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First, we consider the problem of hedging in complete binomial models. Using
the discrete-time Föllmer–Schweizer decomposition, we demonstrate the equiva-
lence of the backward induction and sequential regression approaches. Second,
in incomplete trinomial models, we examine the extension of the sequential
regression approach for approximation of contingent claims. Then, on a finite
probability space, we investigate stability of the discrete-time Föllmer–Schweizer
decomposition with respect to perturbations of the stock price dynamics and,
finally, perform its asymptotic analysis under simultaneous perturbations of the
drift and volatility of the underlying discounted stock price process, where we
prove stability and obtain explicit formulas for the leading-order correction terms.

1. Introduction

In practice, financial models are not exact — as in any field, modeling based on real
data introduces some degree of error. Therefore, it is important to understand the
effect error has on the calculations and assumptions we make on the model. In this
paper, we focus on the stability and asymptotic analysis of the Föllmer–Schweizer
decomposition, as among the pricing and hedging approaches, in incomplete mar-
kets, it gives the best approximation of a given contingent claim in the sense of the
least-squares error, which is one of the most natural criteria used in practice. Further,
in complete models, the Föllmer–Schweizer decomposition is consistent with the
backward induction, which is another canonical method in financial mathematics.
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Steven E. Shreve [2004a] introduces option pricing in a highly accessible manner.
His text predominantly focuses on the binomial model, and in this paper, we go
beyond it, as there are many models used in practice that are not binomial. As
the most natural extension of a binomial model is a trinomial one, below, we
also give it special consideration. Note that both binomial and trinomial models,
despite their simplicity, are widely used in approximations of pricing and hedging
in more advanced models, including the continuous-time ones; see, e.g., [Brigo and
Mercurio 2006].

In this paper, we extend the introduction to asset hedging given by Shreve to
the strategy of sequential regression, keeping the discrete-time framework but
allowing for consideration of other market models, including incomplete ones. In
the complete case, we show that the strategy of sequential regression introduced by
Föllmer and Schweizer [1989] is equivalent to Shreve’s recursive hedging formula.
We then extend our discussion to the incomplete trinomial model, after which we
show small market perturbations have a little effect, which we quantify, on hedging
strategies and option pricing, and derive formulas for correction factors.

The remainder of this paper is organized as follows. In Section 2, we formulate the
minimization problem and define the Föllmer–Schweizer decomposition. Section 3
contains its investigation in complete binomial markets, where we also prove the
equivalence of the approach based on the Föllmer–Schweizer decomposition to the
backward induction. Section 4 presents the discussion of the general incomplete
case. In Section 5, we revisit the stability question in the context of perturbations of
the model parameters, where we introduce a parametrization of perturbations that
allows for simultaneous distortions of its drift and volatility of the underlying stock
price process. We prove the stability of the Föllmer–Schweizer decomposition
under such perturbations. Finally, in Section 6, we obtain explicit formulas for the
first-order correction terms of each component of the decomposition under such
perturbations, including the correction to the optimal trading strategy.

2. The discrete-time Föllmer–Schweizer decomposition

Let (�, P) be a finite probability space, N a fixed positive integer and F =

(Fn)n=0,1,...,N a filtration, i.e., an increasing family of subalgebras, each containing
� and ∅. Assume that F0 is trivial and FN contains all subsets of �. As we
work on a finite probability space, without loss of generality, we suppose that
P[ω] > 0 for every ω ∈ �. We suppose that there is a bank account, which we
will use as a numéraire, and in particular, that its price process is equal to 1 at all
times. Let S = (Sn)n=0,1,...,N be a real-valued, F-adapted process; i.e., each Sn is
Fn-measurable. S describes the discounted price process of a stock. We denote by

1Sn := Sn − Sn−1 for n = 1, . . . , N
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the increments of S. We call a process ϑ = (ϑn)n=1,...,N predictable if ϑn is Fn−1-
measurable for each n. Let 2 be the set of all predictable processes ϑ that financially
correspond to self-financing trading strategies, in view of the presence of money
market account, which we use as a numéraire.

Definition 2.1. For ϑ ∈ 2, we define the process

Gn(ϑ) :=

n
∑

j=1

ϑ j1Sj for n = 0, 1, . . . , N .

For a given a random variable VN and c ∈ R, one can consider the following
problem posed in [Schweizer 1995]:

minimize E[(VN − c − G N (ϑ))2] over all ϑ ∈ 2 and c ∈ R. (1)

Interpretation 2.2. As we view Sn as the price at time n of a risky financial asset,
the process ϑ describes the trading strategy of some investor in the market, where
ϑn is the number of shares of stock held between the times n and n + 1. The
process G(ϑ) becomes the gains from the trade process. We now interpret VN as
a nontraded security measured in the units of the bank account with maturity N

and c as the initial capital. Thus problem (1) can be interpreted as finding a self-
financing trading strategy that gives the best least-squares approximation of VN .
Mathematically, (1) is also closely related to the problem considered in [Schweizer
1994], finding the best approximation of a random variable by a stochastic integral
(plus a constant). Quadratic optimization problems of the form (1) also appear in the
asymptotic analysis of stochastic control problems with respect to perturbations of
the initial data, where they govern the second-order correction terms; see [Kramkov
and Sîrbu 2006a; 2006b, Mostovyi and Sîrbu 2019; Mostovyi 2020] for details.

A solution (1), given in terms of an explicit formula for an optimal trading
strategy ϑ̂ , is known as sequential regression and is shown in [Föllmer and Schweizer
1989]. For a general probability space, such a solution is subject to additional
conditions on S and is closely related to the discrete-time Föllmer–Schweizer

decomposition, defined below.

Definition 2.3. We use the definition of the nondegeneracy condition (ND) as given
in [Schweizer 1995]; that is, S satisfies (ND) if there exists a constant δ ∈ (0, 1)

such that

(E[1Sn | Fn−1])
2 ≤ δE[1S2

n | Fn−1] P-a.s. for n = 1, . . . , N .

Remark 2.4. We note that on finite probability spaces, (ND) holds in nontrivial
(or rather nondegenerate) cases.
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Definition 2.5. We now introduce the discrete Föllmer–Schweizer decomposition,
following [Schweizer 1995]. Let

S = M + A

be the semimartingale decomposition of S into a martingale M and a predictable
process A. The random variable VN admits the discrete Föllmer–Schweizer decom-

position if it can be written as

VN = V0 +

N
∑

j=1

ϑ̂j1Sj + L N (2)

for some V0 ∈ R, a process ϑ̂ ∈ 2, and a P-martingale L , such that

(i) L and M are orthogonal, i.e., L M is a P-martingale, and

(ii) E[L0] = 0.

Note that when F0 is trivial, the latter condition reads L0 = 0.

Using the sequential regression approach, following [Föllmer and Schweizer
1989], we obtain the following formula for an optimal hedging strategy ϑ̂ :

ϑ̂n :=
CovFn−1

[

VN −
∑N

j=n+1 ϑ̂j1Sj , 1Sn

]

VarFn−1[1Sn]
, n = 1, . . . , N , (3)

where CovFn−1[ · , · ] and VarFn−1[ · ] denote the conditional covariance and vari-
ance, respectively. This demonstrates the richness of the FS-decomposition as an
analytic tool. With very limited assumptions about VN , we are able to obtain an
explicit formula for the optimal (in the sense of (1)) hedging strategy. Furthermore,
this hedging formula holds in both complete and incomplete markets, which are
discussed in the following sections.

3. Complete markets

In the settings of the previous section, when the market is complete, every contingent
claim VN can be represented as

VN = V0 +

N
∑

j=1

ϑ j1S j

for some ϑ ∈ 2 and V0 ∈ R. Note that this situation corresponds to L = 0 in
Definition 2.5. Put differently, VN can now be obtained by trading between the
money market account and the stock.

Binomial asset pricing model. We now introduce a simple framework for the
problem following [Shreve 2004a], however directly using the bank account as a
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S

uS

d S

u2S

S

d2S

Figure 1. Example of a 2-period binomial model.

numéraire. Consider a binomial asset pricing model, where at each time step k,
Sk+1 can take one of two values, uSk or d Sk , with probabilities p ∈ (0, 1) and
q := 1 − p, and where u > 1 and d ∈ (0, 1), known as the up factor and down

factor, respectively, are fixed positive constants with u > d. The value at each
time k is determined by a (not necessarily fair) coin flip ωk , which can take either
the value H or T and is independent of other coin tosses. Let F = (Fn)n=0,...,N be
the filtration, where each Fn contains information about the first n coin tosses. An
example of a 2-period binomial model is shown in Figure 1.

Remark 3.1. For Figure 1, for the binomial model, we considered the case when
d = 1/u. That is, after an even number of time steps, the stock price returns to its
original value if we flip exactly the same number of heads and tails. However, in
general, it is not necessarily the case that u = 1/d.

Let X be the replicating wealth process for the contingent claim VN , i.e., a
self-financing process starting from the initial wealth X0 and such that

X N = VN .

Classical backward induction approach, for which we refer to [Shreve 2004a],
assures that the number of shares of stock in the replicating portfolio for VN held
between times n and n + 1, can be obtained via the formula

ϑn+1(ω) =
Xn+1(ωH) − Xn+1(ωT )

Sn+1(ωH) − Sn+1(ωT )
, (4)

where ω = ω1, . . . , ωn . This result is known as the delta-hedging rule; see [Shreve
2004a, Theorem 1.2.2, p. 12].

The main result of this section is proving that in complete binomial settings the
delta-hedging rule gives the same strategy as the Föllmer–Schweizer decomposition.

Proposition 3.2. In complete binomial settings, formulas (3) and (4) are equivalent.
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Proof. Below ϑ̂ will denote the strategy obtained from formula (3), and ϑ will
denote the replicating strategy given by (4) for each n. First, for n = N, (3) reads

ϑ̂N =
CovFN−1[VN , 1SN ]

VarFN−1[1SN ]
=

CovFN−1[X N , 1SN ]

VarFN−1[1SN ]
, (5)

as X N = VN . Also, since1

Xn+1 = Xn + ϑn+1(Sn+1 − Sn), n = 0, . . . , N − 1,

we have

X N − EFN−1[X N ] = ϑN (1SN − EFN−1[1SN ]).

Therefore, we can rewrite CovFN−1[VN , 1SN ] as

CovFN−1[VN , 1SN ] = EFN−1[(X N − EFN−1[X N ])(1SN − EFN−1[1SN ])]

= ϑN EFN−1[(1SN − EFN−1[1SN ])(1SN − EFN−1[1SN ])]

= ϑN VarFN−1[1SN ].

And thus

ϑN =
CovFN−1[VN , 1SN ]

VarFN−1[1SN ]
.

Comparing ϑN to ϑ̂N from (5), we deduce that they coincide. This also implies

X N−1 = X N − ϑ̂N 1SN .

Or equivalently, we have

X N −

N
∑

j=N

ϑ̂N 1SN = X N−1. (6)

The latter expression, however, is exactly the term appearing in ϑ̂N−1 in (3), which
via (6), we can rewrite as

ϑ̂N−1 =
CovFN−2

[

X N −
∑N

j=N ϑ̂N 1SN−1, 1SN−1
]

VarFN−2[1SN−1]
=

CovFN−2[X N−1, 1SN−1]

VarFN−2[1SN−1]
,

which differs from (5) only by the value of the index. Therefore, line by line
applying the argument above used for proving that ϑN = ϑ̂N , we can show that
ϑN−1 = ϑ̂N−1. Proceeding in such a way, we can show that ϑn = ϑ̂n for each
n ∈ {0, . . . , N }. �

Remark 3.3. Notice that Proposition 3.2 only demonstrates the equivalence of the
specific strategies of backward recursion and sequential regression in the binomial
model, not necessarily the uniqueness of the minimizing strategy. However, the

1We use indices for ϑ in a way consistent with [Schweizer 1995], so that ϑ is predictable.
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uniqueness of the solution to (1), that is, of the optimal stochastic integral, the
associated strategy, and a constant follows from the strict convexity of the quadratic
objective in (1) and some computations under the risk-neutral measure.

Example 3.4. Consider a 3-step binomial asset pricing model with S0 = 4, u = 2,
d = 1

2 , r = 1
4 , p = 1

2 , q = 1
2 , and a European call option expiring at time N = 3 with

strike price K = 1. Note that in this market, the one-step risk-neutral probabilities
are p̃ = q̃ = 1

2 and the nonzero interest rate can be handled by considering the
discounted stock. We will illustrate the optimal hedge using both (3) and (4). Recall
that the value at time N of a European call is given by

VN = (SN − K )+. (7)

We compute the stock prices and discounted asset values at each time step for each
possible combination of coin flips using the formulas

Sn(ω1, . . . , ωn) = S0 ∗ u(# heads) ∗ d (# tails),

Vn(ω1, . . . , ωn) =

(

1
1+r

)

Ẽ[Vn+1 | ω1, . . . , ωn],

where P is the risk-neutral probability measure. The trees of stock prices and
discounted asset values are shown in Figure 2. For brevity, we will calculate a
hedge using both formulas at time 2, since AN = VN in the sequential regression
formula at the penultimate time step. We aim to show that ϑ2(T T ) = ξ2(T T ).
Calculating ϑ2(T T ) using (4) yields

1 − 0

2 − 1
2

=
1
3
2

=
2

3
.

Using (3), ξ2(T T ) is given by

CovF2[V3,1S3 | T T ]

VarF2[(1S3 | T T )]
=

EF2[(V3−EF2[V3 | T T ])(1S3−EF2[1S3 | T T ]) | T T ]

EF2[(1S3−EF2[1S3 | T T ])2 | T T ]

=
EF2

[(

V3−
(

1
2∗1+ 1

2∗0
))(

1S3−
(

1
2∗1+1

2∗− 1
2

))
∣

∣ T T
]

EF2[1S2
3 | T T ]−EF2[1S3 | T T ]2

=
EF2

[(

V3−
1
2

)(

1S3−
1
4

) ∣

∣ T T
]

5
8− 1

16

=

(

1
2

)(

1− 1
2

)(

1− 1
4

)

+
(

1
2

)(

0−1
2

)(

−1
2−1

4

)

9
16

=

3
16+ 3

16
9
16

= 2
3 .

This illustrates the equivalence of (3) and (4) in the context of this example.
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Figure 2. Stock price (left) and option value (right) trees.

Remark 3.5. Although (3) and (4) give us equivalent results in the binomial case,
it is important to note that (4) is specifically limited to the binomial case, while
(3) can be extended to general discrete-time market models, including incomplete
models. In the following section, we apply (3) to the incomplete trinomial model.

4. Incomplete markets

While the binomial model is often used as an introductory tool, most models used
in practice exhibit incompleteness, that is, for some securities, it is not possible to
construct a hedging strategy that perfectly replicates its payoff. We now introduce
a tractable example of an incomplete market.

Trinomial asset pricing model. An example of an incomplete market is based on
the trinomial asset pricing model. Similar to the binomial model, we have a risky
asset and a risk-free asset, and the value of the risky asset at each time step is
determined by a small set of outcomes. This time, we have three possible outcomes
for the coin flip instead of two. That is, along with the possibility of an increase
by a factor of u and decrease by a factor of d , we allow for the possibility that the
stock price does not change between two consecutive time steps. See Figure 3.

S

uS

S

d S

u2S

uS

S

d S

d2S

Figure 3. Example of a 2-period trinomial model.
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Remark 4.1. For the above formulation of the trinomial model, we again require
that u = 1/d . However, as in the binomial model, this requirement is not necessary.

Attempting backward recursion on this model using the nondiscounted wealth
process, we get

X2(ω1ω2) = (1 + r)(X1(ω1) − ϑ1(ω1)S1(ω1)) + ϑ1(ω1)S2(ω1ω2),

X1(ω1) = (1 + r)(X0 − ϑ0S0) + ϑ0S1(ω1).

Note that there are three possible values for ω1 and three possible values for ω2,
and we must solve for ϑ0, X0, each ϑ1(ω1), and each X1(ω1), giving us eight un-
knowns and twelve equations. This makes the system overdetermined. In particular,
simple matrix calculations reveal that, in general, we have no solution for X0.

5. Stability under model perturbations

We now turn to the question of stability of the Föllmer–Schweizer decomposition.
There are different kinds of perturbations one can consider, and for example, stability
with respect to perturbations of VN is considered in [Monat and Stricker 1995]. In
this paper, we consider perturbations of the stock price process. For the stability
analysis, as we work on finite probability spaces, the exact form of perturbations
is not important, and we will suppose that there is a family of adapted stock price
processes parametrized by ε, (Sε)ε∈(−ε0,ε0) for some ε0 > 0. An example of such a
family corresponds to linear perturbations of the drift and volatility considered in
the following section. Here we will only suppose that

Sε → S0

in the sense that

lim
ε→0

Sε
n(ω) = S0

n(ω) for every n ∈ {0, . . . , N } and ω ∈ �. (8)

The following result asserts that the Föllmer–Schweizer decomposition on finite
probability spaces is stable under perturbations of the stock of the form (8).

Theorem 5.1. On a finite probability space, let us consider a family of stock price

processes ((Sε
n)n∈{0,...,N })ε∈(−ε0,ε0), for some ε0 > 0, satisfying (8). Let VN be given.

Then the corresponding family of the Föllmer–Schweizer decompositions

VN = V ε
0 +

N
∑

j=1

ϑ̂ε
j 1Sε

j + Lε
N , ε ∈ (−ε0, ε0),

satisfies
lim
ε→0

V ε
0 = V 0

0 ,

lim
ε→0

Lε
n = L0

n, n ∈ {0, . . . , N },

lim
ε→0

ϑ̂ε
n = ϑ̂0

n , n ∈ {1, . . . , N },

(9)
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where the equalities hold for every ω ∈ �. As a consequence, we also have

lim
ε→0

n
∑

j=1

ϑ̂ε
j 1Sε

j =

n
∑

j=1

ϑ̂0
j 1S0

j , n ∈ {1, . . . , N }, ω ∈ �. (10)

Proof. The proof goes recursively, backward in n. First, let us consider n = N.
From (8), we get

lim
ε→0

1Sε
N = S0

N , ω ∈ �.

Further, working on a finite probability space, via the formal definition of conditional
expectation, from (8), without any additional assumptions, we get

lim
ε→0

EFN−1[1Sε
N ] = EFN−1[1S0

N ].

As a consequence, we obtain

lim
ε→0

ϑ̂ε
N = lim

ε→0

CovFN−1[VN , 1Sε
N ]

VarFN−1[1Sε
N ]

= lim
ε→0

EFN−1[(VN − EFN−1[VN ])(1Sε
N − EFN−1[1Sε

N ])]

EFN−1[(1Sε
N − EFN−1[1Sε

N ])2]

=
EFN−1[(VN − EFN−1[VN ]) limε→0(1Sε

N − EFN−1[1Sε
N ])]

EFN−1[limε→0(1Sε
N − EFN−1[1Sε

N ])2]

=
EFN−1[(VN − EFN−1[VN ])(limε→0 1Sε

N − limε→0 EFN−1[1Sε
N ])]

EFN−1[(limε→0 1Sε
N − limε→0 EFN−1[1Sε

N ])2]

=
EFN−1[(VN − EFN−1[VN ])(1S0

N − EFN−1[1S0
N ])]

EFN−1[(1S0
N − EFN−1[1S0

N ])2]

=
CovFN−1[VN , 1S0

N ]

VarFN−1[1S0
N ]

= ϑ̂0
N , (11)

where the chain of equalities holds for every ω ∈ �. If N = 1, (11) implies the
third equality in (9), and the remaining assertions of the theorem follow. If N > 1,
defining

Aε
n := VN −

N
∑

j=n+1

ϑ̂ε
j 1Sε

j , n ∈ {0, . . . , N − 1}, ε ∈ (−ε0, ε0),

from (11), we get

lim
ε→0

Aε
N−1 = A0

N−1, ω ∈ �.
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Consequently, similarly to (11), we obtain

lim
ε→0

ϑ̂ε
N−1 = lim

ε→0

CovFN−2[Aε
N−1, 1Sε

N−1]

VarFN−2[1Sε
N−1]

=
CovFN−2[limε→0 Aε

N−1, limε→0 1Sε
N−1]

VarFN−2[limε→0 1Sε
N−1]

=
CovFN−2[A0

N−1, 1S0
N−1]

VarFN−2[1S0
N−1]

= ϑ̂0
N−1, ω ∈ �. (12)

Proceeding in such a manner, one can show that

lim
ε→0

ϑ̂ε
n = ϑ̂0

n , n ∈ {1, . . . , N }, ω ∈ �,

which is the last equality in (9). In turn, this and (8) imply (10). Therefore, for
every ε ∈ (−ε0, ε0), by taking expectation in

VN = V ε
0 +

N
∑

j=1

ϑ̂ε
j 1Sε

j + Lε
N , (13)

and using E[Lε
N ] = 0, ε ∈ (−ε0, ε0), we deduce via (10) that limε→0 V ε

0 = V 0
0 ;

i.e., the first equality in (9) holds. Consequently, as the left-hand side in (13) does
not depend on ε, from (13), the convergence of V ε

0 to V 0
0 and (10), we deduce

that limε→0 Lε
N = L0

N for every ω ∈ �. Finally, as Lε’s are P-martingales, using
EFn

[Lε
N ] = Lε

n , we conclude that

lim
ε→0

Lε
n = L0

n for every n ∈ {0, . . . , N } and ω ∈ �,

which is the second equality in (9). �

6. Asymptotic analysis

While stability tells us whether or not there is a convergence of the problem outputs
under perturbations of the input data, the asymptotic analysis gives a quantitative
estimate of how the problem responds to such perturbations. In order to make such
estimates, assuming merely Sε → S0 as in (8) from the previous section is not
enough. We need to parametrize perturbations more precisely. Before stating our
form of perturbations, one can also consider that, in practice, the dynamics of the
stock price process is commonly decomposed into two parts. The first one is drift,
or in discounted settings, it can also be stated as the market price of risk. This part
is responsible for the trend of the stock. The second part captures the fluctuations,
that is, how much can the stock fluctuate in a given interval. Therefore, one can
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formulate the following dynamics of the stock for the base model:2

1S0
n = λn + σn1Wn = λn1t + σn1Wn, n ∈ {1, . . . , N }, (14)

where λ and σ are predictable processes, 1t ≡ 1 represents the change in time,
and 1Wn is an Fn-measurable increment of a martingale with initial value 0,
interpreted as an error or “noise” term, where we additionally suppose that the
standard deviation of 1Wn is 1t = 1 for normalization purposes. Equation (14) is
also consistent with the so-called semimartingale decomposition of the stock price
process, where a semimartingale can be defined to be a process that can be written
as a sum of a martingale (noise term) and an adapted process (drift term). In the
finite probability settings, in fact, the drift term in the semimartingale decomposition
can be chosen to be predictable.

Remark 6.1. We observe that given any process S, and once the time step 1t > 0
is fixed (and is constant in this paper, for simplicity of notations), the processes λ

and σ can be obtained as follows:

λn =
EFn−1[1Sn]

1t
,

σn =
√

VarFn−1[1Sn],

1Wn =
1S0

n − λn1t

σn

1{σn>0}, n ∈ {1, . . . , N }.

For perturbations of the underlying dynamics in (14), we can consider simultane-
ous (or separate) distortions of both the drift and the noise terms in (14). Therefore,
we now define model perturbations as

1Sε
n = (λn+ελ′

n)1t+(σn+εσ ′
n)1Wn+εσ ′′

n 1W ⊥
n , n ∈ {1, . . . , N }, ε ∈ (−ε0,ε0),

where λ′, σ ′, and σ ′′ are predictable processes, 1W ⊥
n is an Fn-measurable normal-

ized noise term, which is conditionally uncorrelated from 1Wn , that is,

EFn−1[1W ⊥
n ] = 0,

VarFn−1[1W ⊥
n ] = 1,

CovFn−1[1Wn, 1W ⊥
n ] = 0, n ∈ {1, . . . , N },

and ε0 is a strictly positive constant. With

1S′
n := λ′

n1t + σ ′
n1Wn + σ ′′

n 1W ⊥
n , n ∈ {1, . . . , N }, (15)

we can rewrite the dynamics of the perturbed processes as

1Sε
n = 1S0

n + ε1S′
n, n ∈ {1, . . . , N }, ε ∈ (−ε0, ε0). (16)

2Here the base model is the one that corresponds to ε = 0 in the notation of Sections 5 and 6.



ASYMPTOTIC ANALYSIS OF THE FÖLLMER–SCHWEIZER DECOMPOSITION 619

Remark 6.2. Similarly to the process 1S, if one starts from a given perturbation
process 1S′, it can be represented in the form (15) as follows: In the notation of
Remark 6.1, we have

λ′
n =

EFn−1[1S′
n]

1t
, n ∈ {1, . . . , N },

and the computation of the remaining parameters goes along the lines of [Shreve
2004b, Example 2.3.3, p. 72]. Let us consider

1S′
n −EFn−1[1S′

n] = σ ′
n1Wn + (1S′

n −EFn−1[1S′
n]−σ ′

n1Wn), n ∈ {1, . . . , N },

where σ ′
n has to be determined in such a way that the term in the brackets is

conditionally uncorrelated from 1Wn . As VarFn−1[1Wn] = 1, direct calculations
give

σ ′
n = EFn−1[1Wn, 1S′

n − EFn−1[1S′
n]] = CovFn−1[1Wn, 1S′

n], n ∈ {1, . . . , N }.

Therefore, for σ ′′
n and 1W ⊥

n , we get

σ ′′
n =

√

VarFn−1[1S′
n − EFn−1[1S′

n] − σ ′
n1Wn] =

√

VarFn−1[1S′
n − σ ′

n1Wn],

1W ⊥
n =

1S′
n − EFn−1[1S′

n] − σ ′
n1Wn

σ ′′
n

1{σ ′′
n >0}, n ∈ {1, . . . , N }.

The following theorem gives the leading-order correction terms to the components
of the Föllmer–Schweizer decomposition under perturbations of the form (16). Let
us consider the associated family of the Föllmer–Schweizer decompositions

VN = V ε
0 +

N
∑

j=1

ϑ̂ε
j 1Sε

j + Lε
N , ε ∈ (−ε0, ε0), (17)

and let us define recursively, backward in n, the process ϑ̂ ′, which will be proven
in Theorem 6.3 to be the first-order correction to the optimal strategy, as

ϑ̂ ′
N :=

CovFN−1[VN , 1S′
N ]

VarFN−1[1S0
N ]

− 2
CovFN−1[VN , 1S0

N ] CovFN−1[1S0
N , 1S′

N ]

(VarFN−1[1S0
N ])2

,

ϑ̂ ′
n :=

1

VarFn−1[1S0
n ]

(

CovFn−1

[

VN −

N
∑

j=n+1

ϑ̂0
j 1S0

j , 1S′
n

]

− CovFn−1

[ N
∑

j=n+1

ϑ̂ ′
j1S0

j +

N
∑

j=n+1

ϑ̂0
j 1S′

j , 1S0
n

])

− 2
CovFn−1[VN −

∑N
j=n+1 ϑ̂0

j 1S0
j , 1S0

n ] CovFN−1[1S0
n , 1S′

n]

(VarFn−1[1S0
n ])2

, (18)

where n ∈ {N − 1, . . . , 1}.
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Theorem 6.3. On a finite probability space, let us consider a family of stock price

processes ((Sε
n)n∈{0,...,N })ε∈(−ε0,ε0) for some ε0 > 0, where the increments, 1Sε

n
′,

are given via (16). Let VN be given. Then the components of the family of the

Föllmer–Schweizer decompositions defined in (17) satisfy

lim
ε→0

V ε
0 − V 0

0

ε
= −E

[ N
∑

j=1

ϑ̂0
j 1S′

j +

N
∑

j=1

ϑ̂ ′
j1S0

j

]

,

lim
ε→0

ϑ̂ε
n − ϑ̂0

n

ε
= ϑ̂ ′

n, n ∈ {1, . . . , N }, ω ∈ �,

lim
ε→0

Lε
n − L0

n

ε

= −EFn

[ N
∑

j=1

ϑ̂ ′
j1S0

j − E

[ N
∑

j=1

ϑ̂ ′
j1S0

j

]]

− EFn

[ N
∑

j=1

ϑ̂0
j 1S′

j − E

[ N
∑

j=1

ϑ̂0
j 1S′

j

]]

,

n ∈ {0, . . . , N }, ω ∈ �,

(19)

where ϑ ′ is defined in (18). We also have

lim
ε→0

∑n
j=1 ϑ̂ε

j 1Sε
j −

∑n
j=1 ϑ̂0

j 1S0
j

ε

=

n
∑

j=1

ϑ̂0
j 1S′

j +

n
∑

j=1

ϑ̂ ′
j1S0

j , n ∈ {1, . . . , N }, ω ∈ �. (20)

Proof. We will investigate

lim
ε→0

ϑ̂ε
n − ϑ̂0

n

ε

first. For n = N, we have

lim
ε→0

ϑ̂ε
n − ϑ̂0

n

ε
= lim

ε→0

(

CovFN−1[VN , 1Sε
N ]

VarFN−1[1Sε
N ]

−
CovFN−1[VN , 1Sε

N ]

VarFN−1[1Sε
N ]

)

1

ε
. (21)

Using the definition of conditional expectation, and Theorem 5.1,3 we get

lim
ε→0

CovFN−1[Vn, 1Sε
N ] − CovFN−1[Vn, 1S0

N ]

ε
= CovFN−1[VN , 1S′

N ].

Similarly, we deduce that

lim
ε→0

VarFN−1[1Sε
N ] − VarFN−1[1S0

N ]

ε
= 2 CovFN−1[1S0

N , 1S′
N ].

3Below, we apply the assertions of Theorem 5.1 at a family of points ε near the origin; this however
causes no difficulty by relabeling Sε’s.
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Therefore, in (21), we obtain

lim
ε→0

ϑ̂ε
n−ϑ̂0

n

ε

=
CovFN−1[VN ,1S′

N ]VarFN−1[1S0
N ]−2CovFN−1[VN ,1S0

N ]CovFN−1[1S0
N ,1S′

N ]

(VarFN−1[1S0
N ])2

,

which is precisely ϑ̂ ′
N . If N = 1, this completes the proof for

lim
ε→0

ϑ̂ε
n − ϑ̂0

n

ε
= ϑ ′

n

for every n. If N > 1, defining

Aε
n := VN −

N
∑

j=n+1

ϑ̂ε
j 1Sε

j , n ∈ {0, . . . , N − 1}, ε ∈ (−ε0, ε0),

and using Theorem 5.1, we get recursively, backward in n, the following chain of
equalities. First, for n = N − 1, we obtain

lim
ε→0

Aε
n − A0

n

ε
= −

N
∑

j=n+1

ϑ̂ ′
j1S0

j −

N
∑

j=n+1

ϑ̂0
j 1S′

j .

Therefore, using Theorem 5.1 again, we obtain

lim
ε→0

CovFn−1[Aε
n,1Sε

n]−CovFn−1[A0
n,1S0

n ]

ε

= CovFn−1

[

−

N
∑

j=n+1

ϑ̂ ′
j1S0

j −

N
∑

j=n+1

ϑ̂0
j 1S′

j ,1S0
n

]

+CovFn−1[A0
n,1S′

n]

= CovFn−1

[

−

N
∑

j=n+1

ϑ̂ ′
j1S0

j −

N
∑

j=n+1

ϑ̂0
j 1S′

j ,1S0
n

]

+CovFn−1

[

VN −

N
∑

j=n+1

ϑ̂0
j 1S0

j ,1S′
n

]

,

and thus, in (21), we conclude that

lim
ε→0

ϑ̂ε
n−ϑ̂0

n

ε
=

1

VarFn−1[1S0
n ]

(

CovFn−1

[

VN −

N
∑

j=n+1

ϑ̂0
j 1S0

j ,1S′
n

]

−CovFn−1

[ N
∑

j=n+1

ϑ̂ ′
j1S0

j +

N
∑

j=n+1

ϑ̂0
j 1S′

j ,1S0
n

])

−
2CovFn−1

[

VN −
∑N

j=n+1 ϑ̂0
j 1S0

j ,1S0
n

]

CovFN−1[1S0
n ,1S′

n]

(VarFn−1[1S0
n ])2

,
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which is exactly ϑ̂ ′
n from (18) for n = N −1. Proceeding this way, we can establish

(18) for every n ≥ 1. This completes the proof of the third equality in (19). Now,
(20) follows from the third equality in (19) and Theorem 5.1.

To establish the first two equalities in (19), we proceed as follows. For every
ε ∈ (−ε0, ε0), taking the expectation in (17) and observing that the left-hand side
does not depend on ε, as well as that E[Lε

N ] = 0, we get

V ε
0 + E

[ N
∑

j=1

ϑ̂ε
j 1Sε

j

]

= V 0
0 + E

[ N
∑

j=1

ϑ̂0
j 1S0

j

]

, ε ∈ (−ε0, ε0).

Collecting the terms and dividing by ε 6= 0, we obtain

V ε
0 − V 0

0

ε
=

E
[
∑N

j=1 ϑ̂0
j 1S0

j −
∑N

j=1 ϑ̂ε
j 1Sε

j

]

ε
, ε ∈ (−ε0, 0) ∪ (0, ε0).

Taking the limit as ε → 0, and using (20), we conclude that

lim
ε→0

V ε
0 − V 0

0

ε
= −E

[ N
∑

j=1

ϑ̂0
j 1S′

j +

N
∑

j=1

ϑ̂ ′
j1S0

j

]

,

which is precisely the first equality in (19).
To obtain the remaining assertion in (19), we observe that from (17), (20) and

the other two assertions in (19), we immediately obtain

lim
ε→0

Lε
N −L0

N

ε
= − lim

ε→0

V ε
0 −V 0

0

ε
− lim

ε→0

∑N
j=1 ϑ̂ε

j 1Sε
j −

∑N
j=1 ϑ̂0

j 1S0
j

ε

= E

[ N
∑

j=1

ϑ̂0
j 1S′

j+

N
∑

j=1

ϑ̂ ′
j1S0

j

]

−

N
∑

j=1

ϑ̂0
j 1S′

j−

N
∑

j=1

ϑ̂ ′
j1S0

j

= −

( N
∑

j=1

ϑ̂0
j 1S′

j−E

[ N
∑

j=1

ϑ̂0
j 1S′

j

])

−

( N
∑

j=1

ϑ̂ ′
j1S0

j −E

[ N
∑

j=1

ϑ̂ ′
j1S0

j

])

.

If N = 1, this completes the proof. If N > 1, for n < N, we have EFn
[Lε

N ] = Lε
n ,

ε ∈ (−ε0, ε0). Therefore, using (17) and taking the conditional expectation, we
obtain

Lε
n − L0

n

ε
=

EFn
[Lε

N − L0
N ]

ε

= −
V ε

0 − V 0
0

ε
−

EFn

[
∑N

j=1 ϑ̂ε
j 1Sε

j −
∑N

j=1 ϑ̂0
j 1S0

j

]

ε
.
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Taking the limit, and using (20) and the first equality in (19), we conclude that

lim
ε→0

Lε
n − L0

n

ε

= −EFn

[ N
∑

j=1

ϑ̂ ′
j1S0

j − E

[ N
∑

j=1

ϑ̂ ′
j1S0

j

]]

− EFn

[ N
∑

j=1

ϑ̂0
j 1S′

j − E

[ N
∑

j=1

ϑ̂0
j 1S′

j

]]

.

This completes the proof of the theorem. �
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