s.t. g=s A¢’C§’ do

35: RerFINE((V', §’, ¢"));

36: end for

37: end if

38: end function

39: function EXTRACT(EXPy,EXPF)

0. Xe—{qe2X|(,q-)eEXP};

4. Xo —{XonH (y) € 2X\ {0} |y e Y};
w2 Fe—{(qu.q)|{.q.).u.(.q.) € EXPe};
43; H(x) =yify € H(x);

44: return S = ()?, )?0, U,f, Y, ﬁ);

45: end function

Example 4.5. For the example in Sec. 4.3, we see that for the tu-
ple to we have ¢ = g as X4 = {a1}, hence, REFINE is not called
in the first iteration of KAM. In its second iteration, it computes
the leaves 21 and 22 in the main while loop and then checks the
parent node t; for refinement. For this, it computes all cover cells
reachable by by (which is PostQ = | J{Xp, X¢} and then computes

all states in ¢ = Xp with the same reachable cover blocks, which
is s = Xp. As ¢ = s, no split occurs and a new iteration of the
main while loop starts. After the computation of the leaves t31 — 33
KAM checks the parent node t; for refinement. Here we obtain
PostQ = Xp and s = ngd = {c2i+1}ien. As s C g = Xc the
cell ngd is added to Cover. As there is no other node in the tree

with a cell component contained in ngd’ we only update the block
component of t31 (indicated by the red dotted arrow pointing to it
in Fig. 4) and schedule all its predecessors for refinement. There-
fore, node ¢ is checked for refinement again. Given the new cover
cell ngd we now obtain PostQ = U{XB,ngd} and s = ngd.
This updates the cover element of #; and t33. This schedules only
tyo for refinement, as to does not fulfill the condition that ¢ C gq.
Now it can be observed that checking 23 for refinement still gives
PostQ = |U{XB,Xc} as we have not yet added the cover ele-
ment Xp7¢" = Xp \ ngd. This is due to the fact that we do not
know whether this element is indeed needed and respects the con-
structed state subsets. We therefore leave node t72 unchanged and
proceed to the forth iteration of the main while loop. This com-
putes the leaves t41 — t45. It should be noted that during this com-
putation we now have the new cover cell ngd available and KAM
uses this smaller cover cell to correctly tack the equivalence class
for t44 (indicated in green in Fig. 4). Now the only interesting re-
finement check is on t33 which discovers the new cover element
X(e:ve" and induces the further refinement of node t22 introducing
the cover cell nge". This updates #32 and t45. Due to space con-
straints, we do not depict the constructed tree further. It should
however be noted that t43 clusters eé and eg into a single cell, as
these states are not distinguishable based on the past observations.
Therefore, calling REFINE on #43 in the next iteration of KAM will
not refine the equivalence class Xg as PostQ = |J{XF, Xg} and we
therefore obtain s = Xf. The same happens for nodes df and d; .
This prevents the non-termination issue of the bisimulation algo-
rithm for this example.

After exploration and refinement, KAM extracts an abstraction
Svia the function EXTRACT in line 19. Intuitively, EXTRACT projects
the tree in EXPg to the blocks in the current Cover set which
are reachable. It thereby “forgets” the forward-computed cells and
only retains their observation-equivalent generalizations s. For the
example in Sec. 4.3 the abstraction extracted after the fifth iteration
of KAM is depicted in Fig. 4 (right). It can be observed that Fig. 4
(right) coincides with the abstraction Sin Fig. 3 (top right) up to a
renaming of states.

Termination. Intuitively, KAM should terminate if Cover sta-
bilizes. Then, all distinguishable subsets which are observation-
equivalent have been discovered, and hence, imply Ext(S) = Ext(§).
That is, we would ideally like to have TermCond() == true in
line 19 iff Cover has stabilized. Unfortunately, even if we observe
that Cover has not changed in the current iteration, we do not
know if it will never change again. This is because KAM bases
its search for cover splits on the already constructed state-subsets.
There might be a very long input/output event sequence which
only causes a subset split after a long exploration phase. As the



state space of S is infinite, we cannot check if this will ever hap-
pen. Interestingly, this is also true for fully initialized systems (i.e.,
where X = Xj). Thus, this termination check is undecidable.

One interesting special case where termination is decidable oc-
curs if the KA algorithm (Alg. 1) terminates (which is for exam-
ple always the case if X is finite). In this case, one can show that
EXPr = EXPx! holds in the I-th iteration of Alg. 2iff T = X holds
in the [-th iteration of Alg. 1 (see Lem. A.3 in the appendix for a
formal proof of this statement). While Cover might have stabilized
earlier, we know it has surely stabilized by then.

Finite-State Abstractions. The termination condition discussed
above aims on computing a sound finite-state realization of the ex-
ternal behavioral closure of S which might not exist. Indeed, for
arbitrary non-linear dynamical systems there rarely ever exists an
exact finite-state realization in this sense, even if their input and
output sets are finite. Therefore, as the name suggests, abstraction-
based controller synthesis is usually only aiming at computing a
finite-state abstraction which is accurate enough to synthesize an
abstract controller for the given specification.

In this context, it is interesting to investigate whether the sys-
tem S* computed in line 18 of Alg. 2 after running the while loop
in line 5-21 finitely often, is indeed a sound abstraction of S in the
sense of Def. 3.1 and therefore allows for abstraction based control
in the sense of Cor. 3.4. Interestingly, this is only true if KAM has
already explored all possible output events which are reachable in
S at least once when terminated. This is for example trivially sat-
isfied if Xy = X. Additionally, whenever Cover stabilizes after a
finite number of iterations, KAM indeed computes a sound realiza-
tion of S. This is formalized in the following theorem.

THEOREM 4.6. Let S be a system, S* its external trace system and
an abstract system extracted in line 18 of KAM(S) in some iter-
ation. Further, let Y¥ = {y € Y | 3(q,c) € EXPr . ﬁ(q) =y}
and Reach(Y) = {y € Y | 3p € EPrefs(S) . y = Last(p)}. If
Y# = Reach(Y) it holds that S* <, S* witha = LastXg,. Further,
s,

s

if Cover has stabilized, we additionally have S* =,

In order to prove Thm. 4.6, we first prove Prop. 4.7 below
which formalizes the intuition that, under the given premises, the
cell/block pairs (g,c) € EXPx! available when extracting % in
line 18 of Alg. 2 actually induce a sound abstraction relation be-
tween SK and S¥. Le., we always have sK ;<5 S* for

a(c) = {g e X* | (g, c) € EXPy!}. (1)

Further, Prop. 4.7 shows that sK = §* if S s finite-state (and
thereby Cover has stabilized from Lem. A.3 in the appendix). With
this result Thm. 4.6 becomes a simple corollary of Prop. 4.7 and
Prop. 4.1 by utilizing the compositionality of sound abstractions
(see Prop. A.1 in the appendix for a formal proof).

PROPOSITION 4.7. Given the premises of Thm. 4.6, it holds that
SK <z S* with & as in (1). Further, if Cover has stabilized, we addi-
tionally have SK=_3*,

a

Proor. To simplify notation we use S:=SKandS:= 5.

» We first show that equality holds for (A1) and (A3) from Def. 3.1.
> (A1): Observe that line 1 in Alg. 1 and line 41 in Alg. 2 literally

match. Further, for all ¥ € X, we have that (&,%,X) is in the initial
cover set (line 1 in Alg. 2) and thereby (x,X) € EXPx!, as we have
assumed Xy to respect H. As Alg. 2 always maintains X C X for
any (x,X) € EXPx and all elements in Cover only get refined, we
see that there is no other ¥’ € X related to ¥ € X. We therefore
have @(Xg) = Xo. > (A3): It is easy to see that for all X € X holds
that x,x” € x implies H(x) = H(x") = H(X). As ¥ C X for all
(%, %) € EXPy, we have H(%) = H() for all related states.

» Now we show that (A2) holds with equality for all (x, X) € EXPr
(possibly a subset of EXPy 1), For this, observe that § is extracted in
the last iteration of the while loop in line 5-21 of Alg. 2 and there-
fore the recursive function REFINE was applied to all (x, X) € EXPp
with ¥ C x and has terminated. We can therefore utilize Lem. A.2
in the appendix implying |a(x)| = 1 for all X present in EXPr.

> (A2) for EXPr: Pick X € X, u € U and 35; = F(x,u) n H \(y).

Further, define Y/ = {y € Y | 35; # 0} and let Q’ contain all

¥ e Xst (x",xy) € EXPx and y € Y. Using the same argument
as in the proof of Prop. 4.1 we have F(%,u) = Uyey” {x}}, and
therefore, by definition, @(F(%,u)) = Q’. Now one can verify, by
looking at line 10, 13 and 25 of Alg. 2, that Q" = PostQ,({x, X))
for {x} = a(x). Further, we extract S after all covers have been
refined. With this we know that F(x, u) = PostQ,,({(X, X)), as other-
wise there would exists a refinement s C X in the sense of line 27
in Alg. 2. This further implies that for all (x, x1), (X, X2) € EXPr we
have that PostQ, ({x,x1)) = PostQ, ({x, X2)). With this it follows
that 9’ = F(a(%), ). This implies a(F(x,u)) = F(@®), u).

» It remains to show that (A2) holds (with equality for a stable
cover and with inclusion for an unstable one) for tuples (x,x) €
EXPx ! \ EXPr. First, one can verify that (¥, %) € EXPx} \EXPr if (a) a
tuple (o, X, X) is added to EXPy in the last iteration of the while loop
before extracting S*, and (b) if there exists no tuple (x’,X) € EXPr
for an arbitrary X”. While (a) is obvious, we show that (b) also holds.
It follows from Lem. A.2, that after completing every iteration of
the while-loop in line 21 it holds for every x already constructed,
that there exists a unique x” s.t. (x’,X) € EXPr. Now assume that
(0, %, %) is added to EXPy via line 11 of Alg. 2. Then we know that
X’ = X, as X’ is the unique minimal element of Cover covering x
and, hence, (%, %) ¢ EXPx! \ EXPr.

> (A2) for Expy! \ EXPr with stabilized Cover: If Cover has sta-
bilized no element in Cover will be further refined by REFINE. In
particular, this implies that X is stable for any (x, x) € EXPy Y \EXPr.
Further, a stable cover implies that there already exists another tu-
ple (x,x’) € EXPr for which all outgoing transitions are contained
in EXPr. With this, we use the same reasoning as for EXPr to con-
struct Q’ and to show that (A2) holds with equality.

> (A2) for Expy! \ EXPr with unstable Cover: If the Cover is not sta-
ble, we cannot ensure that X is stable for any (¥, x) € EXPx Y \EXPr,
i.e., would not be refined in the next iteration of the while loop.
Further, we have to make sure that there exists another tuple
(x,x”) € EXPr. Now recall that we initialize Cover with the largest
subsets 553 C X that generate the same output y. As Y* = Reach(Y),
we know that all initial cover cells fg with y € Reach(Y) will be ex-
plored (and possibly refined) at least once in Alg. 2. As X € Cover
and by construction X C 553 for y = H(x) € Reach(Y) we know
that (x,x’) € EXPr. With this we can use the same reasoning



as in the proof of (A2) for EXPr to construct Q’. If it is stable,
the argument reduces to the previous one. If it is not, we have
F(x,u) C PostQ,({x,X)). With this, the same arguments as in the
proof of (A2) for EXPr show that (A2) holds with inclusion, ie.,
a@(F(%,u)) € F(&(%), u) where @(%) contains all minimal ¥’s cover-
ing X. O

ProOOF oF THM. 4.6. As sound abstractions compose in the ex-
pected way (see Prop. A.1 in the appendix), we obtain a chain of

sound abstractions S* < SK <z §* from Prop. 4.7 and

LastX 3K
Prop. 4.1, implying S* <, Switha = @ oLastX . It can be further
observed from the tree-structure generated by KAM that every ex-
ternal prefix v of S corresponds to a unique tuple (g,c) € EXPyY.
Further, the same external prefix v reaches the state ¢ of 5K and
the state g of St As Prop. 4.7 shows that these states ¢ and q are
related via &, we have LastXg = a o LastXg. With this, the first

S
claim of Thm. 4.6 follows. The second claim follows similarly. O

Iterative ABCD with KAM. By combining Cor. 3.4 and Thm. 4.6
we can compute an output-feedback controller C := C o
LastXg, € W(S, ) from an abstract state-feedback controller

ct e Wwi(sH, ) whenever the latter synthesis problem allows
for such a solution, i.e., W?(g\#, ) # 0. Hence, ABCD with out-
put feedback is sound in this case. Given that S*isin general only
known to abstract S, we are however losing completeness. That is,
it W(s?, ¥) = 0, it does not imply that there is no solution to the
original synthesis problem (S, /).

We can however take an eager abstraction-refinement ap-
proach instead to retain relative completeness. That is, whenever
w T(§#, ¥) = 0, we run KAM for some more steps, extract a new
abstraction S*', and again try to synthesize a controller. We give up,
once an upper bound L on the iterations of KAM is reached. This
eager approach relies on the insight that abstractions extracted af-
ter more iterations of KAM refine earlier abstractions as formal-
ized in Thm. 4.8. Further, this abstraction-refinement procedure is
relative complete. That is, if there is a topologically closed finite-
state abstraction S for which ‘W(S, /) # 0, there always exists a
large enough L s.t. the abstraction 5% extracted from KAM in the
L’s iteration allows to solve the controller synthesis problem, i.e.,

WS y) 0.

THEOREM 4.8. Given the premises of Thm. 4.6, let §ﬁ1 be the sys-
tem computed in line 18 of Alg. 2 after one more iteration of Alg. 2
after§” was extracted. Then Sfrl < S*.

ProoF. Let EXPr, EXPy} and EXPIC, EXPyx U be the sets computed

when extracting 5 and :931, respectively. Further let us define an

abstraction map candidate a1 using three cases. Le., g € a41(p) if
there exists c s.t. either (a) (g,c¢) € EXPr and g = p, or (b) {q,¢) €
EXPx! \ EXPr, (p.c) € EXP}. and p C g, or (c) {p.c) € EXPx!" \ EXP/.
and there exists ¢’ s.t. q is related to p as in (a) or (b).

This definition induces the following three cases for the proof.
> (a) holds for (g, p): This implies {(g,c) € EXPy. It follows from
the same arguments as used in the proof of Prop. 4.7 that equality
holds for (A1)-(A4) in Def. 3.1 w.r.t. S both for §* and :ﬁl‘ As a4q
reduces to the identity map in this case, the claim trivially follows.

Figure 5: 2-complete abstraction of the system S in Fig. 2.

> (b) holds for (g, p): Then it follows again that equality holds for
(A1)-(A4) in Def. 3.1 w.r.t. S for §i1 but it follows from Thm. 4.6 that
only inclusion holds for (A3) w.r.t. 5% Formally, we fix ¢ existen-
tially quantified in the definition of case (b) before. Then we have
@i1(F(c,u)) = Fi1(@i1(c), u) where @,1(c) contains the unique
minimal p covering ¢ and &@(F(c, u)) C F(a(c), u) where @(c) con-
tains all minimal ¢’s covering c¢. We have p C q for all ¢ € a(c) due
to the additional refinement step run before extracting :931. In par-
ticular, we have @(c) = a4 1(p). Hence, @y1(F(c, u)) = Fﬂ(p, u) and
a(F(c,u)) C F(aﬂ(p), ). Now define C’ = F(c,u). Ifforall ¢’ € C’
case (a) or (b) holds, we have that a;1(c’) maps to a unique p’. In
this case it holds that a,1(@1(F(c, u))) = @(F(c, u)) and therefore
a+1(F+1(p, u)) C F(aﬂ(p), u), what proves the statement. Now for
any ¢’’ for which case (c) applies there exists a ¢’”’ s.t. case (a) or (b)
applies while a(c¢”’) = a(c¢’”’) and a41(c”) = a;1(c’””). With this,
the previous argument applies and the claim follows.

> (c) holds for (q,p): Fix c existentially quantified in the defini-
tion of (c) and recall that there exists ¢’ s.t. a(c) = a(c’) and
a+1(c) = ay1(c’) and case (a) or (b) applies for ¢’. Hence, without
loss of generality we can replace ¢ by ¢’ and the claim follows. O

REMARK 3. The idea of abstraction-refinement for controller syn-
thesis is also often applied in the context of I-complete abstractions
[17, 20, 23, 29]. Similar to KAM, l-complete abstractions are con-
structed forward and generalize from initial observations to equiva-
lence classes. Here, the equivalence classes collect states which share
the same l-long external history (see e.g., Fig. 5 for an example with
1 = 2). I-complete abstractions are typically constructed from the ex-
ternal behavior of S and do not assume the state dynamics of S to be
known. They thereby do not utilize the memory structure implicitly
given by the state dynamics of S in their generalization step. There-
fore, KAM generates tighter abstractions whenever the underlying
state transition system is known, but l-complete abstractions are to
be preferred if this is not the case.

Symbolic Implementations. KAM differs from the simultane-
ous reachability and bisimulation minimization algorithm of Lee
and Yannakakis [12] as it constructs an external language- (not
bisimulation-) equivalent system. Hence, it only applies predeces-
sor operations and intersection with outputs, but does not take set
differences. This is in fact crucial in implementations. For example,
for affine systems with polyhedral initial sets and output sets, one
can implement the algorithm exactly using a convex polyhedral
abstract domain, as both predecessor operators and intersections
maintain convexity while set differences do not.

5 HYBRID SYSTEM EXAMPLES

We now present two continuous-state discrete-time hybrid system
examples and show how our approach can be used to design ab-
stractions useful for output-feedback control. Along the way, we
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Figure 6: Graphical representation of 3; (far left) and X,
(far right), showing the state space X with the partition in-
duced by the output maps H; and Ha, respectively. For 31,
X;j = F(X;,u;1) (dashed blue) indicates the reachable set of
Xi = Hy (ygo) (solid blue). Intersecting X 7 with the partition
generates transitions (blue) originating in yoo in the finite-
state abstraction (middle). Similarly, X; = F(Xj,uz) (dashed
red) is reached from X; = H L(yoz) (solid red) generating
transitions (red) originating in yo2 in the abstraction.

also compare our approach with several alternatives and show
how state-of-the-art techniques for abstracting continuous-state
systems, such as those implemented in SCOTS or Mascot [10, 22],
can be incorporated in our approach.

Example 5.1. Consider a switched system 31 with > state space
X = [0,3) x [0,3) C R?; » initial states Xo = X; > input space
U = {u1, uz} (corresponding to two controllable modes); > output
space Y = {400, Yo1, Y02, Y10 Y11, Y125 Y20, Y21, Y22}; > output func-
tion H : x > y;j, where i = |x1/3], j = |x2/3] for all x € X ; and
> transition function F defined as

gﬂ) , F(x,u2) = mods (x - [gi]) ,

where the function mody : R® — [0,k)" wraps its input argu-
ment component-wise around the perimeter of its codomain; i.e.,
if s = mody(x), then s; = x; — kL%J. In Fig. 6 (top left), state
space X is shown, where the domain of H for all y is indicated by
the large boxes with edge length 1. The dynamics of F are then
interpreted as upward (u = u1) and downward (u = uy) discrete-
time flows of points in X parallel to the diagonal connecting the
lower left and top right corner of X. When the boundary of X is
reached, the system continues to evolve in the block reached by
wrapping X around its boundaries. Note that the only source of
non-determinism in system X is due to the initial condition not
being a singleton, whereas the transition function is deterministic.
We consider a specification i/; stating that when starting in ygo the
system should always eventually (re-)visit yop and yz2.

F(x,u1) = mods (x +

Let us first consider constructing an abstract system 3 that has
a feedback refinement relation (FRR) with 3; by using forward sim-
ulation as, e.g., implemented in SCOTS. The main idea is to “grid”
the state space into hyperboxes of size 7 in a way consistent with
the outputs and treat each grid cell X; as an abstract state. Then for
each grid cell X; and for each input u;, post F(X;, u;) is computed
and a transition with input label u; is added from the abstract state
X; to all abstract states X that have a non-empty intersection with
the post. This process is illustrated in Fig. 6. Given the existence
of an FRR from 37 to 34 (rendering $1 a sound abstraction of ¥
for state-feedback control as discussed in Rem. 1) and the composi-
tionality of sound abstractions (see Prop. A.1), we can use %1 with

any of the algorithms presented in Sec. 4 to construct an abstrac-
tion fi which allows to solve the output-feedback control problem
over 21.

In order to apply this process, we need to select a grid size n
when constructing %1. We denote the resulting abstraction with
fg”). We can start with 7 = 1 as discussed before. This, however
induces non-determinism and it can be easily seen by inspecting
Fig. 6 (middle), that there does not exist a controller in the abstrac-
tion that allows us to surely transition from ygo to y22 and back
infinitely often—in the abstraction, applying the necessary input
sequence might lead to visiting yo2 instead of yj2. One can try a
finer grid size, e.g., n = 0.03, but the problem still does not admit a

solution for (2(10'03) , ¥1). By inspection, the problem only has a so-
lution if 5 is chosen such that 0.2 is an integer multiple of 1. Here,
0.2 is the greatest common divisor of 0.4 (the increments the dy-
namics make) and 1 (the “fidelity” of the outputs). So, the set of
grid sizes that gives a solution is a measure-zero set in R and, in
general, the “right” grid size is dictated by the dynamics and out-
put map. Further, even if we use an automatic refinement tool like
Mascot, the step size of the refinement of 7 is a design parameter
and thus, the tool may not ever explore an integer multiple of 0.2.

We now turn to solving the output-feedback control problem
(21, Y1) by directly applying the algorithms discussed in Sec. 4 to
31 without constructing 3; first. For this example, all three algo-
rithms (i.e., KA, KA with bisimulation quotient, and KAM) will pro-
duce the same abstraction. This is due to the fact that the dynamics
of the system are such that the post and the pre operations over F
cancel out. Therefore the forward and backward algorithms are es-
sentially performing the same operations. Further, all of them ter-
minate and generate a sound realization. Thus, these algorithms
automatically figure out that the largest cover of X which merges
states with the same future under any applied input sequence has
sizen = 0.2.

Example 5.2. We consider another switched system X with
the same dynamics as ¥ but with changed output space Y, =
{Y00, - - -» Y21, Y22u> Y221} s-t. Ho maps the upper left and lower right
triangle of y22 to ya2y, and yssj, respectively (see Fig. 6 (right) for
an illustration). The specification y/; requires to repeatedly visit yoo
and either y22, or y,y; infinitely often after starting in ygo.

Consider running KAM on Y. First observe that we are now
initializing KAM with the triangle shape domains of H(y,5;) and
H(y22,) in addition to the the boxed domains for all remaining out-
puts. This will result in little triangles right above and right below
the diagonal of y33, which collect reachable state subsets with the
same output. However, in the remaining part of the state space,
KAM will converge to the same rectangular grid as it does for X;.
The intuitive reason for this is that the post of any set H~1(y) with
Y & {201, Y224 } remains a box. Therefore, we can never distinguish
whether we observe yagy or yys; if we transition to a box on the
diagonal of y33, no matter how fine we grid. Further, the post of
any such box will be either {y221, Y207} again, {yoo} (for u = uq)
or {y22} (for u = up). With this it is easy to see that boxes of size
n = 0.2 are again the largest partition of X that form equivalence
classes respecting observable subsets. KAM will therefore compute
the same sound realization for > as for 31. If we however run KA



(with or without the bisimulation quotient) one would additionally
chop every box of size = 0.2 into an upper left and lower right tri-
angle. This unnecessary doubles the state space of the abstraction,
but still resulting in a sound realization.

Let us now consider computing an abstraction i(zn) by forward
simulation of ¥, first, using SCOTS. Then we immediately get into
trouble, because we cannot find a rectangular grid that respects
the output map, as needed to fulfill (A3) in Def. 3.1. This approach
would therefore directly fail in this example.

Finally, consider a system X3 which has an unbounded state
space X3 = R? with transition function defined by F of £ but with-
out the wrapping of its input argument. The output set Y3 and the
output function Hz of 33 are given by tiling the entire R? space ir-
regularly with the 3x3 blocks of observations Y; and Y, along with
their respective output maps H; and Hz. We still have a finite set
of inputs and outputs. By recalling that KAM produces the same
sound realization for 31 and 33, we can use the same arguments as
in the example of Sec. 4.3 to see that KAM will generate the same
sound realization for 33 as for 31 and 33, while all other algorithms
will produce infinite-state abstractions. Admittedly, while the ex-
ample distinguishes KAM from the other algorithms, it is not clear
how to symbolically represent the algorithm in this case.
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A ADDITIONAL PROOFS

ProoF oF THM. 3.2. We provide theis proof for the more gen-
eral case of not fully enabled inputs.

For the first claim we pick 7 = xpuoxjuy ... € CPaths(S, CT)
with external sequence p = youoyi .. . € Ext(S,CT) s.t.yp = H(xg)
for all k € N and show p € ().

For k = 0, the definition of CPaths(S, CT) implies that xo € Xp.
Using (A1) we know that for all Xy € a(xp) holds that Xy € Xo.
We further have H(xp) = yo. Now it follows from (A3) that for all
X0 € a(xo) we have yg € H(xy)) and therefore Yo € Ext(S, C T)|[0;0J~

For k > 0 assume plo.x—1] € Ext(S, 6T)|[0;k—1] and show
Pliok] € Ext(S, C' )|[Ok Let 7 = xouox1uq . . . X—1 € CPrefs(S, C).
Now pick any 7 = x0u0x1u1 Xg—1 € a(r) and let x =
F(xg_1,ug_1) and X = F(xk_l, uk_l) and observe that 7uy_;x; €
CPaths(S, C™) and 7uy_ 155k € CPaths(S, C'). Further, it follows
from (A2) that a(x;) C Xj and therefore x; € y(x). As H(xy) =
Y. (A3) implies y; € H(%}) and, hence, Pliok] € Ext(S, C' Njo:k]-

As Ext(S) is topologically closed, so is Ext(S,C ). With this
p|[0k € Ext(S,Ch)| [0;k] for all k € N implies p € Ext(S,C"). As
Ctew! (S ), we have Ext(S C' ") € {¢) and, hence pE ([1//])

For the second claim, one can verify that § =
S and by this C’ € W(S,y) implies C’ = c’ oy € Wi, ¢)
from the first part of this theorem. Hence, either WT(S,y) =

or WT(S, ) # 0. The “only if” part follows analogously from the
inverse direction. o

S implies S <y

The next proposition shows the compositionality of sound ab-
straction relations.

ProposSITION A.1. Let (S1,11) <
(53, A3) then (S1, A1) <

Sap, (S2,42) and (S2,42) <
(83, A3) with a13 = ag3 o a12.

a3

o



Proor. We show that (A1)-(A3) in Def. 3.1 hold by using the ob-
servation that a12(x1) € Xz and ap3(x2) C X3 for x; € X1, x2 € X5.
Further, we define yj; as the induced inverses of the respective a;;.
» (A1) As a12(X1,0) € X2,0 and a23(X2,0) € X3,0 it follows that
az3(a12(X1,0)) S X3,0.

» (A2.1) As Enabg, (a23(x2)) € Enabg, (x2) and Enabg, (a12(x1)) €
Enabg, (x1) for any x; € X; and x» € X it follows that
Enabyg, (a23(er12(x1))) € Enabg, (a12(x1)) € Enabg, (x1).

> (A2.2) As a1a(Fi(x1,u)) © Fa(enz2(x1),u) and a3(Fa(xz, u)) C
F3(a3(x2),u) for any x; € Xj and x; € Xy it follows that
a23(a12(F1(x1,u)) S aa3(Fa(an2(x1), w) S (F3(azs(a2(x1)), ).

» (A3) As A1(Hi(y21(x2)) € A2(Ha(x2)) and Az(Ha(ysz2(x3)) <
A3(H3(x3)) for any x; € Xpz,x3 € X3 it follows that
A1(Hi(y21(y32(x3))) S {A2(Ha(ys2(x3)))} S A3(H3(x3)). m

The following technicallemmas are used in the analysis of the
KAM algorithm.

LEMMA A.2. After execution of the function REFINE in line 15 of
Alg. 2, it holds that |a(x)| = 1 for all X for which & is defined.

Proor. First observe that REFINE is only called if x C x.If x = X
the claim is trivially satisfied as X is the unique minimal element
covering X in this case. As Q” in line 11 of Alg. 2 is chosen to be
minimal, we have that (x1,X), (x2,X) € EXPr with X; # X, im-
plies X1 ¢ x» and X ¢ ¥ and in addition X C X; and X C X,
so REFINE is called. Further, as Alg. 2 is initialized with a cover
which partitions the state space, we know that there exists a mini-
mal X which was split into X; C X and X, C X previously. This im-
plies that there exists X1 and X s.t. F(x1, u) = PostQ, ({x1,x1)) and
F(xy, u) = PostQ, ({(x2, x2)) while there exists some x1 € X1 \ X2 s.t.
x ¢ PostQ,({x2,x2)) and, vise versa, there exists some x2 € X2 \ X1
s.t. x ¢ PostQ,({x1,x1)), as otherwise the cover cell X would not

have been splitted. Now, consider X from before, and observe that
X € X1 N X by definition. Further, the above reasoning implies
X C x1 and X C X7, and PostQ, ({x1,x)) C PostQ,({x1,x1)) =
F(x1,u) and PostQ,({x2,X)) C PostQ,({x2,x2)) = F(x2,u) with
proper containment in both cases. This introduces a contradiction
to the assumption that REFINE has terminated, as in this case we
know that xj and X2 cannot be further splitted, i.e., F(xi,u) =
PostQ, ((x1,x)) and F(x2,u) = PostQ,({x2,x)). The last equality
only holds if X; = X as in this case no x; and x as above can be
constructed. m]

LeEmMA A.3. IfAlg. 1 terminates, there exists an iteration | € N of
Alg. 2 for which EXPp = EXPy! holds.

ProoF. First, it can be verified that in every iteration of the
while loops in both algorithms (-, ¢) gets added to EXPy! in Alg. 2
iff ¢ gets added to X in Alg. 1. This is due to the fact that the set of
minimal blocks covering c is uniquely defined and refinements of
any block are propagated through all sets EXPr, x,  within REFINE.
Therefore, it cannot happen that a tuple (g, c) is added to EXPy! if
EXPy ! already contains a tuple (g’, ¢). Thus, the termination con-
ditions of the while loops coincide.

As REFINE is a recursive function, we have to additionally prove
that it terminates. To see this, observe that EXPf is a finite tree
for every initial tuple (¢, ¢, q) and therefore only contains finite

paths. Further, as every iteration of the while loop in line 5-21 of
Alg. 2 only explores the current leaves of this tree, it adds new

leaves to the tree and schedules leaves of the previous iteration for
possible refinement. As the recursion of REFINE in line 35 of Alg. 2
only schedules predecessors of these leaves and the tree is finite, it
terminates. O
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