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Abstract— This paper presents a new method of controller
synthesis for hidden mode switched systems, where the distur-
bances are the quantities that are affected by the unobserved
switches. Rather than using model discrimination techniques
that rely on modifying desired control actions to achieve
identification, the controller uses consistency sets which map
the measured external behaviors to a belief about which mode
signal is being executed and a control action. This hybrid
controller is a prefix-based controller, where the prefixes come
from an offline constructed belief graph that incorporates prior
information about switching sequences with potential reachable
sets of the dynamics. While the mode signal is hidden to the
controller, the system’s location on the belief graph is fully
observed and allows for this problem to be transformed into a
design problem in which a discrete mode, in terms of beliefs,
is directly observed. Finally, it is shown that affine controllers
dependent on prefixes of such beliefs can be synthesized via
linear programming.

I. INTRODUCTION

In many safety-critical control applications, robustness to
uncertainties is one of the major concerns. Assuming a large
uniform bound on the uncertainty often leads to conservative
designs or even renders the control objectives infeasible,
whereas assuming a small uncertainty bound can risk safety.
On the other hand, if we have some prior information on how
the uncertainty sets evolve, it might be possible to mitigate
conservativeness while still guaranteeing safety. Motivated
by this observation, in this work we consider constrained
control problems where the system is subject to additive dis-
turbances and the disturbance sets switch among a predefined
collection of sets. Moreover, we assume we are given a finite
language that describes potential switching sequences. The
examples of this scenario include aerial vehicles navigating
gusty winds or autonomous robots interacting with moving
obstacles that switch their intentions/targets. In both cases,
although we might know about potential evolution of the
uncertainty (the wind gust will not last too long, the moving
obstacles will not switch their intentions back and forth too
frequently), often times we cannot measure the switching
sequence directly. This necessitates simultaneously estimat-
ing the switching mode from continuous outputs of the
system while ensuring that control objectives are met. Similar
to work on hidden mode hybrid systems [8], our solution
approach relies on the construction of a perfect information
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problem on a belief space. In particular, we construct a belief
graph that combines the prior information on the switching
given by the language together with the potential reachable
sets of the system under different control inputs. We then
show how affine policies that depend on prefixes of beliefs
can be computed via convex optimization.

This method can be compared with other approaches
to create controllers for switching systems that guarantee
that a system remains invariantly in a given set [2] or is
asymptotically stable [10]. To the best of our knowledge,
our approach provides an alternative to synthesize controls
that solve robust reachability problems where the switching
mode is not directly observed but is known to be constrained
by a language.

A. Notation

Throughout this work we shall use capital letters to refer to
matrices (e.g. A, B, C), lowercase letters to refer to vectors
(e.g. x, v), and calligraphic capital letters to represent sets
(e.g. C, L). The sets R and N will be notable exceptions
to this rule. The symbol ⊗ is used to represent a Kroneker
product between two matrices.

We will consider finite length sequences throughout this
work and will apply the following means to represent them.
Consider a vector-valued signal s : N 7→ S where N =
{x ∈ N | x ≤ η} for some η and S is an arbitrary set.
The value of the signal s at the discrete time t0 ∈ N will
be written as st0 ∈ S . As a slight abuse of notation, we will
sometimes treat the signal s as a vector (i.e. s ∈ S |N |.)

When the codomain of the signal, S , is a countable set we
will refer to S as an alphabet. For a signal s, the length of the
signal is denoted as |s|. For example, the signal s = αβαβ
is defined on the alphabet S = {α, β} and its length is 4.

II. PROBLEM STATEMENT

This section provides the model that we use to represent
our systems and describes the problem that this work seeks
to solve. First, consider linear systems with switched distur-
bances, represented by a triple Σ = (D,L,X0), where D is a
set of discrete-time update equations, L is a mode language
describing how the mode of the system changes over time,
and X0 is the set of initial states for the system. For each
element ∆qt ∈ D:

∆qt :
xt+1 = Axt +But + wt, wt ∈ Wqt

yt = Cxt + vt, vt ∈ Vqt .
(1)

In the above equation, xt ∈ Rn is the continuous state of
the system at time t, qt is the discrete state (or mode) of the
system at time t, ut ∈ U ⊆ Rm is the input to the system



at time t, wt ∈ Wqt ⊂ Rn is the process noise at time t,
yt ∈ Rp is the measured output at time t and vt ∈ Vqt ⊂ Rp
is the measurement noise at time t.

Assumption 1: It is assumed that the sets Wi,Vi, and X0

are given as polytopes.
Affine systems with switched disturbances as described

above can be used to model consensus or robot manipulation
tasks [4].

The mode signal itself is governed by the second part
of the system S, called the language L. If we consider
the evolution of the mode signal over a finite time horizon
T as a single object q = [qt0 qt0+1 · · · qt0+T−1]>,
then the language L contains all allowed q vectors (i.e. all
allowed trajectories of the mode signal) which comes from
the problem specification.

Assumption 2: For simplicity, we consider languages
where each word in the language has the same length (i.e.
|q| = T for all q ∈ L).

Problem 1: Consider the system Σ = (D,L,X0). Decide
whether or not there exists an affine controller such that for
each mode signal q ∈ L the state of the system is in the
target set XT at time t = T (i.e. xT ∈ XT , ∀q ∈ L).

III. SOLUTION APPROACH

Within this section, we first discuss how to derive hidden
mode estimators using the structure of a system with switch-
ing disturbances. Second, we introduce the belief graph
which captures the potential evolution of the information
state in the finite time horizon problems that we are interested
in. Then, we introduce the belief-prefix control law and
several considerations when designing it. Finally, a sufficient
condition for the existence of belief-prefix controllers that
solve Problem 1 is proposed.

A. Mode Estimation

The mode signal qt is not directly observed while the
system Σ is operating. This prevents solutions such as those
from [6] from being applied because those methods required
the mode signal to be immediately available to the controller.
To make use of the prefix-based results, we create a signal
which is observable and can be interpreted as an estimate of
the mode signal.

The information available for estimating the mode will be
called the external behavior of the system:

Definition 1 (External Behavior): An external behavior e
of the system Σ = (D,L,X0) at time t is a tuple e =
(y[0:t], u[0:t−1]) where y[0:t] ∈ Rp(t+1) is the measurement
signal from time τ = 0 to time τ = t and u[0:t−1] ∈ Rmt is
the input signal from time τ = 0 to time τ = t− 1.

Because the dynamics in each mode is affine in (x, u, w, v)
and the disturbance/initial sets are polytopes, whether or not
external behavior is consistent with the word q is equivalent
to a simple polytope inclusion test. Each of the polytopes that
we use to perform mode estimation will be called consistency
sets.

Definition 2 (Consistency Set for q): The consistency set
CΣ(q) of the mode signal q ∈ L for system Σ = (D,L,X0)

is the set of all external behaviors that are feasible for any
initial condition starting somewhere in the initial state set X0

when the system operates under mode signal q. In math,

CΣ(q)
.
=(y, u)

∣∣∣∣∣∣∣∣
∃(y, u, w, v, x0, x) ∈ RpT × UT × · · ·
W(q) × V(q) ×X0 × Rn(T+1) :

x = Hw + Su+ Jx0

y = C̄x+ v


where

W(q) =Wq0 ×Wq1 × · · · ×WqT−1

V(q) = Vq0 × Vq1 × · · · × VqT−1

H =


0 0 · · · 0
I 0 · · · 0
A I · · · 0
...

...
. . .

...
AT−1 AT−2 · · · I

 ,

S =


0 0 · · · 0
B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AT−1B AT−2B · · · B

 , J =


I
A
A2

...
AT−1

 ,
C̄ =

[
IT ⊗ C 0pT×n

]
An external behavior e will be referred to as consistent

with a word q ∈ L if e ∈ CΣ(q). One can also extend this
to discuss the consistency set for a sublanguage L̃ ⊆ L.

Definition 3 (Consistency Set for a Language): The con-
sistency set for the language L̃ ⊆ L of the system with
switching disturbances Σ = (D,L,X0) is the set of all
external behaviors e that are consistent with every mode
signal in L̃. In math,

CΣ(L̃)
.
=
⋂
q∈L̃

CΣ(q)

Similarly, an external behavior e will be referred to as
consistent with a sublanguage L̃ ⊆ L if e ∈ CΣ(L̃). Note
that, by definition, CΣ(q) and CΣ(L) are polytopes. The
largest language L̃ ⊆ L such that e is consistent with L̃
contains all words that our controller should be robust to.
The following mode signal estimator identifies this maximal
language L̃ at every time step t:

bt = arg max
L̃⊆L

|L̃|

subject to e = (y[0:t], u[0:t−1]) ∈ CS(L̃t)
(2)

where L̃t = {q ∈ {1, ..., |D|}t | ∃q′ ∈ L̃, q = q′[0:t−1]}.
The mode estimator (2) is equivalent to testing for set
membership of |L| words and performing a union of all
words that pass the test. Set membership approaches for
model invalidation such as [3], [5] are performing similar
tests using optimization. The sublanguage bt is an estimate
of which mode signals may be active at time t, i.e., bt
is a belief about the mode signal at time t. Moreover, by
construction, this estimation procedure guarantees that the
true mode signal q∗ is contained in bt for all t.



B. Belief Graphs

In this section, we discuss the belief graph, a model that
will help us reason about what subset of the hidden mode
signals may be feasible.

Definition 4 (Belief Graph): A belief graph GΣ = (N , E)
for the system Σ = (D,L,X0) is a directed graph for which
each node n = (b, t) ∈ N contains:
• a belief b ∈ 2L \ ∅ (referred to as n.b), and
• a time at which that belief is held t (referred to as n.t)

and each edge represents a feasible transition from one belief
at a given moment to another belief at the next moment. In
other words:

1) for all e = (ni, nj) ∈ E , ni.t+ 1 = nj .t
2) for all e = (ni, nj) ∈ E , ni.b ⊇ nj .b
The construction of a belief graph can be done offline

using Algorithms 1 and 2.

Algorithm 1: BeliefGraph(Σ) - Finds the belief graph
associated with Σ = (D,L,X0), a system with switching
disturbances.

Result: GΣ = (N , E) the belief graph for system Σ.
1 t← 0;
2 n0 ← (L, t);
3 N ← {n0};
4 Nt ← N ;
5 E ← ∅;
6 while t ≤ T − 1 do
7 Nt+1 ← ∅;
8 for n ∈ Nt do
9 B ← Post(n);

10 Nt+1 ← Nt+1 ∪ B;
11 N ← N ∪ B;
12 for n′ ∈ B do
13 E ← E ∪ {(n, n′)}
14 end
15 end
16 Nt ← Nt+1;
17 t← t+ 1;
18 end

Algorithm 1 constructs a belief graph by identifying the
beliefs that can be held at time step 0, then time step 1,
and so on in the following fashion. Consider a belief node
n = (b, t) associated with the current time step t. The
algorithm considers the consistency sets for every belief
b̃ ∈ 2b that can follow the current belief b i.e., {CΣ(b̃)}b̃∈2b .
By identifying which consistency sets overlap, intersect or
are empty, the algorithm determines which future beliefs
b̃ are indistinguishable from one another or are impossible
to hold (see Algorithm 2). After pruning the set of beliefs
accordingly, we are left with a set of belief nodes B that are
uniquely feasible at time t+ 1. This process is repeated for
every time t = 0 to t = T − 1 and every node n = (b, t)
found at each of those times to create the complete belief
graph.

Algorithm 2: Post(ni) - Finds all belief nodes that can
follow ni = (bi, ti).
Result: Nt+1(ni) the set of all feasible belief nodes at

time instant ti + 1 that can follow the current
belief node ni.

1 P(bi)← powerset of(bi);
2 Nt+1(ni)← ∅;
3 for L̃ ∈ P(bi) do
4 flag imposs ← false;
5 L̃t ← length t truncation(L̃);
6 if is empty set(CΣ(L̃t)) then
7 flag imposs ← true;
8 end
9 flag unobs ← false;

10 for L′ ∈ P(bi) \ {L̃} do
11 L′t ← length t truncation(L′);
12 if |L̃t| ≤ |L′t| AND CΣ(L̃t) ⊆ CΣ(L′t) then
13 flag unobs ← true;
14 end
15 end
16 if not( flag imposs OR flag unobs ) then
17 ñ← (L̃, ti + 1);
18 Nt+1(ni)← Nt+1(ni) ∪ {ñ}
19 end
20 end

Remark 1: The main purpose of the belief graph is to
identify against what subset of mode signals the control
actions should be robust as will be described in section III-D.
However, as a side benefit, one can improve on the estimation
process in (2) by using the belief graph GΣ by searching only
over the words that appear in the belief node of the previous
step, instead of searching over the entire L (i.e., by replacing
L in (2) with bt−1).

By finding all of the paths from the root node (the single
node with t = 0) to any leaf node (any node that is a ‘sink’
in terms of edges) on this belief graph, we may create a new
language, LB .

Definition 5 (Belief Language): The belief language LB
for system Σ = (D,L,X0) is the language:

LB =
{
b = (b1, . . . , bT ) ∈ (2L)T |
∃(n1, n2, . . . , nT ) ∈ Paths(GΣ) s.t.

bi = ni.b ∀i ∈ [1, T ]}

where GΣ is the belief graph associated with system Σ and
Paths(GΣ) is all maximal paths of GΣ (i.e. all paths of length
T ).
LB is a language of beliefs and, as each belief is found by

checking if the external behavior is a member of the polytope
CΣ(LB), we know that the evolution of beliefs is fully
observed. This fact will be later used to design controller
gains that are robust to multiple words simultaneously, where
the controller design process will be effectively reduced to
a perfect information problem on the beliefs.



C. Finite Horizon Control Laws

In this section, we introduce the form of prefix-based
controller and describe how to synthesize such a controller
using Q-parameterization [9], [7].

We consider a control law similar to the finite horizon
affine feedback used in [7], [1]. But instead of being param-
eterized by the current time t, it will be parameterized by
the sequence of belief states visited thus far, bt0:t:

u(bt0:t) = f(t,bt0:t) +
t∑

τ=t0

F(t,τ,bt0:t)yτ , (3)

where b ∈ LB , and the matrices f(t,bt0:t) and F(t,τ,bt0:t)

are of appropriate dimension. Following the vector notation
used in Definition 2, we can describe the output of a prefix-
based control law over the time horizon when the sequence
of beliefs is b with the following equation:

u(b) = f (b) + F (b)y (4)

where f(t,bt0:t) ∈ Rm is the (t+1)th entry of the block vector
f (b) and F(t,τ,bt0:t) ∈ Rm×p is the (t+ 1, τ)th block entry
in F (b). In math, f (b)

t+1
.
= f(t,bt0:t) and F (b)

t+1,τ
.
= F(t,τ,bt0:t).

To make the closed loop expressions for x and u easier to
optimize, we introduce the following two variables r(b) and
Q(b) defined as follows:

Q(b) .
= F (b)(I − C̄SF (b))−1, r(b) .

= (I +Q(b)C̄S)f (b)

(5)
Note that the mapping between (f (b), F (b)) and (r(b), Q(b))
is bijective [7], so one pair uniquely determines the other.
Furthermore, the closed loop state and input sequences can
now be written as follows:[

x(b)

u(b)

]
= P (b)

[
w
v

]
+

[
x̃(b)

ũ(b)

]
, (6)

where

P (b) =

[
P

(b)
xw P

(b)
xv

P
(b)
uw P

(b)
uv

]
,

P
(b)
xw = H + SQ(b)C̄H, P

(b)
xv = SQ(b),

P
(b)
uw = Q(b)C̄H, P

(b)
uv = Q(b),

and
x̃(b) = (I + SQ(b)C̄)Jx0 + Sr(b),
ũ(b) = Q(b)C̄Jx0 + r(b).

Now, x(j) and u(j) both depend linearly on Q(j) and r(j),
as well as the variables w and v. The disturbances w and
v belong to the sets W(i) and V(i), respectively, and both
depend on the mode signal q which is not known.

This follows from the way that beliefs evolve over time.
bT is the belief after receiving all of the available external
behavior information from a word q ∈ L. Thus, a controller
for this belief sequence need only to be robust towards all
possible mode signals q ∈ bT .

D. Control Synthesis

The components outlined in the previous subsections can
be combined to propose a solution for Problem 1. The
solution will be a hybrid controller which uses the belief
graph to control the switching of its gains.

The belief language (i.e., all paths of the belief graph) is
incorporated into the controller design using a prefix-based,
finite-horizon affine control law on the observed sequence of
beliefs. Any controller (3) for belief language LB = L(GΣ)
that uses prefixes of beliefs is parameterized by a unique set
of matrices {f (i), F (i)}|LB |

i=1 where the blocks of each matrix
are determined as they were in (3).

The set of matrices must also satisfy the following con-
straints. For every word φ that is a prefix of two or more ele-
ments in the belief language (e.g., φ ∈ Pref(b(i)∩Pref(b(h))
for b(i),b(j) ∈ LB), the gains associated with each word
must satisfy:

F
(i)
jk = F

(h)
jk ∀1 ≤ j ≤ |p|, k ≤ j,

f
(i)
j = f

(h)
j ∀1 ≤ j ≤ |p|.

Because (3) is a function and because our belief detection
process is causal, an additional constraint is placed on the
control law: The controller must output the same value when
the observed sequence of beliefs is the same even if that same
sequence belongs to two different belief words b(i) and b(h)

i.e. if b(i)
t0:t = b

(j)
t0:t, then f (i)

j = f
(h)
j and F (i)

jk = F
(h)
jk . This

requires carefully modifying the Theorem 1 in [6] to account
for beliefs as we do next.

Theorem 1: Given a system with switching disturbances
Σ = (D,L,X0), consider the belief language LB constructed
by applying Algorithms 1 and 2. The set of all feasible prefix-
based, belief space controllers

{
f (i), F (i)

}|LB |
i=1

as in (3) is
bijective to the following polyhedral set:

Q(LB)
.
=


{(Q(i),

r(i))}|LB |
i=1

∣∣∣∣∣∣∣∣∣∣

Q(i) is block lower diagonal,
(p ∈ Pref(b(i)) ∩ Pref(b(j))) =⇒(

BM|p|(Q
(i)) = BM|p|(Q

(j))
)

∧
(
(r(i))1:|p|m = (r(j))1:|p|m

)
,

∀b(i),b(j) ∈ LB


(7)

where Q(j) is used as the shorthand for Qb
(j)

, BMa(Q(i))
is the a× a leading block submatrix of the matrix Q(i) (as
in [6]).

The proof follows from the relation (5) and the proof of
Theorem 1 in [6]. A prefix-based belief space control law
that solves Problem 1 can then be found using the following
proposition:

Proposition 1: Suppose that the state xt of system Σ =
(D,L,X0) is given. Construct the belief graph GΣ = (N , E)
according to Algorithms 1 and 2. The belief graph also
defines the language of beliefs LB . If the following robust



linear programming problem is feasible

Find
{
Q(i), r(i)

}|LB |

i=1
∈ Q(LB) (8a)

s.t. ∀b(j) ∈ LB : ∀q(i) ∈ b(j)T : (8b)

∀(w(i), v(i), x0) ∈ W(i) × V(i) ×X0 : (8c)

RT (P (j)
xww

(i) + P (j)
xv v

(i) + x̃(j)) ∈ XT , (8d)

where RT =
[
0n×nT In

]
and P

(j)
xw , P (j)

xv and x̃(j) are
defined as they are in (6) for b(j), then its solution defines
a controller that solves Problem 1.

Proof: The proof is nearly identical to that of Theorem
2 of [6] with the main difference being that the belief b(j)

demands that the controller gains (Q(j), r(j)) be robust to
any word q ∈ b

(j)
T . By construction of the belief graph,

a controller using (2) to generate the belief sequence b∗

guarantees that the true mode signal of the system q∗ satisfies
q∗ ∈ b∗T .

Note that the answer to (8) defines the gains that constitute
the finite horizon control law on the prefixes of the belief
language LB for system Σ and the mapping of external
behavior to the proper gain is done using the estimation
process (2) or its simplified version that uses the consistency
sets which make up the belief graph GΣ as described in
Remark 1.

The feasibility problem in Proposition 1 may be simplified
into a problem with fewer constraints using duality:

Theorem 2: There exists a prefix-based, finite horizon
controller on the beliefs with the form (3) for system with
switched disturbances Σ = (D,L,X0) that solves Problem
1 if the following linear program is feasible:

Find
{
Q(i), r(i)

}|LB |
i=1
∈ Q(LB),{

{Π(i,j)
1 ,Π

(i,j),
u }|b

(i)|
j=1

}|LB |

i=1

s.t. ∀b(i) ∈ LB :

∀q(j) ∈ b(i)T :

Π
(i,j)
1 ≥ 0,Π

(i,j)
u ≥ 0

Π
(i,j)
1 Γ

(j)
η = ΓTRTG

(i)

Π
(i,j)
1 γ

(j)
η ≤ γT − ΓTRTSr

(i)

Π
(i,j)
u Γ

(j)
η = ΓuG

(i)
u

Π
(i,j)
u γ

(j)
η ≤ γu − Γur

(i)

(9)

where {Γ(i)
η η ≤ γ(i)

η } is the hyperplane representation of the
polytope N (i) = W(i) × V(i) × X0, {ΓTx ≤ γT } is the
hyperplane representation of the polytope XT , {Γux ≤ γu}
is the hyperplane representation of the polytope U ,

G(i) =
[
P

(i)
xw P

(i)
xv (I + SQ(i)C̄)J

]
,

G(i)
u =

[
P

(i)
uw P

(i)
uv Q(i)C̄J

]
.

IV. EXAMPLES

This section discusses two examples that illustrate the
proposed method. The first example describes graphically
how a belief graph is constructed using a simple two-
dimensional system. In the second example, a pair of agents

Fig. 1. The external behavior of the system Σ(1) at time t lies within one
of the rectangles shown in one of the plots above. The rectangles are color
coded for the time at which the state of the system would be contained
in that rectangle (white for t = 0, cyan for t = 1, magenta for t = 2,
and orange for t = 3) and each plot corresponds to which mode signal is
occuring for the system Σ(1) (left plot is for mode signal 1 in L(1), center
for the second mode signal in L(1) and right for the third signal in L(1)).
Therefore, if Σ(1) is operating under mode signal 2, then at time t = 2 the
state of the system will be located in the magenta rectangle in the center
plot.

attempts to reach a consensus region during a time window
in which agents receive a large gust of wind. The controller
obtained for this example allows for the pair of agents to
reach consensus despite the windy circumstances and the
unknown time at which the wind occurs.

A. Belief Graph Examples

First, we present a simple dynamical system which illus-
trates how the values of a system with switching disturbances
determines the structure of a Belief Graph. Consider the
system Σ(1) = (D(1),L(1),X (1)

0 ) where ∆qt ∈ D(1) is
defined as:

∆qt :
xt+1 = xt + wt, wt ∈ Wi

yt = xt

where xt ∈ R2, |D(1)| = 4 and

W1 =

{[
0
1

]}
, W2 =

{[
1
0

]}
,

W3 =

{[
0
−1

]}
, W4 =

{[
−1
0

]}
.

(10)

The language L(1) contains three words defined as follows:

L(1) = {{1, 1, 2, 3}, {1, 2, 2, 4}, {1, 2, 4, 3}}

the evolution of the state according to each of these words is
illustrated by Figure 1 when the initial state of the system is
known to belong to the set X (1)

0 = {x ∈ R2 | ‖x‖∞ ≤ 0.3}.
Note that the first mode in all words of L(1) is the same

(i.e. the second component of x0 is increased by 1). Thus
in the belief graph shown in 2 the initial node (node 1) has



t = 0:

t = 1:

t = 2:

t = 3:

1

2

3 4

5 6 7

Fig. 2. The belief graph for the system with switching disturbances Σ1 =

(D(1),L(1),X (1)
0 ). The nodes with the same value of t are displayed with

the same y-value (they lie on a horizontal line together as indicated by the
text on the left).

Fig. 3. The external behavior of the system Σ(2) at time t lies within one
of the rectangles shown in one of the plots above. The rectangles are color
coded for the time at which the state of the system would be contained
in that rectangle (white for t = 0, cyan for t = 1, magenta for t = 2,
and orange for t = 3) and each plot corresponds to which mode signal is
occuring for the system Σ(2) (left plot is for mode signal 1 in L(1), center
for the second mode signal in L(1) and right for the third signal in L(1)).
Therefore, if Σ(2) is operating under mode signal 2, then at time t = 2 the
state of the system will be located in the magenta rectangle in the center
plot.

only 1 predecessor because it is impossible to differentiate
any of the words based on the trajectory up to time t = 1. To
put this in terms of our belief graph, the initial node n1 has
b1 = L(1) by definition and there is only one node with value
τ = 1, n2. Because the first mode in every word from L(1) is
the same, we cannot remove any words from the first belief
of b1 and thus node 2’s belief b2 satisfies b2 = b1 = L(1).

The prefix {1, 2} is shared by the second and third words
in L(1). This manifests itself in Figure 1 as the magenta box
of the second and third word are in the same location and it
manifests itself in the Belief Graph (Figure 2) as the node
n4 in the belief graph which is a predecessor of n2 where
b4 = {q(2), q(3)}.

Now, consider the slightly modified system Σ(2) =

(D(2),L(1),X (2)
0 ) where ∆qt ∈ D(2) is defined as:

∆qt :
xt+1 = xt + wt, wt ∈ W ′i
yt = xt + vt vt ∈ V

t = 0:

t = 1:

t = 2:

t = 3:

1

2

3 4 5

6 7 8 9

Fig. 4. The belief graph for system with switching disturbances Σ(2) =

(D(2),L(1),X (2)
0 ).

with |D(2)| = 4, W ′i = Wi + {x ∈ R2 | ‖x‖∞ ≤ 0.2}, Wi

is defined as in (10), and V = {v ∈ R2 | ‖v‖∞ ≤ 0.2}. In
this case, the system begins from within the initial state set
X (2)

0 = {x ∈ R2 | ‖x‖∞ ≤ 0.1}.
All of the edges and belief nodes in the graph for S1

(shown in Figure 2) are contained within the graph for Σ(2)

(shown in Figure 4), as expected. To give a flavor for why
there are more nodes in Figure 4 than in Figure 2, look at
the magenta boxes in Figure 3. In fact, all of the magenta
boxes overlap (one of the corners of the magenta rectangle in
the left plot overlaps with a corner of the magenta rectangles
in the center and right-most plots). But note that there are
parts of the magenta square in the left plot that do not overlap
with the other two magenta rectangles. This means that some
external behaviors of the first word (corresponding to the left
plot) will be consistent with only the first word, but if the
trajectories end up in the bottom corner that overlaps with
other magenta rectangles then that means that the external
behavior could have been generated by any three of the words
in L(1). Thus, at time t = 2, there should be three belief
nodes, where an additional node with belief bi = L(1).

B. Tracking Under Changing Disturbance Sets

Consider the system that represents a pair of drones
occupying a two-dimensional state space Σ(3)(T ) =

(D(3),L(3)(T ),X (3)
0 ). While accomplishing a surveillance

task, they must maintain a grid formation in the 2d plane,
but at an upcoming but unknown time there will be a strong,
sustained gust of wind. The dynamics for this pair of drones
is governed by ∆qt ∈ D(3):

∆qt :
xt+1 = xt + δt · (ut +Bwwt), wt ∈ W̄i

yt = xt + vt, vt ∈ V̄

where xt = [e
(1)
x e

(1)
y e

(2)
x e

(2)
y ]> is the state, ut =

[u
(1)
x u

(1)
y u

(2)
x u

(2)
y ]> is the input provided in the x- and

y-directions for each drone, and δt is the sampling time of
the discrete-time system. The process noise w = [wx wy]>

represent the velocity that the wind is moving in the x-
and y-directions, and affects each drone identically Bw =
[I2 I2]>. The two different modes representing wind speeds
are defined as follows:

W̄1
.
= {w ∈ R2 | ‖w‖∞ ≤ ηw}, W̄2

.
=W1 + ηw ·

[
1
1

]
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Fig. 5. In this scenario, the consensus system is trying to reach a smaller
hypercube within its initial state set. To emphasize the effectiveness of this
approach, we place the initial conditions on the boundary of the set X0, and
provide a very strong ‘wind’ from the word q ∈ L(3)(4) to the system, yet
the agents are still able to reach the desired consensus region.

System Belief Graph Belief Graph LP Solve
Σ(3)(T ) Construction Time (s) Size (|N |, |E|) Time (s)
T = 4 216 (12,15) 1.32
T = 5 2101 (19,34) 6.57
T = 6 15007 (26,53) 22.1

TABLE I
COMPUTATION TIME FOR BELIEF GRAPH CONSTRUCTION AND LINEAR

PROGRAM SOLUTION FOR SYSTEM Σ(3)(T ).

where ηw = 0.5. The measurement noise v ∈ R4 affects each
sensor independently and is not affected by the mode. This
will be encapsulated in the set V̄ = {v ∈ R4 | ‖v‖ ≤ ηv}
where ηv = 0.2.

Suppose that at an unknown time t∗ the dynamical system
switches to a high-wind environment (i.e. mode 2). This is
modeled by the following potential mode signals:

L(3)(T ) =

 {1, 2, 2} · {1}
T−3,

{1, 1, 2} · {1}T−3,
{1, 2, 1} · {1}T−3


We would like to guarantee that the system can reach

a tighter form of consensus from the initial state when
it doesn’t know when the strong wind will hit, but has
the model L(3) for the arrival. As shown in Figure 5, the
controller correctly forces the system to enter the desired
consensus state when the unknown mode signal is applied.

V. CONCLUSIONS

The problem of achieving a task or specification while a
hidden system mode is switching is a difficult task, with wide
applicability from spacecraft flight control to autonomous ve-
hicle cruise control. Unlike other approaches to this problem,
which typically design a mode estimator or discriminator
that operates separately from a robust controller, we provide
a unified controller which internally keeps an estimate of
the unknown mode. When the set of allowable switching
sequences is represented by a language, the approach that we

provide in this paper constructs a belief graph and develops
a prefix-based controller for the paths along that belief
graph. The control problem on the belief graph is a perfect
information problem on the belief space and thus we are able
to apply the insights of earlier prefix-based control problems
to formulate the robust reachability problem as a robust linear
programming problem. The controllers created from this
method are applied to a consensus problem where a dispersed
set of agents is able to return to a tighter configuration in
the presence of wind.

Future work will focus on extending this method so that it
can be applied to a larger class of switched systems. Systems
with switching input matrices {Bi}|D|i=1 or measurement ma-
trices {Ci}|D|i=1 appear often in contexts such as fault-tolerant
control and thus this method would find immediate use. We
also would like to consider the inclusion of priorities into
reachability problems, so that if a specific branch of the belief
graph cannot reach the target then it can switch to trying to
achieve a simpler task with less priority and the controller
synthesis problem does not have to fail because of a single
wayward branch. We are also interested in developing belief
graph abstractions to improve the scalability of this method.
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