
Proceedings of the ASME 2020 39th International
Conference on Ocean, Offshore and Arctic Engineering

OMAE 2020
June 28-July 3, 2020, Fort Lauderdale, FL, USA

OMAE2020-18501

A FLUID-STRUCTURE COUPLED COMPUTATIONAL MODEL FOR THE
CERTIFICATION OF SHOCK-RESISTANT ELASTOMER COATINGS

Wentao Ma, Xuning Zhao, Kevin Wang∗
Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

ABSTRACT
Shock waves from underwater and air explosions are signif-

icant threats to surface and underwater vehicles and structures.
Recent studies on the mechanical and thermal properties of vari-
ous phase-separated elastomers indicate the possibility of apply-
ing these materials as a coating to mitigate shock-induced struc-
tural failures. To demonstrate this approach and investigate its
efficacy, this paper presents a fluid-structure coupled computa-
tional model capable of predicting the dynamic response of air-
backed bilayer (i.e. elastomer coating – metal substrate) struc-
tures submerged in water to hydrostatic and underwater explo-
sion loads. The model couples a three-dimensional multiphase
finite volume computational fluid dynamics model with a non-
linear finite element computational solid dynamics model using
the FIVER (FInite Volume method with Exact multi-material Rie-
mann solvers) method. The kinematic boundary condition at the
fluid-structure interface is enforced using an embedded bound-
ary method that is capable of handling large structural deforma-
tion and topological changes. The dynamic interface condition
is enforced by formulating and solving local, one-dimensional
fluid-solid Riemann problems, which is well-suited for transfer-
ring shock and impulsive loads. The capability of this com-
putational model is demonstrated through a numerical investi-
gation of hydrostatic and shock-induced collapse of aluminum
tubes with polyurea coating on its inner surface. The thickness
of the structure is resolved explicitly by the finite element mesh.
The nonlinear material behavior of polyurea is accounted for us-
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ing a hyper-viscoelastic constitutive model featuring a modified
Mooney-Rivlin equation and a stress relaxation function in the
form of prony series. Three numerical experiments are conducted
to simulate and compare the collapse of the structure in differ-
ent loading conditions, including a constant pressure, a fluid en-
vironment initially in hydrostatic equilibrium, and a two-phase
fluid flow created by a near-field underwater explosion.

INTRODUCTION
Shock waves from underwater and air explosions are ma-

jor threats to ocean vehicles and structures. The design and ap-
plication of shock mitigation materials and methods has been
a long-standing active research area. Within this area, recent
studies have revealed some extraordinary properties of several
phase-separated elastomers (e.g., polyureas), which indicates a
promising approach for mitigating shock-induced damage and
failure [1–5]. Specifically, these copolymers with separated
glassy and rubbery domains at nm to µm scales can be tailored
chemically to achieve a combination of energy dissipation, re-
silience, and stiffness under high pressure, high strain-rate load-
ing. Therefore, they can be applied to the surface of various
structures as a shock (and ballistic impact) mitigation coating.

As an example, the effectiveness of polyurea coatings for
mitigating shock-induced deformation and fracture has been
demonstrated at different scales (e.g., [1, 6, 7]). These studies
have also shown that the performance of the coating under shock
loading depends not only on their material properties, but also on
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the complex dynamic interaction of the coating material with the
underlying substrate and the surrounding fluid media (e.g., water,
air). For example, it has been shown that the effectiveness of the
coating depends on the material of the substrate, and on which
side of it (i.e. inner or outer surface) the coating is applied [7].
Also, the effect of the same polyurea coating under underwater
and aerial shock loadings are different [7]. Furthermore, it has
been found that increasing the coating thickness continuously
does not translate to a continuous increase in its performance,
and the optimal thickness depends sensitively on both the shock
loading condition and the substrate [1].

Because of these complexities, the design and practical use
of high strain-rate sensitive elastomer coatings for specific en-
gineering applications require improved knowledge and predic-
tive capability regarding a challenging shock-dominated multi-
material fluid-structure interaction problem, featuring

• three-dimensional (3D) shock wave transmission, reflection,
and attenuation through the solid and fluid materials and
at their interfaces (i.e. fluid-coating, coating-substrate, and
substrate-fluid interfaces);
• large deformation, hyper-elastic, and viscoelas-

tic/viscoplastic behaviors of the coating material; and
• shock-induced material damage and dynamic fracture under

high strain-rate loading.

In the past, extensive research has been devoted towards un-
derstanding the mechanical behaviors of elastomer coatings un-
der high pressure, high strain-rate loading (e.g., [1, 4–16]). Sev-
eral fundamental mechanisms by which elastomer coatings pro-
tect the substrate have been identified through laboratory exper-
iments (e.g., Barsoum and Dudt [1], Amini et al. [6]) and nu-
merical analysis (e.g., Heyden et al. [8], Filonova et al. [9]).
Several research teams have tested elastomer material coupons
to measure their properties and dynamics under high strain-rate
and high pressure loading. For example, using a high-speed drop
weight tensile test instrument, Roland et al. [5] carried out stress-
strain measurements for polyureas with strain rate varying from
10−2 s−1 to 102 s−1. Using the Split-Hopkinson Pressure Bar
with various modifications, a few teams (e.g., Yi et al. [10],
Sarva et al. [11], Song et al. [12], Nemat-Nasser et al. [13])
have conducted compression tests for polyureas (and other elas-
tomers) with strain rate varying from 102 s−1 to 103 s−1. It
has been discovered that as strain rate increases to 103 s−1, its
elastic modulus can increase by up to three orders of magni-
tude. Using a sandwiched Pressure-Shear Plate Impact (PSPI)
facility, Jiao et al. [4, 14] have conducted pressure-shear tests on
polyurea, and found that at a strain rate of 105 to 106 s−1, the
response (e.g., shear resistance, shear wave speed) of polyurea
also depends sensitively on the impact pressure. For example,
they found that when the impact pressure increases from 1 to 10
GPa, the plateau-level (saturation) shear resistance of polyurea
P-1000 increases also by one order of magnitude, from 0.1 GPa

to 1.0 GPa.
These studies have shown that the response of elastomeric

polyurea under high pressure and high strain-rate loading, such
as in the scenarios of underwater and aerial explosions, is closely
related to the material’s highly nonlinear properties and behav-
iors, including (1) large strain nonlinear elasticity, (2) asymmet-
ric stress-strain behavior in compression and tension, (3) rate-
and pressure-dependent viscoelasticity and viscoplasticity, (4)
substantial hysteresis during unloading, and (5) stretch-induced
softening [7, 17]. Based on the experimental data obtained, sev-
eral constitutive models have been developed and calibrated to
account for these features. For example, Amirkhizi et al. [18]
developed and calibrated a viscoelastic constitutive model for
polyurea, where the viscoelastic relaxation is modeled using a 4-
term Prony series, which is then scaled to account for the impacts
of temperature and pressure. Cho et al. [17] developed and cali-
brated a viscoelastic-viscoplastic constitutive model for polyurea
(PU1000), in which the nonlinear strain-rate dependence is cap-
tured using separate micro-rheological linear spring-and-dashpot
models for the soft (rubbery) and hard (glassy) domains of
polyurea. Clifton et al. [19] have developed and calibrated a
quasi-linear viscoelastic constitutive model for polyurea, fea-
turing a continuous distribution of viscoelastic relaxation times.
The model also generalizes the Mooney-Rivlin hyperelasticity
model with an additional multiplicative factor that accounts for
the (experimentally observed) dependence of shear wave speed
on pressure.

Despite the recent progresses reviewed above, the dynamic
process of shock wave impacting on the bilayer coating-substrate
structure is still unclear, which involves the propagation and at-
tenuation of shock waves within multiple solid (elastomer coat-
ing and substrate) and fluid (e.g., water, air) materials, as well
as the dynamic interaction of these materials at fluid-structure
and coating-substrate interfaces. In this paper, we present a
three-dimensional CFD (computational fluid dynamics) – CSD
(computational solid dynamics) coupled computational model,
referred to as FIVER (FInite Volume method with Exact multi-
material Riemann solvers), for predicting the dynamic response
of bilayer elastomer coating – substrate systems (e.g., polyurea-
aluminum) to underwater shock loading. The key components
of FIVER relevant to this study include (1) a parallel nonlin-
ear (both material-wise and geometry-wise) finite element CSD
solver, equipped with a modified Mooney-Rivlin hyperelastic-
ity model [19] and a prony series viscoelastic relaxation func-
tion [18] for polyurea, (2) a parallel finite volume, multiphase
compressible Navier-Stokes CFD solver, equipped with a level-
set method for tracking fluid-fluid interfaces (e.g., UNDEX bub-
ble) [20, 21]; (3) a second-order, numerically stable partitioned
time-integrators for coupling the CFD and CSD solvers [22];
and (4)a second-order embedded boundary method with multi-
material Riemann problem solvers for enforcing the transmission
conditions at fluid-structures interfaces, particularly designed for
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problems involving large deformation and fracture [20, 23–28].
Over the past decade, FIVER has been applied to study sev-
eral fluid-structure interaction problems in ocean, aerospace, and
biomedical engineering applications, including underwater hy-
drostatic implosion [29, 30], pipeline explosion [31, 32], shock
wave lithotripsy [33–35], bio-mimetic propulsors [36], and su-
personic parachute deployment [37].

We demonstrate the computational model through a numer-
ical investigation of hydrostatic and shock-induced collapse of
an aluminum cylinder with polyurea coating on its inner surface.
The thickness of the structure is resolved explicitly by the finite
element mesh. The nonlinear material behavior of polyurea is ac-
counted for using a hyper-viscoelastic constitutive model featur-
ing a modified Mooney-Rivlin equation [19] and a stress relax-
ation function in the form of prony series [18]. Three numerical
tests are presented, in which the structure is subjected to differ-
ent loading conditions, including a constant pressure (i.e. without
consideration of fluid-structure interaction), an ambient fluid ini-
tially at rest, and a two-phase fluid flow created by a near-field
underwater explosion.

PHYSICAL MODEL AND NUMERICAL METHODS
We consider a model problem shown in Figure 1, which in-

volves a cylindrical metal structure submerged in water. The
elastomer coating can be applied on either side of the metal. This
figure illustrates the secenario of a near-field explosion, that is,
the distance between the explosive charge and the structure is
relatively small, such that the dynamics of the gaseous explosion
product — sometimes referred to as the “bubble” — should also
be considered. Therefore, the problem involves three fluid sub-
domains: the ambient fluid (i.e. water), the gas inside the struc-
ture (e.g., air), and the explosion product. If instead the explosion
occurs at a large distance from the structure, it can be modeled
as a pressure wave, with profile and amplitude determined by
experimental data and similitude equations (cf. [38, 39]).

Due to the presence of shock waves, the fluid in all the sub-
domains are modeled as compressible flows, governed by the
Navier-Stokes equations,

∂W (x, t)
∂ t

+∇ ·F(W ) = ∇ ·G(W,∇W ), (1)

with

W =

 ρ

ρV
ρet

 , F =

 ρV T

ρV ⊗V + pIII
(ρet + p)V T

 , G =

 0
τττ

V T τττ−QT

 , (2)

where we have used lower case, upper case, and bold letters to
denote scalars, vectors, and second-order tensors, respectively.

FIGURE 1: Certification of shock-resistant elastomer coatings:
A model problem.

Specifically, ρ , V , et , p, and τττ denote fluid density, velocity, total
energy per unit mass, pressure, and the viscous stress tensor, re-
spectively. III is the 3×3 identity matrix. Q denotes the heat flux.
Equations (1) and (2) have already neglected any body forces (in
particular, gravity) and heat sources. In this paper, for simplicity
we also neglect the effects of viscosity and heat diffusion, which
reduces Equation (1) to the Euler equations, i.e.

∂W (x, t)
∂ t

+∇ ·F(W ) = 0, (3)

Following Wang et al. [31], we adopt the Tait equation of
state (EOS) for the liquid water, and the perfect gas EOS for the
gas inside the cylinder. For simplicity, in this paper we model
the gaseous explosion product as a high pressure air bubble, also
using the perfect gas EOS. The level-set equation is solved to
track the evolution of the bubble.

To solve the multi-material fluid-structure interaction prob-
lem, we apply the method of FIVER (Finite Volume method
with Exact multi-material Riemann solvers). In an augmented
fluid domain that includes all the fluid subdomains and the re-
gion occupied by the solid structure, the fluid governing equa-
tions are semi-discretized by an unstructured, node centered,
non-interface-conforming finite volume mesh. Then, for an arbi-
trary control volume Ci, the Euler equations are integrated, which
gives

∂Wi

∂ t
+

1
‖Ci‖ ∑

j∈N(i)

∫
∂Ci j

F(W ) ·nnni jdS = 0, (4)
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where Wi denotes the average W in control volume Ci; ‖Ci‖ de-
notes the volume of Ci; N(i) is the set of nodes that are connected
to node i by an edge; ∂Ci j = ∂Ci∩∂C j is the boundary faces of
the two control volume; and nnni j is the unit normal to ∂Ci j. Then,
we compute the flux in different ways, depending on the location
of nodes i and j — specifically, which fluid or structural subdo-
main does it belong to. Additional details of FIVER have been
presented in previous publications, including [26, 27, 31].

The dynamic equilibrium of a structure undergoing finite de-
formation is modeled in the Lagrangian setting using the follow-
ing equations

ρs
∂ 2u j

∂ t2 =
∂

∂xi

(
τi j + τim

∂u j

∂xm

)
+b j, (5)

where the subscripts i, j, and m vary from 1 to 3 and designate
the (x,y,z) coordinate system. ρs denotes structure density in the
undeformed configuration, u the displacement vector, and τ the
second Piola–Kirchoff stress tensor1. b denotes the body force
vector, which is set to 0 in this paper. The dynamic response
of polyurea is modeled as an instantaneous elastic response fol-
lowed by a viscoelastic stress relaxation process. Accordingly,
the constitutive model for polyurea consists of two parts, namely
a hyperelastic model and a stress relaxation model.

When modeling the instantaneous elastic response, polyurea
is considered as an isotropic hyperelastic material undergoing fi-
nite deformation. The hyperelastic model used in this paper is
the one proposed by Clifton et al. [19]. In this model, the strain
energy density function has the form

W̄ = f (J)Ŵ (Ī1, Ī2), (6)

where Ŵ (Ī1, Ī2) is the strain energy associated with distortion,
and f (J) is a factor that depicts the effect of volumetric change.
This multiplicative decomposition of strain energy, in contrast to
the traditional addictive decomposition, was designed to better
describe the shear wave speed’s strong dependence on pressure.

Following Clifton et al. [19], the factor f (J) takes the form

f (J) =
(
J−M−2J−N)+2, (7)

where J is the volume ratio after and before deformation. It
can be computed as the square root of the determinant of right
Cauchy-Green deformation tensor. M and N are material con-
stants, and M = 2N. The “+2” in Equation (7) allows f (J) to
satisfy the requirement of f (1) = 1.

The distortional strain energy, Ŵ (Ī1, Ī2), has the Mooney
Rivlin form,

Ŵ (Ī1, Ī2) =C00 +C01(Ī2−3)+C02(Ī1−3), (8)

1to be distinguished from the fluid viscous stress tensor.

where Ī1 and Ī2 are given by

Ī1 = J−2/3I1, (9)

Ī2 = J−4/3I2, (10)

where I1 and I2 are the first and second invariant of the right
Cauchy-Green deformation tensor.

The right Cauchy-Green deformation tensor, C, has the fol-
lowing relation with the Green-Lagrangian strain tensor E:

CCC = 2EEE + III, (11)

where I is the 3×3 identity matrix.
The second Piola–Kirchoff stress tensor τττ is given by

τττ =
∂W̄
∂EEE

, (12)

and the Cauchy stress tensor T is given by

T =
1

det(FFF)
FFFτττFFFT , (13)

where F is the deformation gradient tensor.
The stress relaxation model addresses the deviatoric and the

hydrostatic (dilatational) stress components in different ways.
The reason is that, in many cases, the dilatational response of
polyurea can be effectively modeled as elastic. Amirkhizi et
al. [18] and Clifton and Jiao [7] also showed that the effect of
hydrostatic stress relaxation is small. Therefore, in this work,
the viscoelastic stress relaxation process is only applied to devia-
toric stresses. The deviatoric and hydrostatic parts of the instan-
taneous Cauchy stresses have the relation given by

σ
e
i j = Ti j−σ

e
hydδi j, (14)

where σ e
i j is the instantaneous elastic deviatoric stress, Ti j is the

instantaneous elastic Cauchy stress, δi j is the Kronecker delta,
and σ e

hyd is the hydrostatic stress, given by

σ
e
hyd =

tr(TTT )
3

, (15)

where tr denotes the trace operator.
The deviatoric stress after relaxation, σ(t), may be ex-

pressed in the form of the convolution integral as shown by Goh
et al. [40], i.e.

σ(t) =
∫ t

0
g(t− s)

dσ e

ds
ds, (16)
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where g(t) is the relaxation function, which can be written in the
form of Prony series,

g(t) = g∞ +
N

∑
i=1

gi exp
(
− t

τi

)
, (17)

where τi (not the stress tensor) are relaxation times, g∞ and gi
(i = 1, · · · ,N) are dimensionless constants.

g∞ +
N

∑
i=1

gi = 1. (18)

Substituting Equation (17) into (16) yields

σ(t) = g∞σ
e(t)+

N

∑
i=1

gi

∫ t

0
exp
(
− t− s

τi

)dσ e

ds
ds. (19)

One benefit of the exponential form in Equation (17) (the
Prony series) is that the convolution integral can be evaluated us-
ing a finite time increment formulation which, instead of storing
the entire stress history, only needs to store the information from
last time step. Thus, the computational expense is significantly
reduced.

Specifically, when implementing the stress relaxation model
(in particular, Equation (19)), the following property of the ex-
ponential function is utilized:

exp
(
− tn+1

τi

)
= exp

(
− tn

τi

)
exp
(
− ∆t

τi

)
, (20)

where the subscripts n and n+ 1 denote two consecutive time
steps, and ∆t the time step size.

Substituting Equation (20) into (19), we obtain the recursive
formula

σ(tn+1) = g∞σ
e(tn+1)+

N

∑
i=1

(
exp
(
− ∆t

τi

)
hi(tn)

+giτi
σ e(tn+1)−σ e(tn)

∆t

(
1− exp

(
− ∆t

τi

)))
, (21)

where

hi(tn) =
∫ t

0
gi exp

(
− t− s

τi

)dσ e

ds
ds. (22)

Using Equation (21), the computation of stress at any time
step only requires information from the previous step. This is an
important advantage as it simplifies implementation and signifi-
cantly reduces memory requirement.

NUMERICAL EXPERIMENTS
The structure investigated is a circular aluminum shell with

polyurea coating applied on its inner surface. The axial thickness
of the shell is 0.4 mm. The radius and the radial thickness of
the aluminum shell are 19.1 mm and 0.711 mm, respectively.
The radial thickness of polyurea coating is 0.2 mm. The entire
structure is discretized with hexahedron grids. The aluminum
shell and polyurea coating have 5 and 4 layers of grid in radial
direction respectively. In circumferential direction, the structure
is divided into 400 elements. Since there is no force or motion
in axial direction (i.e. the x-axis), only one layer of grid is used
in axial direction. Figure 1 (top) shows the geometry and the
finite element grid of the structural model, including both the
aluminum shell and the polyurea coating.

FIGURE 2: Setup of numerical experiment: A finite element
model of an aluminum cylinder coated with polyurea on its in-
ner surface (top), and an unstructured, non-interface-conforming
finite volume fluid mesh for fluid-structure coupled analysis (bot-
tom).

In the numerical experiments, aluminum has a Young’s mod-
ulues of 70.8 GPa, Poisson’s ratio of 0.33, and a density of
2.78× 10−3 g/mm3. The constitutive model of the aluminum
shell is a finite strain plastic material law, in which the yield-
ing stress is 30.4 GPa, tangent modulus is 66.74 GPa, and the
hardening is pure isotropic. The constitutive models of polyurea
coating have been discussed in the previous section. The param-
eters in hyperelasticity model are identical to those in Clifton
et al. [19]: density is 1.07× 10−3g/mm3, C00 = 0.2684 GPa,
C01 = C02 = 0.1098 GPa, and M = 4.4. The stress relaxation
model uses a two-term Proney series, in which the parameters are
acquired through simplifying the four-term Proney series from
Amirkhizi et al. [18]. Based on the time scale of the current
problem (of the order of milliseconds), we adopt the two terms in
the relaxation function with τ = 0.064 ms and 1.163×10−4 ms.
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Therefore, the parameters are g∞ = 0.26, g1 = 0.237, g2 = 0.503,
τ1 = 0.064 ms, and τ2 = 1.163× 10−4 ms. In the structural
model, a 0.1% ovality is introduced as a geometric imperfection
to drive the structure to collapse in mode 2.

Figure 2 also shows a top view of the unstructured non-
interface-conforming fluid mesh, which has 0.21 million nodes
and 0.64 million tetrahedron elements. In the most refined re-
gion, that is, where the structure and the bubble are located, the
characteristic element size is 0.3 mm.

FIGURE 3: Collapse of the aluminum-polyurea structure under
a constant pressure load. (The upper half of the structure is
shown.)

Next, we present three numerical tests in which the structure
is placed in different loading conditions. Specifically, we present

• a “dry” simulation in which the outer surface of the structure
is subjected to a constant pressure, 1.8 MPa. As the struc-
ture deforms, the direction of the pressure load at any point
changes accordingly (as a follower force). Nonetheless, the
magnitude of pressure is fixed. This setup effectively de-
couples the dynamics of the structure from that of the sur-

FIGURE 4: A close-up view of the self-contact.

rounding fluid. Therefore, the fluid dynamics solver is not
involved in the simulation.
• A fluid-structure coupled analysis of the collapse of the

structure due to hydrostatic pressure. In this case, the fluid
pressure is initially set to 1.8 MPa, in consistency with the
dry simulation.
• A fluid-structure coupled analysis of the a near-field explo-

sion. The explosion bubble is modeled as a spherical bub-
ble with an initial radius of 2.5 mm, centered at approxi-
mately 11 mm from the outer surface of the structure. The
pressure and density inside the bubble are set to 50.0 MPa
and 5.0× 10−5 g/mm3. The hydrostatic pressure is set to
1.0 MPa, which is lower than the (hydrostatic) collapse pres-
sure of the structure.

Figures 3 and 4 present the time-history of the structural de-
formation and stress predicted by the dry simulation, with Fig-
ure 4 showing the moment of self-contact. The process of col-
lapse takes about 0.98 ms until the middle points (in z-axis) reach
in contact. Afterwards, the region of contact moves towards the
upper and lower ends, until approximately 1.08 ms, the structure
is roughly in static equilibrium (but still with high frequency, low
amplitude oscillations).

Figures 5 and 6 present the time-history of fluid pressure and
structural dynamics predicted by the second simulation, which
accounts for the fluid-structure interaction during the collapse of
the structure. As the boundary of the structure moves inward,
it gives the surrounding water a non-zero velocity, which leads
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FIGURE 5: Fluid-structure coupled analysis of collapse due to
hydrostatic pressure: Time-history of fluid and structural results,
before the structure reaches self-contact.

to the reduction of pressure. This in turn reduces the pressure
load on the structural surface, thereby decreasing the speed of
its collapse. Figure 6 presents a sequence of images showing
the pressure variation after the structure reaches self-contact. To
the surrounding fluid flow, the contact of the structure means a
sudden drop of velocity (to approximately 0), which leads to a
sudden rise of pressure. Figure 6 shows that as the region of
contact spreads out, the region of high pressure follows its front.

Comparing the results obtained from the dry and coupled
simulations, it is clear that the former significantly overpredicts
the speed of the structure’s collapse, as it ignores the decrease
of pressure in the surrounding flow during the course. Figure 7
compares the local displacement at two sensors on the inner sur-
face of the structure (i.e. in the region of polyurea). The time of
collapse, measured up to the time instance the structure reaches
self-contact, is found to be 0.98 ms in the dry simulation, com-
pared to 2.7 ms in the coupled simulation. In addition, Figure 8
compares the structural velocity at one of the two sensors. It can
be observed that in both the dry and the coupled simulations, the
velocity increases monotonically throughout the duration of the
collapse. The maximum velocity is found to be around 125 m/s
in the dry simulation, which is about 6 times higher than that in
the coupled simulation.

FIGURE 6: Fluid-structure coupled analysis of collapse due to
hydrostatic pressure: Time-history of fluid and structural results
after the structure reaches self-contact. (The upper half of the
structure is shown.)
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FIGURE 7: Comparison of “dry” and coupled analysis: Time-
history of displacement at two sensor points on the inner surface
of the structure (see Fig. 2).

FIGURE 8: Comparison of “dry” and coupled analysis: Time-
history of velocity at a sensor point on the inner surface of the
structure (see Fig. 2).

Figure 9 shows a sequence of solution snapshots obtained
from the third test, which features a near-field explosion. Specif-
ically, the two images taken at 0.008 ms shows the spherical
shock wave impacting on the top of the structure, which drives
the structure to collapse. The structure’s deformation is different
from, and more complex than, that observed in the previous two
test cases. At 0.3 ms, the upper side of the structure is moving
inward, whereas the lower side is moving outward. As the up-
per side of the structure moves inward, it also pulls the bubble
towards it. Gradually the bubble deforms from a perfect sphere
to an oval. Between 0.3 ms and 2.1 ms, it can be observed that
the structure vibrates instead of immediately flattens as found in
the previous two cases. Interestingly, as the upper side of the
structure bounces back (from 1.1 ms to 1.7 ms), it produces a

liquid jet that penetrates into the bubble. As the jet moves in-
side the bubble, it generates two vortices, and gradually deforms
into a mushroom shape. The last two columns of image, taken at
2.164 ms and 2.2 ms, shows that when the liquid jet reaches the
upper side of the bubble, it leads to a sudden increase of pressure
at the point of contact.

Concluding Remarks
By adopting and implementing several recently developed

constitutive models of polyurea, we have extended the FIVER
framework to model and simulate the dynamic response of struc-
tures with polyurea coating to hydrostatic and underwater ex-
plosion loads. We have presented a numerical experiment that
compares the response of a coated aluminum cylinder in differ-
ent loading conditions, which also demonstrates the capabilities
of the computational framework. Additional studies are being
performed to validate the computational model, and applying it
to simulate more realistic structures and test cases.
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