
ar
X

iv
:2

00
2.

02
68

7v
1

 [e
es

s.S
Y

]
7

Fe
b

20
20

On Abstraction-Based Controller Design With Output Feedback

Rupak Majumdar
MPI-SWS, Germany

Necmiye Ozay
Univ. of Michigan, Ann Arbor, USA

Anne-Kathrin Schmuck
MPI-SWS, Germany

ABSTRACT

We consider abstraction-based design of output-feedback controllers

for dynamical systemswith a finite set of inputs and outputs against

specifications in linear-time temporal logic. The usual procedure

for abstraction-based controller design (ABCD) first constructs a

finite-state abstraction of the underlying dynamical system, and

second, uses reactive synthesis techniques to compute an abstract

state-feedback controller on the abstraction. In this context, our

contribution is two-fold: (I) we define a suitable relation between

the original system and its abstractionwhich characterizes the sound-

ness and completeness conditions for an abstract state-feedback

controller to be refined to a concrete output-feedback controller for

the original system, and (II) we provide an algorithm to compute

a sound finite-state abstraction fulfilling this relation.

Our relation generalizes feedback-refinement relations fromABCD

with state-feedback. Our algorithm for constructing sound finite-

state abstractions is inspired by the simultaneous reachability and

bisimulation minimization algorithm of Lee and Yannakakis. We

lift their idea to the computation of an observation-equivalent sys-

tem and show how sound abstractions can be obtained by stopping

this algorithm at any point. Additionally, our new algorithm pro-

duces a realization of the topological closure of the input/output

behavior of the original system if it is finite-state realizable.

1 INTRODUCTION

Controller synthesis for dynamical systems against specifica-

tions in linear temporal logic is a core problem in correct-by-

construction design of cyber-physical systems. One way to solve

this problem relies on abstracting the state space to a finite-state

system, followed by algorithmic techniques from reactive synthe-

sis to compute an abstract controller which is then refined to a

concrete one for the original system [1, 7, 21, 25]. Most algorithms,

and certainly most state-of-the-art synthesis tools such as SCOTS

[22], pFaces [11], or Mascot [10], implement this abstraction-based

control design (ABCD) workflow while assuming the entire state

of the underlying system to be observable. In this paper, we relax

the condition of full state observation. We consider ABCD when

the system has a finite number of observable outputs and a con-

troller must decide its input choice (from a finite set) based solely

on the history of applied inputs and observed outputs. Such output-

feedback control is common in control design, as the observation

of the state is usually limited by the availability and precision of

the sensors.

As an example, consider the tank reactor shown in Fig. 1. It has

a finite number of water level sensors (l0, . . . , l5) which indicate

whether the current water level touches the sensor or not by re-

turning true or false. Further, it can be observed (but not controlled)

whether the outlet valve is open (o = true) or closed (o = false).

The controller can set the inlet valve open (by applying u = +) or

closed (by applying u = 0). The actual state of the system, i.e., the

precise value of the water level, is not observable. In this example,

l0

l1

l2

l3

l4

l5

u ∈ {+, 0}

o

Figure 1: Tank reactormodeled as a dynamical system S over

an infinite bounded state space X ⊂ R3 with finite input

space U = {+, 0} and finite output space Y ⊆ 2σ denoting

the set of sensors σ = {l0, . . . , l5,o}which are currently ‘true.’

a given input/output sequence of observed true sensor values and

applied inputs (e.g., ν = {l0}{+}{l0}{+}{l0, l1, o}{0}{l0, o}{+} . . .)

provides a certain knowledge about the current true state (i.e., real

water level value) of the tank system, which might be sufficient to

implement a controller ensuring the satisfaction of a specification

over the observables. For example, one might want to ensure that

the tank never overflows (i.e., l5 never becomes true) while still

containing a limited amount of water (i.e., l1 is always true). We

show how finite-state abstractions of the input/output behavior of

such an infinite state dynamical system can be constructed for the

purpose of ABCD with output-feedback.

There is a rich history of output-feedback control design for con-

tinuous dynamical systems w.r.t. classical control objectives (such

as stability or tracking) based on observer design [13, 24], with re-

cent extensions to systems with finite external alphabets [6] and

estimator-based abstractions for control with partial-information

[5, 8, 15]. In the context of temporal-logic control of finite-state sys-

tems, output-feedback control gives rise to games of incomplete in-

formation [3, 5, 19]. The construction of finite-state abstractions of

input/output traces for the purpose of output-feedback control is

further enabled by so called l-complete abstractions [17, 20, 23, 29].

Here, the underlying state dynamics of the original system are typi-

cally not assumed to be known, which is in contrast to the situation

commonly handled in ABCD for dynamical systems.

In this paper we connect the above listed lines of work by build-

ing a sound ABCD framework for synthesizing output-feedback

controllers for infinite-state dynamical systems with finite input

and output sets. In this context, our contribution is two-fold.

(I) We define sound abstractions for ABCD under output feed-

back by relating states of the abstract system to the external in-

put/output traces of the original system which directly allows to re-

fine an abstract state-feedback controller to an output-feedback con-

troller on the original system. Our relation generalizes feedback-

refinement relations (FRR) [21] to systems with inputs and out-

puts and is inspired by the framework of abstract interpretation [4],

which formalizes the interpretation of a given abstraction function

over different system semantics.

(II)We provide an algorithm to compute a sound finite-state ab-

straction of the original infinite-state system, which we call KAM,

http://arxiv.org/abs/2002.02687v1

the Knowledge-based Abstraction with Minimization algorithm. It

combines two distinct ideas. First, it utilizes the forward compu-

tation of a Knowledge-based Abstraction (KA) typically used to

solve partial observation games over finite-state systems [3, 19].

Second, it deploys a backward partition refinement algorithm for

bisimulation-equivalence [9, 18] to construct the language equiva-

lence quotient of a given system. Neither algorithm is guaranteed

to terminate for infinite-state systems, even if there exists an exact

finite-state realization of the input/output behavior of the original

system. The KAM algorithm simultaneously executes the KA algo-

rithm forward, and theMinimization of sets through refinement of

partitions backward and computes a finite-state realization of the

topological closure of the input/output behavior of the original sys-

tem if it exists. Further, stopping KAM after any finite number of

iterations returns a sound finite-state abstraction, even if no finite-

state realization exists.

The minimization part of KAM is inspired by the simultaneous

reachability and bisimulation minimization algorithm of Lee and

Yannakakis [12]. However, as we are aiming at constructing an

observation- (not bisimulation-) equivalent system, our algorithm

only applies predecessor operations and intersection with outputs,

but does not take set differences. This is, indeed, in contrast to any

algorithm that constructs bisimulation relations, and is crucial in

implementations. For example, one can implement KAM for lin-

ear dynamical systems by only manipulating convex polyhedra, as

convexity is maintained by both predecessor operations and inter-

sections, but not by set difference.

To decide when KAM should terminate it must recognize when

the current abstraction captures the reachable portion of the lan-

guage equivalence quotient, which is undecidable in general. Thus,

for infinite-state systems, KAM might not realize when it should

terminate, even though it may have constructed the language

equivalence quotient. This is also the case for the Lee-Yannakakis

algorithm and the construction of l-complete abstractions.

We tackle the termination problem similar to the l-complete

abstraction framework [17]. Since KAM always constructs sound

abstractions of the original system, we can run a synthesis pro-

cedure at any point to see if an abstract controller ensuring the

specification exists. If a controller can be found, the abstraction

construction can stop. If not, the construction continues until we

try again after a future iteration. This iterative ABCD procedure

is sound and relatively complete—if a topologically closed finite-

state abstraction that allows to construct an abstract controller for

the given specification exists, our procedure will eventually find it.

2 PRELIMINARIES

Notation.We use the symbolsN, Z, R, and R>0 to denote the sets

of natural numbers, integers, reals, and positive reals, respectively.

Given a,b ∈ R s.t. a ≤ b , we denote by [a,b] a closed interval and

define [a;b] = [a,b] ∩Z as its integer counterpart. For a setW , we

writeW ∗ andW ω for the sets of finite and infinite sequences over

W , respectively. Forw ∈W ∗, we write |w | for the length ofw and

ε for the empty string with |ε | = 0; the length of w ∈ W ω is ∞.

We define dom(w) = {0, . . ., |w | − 1} if w ∈W ∗, and dom(w) = N

if w ∈ W ω . For k ∈ dom(w) we write w(k) for the k-th symbol of

w and w |[0;k] for the restriction of w to the domain [0;k]. Given

two sets A and B, f : A⇒B and f : A→B denote a set-valued

and ordinary map, respectively. f is called strict if f (a) , ∅ for

all a ∈ A. The inverse mapping f −1 : B⇒A is defined via its

respective binary relation: f −1(b) = {a ∈ A | b ∈ f (a)}. By slightly

abusing notation, we lift maps to subsets of their domain in the

usual way, i.e., for a set-valued map f : A⇒B and α ⊆ A we have

f (α) = {b | ∃a ∈ α . b ∈ f (a)}, and similarly for ordinary maps.

Systems. A system S = (X ,X0,U , F ,Y ,H) consists of a state space

X , a set of initial states X0 ⊆ X , a finite input space U , a strict

set-valued transition function F : X ×U ⇒X , a finite output space

Y , and an output function H : X →Y . To simplify notation, we

assume that H respects X0, that is, if H
−1(y) ∩ X0 , ∅ we have

H−1(y) ⊆ X0. The system S is called finite state if X is finite.

Trace Semantics. A path of S is an infinite sequence π =

x0u0x1u1 . . . such that x0 ∈ X0 and for all k ∈ N we have

xk+1 ∈ F (xk ,uk). The set of all paths over S is denoted by Paths(S).

The prefix up to xn of a path π over S is denoted by π[0;n] with

length |π[0;n] | = n + 1 and last element Last(π[0;n]) = xn . The set

of all such prefixes is denoted by Prefs(S).

The unique external sequence of a path π of S is defined as

Ext(π) = y0u0y1u1 . . ., where yk = H (xk) for all k ∈ N. The

sets of all external sequences over S are denoted by Ext(S) and

we define EPrefs(S) := Ext(Prefs(S)). The set Ext(S) is called topo-

logically closed (or closed for short) if for any infinite sequence

ν = y0u0y1u1 . . . ∈ Y (UY)ω , whenever ν[0;k] ∈ EPrefs(S) for all

k ∈ N it holds that ν ∈ Ext(S). We say that S has closed external

behavior if Ext(S) is closed (see, e.g., [28] for details).

We lift the map Last to external sequences and write x ∈

LastXS (ρ) if there exists π ∈ Prefs(S) s.t. ρ = Ext(π) and x =

Last(π). For a state x ∈ X we define all prefixes of S that reach x as

HistS (x) = {π ∈ Prefs(S) | Last(π) = x} and all external sequences

generated by such prefixes as EHistS (x) = {ρ ∈ EPrefs(S) | x ∈

LastXS (ρ)}. If the system S we are referring to is clear from the

context we omit the subscript S from the maps LastX and EHist.

Control Strategies.We define state-feedback and output-feedback

control strategies as functions C† : Prefs(S)→U and C :

EPrefs(S)→U , respectively. We say that a path π of S is compliant

with C (resp. C†) if for all k ∈ N, we have u(k) = C(Ext(π[0;k−1]))

(resp. u(k) = C†(π[0;k−1])). We denote the set of all paths and

prefixes of S compliant with C by CPaths(S,C) and CPrefs(S,C),

respectively. We further use Ext(S,C) and EPrefs(S,C) to denote

the sets Ext(CPaths(S,C)) and Ext(CPrefs(S,C)), respectively. For

a state-feedback controller C† all sets are defined analogously. It

should be noted that by defining compliance of a controller C with

a system S over the set of path prefixes, the set Ext(S,C) is topo-

logically closed if Ext(S) is.

Control Problem. We consider ω-regular specifications over a

finite set of atomic input and output propositions API and APO .

We omit the standard definitions of ω-regular languages (see, e.g.,

[26, 27]). To simplify notation, we assume that U = 2API and

Y = 2APO . In this setting, an ω-regular specificationψ can be writ-

ten as a language 〈[ψ]〉 ⊆ Y (UY)ω of desired external sequences.

Given a system S and a specification ψ , the output-feedback con-

trol problem, written 〈S,ψ 〉, asks to find an output-feedback con-

trol strategy C such that Ext(S,C) ⊆ 〈[ψ]〉. We define W(S,ψ) =

2

{C | Ext(S,C) ⊆ 〈[ψ]〉} as the set of all such output-feedback con-

trol strategies. For a state-feedback controller C†, we define analo-

gously the set W†(S,ψ).

3 ABSTRACTION-BASED CONTROLLER
DESIGN WITH OUTPUT-FEEDBACK

Abstraction-Based Controller Design (ABCD) is a well-known ap-

proach to solving a controller synthesis problem for a dynamical

system S against specifications defined by a language 〈[ψ]〉. Here,

the dynamical system S is first abstracted to a finite-state system

Ŝ and then techniques from reactive synthesis (e.g., [14, 27]) are

used to design an abstract controller for Ŝ ensuring ψ .

In this section, we will formalize the required relation between

S and Ŝ to refine an abstract state-feedback controller Ĉ† on Ŝ to

an output-feedback controller C on S . We start our formalization

by providing a general definition of sound abstractions in Sec. 3.1

which adapts feedback refinement relations [21] to systems with

finite input and output sets. We show that for this definition the

usual refinement of an abstract state-feedback controller to a con-

crete state-feedback controller carries over from [21]. As the main

contribution of this section, we then show in Sec. 3.2 that the def-

inition of sound abstraction needs to be applied to the external

trace semantics of S rather than to its state transitions to allow for

ABCD with output feedback control.

3.1 Sound Abstractions

Given two systems we define a sound abstraction as follows.

Definition 3.1. Let S = (X ,X0,U , F ,Y ,H) and Ŝ =

(X̂ , X̂0,U , F̂ , Ŷ , Ĥ) be systems. Further, let α : X ⇒ X̂ and γ :

X̂ ⇒X be two set valued functions s.t. x ∈ γ (x̂) iff x̂ ∈ α(x). Then

we call Ŝ a sound abstraction of S , written S 4
γ
α Ŝ , if

(A1) α(X0) ⊆ X̂0,

(A2) ∀x ∈ X ,u ∈ U . α(F (x,u)) ⊆ F̂ (α(x),u), and

(A3) ∀x̂ ∈ X̂ . H (γ (x̂)) ⊆ {Ĥ (x̂)}.

Ŝ is a sound realization of S , written S �
γ
α Ŝ , if S 4

γ
α Ŝ and Ŝ 4α

γ S .

As common in abstract interpretation [4], we make γ explicit in

Def. 3.1 to emphasize that {x̂} ⊆ α(γ (x̂)), where equality may not

hold. However, to simplify notation, we often omit γ and write4α

and �α , as γ is fully determined by knowing α . Further, we write

4 to indicate that there exists α s.t. 4α holds.

Remark 1. Sound abstractions are an adaptation of feedback re-

finement relations (FRR) [21, Def. V.2] to systems with finite input

and output sets in the following sense.

(A1): An FRR is defined for fully initialized systems (i.e., X0 = X),

where (A1) follows from the fact that an FRRmust be a strict relation.

(A2): To simplify notation, we assume that F is a strict function1.

This implies that all inputs are enabled in every state, i.e., EnabS (x) =

{u ∈ U | F (x,u) , ∅} = U for all x ∈ X . The definition of FRRmakes

Enab(x) explicit by replacing (A2) with the two conditions

(A2. 1) ∀x ∈ X . Enab
Ŝ
(α(x)) ⊆ EnabS (x), and

(A2. 2) ∀x ∈ X ,u ∈ Enab
Ŝ
(α(x)) . α(F (x,u)) ⊆ F̂ (α(x),u)

1See Rem. 2 in Sec. 4.1 for a discussion of this choice.

which coincide with (A2) if Enab(x) = U .

(A3): An FRR is defined for systems with full state observation, i.e.,

Y = X , Ŷ = X̂ and Ĥ = H = id with id(x) = x for all x ∈ X .

This renders Y infinite if X is infinite and does not allow the direct

interpretation of an ω-regular specification over U and Y . While our

condition (A3) enables the use of a common specification for both S

and Ŝ (due to their equivalent finite input/output spaces), this is not

possible in [21], due to Y being infinite and Y = X , X̂ = Ŷ . [21,

Def.VI.2] handles this by defining a different abstract specification

from the defined FRR and the specification over the original system

S .

Observe that for a system S and its sound abstraction Ŝ , corre-

sponding states in two runs x0u0x1 . . . and x̂0u0x̂1 . . . stay related

by α during arbitrarily but finite executions, if they start at related

initial states x̂0 ∈ α(x0) (A1) and the same input sequence is ap-

plied (A2). In this case (A3) ensures that S always produces a subset

of the outputs generated by Ŝ in every instance of the trace. This

implies that any arbitrarily butfinite external sequenceν generated

by ξ is contained in EPrefs(Ŝ). Therefore, any abstract controller

solving a given control problem over Ŝ can be guaranteed to be re-

finable to a sound controller for S , if Ŝ has closed external behavior.

If this is not the case, spurious infinite external traces generated

by this controller on S which are not contained in Ext(Ŝ)might vi-

olate the specification. Requiring Ŝ to have closed external behav-

ior is not with loss of much generality in ABCD: any finite-state

system (of the form considered in this paper) has closed external

behavior, and we require Ŝ to be finite-state in order to apply reac-

tive synthesis techniques for abstract controller design anyways.

The next theorem formalizes the above discussion for ABCD with

state feedback. The proof uses the same insights as the proof of [21,

Thm.VI.3] and is therefore only provided in the appendix.

Theorem 3.2. Let S and Ŝ be systems s.t. Ŝ has closed external

behavior. If S 4α Ŝ and Ĉ† ∈ W†(Ŝ,ψ) then C†
= Ĉ† ◦ α ∈

W†(S,ψ). Further, if S has closed external behavior and S �α Ŝ

thenW†(S,ψ) = ∅ iffW†(Ŝ,ψ) = ∅.

3.2 Sound Abstractions for Output Feedback

Now we consider the case of output feedback. Here, the only avail-

able information about the system S that we can utilize for control

are external prefixes ν ∈ EPrefs(S). With this, however, we usu-

ally cannot uniquely determine the current state of the system, i.e.,

LastX(ν) is usually a set of states and not a singleton. Further, it is

well known that any state of a system S possesses the Markovian

property, that is, knowing the current state of the system is enough

to uniquely determine all its future behaviors, which is utilized in

(A2) of Def. 3.1. This is, however, not true for the output space Y .

In general, one needs to look at the entire history seen so far, i.e.,

at the generated string ν ∈ EPrefs(S), to uniquely determine all

future observable behaviors of this system. This intuition is cap-

tured by the so called external trace system S⋆ of S in which a state

represents a finite external history of S , and the transitions extend

the external history by one step.

Definition 3.3. Given a system S = (X ,X0,U , F ,Y ,H),

its induced external trace system is the system S⋆ =

3

(X⋆
,X⋆

0 ,U , F
⋆
,Y ,H⋆), where X⋆ := EPrefs(S), X⋆

0 := H (X0),

F⋆(ρ,u) := {ρuy | F (LastX(ρ),u) ∩ H−1(y) , ∅} and

H⋆(ρ) := Last(ρ).

It should be noted that, by definition, S⋆ has closed external be-

havior. We further have EPrefs(S) = EPrefs(S⋆), Ext(S) ⊆ Ext(S⋆),

and Ext(S) = Ext(S⋆) iff S has closed external behavior. That is,

Ext(S⋆) is the behavioral closure of Ext(S) [28].

To refine an abstract state-feedback controller to an output-

feedback controller for the original system, one needs to relate ab-

stract states to external prefixes of S . As the latter form the state

space of S⋆, such a refinement is possible if Ŝ is a sound abstrac-

tion of S⋆. More precisely, it follows from Thm. 3.2 that S⋆ 4 Ŝ

implies that a state-feedback control strategy Ĉ† : Prefs(Ŝ)→U

for Ŝ can be refined into a state-feedback control strategy C⋆† :

Prefs(S⋆)→U for the external trace system S⋆ of S . Now recall-

ing the definition of S⋆’s state space X⋆ := EPrefs(S), we see that

for a string ξ0u0ξ1u1 . . . ξk ∈ Prefs(S⋆) we have ξi = ξk |[0;i] for all

i ∈ [0;k]. Therefore, ξk carries all information needed for C⋆†’s

control choice. C⋆† can therefore be redefined into a memoryless

strategy C⋆ : X⋆→U , which, by definition, is an output-feedback

control strategy for the original system S (asX⋆ := EPrefs(S)). The

following corollary of Thm. 3.2 summarizes this observation.

Corollary 3.4. Let S be a system, S⋆ its external trace system

and Ŝ a system with closed external behavior. If S⋆ 4α Ŝ and Ĉ† ∈

W†(Ŝ,ψ) then C = Ĉ† ◦ α ∈ W(S,ψ). Further, if S has closed

external behavior and S⋆ �α Ŝ thenW(S,ψ) = ∅ iffW†(Ŝ,ψ) = ∅.

It should be noted that S⋆ is infinite state even when the system

S is finite state. This should not worry us too much as S is typically

also infinite state and we cannot efficiently check Def. 3.1 over S ei-

ther. The contribution of Cor. 3.4 is therefore conceptual. It shows

that the same notion of sound abstractions developed for ABCD

with state-feedback control can be utilized for output-feedback

when applied to the external trace semantics of S captured by S⋆.

In addition, the next section shows a construction of a finite-state

(and therefore closed) abstraction Ŝ directly from S which can be

proven to be a sound abstraction of S⋆ and thereby allows to apply

Cor. 3.4 to obtain a sound ABCD framework for output-feedback

control without explicitly computing S⋆.

4 COMPUTING ABSTRACTIONS

We now turn to the algorithmic problem of computing system ab-

stractions such that designing a state-feedback controller on the

abstraction allows us, through Cor. 3.4, to construct a correspond-

ing output-feedback controller for the original system. For this we

assume that the original system has an infinite state space—e.g., de-

fined by a continuous-state dynamical system—and our goal is to

compute a finite-state abstraction on which algorithmic techniques

for state-based controller synthesis (e.g., [14, 27]) can be applied.

We first recall two well-known approaches to compute such

finite-state abstractions which were developed for the setting

where the original system has a finite state space, and show that

they may not terminate for infinite-state systems, even if a finite-

state realization of the topological closure of its external behavior

exists. Based on this insight, we provide (Sec. 4.4) an algorithm for

abstracting infinite-state systems which overcomes this problem.

Algorithm 1 KA: Knowledge-Based Abstraction

Require: S = (X ,X0,U , F ,Y ,H)

1: X̂0 ← {X0 ∩ H−1(y) ∈ 2X \ {∅} | y ∈ Y }

2: X̂old ← ∅ and X̂ ← X̂0

3: while X̂old , X̂ do

4: X̂old ← X̂

5: for x̂ ∈ X̂old ,u ∈ U ,y ∈ Y do

6: x̂ ′ ← F (x̂,u) ∩ H−1(y)

7: X̂ ← X̂ ∪ {x̂ ′} if x̂ ′ , ∅

8: end for

9: end while

10: Define x̂ ′ ∈ F̂ (x̂,u) iff there exist y s.t. x̂ ′ = F (x̂,u) ∩ H−1(y)

11: Define Ĥ (x̂) = y iff y ∈ H (x̂)

12: return ŜK = (X̂ , X̂0,U ,Y , F̂ , Ĥ)

4.1 Knowledge-Based Abstraction

A standard way to solve control-strategy synthesis problems over

finite-state systems with partial observation [3, 19, 30] is to use

a knowledge-based subset construction. Starting from the subsets

of initial states generating the same output, the knowledge-based

subset construction algorithm, given in Alg. 1, explores all inputs

to the system and successively generates subsets of states that are

indistinguishable given the full history of applied inputs and ob-

served outputs. Such subsets x̂ of states of the original system S

become the states of the knowledge-based abstraction ŜK := KA(S).

Note that every reachable state x̂ of ŜK computed via Alg. 1 has the

property that all x ∈ x̂ have the same output; thus, we can define

Ĥ (x̂) as the (unique) output H (x) of some x ∈ x̂ .

Remark 2. We restrict our attention to systems with strict tran-

sition function in this paper to simplify the discussion of the KA al-

gorithm in Alg. 1 and KAM in Alg. 2. If not all inputs are enabled

in every state, KA would need to distinguish state sets further based

on the set of available inputs. This would require the controller to

“observe” the status of currently enabled inputs. The not fully input-

enabled case can be implicitly handled by introducing an observable

“dummy” state and redirecting all transitions with disabled inputs to

the dummy state. This indirectly observes the status of enabled inputs

and provides a system with strict transition function. Then one can

conjoin the specification with the constraint that the dummy state is

never visited to obtain the original control problem. We postpone a

more in-depth treatment of this implicit observation of enabled in-

puts to future work.

The next proposition formalizes the intuition that ŜK is a use-

ful abstraction for a given output-feedback control problem over

S . With Prop. 4.1 in place, it immediately follows from Cor. 3.4

that one can compute an output feedback controller C := Ĉ† ◦

LastX
ŜK ∈ W(S,ψ) from an abstract state-feedback controller

Ĉ† ∈ W†(ŜK,ψ), if it exists.

Proposition 4.1. Let S be a system, S⋆ its external trace system,

and ŜK = KA(S). Then, S⋆ �α ŜK with α = LastX
ŜK .

Proof. To simplify notation we define Ŝ := ŜK.

◮ We first prove that LastX
Ŝ
(EHist

Ŝ
(x̂)) = {x̂} for all x̂ ∈ X̂

4

by picking π̂ = x̂0u0x̂1u1 . . . x̂n and π̂ ′
= x̂ ′0u0x̂

′
1u1 . . . x̂

′
n s.t.

Ĥ (x̂k) = Ĥ (x̂ ′
k
) for all k ∈ [0;n] and showing x̂n = x̂ ′n by in-

duction. ⊲ For k = 0 we have x̂0, x̂
′
0 ∈ X̂0. As Ĥ (x̂0) = Ĥ (x̂ ′0), we

have x̂0 = x̂ ′0. ⊲ Now let k ∈ [1;n] and assume x̂k−1 = x̂ ′
k−1

. Then

it follows that there exists y,y′ s.t. x̂k = F (x̂k−1,uk−1) ∩ H−1(y)

and x̂ ′
k
= F (x̂k−1,uk−1) ∩ H−1(y′). Again, Ĥ (x̂k) = Ĥ (x̂ ′

k
) implies

y = y′. Then it is easy to see that x̂k = x̂ ′
k
.

◮ We now show that equality holds for (A1)-(A3) from Def. 3.1:

⊲ (A1): By definition, X⋆
0 = H (X0); and by line 1 in Alg. 1, we have

LastX
Ŝ
(H (X0)) = X̂0. ⊲ (A2): Let x̂ = LastX

Ŝ
(ν) and u ∈ U . Fur-

ther, let x̂ ′y = F (x̂,u) ∩ H−1(y) and define Y ′
= {y ∈ Y | x̂ ′y , ∅}.

Now recall that F⋆(ν ,u) = {νuy | F (LastX
Ŝ
(ν),u) ∩ H−1(y) ,

∅}. This implies x̂ ′y ∈ LastX
Ŝ
(F⋆(ν ,u)) if y ∈ Y ′. Further, as

LastX
Ŝ
(EHist

Ŝ
(x̂)) = {x̂} we have LastX

Ŝ
(F⋆(ν ,u)) =

⋃
y∈Y ′{x̂ ′y }.

From the definition of F̂ , it further follows that x̂ ′y ∈ F̂ (x̂,u) if

y ∈ Y ′ and in particular F̂ (x̂,u) =
⋃
y∈Y ′{x̂ ′y }. Recalling that

x̂ = LastX
Ŝ
(ν) this shows that LastX

Ŝ
(F⋆(ν ,u)) = F̂ (LastX

Ŝ
(ν),u).

⊲ (A3): Observe that γ = EHist
Ŝ
for α = LastX

Ŝ
. Then H (γ (x̂)) =

H (EHist
Ŝ
(x̂)) = H ({x̂}), hence H ({x̂}) = {Ĥ (x̂)}. �

Alg. 1 incrementally constructs ŜK fromS by forward exploration

from the initial states. As the abstract state space X̂ ⊆ 2X con-

tains subsets of X it terminates if X is finite. This case is the one

most prominently discussed in existing literature, e.g., in [3, 30].

However, Alg. 1 might also terminate if X̂ is infinite (see, e.g., the

example in Sec. 4.3), given that the necessary operations (in partic-

ular “Post” and “Intersect”) can be implemented if state subsets are

infinite. If X is infinite, Alg. 1 might however also not terminate

even if there exists a finite-state realization of S . This is shown in

Ex. 4.2. It is interesting to note that this might still be the case even

ifX = X0. This can be verified by checking that Alg. 1 does also not

terminate if all states in the system S depicted in Fig. 2 are initial.

Example 4.2. Consider the infinite state system S in Fig. 2, with

U = {u},Y = {A,B}. By omitting the trivial input, the external lan-

guage Ext(S) of this system is A(B)+(A)ω | A(B)ω , for which one

can construct a finite trace equivalent system, for instance, using

one of the methods discussed in the following sections. Yet, Alg. 1

will separate every state labeledwith B, leading to an infinite chain

of states with observation B, and will therefore not terminate.

4.2 Bisimulation Minimization

The knowledge-based abstraction algorithm KA computes reach-

able subsets going forward, but it may fail to terminate by trying

to distinguish states that are language equivalent to already com-

puted ones, that is, states that generate the same future sequence of

outputs under the same input sequence. Thus, one could first com-

pute a bisimulation quotient [2, 9, 16] of the system S and only then

compute the knowledge-based abstraction. It is possible that an

infinite-state system has a finite bisimulation quotient; in that case,

constructing the quotient first will allow the knowledge-based ab-

straction to terminate (see Fig. 2 (bottom) for an example).

For a system S = (X ,X0,U , F ,Y ,H), a partition of the set X is a

set of non-empty sets ofX , called blocks, that are pairwise disjoint

S :

a1

A

b1

B

a2

A

b2

B

bn

B

ŜK :
{a1, a2 } A

{a2 }A {b1 } B

{b2 } B

{b1, b3 } B

Ŝbi :

{a1 }
A

{a2 }

A

{bn }n∈N

B
KA(Ŝbi) :

{a1, a2 } A

{a2 }

A

{bn }n∈N

B

Figure 2: The system S (top left) has an infinite-state knowl-

edge abstraction ŜK (top right)while an exact finite-state rep-

resentation of Ext(S) exists, which is correctly computed by

first computing the bisimilarity abstraction Ŝbi (bottom left,

see Sec. 4.2) and then applying Alg. 1 (bottom right).

and whose union is X . A partition is stable if the following proper-

ties hold. First, for each block x̂ of the partition, every state in the

block has the same output: for all x, x ′ ∈ x̂ , we have H (x) = H (x ′).

Second, for each pair of blocks x̂, x̂ ′ with y′ = H (x) for all x ∈ x̂ ′

and for each input u ∈ U we have either F (x̂,u) ∩H−1(y′) ⊆ x̂ ′ or

F (x̂,u) ∩ x̂ ′ = ∅. Using the notion of a stable partition of X we can

define the bisimulation abstraction Ŝbi = (X̂ , X̂0,U , F̂ ,Y , Ĥ) of S as

follows. The set of abstract states X̂ is the minimal stable partition

of X . The initial abstract states X̂0 are those blocks that contain

some initial states from X0. The abstract transition function is de-

fined as F̂ (x̂,u) = {x̂ ′ ∈ X̂ | ∃x ∈ x̂ .F (x,u) ⊆ x̂ ′}. Moreover, since

every state in each block of the partition has the same output, we

can uniquely define Ĥ (x̂) to be the output of some state in x̂ .

A partition refinement algorithm [9, 18] can be used to com-

pute Ŝbi from S . Unlike Alg. 1, this algorithm proceeds backwards

by splitting blocks based on their predecessors, starting with the

partition defined by the outputs, i.e., {q ∈ 2X \ {∅} | ∃y ∈ Y . q =

H−1(y)}. This algorithm may terminate if X is infinite and the nec-

essary operations are implementable over infinite state subsets. Go-

ing back to the system described in Ex. 4.2 we see that the bisimula-

tion quotient Ŝbi (depicted in Fig. 2 (bottom left)) is finite, while the

original system S (depicted in Fig. 2 (top left)) and its knowledge-

based abstraction ŜK (depicted in Fig. 2 (top right)), are infinite.

Applying the KA algorithm on Ŝbi returns the desired finite state

abstraction (depicted in Fig. 2 (bottom right)) which allows for out-

put feedback control. However, if S is infinite-state, the partition

refinement algorithm is not guaranteed to terminate even if the

knowledge-based abstraction of the original system is finite. This

is further illustrated by the example discussed in the next section,

which shows that knowledge-based abstraction and bisimulation

minimization are incomparable and the suggested procedure to

compute Ŝbi first, before utilizing KA, may not terminate.

4.3 Illustrative Example

Before explaining KAM,we introduce an illustrative example. Con-

sider the infinite state system S depicted in Fig. 3 (top left) with

U = {u} and Y = {A,B,C,D,E, F }. It consists of one initial state

a1 which outputsA, an infinite chain of statesbi , i ∈ N, all of which

output B, and four different modules ΛI
D
(light blue, dashed), ΛI I

D
5

Λ
I

D
Λ
I I

D
Λ
I I

D
Λ
I I

E
Λ
I

E
Λ
I I

E

S :
a1

A

b1

B

b2

B

b3

B

b4

B

b5

B

bn

B

c1

C

c2

C

c3

C

c4

C

c5

C

cn

C

d1

D

d l3

D

d r3

D

d l5

D

d r5

D

e4

E

e l2

E

er2

E

e ln

E

ern

E

f1

F
д1

G

f2

F
д2

G

f3

F
д3

G

f4

F
д4

G

f5

F
д5

G

f ln

F

дrn

G

Ŝ :
a

A

bo

B

be

B

co

C

ce

C

d

D

e

E

f

F
д
G

ŜK :
{a1 }

A

{b1 }

B

{b2 }

B

{b1b3 }

B

{c1 }

C

{c2 }

C

{c1, c3 }

C

{d1 }

D

{d1d
l

3d
r

3 }

D

{e l2e
r

2 }

E

{f1 }

F

{д1 }

G

{f2 }

F

{д2 }

G

{f3 }

F

{д3 }

G

Ŝbi :
{a1 }

A

{b1 }

B

{b2 }

B

{b3 }

B

{b4 }

B

{b5 }

B

{bn }

B

c I
D

C

c I I
D

C

c I
E

C

c I I
E

C

{di }

D

{d l
i
}

D

{d r
i
}

D

{ei }

E

{e l
i
}

E

{er
i
}

E

{fi } {дi }

Figure 3: Infinite-state system S (top left) discussed in Sec. 4.3, its sound finite-state abstraction Ŝ (top right), part of its infinite-

state knowledge abstraction ŜK (bottom left) and its infinite bisimulation quotient Ŝbi (bottom right). The single inputU = {u}

is omitted and outputs Y = {A, . . . , F } are indicated next to the respective state. A state subset {αi } denotes the set {αi }i ∈N.

(dark blue, dashed), ΛI
E
(light orange, dotted) and ΛI I

E
(dark orange,

dotted), attached to one b-state each. System S is constructed s.t.

modules of typeD (resp. of type E) are reachable after outputB has

occurred an odd (resp. even) number of times, i.e., from all states

Xodd
B

:= {b2i+1}i ∈N (resp. from all states X even
B

:= {b2i }i ∈N).

However, the sequence of class I and I I modules of the same type

i ∈ {E,D} is irregular, i.e., there is no ω-regular expression to de-

scribe how Λ
I
i and Λ

I I
i modules repeat.

By closely investigating themodules of the same i-type it can be

observed that modules ΛIi and Λ
I I
i for the same i ∈ {D,E} are ex-

ternal language equivalent. Therefore, the regularity of alternating

between type D and type E modules is enough to obtain a sound

finite-state realization Ŝ of S depicted in Fig. 3 (top right).

KA-algorithm (Sec. 4.1). The KA algorithm computes the ab-

stract state space by combining all states with the same observable

past while going forward. For the system S in Fig. 3 (top left) it con-

structs state subsets as depicted in Fig. 3 (bottom left). We see that

the KA algorithm discovers that class I modules are a sound real-

ization of class II modules, i.e., ŜK only consists of class I modules

s.t. type D and type E modules are reachable from states in Xodd
B

and X even
B

respectively. However, the KA algorithm still does not

terminate on this example as it explores language equivalent states

unnecessarily. I.e., by computing state subsets only going forward,

it computes a new, not yet explored subset ofb-states in every itera-

tion. The KA-algorithm is not able to generalize and thereby merge

all states corresponding to Xodd
B

or X even
B

due to their unique fu-

ture.

Bisimulation-Quotient (Sec. 4.2). A partition refinement algo-

rithm computing the bisimulation quotient of S merges states with

the same observable future going backward. For the system S in

Fig. 3 (top left) it immediately discovers that all states in XF :=

{ fi }i ∈N as well as XG := {дi }i ∈N have the same observable future

(namely Fω andGω , respectively). It further merges all states con-

tained in the same Λ
j
j module into one equivalence class (see Fig. 3

(bottom right) indicated by the four color/line patterns). However,

as it proceeds backwards, it does not take into account the reach-

able portion of all state subsets and thereby considers states within

class I and II modules of the same type as different. This differ-

entiates b states depending on the class of modules they are con-

nected to (indicated by the coloring of theb-states in Fig. 3 (bottom

right)). As the partition refinement algorithm constructs equiva-

lence classes going backward, it generates a distinct equivalence

class for the left and right “color pattern” a b state “sees”. As we

assume that class I and II modules are irregularly sequenced, there

exist infinitely many such equivalence classes and the algorithm

therefore never terminates.

Combining both algorithms. For this example, running the KA

algorithm first and the partition refinement algorithm second, re-

sults in the finite state abstraction Ŝ depicted in Fig. 3 (top right).

This is, however, not practically implementable, as the KA algo-

rithm never terminates. Further, we have shown that for Ex. 4.2

one needs to execute the partition refinement algorithm first, fol-

lowed by the KA algorithm. One can therefore construct an exam-

ple where one reachable part of the state space requires executing

the KA algorithm first, while the other part requires the partition

refinement algorithm to be executed first. In this case, no order

would lead to the desired result.

4.4 Knowledge Abstraction with Minimization

We now present the Knowledge-based Abstraction algorithm with

Minimization (KAM), given in Alg. 2, which interlaces the forward

Knowledge-based Abstraction (KA) with backward refinement-

based Minimization (M). We also illustrate the algorithm using the

example from Sec. 4.3.

Algorithm Description. KAM generates a rooted, labeled tree

and a cover set Cover ⊆ 2X . The nodes of the tree are kept in

EXPX and the edges in EXPF . The edges are labeledwith inputs from

6

〈A, XA, {a1 }〉
t0

〈AB, XB, {b1 }〉
t1

〈ABB, XB, {b2 }〉
t22

〈ABBB, XB , {b1b3 }〉
t33

〈ABBBB, XB, {b2b4 }〉
t45

〈ABC, XC , {c1 }〉
t21

〈ABBC, XC , {c2 }〉
t32

〈ABBBC, X odd

C
, {c1c3 }〉

t44

〈ABCD, XD, {d1 }〉
t31

〈ABBCE, XE , {e
l

2e
r

2 }〉
t43

〈ABCDF , XF , {f1 }〉
t41

〈ABCDG, XG , {д1 }〉
t42

1

2
2

3
3

3

4

4 4

4

4

X odd

C
323

X odd

B
3 35

X odd

B
3
35/31

X even

C
4 23

X even

B
435

X even

B
4
35/31

Ŝ
♯
5 : XA

A

X odd

B

B

X odd

B

B

X odd

C

C

X even

C

C

XD

D

XE

E

XF

F

XG
G

Figure 4: Exploration tree EXPF of S in Fig. 3 computed by Alg. 2 (left) and the abstract system Ŝ♯ extracted after its 5th iteration

(right). Nodes are labeled by tk (blue) for easier reference and the single input u is omitted to avoid clutter. Diamond-enclosed

numbers indicate the iteration in which this transition is explored. Dotted red arcs indicate cover block refinements in the

iteration of themain while loop depicted by the red circled number and caused by the line of Refine indicated on its top right.

E.g., XB of t1 is refined by re-calling Refine in line 35 after XC of t21 was refined in line 23 (as t1 is a predecessor of t21). The

notation 35/31 in t45 indicates that its cover block XB is refined by line 31 after re-calling Refine via line 35 on node t22.

U . The nodes are labeled with a three-tuple 〈ν ,q, c〉 ∈ EXPX, con-

sisting of a sequence ν of external events seen when reaching the

current node from the root of the tree, a block q ⊆ X in the cur-

rent Cover, and a subset of states c ⊆ X (called a cell). Intuitively,

a tuple 〈ν ,q, c〉 ∈ EXPX remembers the observed input/output se-

quence from the initial states (in ν), the available knowledge about

the current state (in c), and the current “guesses” on states which

are future observation-equivalent to c (in q). The cells c and blocks

q correspond to the data structures manipulated by the KA and the

Minimization algorithm, respectively, and are initialized similarly:

Cover is initialized with the partition induced by H on X (line 1,

see Sec. 4.2), cells are initialized with all initial cover blocks con-

taining an initial state (line 3). Note that the initialization of cells

simplifies as we have assumed that H respects the initial state set

X0.

Example 4.3. For the example in Sec. 4.3, we see that the par-

tition induced by H on X results in the initial cover set Cover =

{Xy | y ∈ Y } s.t. Xy collects all states of S that generate the output

y, e.g., XA := {a1} and XC := {ci }i ∈N. On the other hand, there is

only one initial cell, namely {a1} withH ({a1}) = A. This results in

the initialization of EXPX with the tuple 〈A,XA, {a1}〉 as depicted

in Fig. 4 (left).

The main loop of KAM (lines 5–21) grows the tree by iterating

between a forward exploration (as in KA) and backward refine-

ment (as in bisimulation). The forward exploration picks the cur-

rent leaves (ν ,q, c) of the tree (line 7) and executes one step of KA

to generate new cells c ′ for every u ∈ U and y ∈ Y (compare Alg. 1,

line 6 and Alg. 2, line 10).

For each minimal blockq′ in the current Cover set that contains

c ′, KAM adds a new node 〈ν ′,q′, c ′〉 to the tree (line 12), where ν ′

extends the parents event sequence with the latest input and the

last output. The edge from the parent to the new node is labeled

with the input and stored in EXPF (line 13).

Example 4.4. The resulting exploration tree for the example in

Sec. 4.3 is depicted in Fig. 4 (left). Here, the diamond-enclosed num-

ber on the edges indicates the iteration of the while loop (in line 5-

21 of Alg. 2) in which this transition and its child are added to the

tree. When comparing Fig. 4 (left) and the KA-abstraction ŜK of

this example (Fig. 3 (bottom left)), we see that the third compo-

nent of all tuples generated by KAM coincides with the abstract

states generated by KA in the same iteration (i.e., in a state with

the same distance from the initial state).

Having thus created all the children for a node 〈ν ,q,c〉, if c is

a proper subset of q, the next step in KAM is to check if q, the

current guess for the observation equivalence class for c , needs to

be refined. Refinement is performed by the function Refine (Alg. 2,

line 15) and works similarly to the bisimulation algorithm.

In contrast to the usual bisimulation algorithm, Refine(〈·,q, c〉)

only splits a block q based on its possible successors in the tree if

this split respects c , thereby avoiding the splitting of indistinguish-

able states, which caused the non-termination issue discussed in

Sec. 4.2. One can intuitively think of s ⊆ X computed in line 27 of

Alg. 2 as the set of all states which are equivalent to c in terms of

their one-step observable future. However, in contrast to the bisim-

ulation algorithm, KAM only adds s to Cover but does not add its

complement q \ s (see line 29). This is due to the fact that this op-

eration might not respect the currently available cells and again

split indistinguishable states. If q \ s is indeed needed, it will be

discovered by another call to Refine.

Summarizing the above description, we see that Refine refines

the Cover set based on the one-step future of the computed cell.

Given this refinement, all previously obtained relations between

cells and blocks need to be re-evaluated as s ⊂ q implies that s

is now the minimal cover of c , if c was previously related to q in

EXPX (see line 31). Thus, KAM updates its guess on the set of states

possibly external language equivalent to a state in c . This, how-

ever, might imply new block splits in cell/block pairs reaching c ,

which have been checked for refinement in previous iterations of

the algorithm. This is taken care of by the recursive call to Refine

in line 35. Note that the recursion always moves up to the parent

in the tree, and thus it eventually terminates. One can show that

after the recursive call to Refine terminates, we always have a

single minimal cover box q for every cell c computed so far. That

is, given the relation α̃(c) = {q ∈ Cover | 〈c,q〉 ∈ EXPX
↓} for

EXPX
↓ := {〈q,c〉 | ∃ν . 〈ν ,q,c〉 ∈ EXPX}, we have |α̃ (c)| = 1 (see

Lem. A.2 in the appendix for a formal proof).

7

Algorithm 2 KAM: Knowledge Abstraction and Minimization

Require: S = (X ,X0,U , F ,Y ,H)

1: Cover ← {q ∈ 2X \ {∅} | ∃y ∈ Y . q = H−1(y)};

2: EXPΓ ← ∅;

3: EXPX ← {〈H (c),q,c〉 | q ∈ Cover ∧ c = q ∧ c ∩ X0 , ∅};

4: EXPF ← ∅;

5: while EXPΓ , {〈q, c〉 | ∃ν . 〈ν ,q, c〉 ∈ EXPX} do

6: EXPΓ ← {〈q, c〉 | ∃ν . 〈ν ,q, c〉 ∈ EXPX};

7: for 〈ν ,q, c〉 ∈ EXPX s.t. |ν | is maximal do

8: for u ∈ U ,y ∈ Y do

9: ν ′ = νuy;

10: c ′ = F (c,u) ∩ H−1(y) , ∅;

11: Q ′
= {q′ ∈ Cover | c ′ ⊆ q′ and q′ is minimal};

12: EXPX ← EXPX ∪ {〈ν ′,q′, c ′〉 | q′ ∈ Q ′};

13: EXPF ← EXPF ∪ {(〈ν ,q, c〉,u, 〈ν ′,q′, c ′〉) | q′ ∈ Q ′};

14: end for

15: if c ⊂ q then Refine(〈ν ,q, c〉);

16: end if

17: end for

18: Ŝ ← Extract(EXPX, EXPF);

19: if TermCond() == true then return Ŝ;

20: end if

21: end while

22: return Ŝ ;

23: function Refine(〈ν ,q, c〉)

24: for u ∈ U do

25: PostQu←
⋃
{q′∈Cover | (〈ν ,q,c〉,u, 〈·,q′, ·〉) ∈EXPF};

26: end for

27: s ← {x ∈ q | ∀u ∈ U . F (x,u) ⊆ PostQu };

28: if s ⊂ q then

29: Cover ← Cover ∪ {s};

30: for all 〈ν̃ , q̃, c̃〉 ∈ EXPX s.t. q̃ = q do

31: if c̃ ⊂ s then change 〈ν̃ ,q, c̃〉 to 〈ν̃ , s, c̃〉 in

EXPΓ,X ,F ;

32: end if

33: end for

34: for all (〈ν̃ ′, q̃′, c̃ ′〉, ·, 〈ν̃ , q̃, c̃〉)∈EXPF s.t. q̃=s ∧ c̃ ′⊂ q̃′ do

35: Refine(〈ν̃ ′, q̃′, c̃ ′〉);

36: end for

37: end if

38: end function

39: function Extract(EXPX,EXPF)

40: X̂ ← {q ∈ 2X | 〈·,q, ·〉 ∈ EXPX};

41: X̂0 ← {X0 ∩ H−1(y) ∈ 2X \ {∅} | y ∈ Y };

42: F̂ ← {(q,u,q′) | 〈·,q, ·〉,u, 〈·,q′, ·〉) ∈ EXPF};

43: Ĥ (x̂) = y if y ∈ H (x̂);

44: return Ŝ = (X̂ , X̂0,U , F̂ ,Y , Ĥ);

45: end function

Example 4.5. For the example in Sec. 4.3, we see that for the tu-

ple t0 we have c = q as XA = {a1}, hence, Refine is not called

in the first iteration of KAM. In its second iteration, it computes

the leaves t21 and t22 in the main while loop and then checks the

parent node t1 for refinement. For this, it computes all cover cells

reachable by b1 (which is PostQ =
⋃
{XB ,XC } and then computes

all states in q = XB with the same reachable cover blocks, which

is s = XB . As q = s , no split occurs and a new iteration of the

main while loop starts. After the computation of the leaves t31−t33
KAM checks the parent node t21 for refinement. Here we obtain

PostQ = XD and s = Xodd
C

= {c2i+1}i ∈N. As s ⊂ q = XC the

cell Xodd
C

is added to Cover. As there is no other node in the tree

with a cell component contained inXodd
C

, we only update the block

component of t21 (indicated by the red dotted arrow pointing to it

in Fig. 4) and schedule all its predecessors for refinement. There-

fore, node t1 is checked for refinement again. Given the new cover

cell Xodd
C

we now obtain PostQ =
⋃
{XB ,X

odd
C

} and s = Xodd
B

.

This updates the cover element of t1 and t33. This schedules only

t22 for refinement, as t0 does not fulfill the condition that c ⊂ q.

Now it can be observed that checking t22 for refinement still gives

PostQ =
⋃
{XB ,XC } as we have not yet added the cover ele-

ment X even
B

= XB \ Xodd
B

. This is due to the fact that we do not

know whether this element is indeed needed and respects the con-

structed state subsets. We therefore leave node t22 unchanged and

proceed to the forth iteration of the main while loop. This com-

putes the leaves t41 − t45. It should be noted that during this com-

putationwe now have the new cover cellXodd
C

available and KAM

uses this smaller cover cell to correctly tack the equivalence class

for t44 (indicated in green in Fig. 4). Now the only interesting re-

finement check is on t32 which discovers the new cover element

X even
C

and induces the further refinement of node t22 introducing

the cover cell X even
B

. This updates t22 and t45. Due to space con-

straints, we do not depict the constructed tree further. It should

however be noted that t43 clusters e
l
2 and er2 into a single cell, as

these states are not distinguishable based on the past observations.

Therefore, calling Refine on t43 in the next iteration of KAM will

not refine the equivalence classXE as PostQ =
⋃
{XF ,XG } and we

therefore obtain s = XE . The same happens for nodes d li and drj .

This prevents the non-termination issue of the bisimulation algo-

rithm for this example.

After exploration and refinement, KAM extracts an abstraction

Ŝ via the function Extract in line 19. Intuitively, Extractprojects

the tree in EXPF to the blocks in the current Cover set which

are reachable. It thereby “forgets” the forward-computed cells and

only retains their observation-equivalent generalizations s . For the

example in Sec. 4.3 the abstraction extracted after the fifth iteration

of KAM is depicted in Fig. 4 (right). It can be observed that Fig. 4

(right) coincides with the abstraction Ŝ in Fig. 3 (top right) up to a

renaming of states.

Termination. Intuitively, KAM should terminate if Cover sta-

bilizes. Then, all distinguishable subsets which are observation-

equivalent have been discovered, and hence, imply Ext(S) = Ext(Ŝ).

That is, we would ideally like to have TermCond() == true in

line 19 iff Cover has stabilized. Unfortunately, even if we observe

that Cover has not changed in the current iteration, we do not

know if it will never change again. This is because KAM bases

its search for cover splits on the already constructed state-subsets.

There might be a very long input/output event sequence which

only causes a subset split after a long exploration phase. As the

8

state space of S is infinite, we cannot check if this will ever hap-

pen. Interestingly, this is also true for fully initialized systems (i.e.,

where X = X0). Thus, this termination check is undecidable.

One interesting special case where termination is decidable oc-

curs if the KA algorithm (Alg. 1) terminates (which is for exam-

ple always the case if X is finite). In this case, one can show that

EXPΓ = EXPX
↓ holds in the l-th iteration of Alg. 2 iff Γ = X̂ holds

in the l-th iteration of Alg. 1 (see Lem. A.3 in the appendix for a

formal proof of this statement). While Covermight have stabilized

earlier, we know it has surely stabilized by then.

Finite-State Abstractions. The termination condition discussed

above aims on computing a sound finite-state realization of the ex-

ternal behavioral closure of S which might not exist. Indeed, for

arbitrary non-linear dynamical systems there rarely ever exists an

exact finite-state realization in this sense, even if their input and

output sets are finite. Therefore, as the name suggests, abstraction-

based controller synthesis is usually only aiming at computing a

finite-state abstraction which is accurate enough to synthesize an

abstract controller for the given specification.

In this context, it is interesting to investigate whether the sys-

tem Ŝ# computed in line 18 of Alg. 2 after running the while loop

in line 5-21 finitely often, is indeed a sound abstraction of S in the

sense of Def. 3.1 and therefore allows for abstraction based control

in the sense of Cor. 3.4. Interestingly, this is only true if KAM has

already explored all possible output events which are reachable in

S at least once when terminated. This is for example trivially sat-

isfied if X0 = X . Additionally, whenever Cover stabilizes after a

finite number of iterations, KAM indeed computes a sound realiza-

tion of S . This is formalized in the following theorem.

Theorem 4.6. Let S be a system, S⋆ its external trace system and

Ŝ# an abstract system extracted in line 18 of KAM(S) in some iter-

ation. Further, let Y #
= {y ∈ Y | ∃〈q,c〉 ∈ EXPΓ . Ĥ (q) = y}

and Reach(Y) = {y ∈ Y | ∃ρ ∈ EPrefs(S) . y = Last(ρ)}. If

Y #
= Reach(Y) it holds that S⋆ 4α Ŝ# with α = LastX

Ŝ# . Further,

if Cover has stabilized, we additionally have S⋆ �α Ŝ#.

In order to prove Thm. 4.6, we first prove Prop. 4.7 below

which formalizes the intuition that, under the given premises, the

cell/block pairs 〈q, c〉 ∈ EXPX
↓ available when extracting Ŝ# in

line 18 of Alg. 2 actually induce a sound abstraction relation be-

tween ŜK and Ŝ#. I.e., we always have ŜK 4
α̃
Ŝ# for

α̃ (c) := {q ∈ X̂ # | 〈q, c〉 ∈ EXPX
↓}. (1)

Further, Prop. 4.7 shows that ŜK �
α̃

Ŝ# if ŜK is finite-state (and

thereby Cover has stabilized from Lem. A.3 in the appendix). With

this result Thm. 4.6 becomes a simple corollary of Prop. 4.7 and

Prop. 4.1 by utilizing the compositionality of sound abstractions

(see Prop. A.1 in the appendix for a formal proof).

Proposition 4.7. Given the premises of Thm. 4.6, it holds that

ŜK 4
α̃
Ŝ# with α̃ as in (1). Further, if Cover has stabilized, we addi-

tionally have ŜK �
α̃
Ŝ#.

Proof. To simplify notation we use S̃ := ŜK and Ŝ := Ŝ#.

◮We first show that equality holds for (A1) and (A3) from Def. 3.1.

⊲ (A1): Observe that line 1 in Alg. 1 and line 41 in Alg. 2 literally

match. Further, for all x̂ ∈ X̂0 we have that 〈ε, x̂, x̂〉 is in the initial

cover set (line 1 in Alg. 2) and thereby 〈x̂, x̂〉 ∈ EXPX
↓, as we have

assumed X0 to respect H . As Alg. 2 always maintains x̃ ⊆ x̂ for

any 〈x̂ , x̃〉 ∈ EXPX and all elements in Cover only get refined, we

see that there is no other x̂ ′ ∈ X̂ related to x̃ ∈ X̃ . We therefore

have α̃ (X̃0) = X̂0. ⊲ (A3): It is easy to see that for all x̂ ∈ X̂ holds

that x, x ′ ∈ x̂ implies H (x) = H (x ′) = Ĥ (x̂). As x̃ ⊆ x̂ for all

〈x̂, x̃〉 ∈ EXPX, we have H̃ (x̃) = Ĥ (x̂) for all related states.

◮ Now we show that (A2) holds with equality for all 〈x̃, x̂〉 ∈ EXPΓ

(possibly a subset of EXPX
↓). For this, observe that Ŝ is extracted in

the last iteration of the while loop in line 5-21 of Alg. 2 and there-

fore the recursive function Refinewas applied to all 〈x̂, x̃〉 ∈ EXPΓ

with x̃ ⊂ x̂ and has terminated. We can therefore utilize Lem. A.2

in the appendix implying |α̃ (x̃)| = 1 for all x̃ present in EXPΓ .

⊲ (A2) for EXPΓ : Pick x̃ ∈ X̃ , u ∈ U and x̃ ′y = F (x̃,u) ∩ H−1(y).

Further, define Y ′
= {y ∈ Y | x̃ ′y , ∅} and let Q ′ contain all

x̂ ′ ∈ X̂ s.t. 〈x̂ ′, x̃ ′y 〉 ∈ EXPX and y ∈ Y ′. Using the same argument

as in the proof of Prop. 4.1 we have F̃ (x̃,u) =
⋃
y∈Y ′ {x̃ ′y }, and

therefore, by definition, α̃(F̃ (x̃,u)) = Q ′. Now one can verify, by

looking at line 10, 13 and 25 of Alg. 2, that Q ′
= PostQu (〈x̂, x̃〉)

for {x̂} = α̃ (x̃). Further, we extract Ŝ after all covers have been

refined. With this we know that F (x̂,u) = PostQu (〈x̂, x̃〉), as other-

wise there would exists a refinement s ⊂ x̂ in the sense of line 27

in Alg. 2. This further implies that for all 〈x̂, x̃1〉, 〈x̂, x̃2〉 ∈ EXPΓ we

have that PostQu (〈x̂, x̃1〉) = PostQu (〈x̂, x̃2〉). With this it follows

that Q ′
= F̂ (α(x̃),u). This implies α̃ (F̃ (x̃,u)) = F̂ (α̃(x̃),u).

◮ It remains to show that (A2) holds (with equality for a stable

cover and with inclusion for an unstable one) for tuples 〈x̂, x̃〉 ∈

EXPX
↓ \EXPΓ . First, one can verify that 〈x̂, x̃〉 ∈ EXPX

↓ \EXPΓ if (a) a

tuple 〈σ , x̂, x̃〉 is added to EXPX in the last iteration of the while loop

before extracting Ŝ#, and (b) if there exists no tuple 〈x̂ ′, x̃〉 ∈ EXPΓ

for an arbitrary x̂ ′.While (a) is obvious, we show that (b) also holds.

It follows from Lem. A.2, that after completing every iteration of

the while-loop in line 21 it holds for every x̃ already constructed,

that there exists a unique x̂ ′ s.t. 〈x̂ ′, x̃〉 ∈ EXPΓ . Now assume that

〈σ , x̂, x̃〉 is added to EXPX via line 11 of Alg. 2. Then we know that

x̂ ′ = x̂ , as x̂ ′ is the unique minimal element of Cover covering x̃

and, hence, 〈x̂, x̃〉 < EXPX
↓ \ EXPΓ .

⊲ (A2) for EXPX
↓ \ EXPΓ with stabilized Cover: If Cover has sta-

bilized no element in Cover will be further refined by Refine. In

particular, this implies that x̂ is stable for any 〈x̂, x̃〉 ∈ EXPX
↓\EXPΓ .

Further, a stable cover implies that there already exists another tu-

ple 〈x̂, x̃ ′〉 ∈ EXPΓ for which all outgoing transitions are contained

in EXPF. With this, we use the same reasoning as for EXPΓ to con-

structQ ′ and to show that (A2) holds with equality.

⊲ (A2) for EXPX
↓ \EXPΓ with unstable Cover: If the Cover is not sta-

ble, we cannot ensure that x̂ is stable for any 〈x̂, x̃〉 ∈ EXPX
↓ \EXPΓ ,

i.e., would not be refined in the next iteration of the while loop.

Further, we have to make sure that there exists another tuple

〈x̂, x̃ ′〉 ∈ EXPΓ . Now recall that we initialize Coverwith the largest

subsets x̂
y
0 ⊆ X that generate the same outputy. AsY #

= Reach(Y),

we know that all initial cover cells x̂
y
0 withy ∈ Reach(Y)will be ex-

plored (and possibly refined) at least once in Alg. 2. As x̂ ∈ Cover

and by construction x̂ ⊆ x̂
y
0 for y = H (x̂) ∈ Reach(Y) we know

that 〈x̂, x̃ ′〉 ∈ EXPΓ . With this we can use the same reasoning

9

as in the proof of (A2) for EXPΓ to construct Q ′. If it is stable,

the argument reduces to the previous one. If it is not, we have

F (x̂,u) ⊂ PostQu (〈x̂, x̃〉). With this, the same arguments as in the

proof of (A2) for EXPΓ show that (A2) holds with inclusion, i.e.,

α̃ (F̃ (x̃,u)) ⊆ F̂ (α̃ (x̃),u) where α̃ (x̃) contains all minimal x̂ ’s cover-

ing x̃ . �

Proof of Thm. 4.6. As sound abstractions compose in the ex-

pected way (see Prop. A.1 in the appendix), we obtain a chain of

sound abstractions S⋆ 4LastX
ŜK

ŜK 4
α̃

Ŝ# from Prop. 4.7 and

Prop. 4.1, implying S⋆ 4α Ŝ with α = α̃ ◦LastX
ŜK . It can be further

observed from the tree-structure generated by KAM that every ex-

ternal prefix ν of S corresponds to a unique tuple (q,c) ∈ EXPX
↓.

Further, the same external prefix ν reaches the state c of ŜK and

the state q of Ŝ♯ . As Prop. 4.7 shows that these states c and q are

related via α̃ , we have LastX
Ŝ
= α̃ ◦ LastX

ŜK . With this, the first

claim of Thm. 4.6 follows. The second claim follows similarly. �

Iterative ABCD with KAM. By combining Cor. 3.4 and Thm. 4.6

we can compute an output-feedback controller C := Ĉ ◦

LastX
Ŝ# ∈ W(S,ψ) from an abstract state-feedback controller

Ĉ† ∈ W†(Ŝ♯,ψ) whenever the latter synthesis problem allows

for such a solution, i.e., W†(Ŝ#,ψ) , ∅. Hence, ABCD with out-

put feedback is sound in this case. Given that Ŝ# is in general only

known to abstract S , we are however losing completeness. That is,

ifW†(Ŝ#,ψ) = ∅, it does not imply that there is no solution to the

original synthesis problem 〈S,ψ 〉.

We can however take an eager abstraction-refinement ap-

proach instead to retain relative completeness. That is, whenever

W†(Ŝ#,ψ) = ∅, we run KAM for some more steps, extract a new

abstraction Ŝ#
′
, and again try to synthesize a controller.We give up,

once an upper bound L on the iterations of KAM is reached. This

eager approach relies on the insight that abstractions extracted af-

ter more iterations of KAM refine earlier abstractions as formal-

ized in Thm. 4.8. Further, this abstraction-refinement procedure is

relative complete. That is, if there is a topologically closed finite-

state abstraction Ŝ for which W(Ŝ,ψ) , ∅, there always exists a

large enough L s.t. the abstraction Ŝ# extracted from KAM in the

L’s iteration allows to solve the controller synthesis problem, i.e.,

W(Ŝ#,ψ) , ∅.

Theorem 4.8. Given the premises of Thm. 4.6, let Ŝ#
+1 be the sys-

tem computed in line 18 of Alg. 2 after one more iteration of Alg. 2

after Ŝ# was extracted. Then Ŝ#
+1 4 Ŝ#.

Proof. Let EXPΓ , EXPX
↓ and EXP′

Γ
, EXPX

↓′ be the sets computed

when extracting Ŝ# and Ŝ#
+1, respectively. Further let us define an

abstraction map candidate α+1 using three cases. I.e., q ∈ α+1(p) if

there exists c s.t. either (a) 〈q, c〉 ∈ EXPΓ and q = p, or (b) 〈q, c〉 ∈

EXPX
↓ \ EXPΓ , 〈p, c〉 ∈ EXP′

Γ
and p ⊆ q, or (c) 〈p, c〉 ∈ EXPX

↓′ \ EXP′
Γ

and there exists c ′ s.t. q is related to p as in (a) or (b).

This definition induces the following three cases for the proof.

⊲ (a) holds for (q,p): This implies 〈q, c〉 ∈ EXP′
Γ
. It follows from

the same arguments as used in the proof of Prop. 4.7 that equality

holds for (A1)-(A4) in Def. 3.1 w.r.t. S̃ both for Ŝ# and Ŝ#
+1. As α+1

reduces to the identity map in this case, the claim trivially follows.

Ŝ l : A A

AA

A

AB

B

BA

A

BB

B

Figure 5: 2-complete abstraction of the system S in Fig. 2.

⊲ (b) holds for (q,p): Then it follows again that equality holds for

(A1)-(A4) in Def. 3.1w.r.t. S̃ for Ŝ#
+1 but it follows fromThm. 4.6 that

only inclusion holds for (A3) w.r.t. Ŝ#. Formally, we fix c existen-

tially quantified in the definition of case (b) before. Then we have

α̃+1(F̃ (c,u)) = F̂+1(α̃+1(c),u) where α̃+1(c) contains the unique

minimal p covering c and α̃ (F̃ (c,u)) ⊆ F̂ (α̃(c),u) where α̃ (c) con-

tains all minimal q’s covering c . We have p ⊆ q for all q ∈ α̃(c) due

to the additional refinement step run before extracting Ŝ#
+1. In par-

ticular, we have α̃ (c) = α+1(p). Hence, α̃+1(F̃ (c,u)) = F̂+1(p,u) and

α̃(F̃ (c,u)) ⊆ F̂ (α+1(p),u). Now defineC ′
= F̃ (c,u). If for all c ′ ∈ C ′

case (a) or (b) holds, we have that α̃+1(c
′) maps to a unique p ′. In

this case it holds that α+1(α̃+1(F̃ (c,u))) = α̃ (F̃ (c,u)) and therefore

α+1(F̂+1(p,u)) ⊆ F̂ (α+1(p),u), what proves the statement. Now for

any c ′′ for which case (c) applies there exists a c ′′′ s.t. case (a) or (b)

applies while α̃ (c ′′) = α̃ (c ′′′) and α̃+1(c
′′) = α̃+1(c

′′′). With this,

the previous argument applies and the claim follows.

⊲ (c) holds for (q,p): Fix c existentially quantified in the defini-

tion of (c) and recall that there exists c ′ s.t. α̃(c) = α̃ (c ′) and

α̃+1(c) = α̃+1(c
′) and case (a) or (b) applies for c ′. Hence, without

loss of generality we can replace c by c ′ and the claim follows. �

Remark 3. The idea of abstraction-refinement for controller syn-

thesis is also often applied in the context of l-complete abstractions

[17, 20, 23, 29]. Similar to KAM, l-complete abstractions are con-

structed forward and generalize from initial observations to equiva-

lence classes. Here, the equivalence classes collect states which share

the same l-long external history (see e.g., Fig. 5 for an example with

l = 2). l-complete abstractions are typically constructed from the ex-

ternal behavior of S and do not assume the state dynamics of S to be

known. They thereby do not utilize the memory structure implicitly

given by the state dynamics of S in their generalization step. There-

fore, KAM generates tighter abstractions whenever the underlying

state transition system is known, but l-complete abstractions are to

be preferred if this is not the case.

Symbolic Implementations. KAM differs from the simultane-

ous reachability and bisimulation minimization algorithm of Lee

and Yannakakis [12] as it constructs an external language- (not

bisimulation-) equivalent system. Hence, it only applies predeces-

sor operations and intersection with outputs, but does not take set

differences. This is in fact crucial in implementations. For example,

for affine systems with polyhedral initial sets and output sets, one

can implement the algorithm exactly using a convex polyhedral

abstract domain, as both predecessor operators and intersections

maintain convexity while set differences do not.

5 HYBRID SYSTEM EXAMPLES

We now present two continuous-state discrete-time hybrid system

examples and show how our approach can be used to design ab-

stractions useful for output-feedback control. Along the way, we

10

0 1 2
0

1

2

3

3

00

01

02

10

11

12

20

21

22

0 1 2
0

1

2

3

3

Figure 6: Graphical representation of Σ1 (far left) and Σ2

(far right), showing the state space X with the partition in-

duced by the output maps H1 and H2, respectively. For Σ1,

X j = F (Xi ,u1) (dashed blue) indicates the reachable set of

Xi = H−1
1 (y00) (solid blue). Intersecting X j with the partition

generates transitions (blue) originating in y00 in the finite-

state abstraction (middle). Similarly, X j = F (Xi ,u2) (dashed

red) is reached from Xi = H−1
1 (y02) (solid red) generating

transitions (red) originating in y02 in the abstraction.

also compare our approach with several alternatives and show

how state-of-the-art techniques for abstracting continuous-state

systems, such as those implemented in SCOTS or Mascot [10, 22],

can be incorporated in our approach.

Example 5.1. Consider a switched system Σ1 with ⊲ state space

X = [0, 3) × [0, 3) ⊂ R2; ⊲ initial states X0 = X ; ⊲ input space

U = {u1,u2} (corresponding to two controllable modes); ⊲ output

space Y = {y00,y01,y02,y10,y11,y12,y20,y21,y22}; ⊲ output func-

tion H : x 7→ yi j , where i = ⌊x1/3⌋, j = ⌊x2/3⌋ for all x ∈ X ; and

⊲ transition function F defined as

F (x,u1) =mod3

(
x +

[
0.4

0.4

])
, F (x,u2) =mod3

(
x −

[
0.4

0.4

])
,

where the function modk : Rn → [0,k)n wraps its input argu-

ment component-wise around the perimeter of its codomain; i.e.,

if s = modk (x), then si = xi − k ⌊
xi
k
⌋. In Fig. 6 (top left), state

space X is shown, where the domain of H for all y is indicated by

the large boxes with edge length 1. The dynamics of F are then

interpreted as upward (u = u1) and downward (u = u2) discrete-

time flows of points in X parallel to the diagonal connecting the

lower left and top right corner of X . When the boundary of X is

reached, the system continues to evolve in the block reached by

wrapping X around its boundaries. Note that the only source of

non-determinism in system Σ1 is due to the initial condition not

being a singleton, whereas the transition function is deterministic.

We consider a specificationψ1 stating that when starting in y00 the

system should always eventually (re-)visit y00 and y22.

Let us first consider constructing an abstract system Σ̂1 that has

a feedback refinement relation (FRR) with Σ1 by using forward sim-

ulation as, e.g., implemented in SCOTS. The main idea is to “grid”

the state space into hyperboxes of size η in a way consistent with

the outputs and treat each grid cellXi as an abstract state. Then for

each grid cell Xi and for each input ui , post F (Xi ,ui) is computed

and a transition with input labelui is added from the abstract state

Xi to all abstract statesX j that have a non-empty intersection with

the post. This process is illustrated in Fig. 6. Given the existence

of an FRR from Σ1 to Σ̂1 (rendering Σ̂1 a sound abstraction of Σ1
for state-feedback control as discussed in Rem. 1) and the composi-

tionality of sound abstractions (see Prop. A.1), we can use Σ̂1 with

any of the algorithms presented in Sec. 4 to construct an abstrac-

tion Σ̂
′
1 which allows to solve the output-feedback control problem

over Σ1.

In order to apply this process, we need to select a grid size η

when constructing Σ̂1. We denote the resulting abstraction with

Σ̂
(η)
1 . We can start with η = 1 as discussed before. This, however

induces non-determinism and it can be easily seen by inspecting

Fig. 6 (middle), that there does not exist a controller in the abstrac-

tion that allows us to surely transition from y00 to y22 and back

infinitely often—in the abstraction, applying the necessary input

sequence might lead to visiting y02 instead of y22. One can try a

finer grid size, e.g., η = 0.03, but the problem still does not admit a

solution for 〈Σ̂
(0.03)
1 ,ψ1〉. By inspection, the problem only has a so-

lution if η is chosen such that 0.2 is an integer multiple of η. Here,

0.2 is the greatest common divisor of 0.4 (the increments the dy-

namics make) and 1 (the “fidelity" of the outputs). So, the set of

grid sizes that gives a solution is a measure-zero set in R>0 and, in

general, the “right" grid size is dictated by the dynamics and out-

put map. Further, even if we use an automatic refinement tool like

Mascot, the step size of the refinement of η is a design parameter

and thus, the tool may not ever explore an integer multiple of 0.2.

We now turn to solving the output-feedback control problem

〈Σ1,ψ1〉 by directly applying the algorithms discussed in Sec. 4 to

Σ1 without constructing Σ̂1 first. For this example, all three algo-

rithms (i.e., KA, KAwith bisimulation quotient, and KAM)will pro-

duce the same abstraction. This is due to the fact that the dynamics

of the system are such that the post and the pre operations over F

cancel out. Therefore the forward and backward algorithms are es-

sentially performing the same operations. Further, all of them ter-

minate and generate a sound realization. Thus, these algorithms

automatically figure out that the largest cover of X which merges

states with the same future under any applied input sequence has

size η = 0.2.

Example 5.2. We consider another switched system Σ2 with

the same dynamics as Σ1 but with changed output space Y2 =

{y00, . . .,y21,y22u ,y22l } s.t.H2 maps the upper left and lower right

triangle of y22 to y22u and y22l , respectively (see Fig. 6 (right) for

an illustration). The specificationψ2 requires to repeatedly visity00
and either y22u or y22l infinitely often after starting in y00.

Consider running KAM on Σ2. First observe that we are now

initializing KAM with the triangle shape domains of H (y22l) and

H (y22u) in addition to the the boxed domains for all remaining out-

puts. This will result in little triangles right above and right below

the diagonal of y33, which collect reachable state subsets with the

same output. However, in the remaining part of the state space,

KAM will converge to the same rectangular grid as it does for Σ1.

The intuitive reason for this is that the post of any set H−1(y)with

y < {y22l ,y22u } remains a box. Therefore, we can never distinguish

whether we observe y22u or y22l if we transition to a box on the

diagonal of y33, no matter how fine we grid. Further, the post of

any such box will be either {y22u ,y22l } again, {y00} (for u = u1)

or {y22} (for u = u2). With this it is easy to see that boxes of size

η = 0.2 are again the largest partition of X that form equivalence

classes respecting observable subsets. KAMwill therefore compute

the same sound realization for Σ2 as for Σ1. If we however run KA

11

(with or without the bisimulation quotient) one would additionally

chop every box of size η = 0.2 into an upper left and lower right tri-

angle. This unnecessary doubles the state space of the abstraction,

but still resulting in a sound realization.

Let us now consider computing an abstraction Σ̂
(η)
2 by forward

simulation of Σ2 first, using SCOTS. Then we immediately get into

trouble, because we cannot find a rectangular grid that respects

the output map, as needed to fulfill (A3) in Def. 3.1. This approach

would therefore directly fail in this example.

Finally, consider a system Σ3 which has an unbounded state

spaceX3 = R
2 with transition function defined by F of Σ1 but with-

out the wrapping of its input argument. The output set Y3 and the

output function H3 of Σ3 are given by tiling the entire R2 space ir-

regularly with the 3x3 blocks of observations Y1 and Y2 along with

their respective output maps H1 and H2. We still have a finite set

of inputs and outputs. By recalling that KAM produces the same

sound realization for Σ1 and Σ2, we can use the same arguments as

in the example of Sec. 4.3 to see that KAM will generate the same

sound realization for Σ3 as for Σ1 and Σ2, while all other algorithms

will produce infinite-state abstractions. Admittedly, while the ex-

ample distinguishes KAM from the other algorithms, it is not clear

how to symbolically represent the algorithm in this case.

ACKNOWLEDGMENTS

This research was funded in part by the DFG project 389792660-

TRR 248 and by the ERC under the Grant Agreement 610150. Ozay

was supported in part by ONR grant N00014-18-1-2501, NSF grant

ECCS-1553873, and an Early Career Faculty grant from NASA’s

Space Technology Research Grants Program.

REFERENCES
[1] C. Belta, B. Yordanov, and E. A. Gol. Formal methods for discrete-time dynamical

systems, volume 89. Springer, 2017.
[2] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model generation. In

R. Kurshan and E. Clarke, editors, CAV 90: Computer-aided Verification, Lecture
Notes in Computer Science 531, pages 197–203. Springer-Verlag, 1990.

[3] K. Chatterjee, L. Doyen, T. A. Henzinger, and J. Raskin. Algorithms for omega-
regular games with imperfect information. Logical Methods in Computer Science,
3(3), 2007.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL ’77, pages 238–252. ACM, 1977.

[5] R. Ehlers and U. Topcu. Estimator-based reactive synthesis under incomplete
information. In HSCC’15, pages 249–258. ACM, 2015.

[6] D. Fan and D. C. Tarraf. Output observability of systems over finite alphabets
with linear internal dynamics. IEEE TAC, 63(10):3404–3417, 2018.

[7] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models
for incrementally stable switched systems. TAC, 55(1):116–126, 2010.

[8] S. Haesaert, A. Abate, and P.M. Van denHof. Correct-by-designoutput feedback
of lti systems. In CDC’15, pages 6159–6164. IEEE, 2015.

[9] T. A. Henzinger, R. Majumdar, and J. Raskin. A classification of symbolic transi-
tion systems. ACM Trans. Comput. Log., 6(1):1–32, 2005.

[10] K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck. Multi-layered abstraction-
based controller synthesis for continuous-time systems. In HSCC’18, pages 120–
129. ACM, 2018.

[11] M. Khaled and M. Zamani. pfaces: an acceleration ecosystem for symbolic con-
trol. In HSCC’19, pages 252–257. ACM, 2019.

[12] D. Lee and M. Yannakakis. Online minimization of transition systems. In Pro-
ceedings of the 24th Annual Symposium on Theory of Computing, pages 264–274.
ACM Press, 1992.

[13] D. Luenberger. An introduction to observers. IEEE TAC, 16(6):596–602, 1971.
[14] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for

timed systems. In STACS’95, volume 900 of LNCS, pages 229–242. Springer, 1995.
[15] O. Mickelin, N. Ozay, and R. M. Murray. Synthesis of correct-by-construction

control protocols for hybrid systems using partial state information. In ACC’14,

pages 2305–2311. IEEE, 2014.
[16] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[17] T. Moor and J. Raisch. Supervisory control of hybrid systems within a be-

havioural framework. Systems & Control letters, 38(3):157–166, 1999.
[18] R. Paige and R. Tarjan. Three partition-refinement algorithms. SIAM Journal of

Computing, 16(6):973–989, 1987.
[19] J. Reif. The complexity of two-player games of incomplete information. J. Com-

puter and System Sciences, 29:274–301, 1984.
[20] G. Reißig. Computing abstractions of nonlinear systems. IEEE TAC, 56(11):2583–

2598, 2011.
[21] G. Reissig, A. Weber, and M. Rungger. Feedback refinement relations for the

synthesis of symbolic controllers. TAC, 62(4):1781–1796, 2017.
[22] M. Rungger and M. Zamani. SCOTS: A tool for the synthesis of symbolic con-

trollers. In HSCC, pages 99–104. ACM, 2016.
[23] A.-K. Schmuck and J. Raisch. Asynchronous l-complete approximations. Systems

& Control Letters, 73:67–75, 2014.
[24] J. S. Shamma and K.-Y. Tu. Set-valued observers and optimal disturbance rejec-

tion. IEEE TAC, 44(2):253–264, 1999.
[25] P. Tabuada. Verification and control of hybrid systems: a symbolic approach.

Springer, 2009.
[26] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume B, pages 133–191. Elsevier, 1990.
[27] W. Thomas. On the synthesis of strategies in infinite games. In STACS’95, volume

900 of Lecture Notes in Computer Science, pages 1–13. Springer-Verlag, 1995.
[28] J. Willems. The behavioral approach to open and interconnected systems. IEEE

Control Systems Magazine, 27:46–99, 2007.
[29] J.-M. Yang, T. Moor, and J. Raisch. Local refinement of l-complete approxima-

tions for supervisory control of hybrid systems. WODES’19, 2018.
[30] X. Yin and S. Lafortune. A uniform approach for synthesizing property-

enforcing supervisors for partially-observed discrete-event systems. IEEE TAC,
61(8):2140–2154, 2015.

A ADDITIONAL PROOFS

Proof of Thm. 3.2. We provide theis proof for the more gen-

eral case of not fully enabled inputs.

For the first claim we pick π = x0u0x1u1 . . . ∈ CPaths(S,C†)

with external sequence ρ = y0u0y1 . . . ∈ Ext(S,C†) s.t.yk = H (xk)

for all k ∈ N and show ρ ∈ 〈[ψ]〉.

For k = 0, the definition of CPaths(S,C†) implies that x0 ∈ X0.

Using (A1) we know that for all x̂0 ∈ α(x0) holds that x̂0 ∈ X̂0.

We further have H (x0) = y0. Now it follows from (A3) that for all

x̂0 ∈ α(x0) we have y0 ∈ Ĥ (x̂0)) and therefore y0 ∈ Ext(Ŝ, Ĉ†)|[0;0].

For k > 0 assume ρ |[0;k−1] ∈ Ext(Ŝ, Ĉ†)|[0;k−1] and show

ρ |[0;k] ∈ Ext(Ŝ, Ĉ†)|[0;k] . Let π = x0u0x1u1 . . . xk−1 ∈ CPrefs(S,C).

Now pick any π̂ = x̂0u0x̂1u1 . . . x̂k−1 ∈ α(π) and let xk =

F (xk−1,uk−1) and x̂k = F̂ (xk−1,uk−1) and observe that πuk−1xk ∈

CPaths(S,C†) and π̂uk−1x̂k ∈ CPaths(Ŝ, Ĉ†). Further, it follows

from (A2) that α(xk) ⊆ x̂k and therefore xk ∈ γ (x̂k). As H (xk) =

yk , (A3) implies yk ∈ Ĥ (x̂k) and, hence, ρ |[0;k] ∈ Ext(Ŝ, Ĉ†)|[0;k].

As Ext(Ŝ) is topologically closed, so is Ext(Ŝ, Ĉ†). With this

ρ |[0;k] ∈ Ext(Ŝ, Ĉ†)|[0;k] for all k ∈ N implies ρ ∈ Ext(Ŝ, Ĉ†). As

Ĉ† ∈ W†(Ŝ,ψ), we have Ext(Ŝ, Ĉ†) ⊆ 〈[ψ]〉 and, hence, ρ ∈ 〈[ψ]〉.

For the second claim, one can verify that S �
γ
α Ŝ implies Ŝ 4γ

S and by this C′ ∈ W†(S,ψ) implies Ĉ′
= C′ ◦ γ ∈ W†(Ŝ,ψ)

from the first part of this theorem. Hence, either W†(S,ψ) = ∅

or W†(Ŝ,ψ) , ∅. The “only if” part follows analogously from the

inverse direction. �

The next proposition shows the compositionality of sound ab-

straction relations.

Proposition A.1. Let (S1, λ1) 4α12
(S2, λ2) and (S2, λ2) 4α23

(S3, λ3) then (S1, λ1) 4α13
(S3, λ3) with α13 = α23 ◦ α12.

12

Proof. We show that (A1)-(A3) in Def. 3.1 hold by using the ob-

servation that α12(x1) ⊆ X2 and α23(x2) ⊆ X3 for x1 ∈ X1, x2 ∈ X2.

Further, we define γji as the induced inverses of the respective αi j .

◮ (A1) As α12(X1,0) ⊆ X2,0 and α23(X2,0) ⊆ X3,0 it follows that

α23(α12(X1,0)) ⊆ X3,0.

◮ (A2.1) As EnabS3 (α23(x2)) ⊆ EnabS2 (x2) and EnabS2 (α12(x1)) ⊆

EnabS1 (x1) for any x1 ∈ X1 and x2 ∈ X2 it follows that

EnabS3 (α23(α12(x1))) ⊆ EnabS2 (α12(x1)) ⊆ EnabS1 (x1).

◮ (A2.2) As α12(F1(x1,u)) ⊆ F2(α12(x1),u) and α23(F2(x2,u)) ⊆

F3(α23(x2),u) for any x1 ∈ X1 and x2 ∈ X2 it follows that

α23(α12(F1(x1,u)) ⊆ α23(F2(α12(x1),u)) ⊆ (F3(α23(α12(x1)),u)).

◮ (A3) As λ1(H1(γ21(x2)) ⊆ λ2(H2(x2)) and λ2(H2(γ32(x3)) ⊆

λ3(H3(x3)) for any x2 ∈ X2,x3 ∈ X3 it follows that

λ1(H1(γ21(γ32(x3))) ⊆ {λ2(H2(γ32(x3)))} ⊆ λ3(H3(x3)). �

The following technicallemmas are used in the analysis of the

KAM algorithm.

Lemma A.2. After execution of the function Refine in line 15 of

Alg. 2, it holds that |α̃ (x̃)| = 1 for all x̃ for which α̃ is defined.

Proof. First observe that Refine is only called if x̃ ⊂ x̂ . If x̃ = x̂

the claim is trivially satisfied as x̂ is the unique minimal element

covering x̃ in this case. As Q ′ in line 11 of Alg. 2 is chosen to be

minimal, we have that 〈x̂1, x̃〉, 〈x̂2, x̃〉 ∈ EXPΓ with x̂1 , x̂2 im-

plies x̂1 * x̂2 and x̂2 * x̂1 and in addition x̃ ⊂ x̂1 and x̃ ⊂ x̂2,

so Refine is called. Further, as Alg. 2 is initialized with a cover

which partitions the state space, we know that there exists a mini-

mal x̂ which was split into x̂1 ⊂ x̂ and x̂2 ⊂ x̂ previously. This im-

plies that there exists x̃1 and x̃2 s.t. F (x̂1,u) = PostQu (〈x̂1, x̃1〉) and

F (x̂2,u) = PostQu (〈x̂2, x̃2〉)while there exists some x1 ∈ x̂1 \ x̂2 s.t.

x < PostQu (〈x̂2, x̃2〉) and, vise versa, there exists some x2 ∈ x̂2 \ x̂1
s.t. x < PostQu (〈x̂1, x̃1〉), as otherwise the cover cell x̂ would not

have been splitted. Now, consider x̃ from before, and observe that

x̃ ∈ x̂1 ∩ x̂2 by definition. Further, the above reasoning implies

x̃ ⊂ x̃1 and x̃ ⊂ x̃2, and PostQu (〈x̂1, x̃〉) ⊂ PostQu (〈x̂1, x̃1〉) =

F (x̂1,u) and PostQu (〈x̂2, x̃〉) ⊂ PostQu (〈x̂2, x̃2〉) = F (x̂2,u) with

proper containment in both cases. This introduces a contradiction

to the assumption that Refine has terminated, as in this case we

know that x̂1 and x̂2 cannot be further splitted, i.e., F (x̂1,u) =

PostQu (〈x̂1, x̃〉) and F (x̂2,u) = PostQu (〈x̂2, x̃〉). The last equality

only holds if x̂1 = x̂2 as in this case no x1 and x2 as above can be

constructed. �

Lemma A.3. If Alg. 1 terminates, there exists an iteration l ∈ N of

Alg. 2 for which EXPΓ = EXPX
↓ holds.

Proof. First, it can be verified that in every iteration of the

while loops in both algorithms 〈·, c〉 gets added to EXPX
↓ in Alg. 2

iff c gets added to X̂ in Alg. 1. This is due to the fact that the set of

minimal blocks covering c is uniquely defined and refinements of

any block are propagated through all sets EXPΓ,X ,F within Refine.

Therefore, it cannot happen that a tuple 〈q, c〉 is added to EXPX
↓ if

EXPX
↓ already contains a tuple 〈q′, c〉. Thus, the termination con-

ditions of the while loops coincide.

As Refine is a recursive function, we have to additionally prove

that it terminates. To see this, observe that EXPF is a finite tree

for every initial tuple 〈ε,q,q〉 and therefore only contains finite

paths. Further, as every iteration of the while loop in line 5-21 of
Alg. 2 only explores the current leaves of this tree, it adds new

leaves to the tree and schedules leaves of the previous iteration for

possible refinement. As the recursion of Refine in line 35 of Alg. 2

only schedules predecessors of these leaves and the tree is finite, it

terminates. �

13

	Abstract
	1 Introduction
	2 Preliminaries
	3 Abstraction-Based Controller Design with Output-Feedback
	3.1 Sound Abstractions
	3.2 Sound Abstractions for Output Feedback

	4 Computing Abstractions
	4.1 Knowledge-Based Abstraction
	4.2 Bisimulation Minimization
	4.3 Illustrative Example
	4.4 Knowledge Abstraction with Minimization

	5 Hybrid System Examples
	Acknowledgments
	References
	A Additional Proofs

