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Abstract: Almost all models of visual memory 

implicitly assume that errors in mnemonic 

representations are linearly related to distance in 

stimulus space. Here, we show that neither 

memory nor perception are appropriately scaled 

in stimulus space; instead, they are based on a 

transformed similarity representation that is non-

linearly related to stimulus space. This result 

calls into question a foundational assumption of 

extant models of visual working memory. Once 

psychophysical similarity is taken into account, 

aspects of memory that have been thought to 

demonstrate a fixed working memory capacity of 

~3-4 items and to require fundamentally different 

representations -- across different stimuli, tasks, 

and types of memory -- can be parsimoniously 

explained with a unitary signal detection 

framework. These results have significant 

implications for the study of visual memory and 

lead to a substantial reinterpretation of the 

relationship between perception, working 

memory and long-term memory. 

 

Working memory is typically conceptualized as a 

fixed capacity system, with a discrete number of 

items, each represented with a certain degree of 

precision1,2. It is thought to be a core cognitive 

system3,4, with individual capacity differences 

strongly correlating with measures of broad cognitive 

function such as fluid intelligence and academic 

performance5,6. As a result, many researchers are 

deeply interested in understanding and quantifying 

working memory capacity and understanding the 

connections between working memory and long-term 

memory..  

 

Continuous feature spaces are often used to 

investigate memory, as they allow the precise 

quantification of information stored in memory2,7,8. In 

one prominent paradigm, researchers present a set 

of stimuli to remember and then probe one item after 

a delay, asking participants to report the target by 

clicking on a circular stimulus report wheel (Fig. 1A). 

The data are typically analyzed using the circular 

difference between the true stimulus and reported 

stimulus, which is then modeled to quantify memory 

performance7,8. Because errors that arise in this task 

have a “fat tail” — there are more far away errors 

than you might expect (Fig. 1B) — the dominant 

models of working memory draw critical distinctions 

between fundamentally different kinds of memory 

errors: those caused by limits in how many items are 

represented vs. how precisely they are represented7 

or those caused by items encoded with high 

precision vs. extremely low precision8.   

 

Here we present evidence that these small vs. large 

errors are not distinct kinds of errors, or evidence of 

multiple psychological constructs being measured 

(e.g., precision vs. guessing). Instead, we 

demonstrate that these responses arise 

fundamentally from a single process. To describe this 

new conceptualization of memory, we begin with 

working memory for color as our main case study 

and then expand the model to encompass working 

memory for faces (a multi-feature stimulus space) 

and long-term memory for real-world objects. 

 

The model we propose is a straightforward extension 

of standard signal detection-based accounts of 

memory, with the fundamental insight of our 

framework being the nature of the psychophysical 

similarity function that explains how familiarity 

spreads. Consider the simplest case of memory, 

where you are asked to remember just a single color. 

When you encode this color — say, red — it will now 

have significantly enhanced familiarity. Thus, if you 

are later asked to distinguish the color you saw from 

a foil color (e.g., red vs. green), the color you saw will 

likely be more familiar. However, due to noise which 

corrupts the familiarity signals, this will not always be 

the case, and on some trials, green might feel more 

familiar than red.  

 

The critical insight of our model is that when you see 

red, it does not boost only familiarity associated with 

red. Instead, a gradient of familiarity will spread to 

other colors according to a fixed psychophysical 

similarity function, with considerable activity 

spreading to similar colors (e.g., pink will also feel 

familiar), but with much less spreading to dissimilar 

colors (e.g., yellow, blue and green will experience 

virtually no boost in familiarity). If asked to hold this 

color in mind, these initial familiarity signals will be 
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corrupted by noise, and when memory is probed — 

say, if people are asked to report what color they saw 

on a color wheel — people will report the color of the 

response option that currently has maximum 

familiarity. Although the encoded color is most likely 

to generate the maximum familiarity signal, 

competition from other colors (especially from similar 

colors) ensures that this will not always be the case, 

and the more noise accumulates, the more likely a 

very dissimilar color is to be reported. Notably, in this 

model, memory is not simply a point representation 

(“I think this item is red”) but instead an entire 

population of familiarity signals (similar to neural 

models9-11). (We’ve built an interactive demonstration 

of this model at https://bradylab.ucsd.edu/tcc/ to 

explain it dynamically.) 

 

According to the model, the way familiarity spreads is 

a fixed perceptual property, one that can be 

independently measured using a conventional 

psychophysical similarity function. Once the nature of 

the familiarity gradient for a given stimulus space is 

measured, memory is simply modeled by taking this 

fixed property of the stimuli and adding noise, with 

the signal-to-noise ratio (d’) being the only memory-

based parameter of the model. This model thus 

uniquely explains the complex shape of error data 

with only a single free parameter (memory strength, 

d’) and permits parameter-free generalization across 

different tasks (i.e., without any free parameters, 

using only measured memory strength and similarity 

values from different participants). Because this 

model operates in a signal detection framework, as 

most models of long-term memory do, it also 

suggests a unified framework can be used to 

understand the nature of mnemonic representations 

and decision-making across working memory and 

long-term memory.  

 

Results 

Psychophysical similarity. The most critical 

component of our proposed model is the 

psychophysical similarity function that explains how 

familiarity spreads within a stimulus space (e.g., 

across the color wheel). While previous work has 

documented local inhomogeneities in the structure of 

stimulus spaces12-14 we were primarily interested in 

the global structure of similarity: for a stimulus 10 

degrees away on the color wheel from a target color 

(regardless of what the target color is), how similar is 

this color to the target on average? Thus, we 

measured how similarity scales with distance 

measured in terms of degrees along the color wheel 

(Methods 1). To do so, we tested how accurately 

participants could determine which of two test colors 

was closer in color space to a target color using a 

triad task15,16. This is a perceptual task, but it is 

analogous to the working memory situation where 

participants have a target color in mind and are 

asked to compare other colors to that target. We 

found that with a fixed 30° distance between two 

color choices, participants are significantly more 

accurate at determining which color is closer to the 

target when the two colors are close to the target in 

color space compared to when they are far from the 

target (Fig. 1C, Extended Data Fig. 1; ANOVA 

F(12,384) = 71.8, p<0.00001, η2=0.69). In other 

words, in a purely perceptual task, participants 

largely could not tell whether a color 120°or 150° 

from the target was closer to the target, whereas this 

ask is trivial if the colors are 5° and 35° from the 

target. This demonstrates a strong non-linearity in 

perceptual similarity. 

 

To compute a full psychophysical similarity function, 

we utilized the just-described triad task with 

additional distance pairs (Methods 2). We then 

applied the maximum likelihood difference scaling 

technique16  (MLDS) commonly used for perceptual 

scaling to estimate how differences between color 

stimuli are actually perceived. The estimated 

psychophysical similarity function falls off in a 

nonlinear, exponential-like fashion with respect to 

distance (Fig. 1F). In color space, it is also well-

matched by a smoother measure that requires 

substantially less data, namely, the pairwise 

subjective similarity ratings of colors at different 

distances along the color wheel using a Likert scale 

(Methods 3; Fig. 1F).  

 

While there are also small local inhomogeneities (Fig 

1D), we are primarily interested in the fact that the 

global structure of similarity space is strongly non-

linear, in agreement with decades of work suggesting  

https://bradylab.ucsd.edu/tcc/
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Figure 1. (A) A widely used method in working memory is to select a color circle from a slice of color space, show 
memory items drawn from this circle, and then, at test, probe the contents of a memory item by presenting the entire 
continuous circle to participants to make a response. Similar response wheels are used for other features, such as face 
identity. (B) A histogram of results generally observed for such tasks, traditionally plotted as a function of distance in 
degrees of error along the response wheel. There is a ‘long, fat tail’ of errors far from 0 that is often interpreted as 
evidence for distinct memory states (e.g., guesses or items encoded with very low precision). (C) In a triad 
psychophysical scaling task, N=40 participants had to say which of two colors in the bottom row was more similar to the 
top (target) color. Despite the difference between the two choice colors always being 30° on the color wheel, sensitivity 
(d′) dramatically decreased as the choices became more distant from the target, ANOVA F(12,384) = 71.8, p<0.00001, 
η2=0.69. Error bars are within-subject S.E.M. and dots represent individual subjects. See Extended Fig. 1 for the full data. 
(D) We can use the data from another similarity task, a simple pairwise Likert rating of similarity (N=50), to infer the global 
psychophysical distance of colors at different physical distances along the color wheel. Here we plot this data for sets of 
target colors, demonstrating previously observed local non-uniformities in color space as the small differences across 
rows (see Bae et al.12).Critically, all of these rows demonstrate a much larger global structure, separate from this local 
structure: overall similarity falls in an approximately exponential manner. (E) Some aspects of this similarity must derive 
from perceptual discrimination failures (e.g., there are not really 360 independent colors on the color wheel). To estimate 
this underlying perceptual noise, we use a continuous report task where participants must match a visible color using the 
same color wheel (N=40) (F). We can plot the global psychophysical function -- averaged over all target colors -- using 
the triad task or the Likert task. Both are very similar and show the same underlying shape. Consistent with previous 
work, we find this similarity function is exponential once perceptual noise is taken into account (e.g., an exponential 
convolved with the measured perceptual noise function provides an excellent fit to this data).  
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psychological similarity is globally exponential (e.g., 

the universal law of generalization17,18), with 

confusions for very similar colors also caused by 

perceptual noise19 (measured here using a 

perceptual matching task, Methods 4; Fig 1E, F). 

 

A key implication of these similarity scaling results is 

that the linear axis of error along the response wheel 

(e.g., -180 deg. to 180 deg.) previously used to 

analyze working memory capacity does not capture 

the psychological representation of the stimuli. This 

poses a significant challenge to existing memory 

models, as their parameters are derived assuming 

linear similarity (i.e. treating the axis of error in 

degrees as a linear scale). However, this axis is not 

linear even in a perceptual task: Since participants 

are essentially incapable of discerning whether an 

item 120° or 180° from the target in color space is 

more similar to the target, it is not surprising that they 

confuse these colors equally often with the target in 

memory.  

 

Incorporating psychophysical similarity into a 

signal detection model. Psychophysical scaling 

formalizes how similar two stimuli are perceived to be 

and is the first critical aspect of our proposed model. 

The next aspect is that signals are corrupted by 

noise, which we formalize using signal detection 

theory. 

 

In particular, the model we propose here is 

fundamentally the same longstanding signal 

detection model used across decades of research on 

long-term memory and perception20-22, modified to 

take into account psychophysical similarity. The basis 

of signal detection theory is that when deciding 

among each of the colors at test, participants rely 

upon a noisy, cue-dependent familiarity signal for 

each color, and the color that generates the 

maximum familiarity signal is selected (Fig. 2). The 

stronger the maximum signal is, the higher the 

confidence in the selected color.  

 

Our model differs from a standard model of the n-

alternative forced choice only in the usage of the 

psychophysical similarity measure. In a standard 

signal detection model of an n-alternative forced-

choice task, it is generally assumed that exactly one 

item has been previously seen, so its familiarity is 

centered on d′, whereas the other n - 1 items are 

equally unfamiliar and therefore centered on zero 

familiarity21. However, when memory is tested using 

a continuous stimulus space, it would be implausible 

to assume that a color 1° away in color space from 

the target would have no added familiarity and would 

have noise that is totally uncorrelated with the target.  

 

Thus, in our model, the mean memory signal for a 

given color x on the color wheel, denoted dx, is based 

on that color’s separately measured similarity to the 

target, i.e., dx = d′ f(x), where d′ is the model’s only 

free parameter (memory strength) and f(x) is the 

empirically determined psychophysical similarity 

function (i.e. a measurement, done in different 

participants, of the similarity structure of the color 

space). The noise added to each color is also 

correlated between nearby colors according to the 

empirically measured proportion of how often colors 

at that distance are confused in a perceptual 

matching task (Fig 1E), although this is not critical for 

fitting continuous report error distributions (Extended 

Data Figure 2).  

 

Because of the nonlinear similarity function, colors in 

the >~90° physical distance range all cluster near 

f(x)≈f(x)min  such that dx≈0 for x~=90° to 180°. Thus, 

when participants encode a color—say, purple—it 

increases the average familiarity signal in the purple 

channel and also in nearby (similar-to-purple) 

channels while having almost no effect in dissimilar 

color channels (Fig. 2B). The familiarity signals in 

each channel are then corrupted by noise, and the 

resulting reports are based on this noisy signal. In the 

case of continuous report, people theoretically report 

the color with maximum familiarity. 

 

Importantly, this Target Confusability Competition 

(TCC) model can explain all the key features of visual 

working memory. In particular, it accurately 

characterizes memory performance across a variety 

of domains, including different set sizes, encoding 

times and delays (Fig. 3; Supplementary Figure 1). 

Previous cognitive models of visual working memory 

allow for many ways in which memory for an  
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individual item can vary (e.g., guess rate, precision, 

variation in precision7-8,23). By contrast, TCC holds 

that these experimental manipulations affect only a 

single fundamental underlying parameter (the 

memory strength parameter, d′), and that the 

complex changes in the shape of the error 

distribution arise not from multiple parameters, but 

simply from the similarity function combined with the 

non-linearity inherent in selecting only your strongest 

familiarity value for report. Thus, the fact that  

Figure 2. For an interactive version of this figure, see https://bradylab.ucsd.edu/tcc/ (A) Our TCC model applied to a 
hypothetical 10-alternative forced-choice memory test. In standard 2-alternative long-term recognition memory 
experiments, unseen items vary in their familiarity, which is modeled as a normal distribution. Previously encoded 
items elicit higher familiarity on average, modeled (in the simplest case) as a normal distribution with a mean of d′ , 
where d′ indicates how many standard deviations of memory strength is added to seen items. When asked what they 
remember, people pick whichever color elicits higher familiarity on that trial. To generalize to a 10 alternative forced-
choice, we thus only need to specify the average familiarity strength of every lure. Usually, all 9 lures are assumed to 
have a mean of 0 -- with no added familiarity -- when modeling such tasks21. However, in a continuous space this is not 
plausible. Thus, in TCC, we propose that familiarity spreads according to similarity: the mean of each lure’s familiarity 
distribution is simply its similarity to the target. For example, if the target is purple, other purples will have boosted 
familiarity as well, and thus people will choose a slightly different purple lure much more often than an entirely 
unrelated lure such as green. Examples of d′=3 and d′=1 illustrate the idea that when memory for the target color is 

weaker, more of the lure distributions cluster near the target — and at d′=1, all of the far away colors are in a position 

to sometimes ‘win the competition’ by having the highest familiarity, but will do so on average equally often, creating a 
long fat tail. The 10-AFC logic provided here can then simply be adapted to 360-AFC to model continuous report, but 
with the added knowledge that very similar colors also have correlated noise (measured using the perceptual matching 
function); i.e., there are not 360 independent colors on the color wheel. (B) An alternative way of plotting the same 
model is to consider a single trial, rather than the distribution of memory strengths across trials. When we encode a 
purple color, with memory strength d’=3, the familiarity of purple as well as similar colors is increased (according to the 
measured psychophysical similarity function). Then, we add SD=1 noise to each color channel. The resulting familiarity 
values, after being corrupted by noise, guide participants' decisions. In a continuous report task, people simply report 
the color that generates the maximum familiarity value.  
 

https://bradylab.ucsd.edu/tcc/
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manipulations of set size, delay and encoding time — 

22 different manipulations in total — result in 

distributions that can be accurately characterized 

with only a single varying parameter is strong 

evidence in favor of TCC, as is the fact that it 

describes the data extremely well despite being 

markedly simpler than alternative theories. It is 

markedly simpler because it proposes a unified 

generative process for all responses instead of 

requiring different states to generate different subsets 

of responses (as in the encoding variability or lack of 

represented items proposed by previous models7-

Figure 3. (A) TCC fits to group data at set size 1, 3, 6, and 8 (N=20). Despite no concept of unrepresented items or 
guessing or poorly encoded items, and adopting for the sake of simplicity the assumption that all items are encoded 
equally (i.e., with the same d’) -- TCC fits even the high set size data accurately because of the noisy nature of the signal 
detection process combined with the non-linear psychophysical similarity function. (B) TCC fits to N=20 group data with 
varying delay (only set size 6 shown; remainder of data in Supplementary Figure 1). (C) TCC fits to N=20 group data 
across different encoding times (only two set sizes shown; see Supplementary Figure 1). Across several key 
manipulations of visual working memory (set size, delay, and encoding time), which drastically alter the response 
distributions collected, TCC accurately captures (with only a single free parameter d′) the response distribution typically 
attributed to multiple parameters / psychological states by existing frameworks and models of working memory. Only a 
subset of the delay and encoding time fits are plotted here, but all fits are accurate, as demonstrated by the Pearson 
correlation between the binned data and model fits as a function of set size (Supplementary Table 1). Note that d’ of the fit 
to the group data, as plotted, is not the same as the average of individual subject d’s, as used in the model comparisons. 
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8,23), and because it replaces free parameters (like 

precision) with independently measured values (like 

similarity, which is independently measured and fixed 

for all participants and conditions; Extended Figure 

4). 

 

The measured non-linear similarity function is critical 

to the ability of TCC to fit the data. While reporting 

the color that is maximally familiar does, on it own, 

introduce a non-linearity that favors the strongest 

signals, this alone is not sufficient to explain the data 

(Extended Data Figure 3). Instead, the explanatory 

value of TCC comes from the combination of the 

non-linear similarity function and signal detection 

theory. 

 

While the main evidence in favor of TCC is its ability 

to parsimoniously characterize the effects of 

qualitatively different experimental manipulations 

(Fig. 3, Supplementary Table 1) and to make precise 

predictions across tasks and stimuli (see below), we 

also compared the fit provided by TCC to the fit 

provided by mixture models of visual working 

memory, including the standard two-parameter 

mixture model that interprets performance as arising 

from distinct concepts of ‘capacity’ and ‘precision’7 

and a three-parameter version of the mixture model 

that allows for variable precision23. Despite being 

simpler and having fewer parameters, TCC was just 

as good at predicting held-out data in a cross-

validation test and was reliably preferred in every 

subject across set sizes when using metrics 

preferring simpler models (Supplementary Table 2). 

This was true even though TCC fits are based on 

aggregated similarity functions from a different group 

of participants, suggesting the global structure of the 

psychophysical similarity function is largely a fixed 

aspect of a given stimulus space. Taking into account 

color-specific similarity functions (e.g., Fig 1D) or 

individual differences in similarity scaling should 

further improve the fit of the model (Extended Data 

Fig. 5), , and would be necessary for comparing the 

model to others that do take into account such 

information, but here we focus on the general case of 

treating all colors and participants as sharing a 

similarity function.  

 

While memory strength varies according to a variety 

of different factors (Fig. 3), many researchers have 

been particularly interested in the influence of set 

size. TCC shows that at a given encoding time and 

delay, d′ —theoretically an interval-scale measure of 

memory strength21,24 —decreases according to a 

power law as set size changes (Extended Data 

Figure 6), broadly consistent with fixed resource 

theories of memory24,25. Critically, memory strength 

decreases most at low set sizes (e.g., 1 to 3), 

suggesting limits of working memory may be best 

studied across lower set sizes, contrary to the 

majority of the field which seeks to pressure 

“capacity” via high set sizes to understand the nature 

of working memory.  

 

TCC accurately predicts connections between 

working memory paradigms that mixture models 

claim are impossible. Ultimately, evaluating 

theories based on model comparisons of fit —when 

all models fit the data well, as here —is not as useful 

as investigating what they accurately predict26. TCC 

makes a precise and unique prediction that since all 

responses are generated from the same underlying 

process, measuring d′ in any way that avoids floor 

and ceiling performance—even using only two 

maximally dissimilar 180-degree away colors in a 

2AFC task —is sufficient to accurately predict (with 

no free parameters) memory performance involving 

more similar colors and/or more response options 

(including continuous report). This is in direct contrast 

to the inability of mixture models and variable 

precision models to make such predictions. Such 

models claim memory varies in multiple 

fundamentally distinct ways (i.e., precision and 

guessing can both vary, or the distribution of 

precisions can vary), and clearly, a single measure of 

accuracy cannot possibly measure more than one 

fundamental distinct property of memory. 

 

Specifically, such existing models insist that such 

predictions should not be possible because they 

claim that heterogeneity between items is crucial to 

explaining large vs. small errors. That is, existing  
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models claim that fundamentally distinct items and 

memory states explain close-to-target responses on 

the color wheel (e.g., “precision errors for 

remembered items” or “high precision items”) vs. 

responses far away from the target (e.g., “guesses” 

or “low precision items”). Thus, existing models 

inherently assume that a singular measure of how 

well participants can discriminate 180°changes (e.g., 

was it red or green?), which measures only 

information about items that cause large errors, 

cannot, even in principle, measure the properties of 

the items that cause small errors. By contrast, TCC 

says all responses to more similar colors are directly 

predictable using the fixed similarity function, and 

that memory varies in only one way (memory 

Figure 4. (A) Since TCC states that visual working memory performance is determined by simply d′ (memory signal 
strength) once perceptual similarity is known for a given feature space, it makes novel predictions no other theory of 
working memory can make. In particular, it predicts that d′ measured with a 180 degree, maximally dissimilar foil (i.e., 
d′180°) should be completely sufficient to predict all of memory performance, unlike models where errors to maximally 
dissimilar foils arise from different processes than errors to similar foils, e.g., where errors to maximally dissimilar foils 
solely from ‘guessing’ (in some models) or from extremely poorly encoded items (in other models). For example, after 
measuring d′180°, TCC predicts that since a 24 degree foil is ~35% similar to the target, discriminability on a 2-AFC task 
in which the foil is 24 degrees away from the target should be ~35% of d′180°. (Although note that correlated noise makes 
this more complex for very similar foils) (B) On a single trial, this prediction can be visualized in a straightforward way: If 
we know the target was encoded with d′180° = 1.7, then TCC makes a strong prediction about how this familiarity spreads 
to other colors and how it is corrupted by noise. In continuous report, the decision rule is to report the maximum of the 

resulting color channel familiarity responses; in 2AFC, the decision rule —based on the exact same underlying color 

channel responses —is to choose the highest familiarity signal of your response options. Thus, in this example trial, the 

participant in a 2AFC task would choose the 0°-target over a 180°-foil, but would choose a 24°-foil over the 0°-target. 
Because TCC specifies this entire generative process, it makes precise predictions about how often people will make 
errors to different distance foils. (C) Here we plot the predicted percent correct of different distances of colors from the 
target (blue), a prediction based only on performance from the 180 degree condition (black) with no free parameters. 
When comparing subject’s performance at different foil distances (gray, N=60) we demonstrate TCC accurately predicts 
performance across different foil distances. 
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strength), and thus such a 2-AFC task is sufficient to 

measure memory performance.  

 

In two experiments, we tested TCC’s prediction that a 

single measured d′ is sufficient to characterize 

memory performance across a variety of tasks that 

are currently thought to tap different memory 

processes. In both experiments we had participants 

perform a memory task involving a 2-AFC test with 

maximally dissimilar colors (two options: 0° away 

from the target color vs. 180° away from the target 

color). We used the data from this 2-AFC task to 

compute d′ in the standard way (denoted d′180°) and 

then used TCC —with this exact d′ —to compute 

parameter-free predictions for a variety of other 

conditions. We intermixed all the conditions – 

including conditions that require participants to 

remember the precise color they saw -- so that 

participants could not rely on a categorical memory 

strategy in the maximally distinct 2-AFC task.  

 

In one experiment involving a 2AFC task (Fig. 4), we 

used TCC with fixed d′180° to predict  how well 

participants could discriminate the target from more 

similar foils (e.g., to predict d′12° from a 2-AFC task 

involving the color they saw vs. a color only 12° 

away). With no free parameters, memory 

performance was accurately predicted over the entire 

range of intermediate foil similarities (Fig 4C). TCC 

accomplished this with no free parameters because it 

specifies how the perceptual similarity of the two 

colors on a 2-AFC task (measured in a separate 

psychophysical procedure) should impact memory 

performance (see also Kahana & Sekuler27; 

Nosofsky19). By contrast, mixture models, based on 

the distinct concepts of guessing and precision, 

anticipate no particular relationship between 

performance on a 2-AFC task involving maximally 

dissimilar foils and performance on a 2-AFC task 

involving more similar foils. 2-parameter mixture 

models can use 180° 2-AFC performance only to 

measure ‘guess rate,’ leaving precision unspecified. 

Thus, with only 180° 2-AFC performance in hand, 

these models are able to predict a wide range of 

possible outcomes on 2-AFC tasks with more similar 

foils, depending on the unknown factor of ‘memory 

precision’ (Supplementary Figure 2). Note that 

precision, unlike similarity, is thought to be changed 

by memory strength and differ across subjects, and 

thus precision measures are not constrained by fixed 

perceptual similarity data that TCC can utilize so 

effectively. Because the mixture model predictions 

are largely unconstrained, TCC is strongly preferred 

to mixture models by a Bayes factor model 

comparison (group Bayes factor preference for TCC 

> 200:1, individual subjs: t(54)=11.19, p<0.001, 

dz=1.51, CI=(2.9:1, 4.2:1)). 

 

In a second experiment we went further, showing that 

TCC — again using only measured d′180° from a 

2AFC task and separately measured perceptual 

similarity between the response-option colors in 

different participants — can accurately predict 

performance when there are more than two response 

options, up to and including continuous report,  again 

with no free parameters (Figure 5). In this 

experiment, we once again found a strong preference 

for TCC’s prediction over the mixture model models 

in generalizing from 2-AFC to continuous report, 

which is the only condition the mixture model can be 

fit to (group BIC preference for TCC > 650:1, 

individual subjects: t(51)=7.64, p<0.001, dz=1.06, 

CI=(9.5:1, 16.2:1)). We also found that 2-AFC d′ 

measured in the standard way (i.e., d′180°) maps 

directly to TCC’s d′, which explains the full 

continuous report distribution (Fig. 5B). The lopsided 

Bayes factors arise because TCC precisely predicts 

the outcomes (outcomes that, when tested, are 

empirically observed), whereas competing models 

necessarily claim that the 2-AFC data are insufficient 

to completely measure memory since they do not 

measure the ‘precision’ of memory. 

 

Thus, with TCC, measuring only how well 

participants can distinguish between far apart test 

items (0° vs.180°) using a 2-AFC task is sufficient to 

predict the distribution of responses from a 

continuous report task and to predict 2-AFC 

performance for distinguishing targets and foils of 

varying similarity (so long as the 2-AFC task is not at 

ceiling or floor). Together, these experiments provide 

compelling evidence against previous models of 

visual working memory where the tails of the 

continuous-report distribution (the only aspect of  



Page 11 of 52 
 

performance that is theoretically measured with 180° 

foils in 2-AFC) are fundamentally distinct from the 

center of the distribution.  

 

In other words, in the competing models, responses 

in the tails of the distribution result from ‘guesses’ or 

‘low precision’, whereas the central responses result 

from high precision memories. If these models were 

correct, it should not be possible for TCC to make 

such accurate predictions across tasks using a single 

d′ and no free parameters. The fact that TCC can 

make such accurate predictions allows the 

reintegration of a huge literature on change detection 

with very distinct foils, with important theoretical and  

Figure 5. (A) According to TCC, the d′ in a 2AFC task is fundamentally the same d′ in continuous report tasks (or any 
other AFC task). Thus, unlike other models, TCC makes a strong prediction that d′ as measured with a 180 degree foil 
(d′180°) is completely sufficient to predict all of memory across any number of options presented at test, including 
completely sufficient to predict the entire distribution of errors in continuous report (since ultimately this distribution does 
not arise from distinct psychological states, but simply from combining the fixed similarity structure of the stimulus space 
with memory strength). To test this prediction, N=60 participants encoded items into memory and were then tested 
using 2-AFC, 8-AFC, 60-AFC or continuous report (360-AFC). During 2AFC trials, the foil was always 180 degrees 
away, which we used to calculate d′180°. We then used TCC, with this measured d′ but with no free parameters, to 
accurately predict 8-, 60-, and 360-AFC performance. The accuracy of these predictions provides further evidence there 
is no need for forgotten or low-precision items to account for the tail of continuous report distributions. Instead, for a 
given stimulus space, the continuous report distribution is modulated by memory strength but is otherwise always the 
same shape, determined by the shape of the similarity function for that stimulus space. (B) We can also independently 
estimate d′ from the continuous report data and from the 2-AFC data. We find a strong subject-level correspondence 
between TCC’s continuous-report estimate of d′ and d′ estimated from the 2-AFC task in the traditional way (i.e., d′180°), 
Pearson r=0.89, p<0.001, CI=(0.81,0.93), in line with what is expected simply from the noise ceiling of these 
measurements. Each point is a subject mean. 
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clinical implications28, as it shows that measuring d′ 

with maximally distinct foils is sufficient to understand 

memory response distributions —there is no 

separate “precision” that is not being measured in 

such tasks.  

Generalization across different stimulus spaces. 

So far we have focused largely on color space, which 

is the dominant way visual working memory is 

studied7. However, TCC is not limited to color and 

can be applied to any stimulus space. To 

demonstrate its generality, we applied TCC to the  

Figure 6. (A) Examples from a previously used continuous face space29. (adapted from 29). (B) Using a ‘quad’ similarity 
task to reduce relational encoding, and the same MLDS method and perceptual matching task as with color, we collected 
a psychophysical distance function for face identity, N=102. (C) TCC fits to working memory data (N=50) using face 
identity at set size 1 and 3 (r=0.997, p<0.001, CI=(0.993, 0.998); r=0.985, p<0.001, CI=(0.971, 0.992). TCC accurately 
captures face identity data, demonstrating its generalizability across diverse stimulus spaces. (D) To show generalization 
to other memory systems, we fit data on a visual long-term memory continuous report task with colors30.  N=30 
participants performed blocks of memorizing 40 items, and then after a delay, reported the colors of the items using a 
color wheel. Some items were seen only once, and some repeated twice in the same color within a block. (E) TCC fits to 
visual long-term memory data for items seen only once and for items repeated twice (r=0.978, p<0.001, CI=(0.958, 
0.988); r=0.991, p<0.001, CI=(0.983, 0.995)). TCC accurately captures visual long-term memory data, suggesting the 
psychological similarity function is a constraint on both working and long-term memory systems. Note that long-term 
memory performance in this task likely depends on a two-part decision —item memory and source memory (e.g., the 
object itself, and then its color). This two-part decision is related to the processes of recollection and familiarity and likely 
introduces heterogeneity in memory strength into the color memory reports. Here, where item memory was consistently 
strong and color memory was the main factor, this does not affect the fits of TCC, but in other data where heterogeneity 
in strength of item memory is greater, variability in d’ between items would likely need to be accounted for.  
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case of face identity, since it is a complex stimulus 

space that contains multiple low- and high-level 

features. Using a previously created face-identity 

continuous report procedure29, we collected memory 

data for set size 1 and 3. We also measured the 

psychophysical similarity function and measured the 

accuracy of perceptual matching on this face space 

(Fig. 6). Again, we found the TCC fit observed 

memory data extremely well across both set sizes 1 

and 3 (see Fig. 6) and fit reliably better than existing 

mixture models (Supplementary Table 3).  

 

Thus, TCC accounts for data across multiple stimulus 

spaces. As long as the perceptual similarity space of 

the stimuli is accurately measured using 

psychophysical scaling (see Supplementary 

Discussion), TCC’s straightforward signal detection 

account, with only a single d' parameter, accurately 

captures the data. 

Figure 7. (A) To validate whether TCC could detect objective guessing  (i.e. a separate psychological state with no 
information) if present in the data, we considered a mixture of responses from TCC plus objective guessing, creating a 
mixture model of TCC and a uniform distribution. (B) Although model comparison strongly preferred TCC with no 
guessing, we nevertheless fit a hybrid TCC+guessing model (2 parameters) to real participant data, and found that the 
guessing parameter in real data is estimated at ~0 across all set sizes. (C) However, when fitting the hybrid 
TCC+guessing model to simulated data, we observed accurate recovery of guessing if present in the data -- even 20% 
‘guesses’ added to set size 8 d′ levels is accurately recovered and never estimated as 0 (data are violin plots, showing 
entire distribution of recovered parameters). Furthermore, model comparison metrics —even those, like BIC, designed to 
prefer simpler models— prefer the hybrid model with the guessing parameter in every simulation with guessing added 
(all BIC>30:1 in favor of hybrid model). This provides strong evidence there is little objective ‘guessing’ in visual working 
memory data, and that our modeling with TCC would be able to detect any significant number of added no-information 
responses if they were present.  
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Generalization across different memory systems. 

To demonstrate TCC’s applicability to multiple 

memory systems, not just visual working memory, we 

fit data from a visual long-term memory continuous 

report task with colors. Unlike the previous datasets, 

this data had been previously reported in the 

literature30. Participants performed blocks where they 

sequentially saw 40 real-world objects’ that were 

randomly colored, and then after a delay, reported 

the color of the object using a color wheel (as in 

Brady et al.31). Some items were seen only once, and 

some repeated twice in the same color within a block 

(Fig. 6D). Again, we found that TCC fit the observed 

memory data extremely well across both the 

unrepeated and repeated items (Fig. 6E). Thus, 

unlike working memory modeling frameworks which 

propose system-specific mechanisms (e.g., 

population coding combined with divisive 

normalization10), TCC naturally fits data from both 

visual working memory and long-term memory with 

the same underlying similarity function and signal 

detection process applicable across both memory 

systems.  

 

Implications of TCC: no objective guessing. One 

particularly important implication of TCC’s fit to the 

data with just a single parameter is that it implies 

there is little-to-no objective “guessing” in working 

memory. This provides evidence against a fixed 

capacity limit where participants only remember ~3-4 

items1,2 and is consistent with more continuous 

conceptions of working memory4. In particular, while 

colors far from the target in color space sometimes 

‘win the competition’ (e.g., have maximal familiarity 

after noise is added), this is not because the target 

was fundamentally unrepresented or varied hugely in 

encoded memory strength trial to trial. In a stochastic 

competition, the strongest representation does not 

always win. Moreover, the target will be more likely to 

lose the competition the weaker its representation is. 

Critically, in TCC, at least as proposed so far, the 

target is always represented —that is, people’s 

familiarity signals are never unaffected by what they 

just saw 1 second ago (as in d′=0).  

 

While these conclusions follow from the excellent fits 

of the straightforward 1-parameter TCC model to a 

wide variety of data (data widely thought to provide 

prima facie evidence for the existence of 

unrepresented items) and from the generalization of 

maximally-dissimilar 2-AFC performance to other 

conditions, to evaluate this claim further, we 

assessed a 2-parameter hybrid model based on TCC 

but mixed with objective ‘guessing’. This hybrid 

model assumes only a subset of items are 

represented and that the remainder have d′=0. 

Focusing on the highest set sizes (6 and 8), we found 

such a model was dispreferred in model comparisons 

in 100% of subjects compared to TCC (BIC, set size 

6: t(19)=-41.99, p<0.001, dz=9.39, CI=(6.2:1, 6.9:1); 

t(19)=-16.09, p<0.001, dz=3.60, CI=(5.3:1, 6.9:1)), 

and BIC was well calibrated for these model 

comparisons (Supplementary Figure 3). Furthermore, 

while this hybrid model accurately recovered its own 

parameters from simulated hybrid data, showing it 

detects objective ‘guessing’ if it is present (Fig. 7C), 

when fit it to empirical data it estimates ‘guessing’ 

rates near 0 in every set size in group data (Fig. 7B), 

and a guess rate <5% in the majority of individual 

subjects at every set size. Thus, although some 

items may occasionally have a d′ of 0 (perhaps 

because they were completely unattended during 

encoding), it appears to happen too infrequently to 

appreciably affect the fit, and it happens far less often 

than required for ‘slot’ models of working memory 

that suppose 4-5 of the 8 items are always entirely 

unrepresented2. The simulation results demonstrate it 

is possible to detect “random guesses” if present in 

the data, but TCC finds no evidence for such 

objective ‘guessing’ in real data. Critically, however, 

like any standard signal detection model, TCC 

naturally accounts for the subjective feeling of 

guessing/low confidence21 that arises when 

memories tend to be weak, like at high set sizes 

(Extended Data Fig. 7 and 8).  

 

Implications of TCC: mixture models are not 

measuring distinct psychological states. The 

dominant quantitative model of visual memory is the 

mixture model, which claims to measure two distinct 

psychological concepts from continuous report error  
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data: how precisely people remember items they 

have in mind (e.g., “precision”; “variability in 

precision”) and how often people have an item in 

mind (“likelihood of retrieval”, or its opposite, “guess 

rate”). The fundamental claim that there are two 

distinct ways memory can fail —loss of precision or 

loss of discrete items —permeates a huge variety of 

literature in working memory, attention32, iconic 

memory33 and long-term memory34. TCC makes a 

counterclaim: the fact that manipulations of set size, 

delay and encoding time that hold the stimulus space 

constant (e.g., use a particular color wheel) can be fit 

by varying a single memory strength parameter; and 

that measuring how well people can distinguish only 

maximally distinct comparisons (like red vs. green) is 

sufficient to characterize memory appears to falsify 

the idea that memory changes in two or three 

psychologically distinct ways (e.g., precision vs. 

guess rate). Another way to test this is to fit the 

mixture model —which purports to measure two 

distinct parameters —to data from a single stimulus 

space (e.g., from a single color wheel) and ask 

whether the state-trace plot shows evidence of a 

single way memory changes or multiple ways35. 

Figure 8 shows this plot for all data from the current 

paper (e.g., the 22 conditions shown above, plus the 

other experiments) and from all the conditions in 

Miner et al.30, which provided the long-term memory 

data fit above. As can be clearly seen in this plot, the 

two parameters always change together: while not 

linear in their relationship, they are nearly perfectly 

related —and their relationship is well predicted by 

the zero-free-parameter prediction of TCC (e.g., 

TCC’s prediction across a range of d′ values). The 

non-linear relationship accounts for most cases 

where people have found evidence to “dissociate” the 

two parameters (see Supplementary Discussion). 

This is further evidence that TCC’s single parameter 

conception of performance is correct and that mixture 

models are not measuring distinct psychological 

constructs (see also Supplementary Figure 4 and 5 

and Supplementary Table 4, which use data from the 

literature, although not holding the stimulus space 

constant as here).  

 

Discussion 

Most previous theories and models of visual working 

memory have not considered the relationship 

Figure 8. The currently dominant conception of memory arises from mixture models which claim that memory varies in 
at least two psychologically distinct ways: the precision of memory and the number of represented items (modeled as 
“guess rate”). TCC makes a strong counter prediction: that if the stimulus space, and thus psychophysical similarity 
function, is held constant, memory report distributions vary in only one way, in memory strength. Thus, TCC claims that 
the particular manipulation (encoding, set size, delay) used to change memory strength should not selectively change 
one mixture model parameter or another (e.g., encoding changing precision; high set sizes affecting only guess rate, 
etc), but that both should always change together. To visualize this, we show a state-trace plot of mixture model 
parameters across a wide range of manipulations of working memory (from the current paper) and long-term memory 
(from Miner et al.30), with one point per condition. We find that despite the huge number of different ways we vary 
memory strength, all the points lie on a single line, consistent with only a single parameter being varied; and that this line 
is extremely well predicted by the 0-free-parameter prediction of TCC. TCC can only predict an extremely small part of 
the possible space the mixture model can predict, and only a very particular relationship between the two mixture model 
parameters, and the data from all of these conditions land on this line. This provides strong evidence against mixture 
models measuring two distinct parameters and in favor of the TCC conception of memory. 
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between stimuli and the psychological similarity of 

those stimuli. In the absence of psychophysical 

scaling and without regard for its theoretical 

implications, the use of these models has led to what 

we show are illusory ‘independent’ estimates of 

‘guessing/capacity’ and ‘precision’ and to arguments 

for limited capacity characterized by so-called 

“discrete failures” of working memory, attention32, 

iconic memory33 and long-term memory34. Indeed, 

claims about selective deficits in clinical 

populations36-38, and even about the nature of 

consciousness32 have been made based on 

dissociations between model-based estimates of 

‘precision’ and ‘guessing’. Here, we have shown 

these apparent dissociations are an illusion of 

modeling the data without taking into account the 

non-linear way the familiarity spreads in stimulus 

space. When this fixed perceptual similarity structure 

is taken into account, TCC provides a unifying theory 

of visual memory strength, one that is capable of 

bridging distinct tasks and stimulus conditions that 

would not be possible using previous models and that 

undermines the interpretation of apparent ‘discrete’ 

failures of attention and memory32-34,36-38.  

 

While TCC rejects the idea that the distribution of 

responses collected from continuous report is 

explained primarily by remembered and not-

remembered items (or items that are encoded with 

extremely different precisions8), this does not mean 

some variability between items is not present in 

working memory tasks. Psychophysical scaling can 

naturally account for many stimulus-specific 

variability effects (e.g., some colors being more 

distinct than others, Extended Data Fig. 5) by using 

separate similarity functions for each target color. 

Furthermore, in light of the signal detection 

framework of TCC, much of the existing evidence for 

‘variable precision’ does not actually provide direct 

evidence of variability in the d′ parameter of the TCC 

model. Many aspects of variability between items 

arise in TCC naturally from the independent noise 

added to different items that is at the heart of signal 

detection theory, such as the effect of varying 

confidence on continuous report data or allowing 

participants to choose their best item for report 

(Extended Data Fig. 7 and 8). Thus, it remains an 

open question to what extent d′ varies between items 

and trials. In TCC, if such variation needs to be 

accounted for, this would be done by moving to an 

unequal variance signal detection model, whereas 

the current modeling has used a purely equal 

variance model. Critically, however, we show that 

mixing in items that are unrepresented (d′=0) is 

inconsistent with the data. Thus, any variability in d′ 

that does exist across items likely does not include 

an appreciable role for items with d′ = 0. 

 

Many models of working memory focus almost 

exclusively on how memory strength changes with 

set size, taking this as the central factor in how much 

understanding of working memory they have 

achieved. We take a fundamentally different view, 

seeing our measure of memory strength (d’) as a 

measure of signal-to-noise that is likely modulated by 

many factors, and which has a shared structure not 

only in working memory, where set size matters so 

much, but also in long-term memory, which appears 

to follow fundamentally the same rules of memory 

confusability and a similar decision process (Fig. 8; 

Miner et al.30). Notably, we find that while set size 

modulates memory strength in the current work, 

there are many other factors that affect memory 

strength nearly as much. For example, increased 

delay decreases d′ (more noise accumulates even 

with the same ‘signal’), and increased encoding time 

improves d′ (more signal relative to the same noise). 

Similarly, in some situations other factors like location 

noise (e.g., “swaps”; Bays et al.33) and ensemble 

coding40,41 seem to play a major role in memory 

errors. Thus, while we find an approximately power 

law-like relationship between set sized and d’ 

(Supplementary Figure 4), we are hesitant to assume 

that there will be a fixed ‘law’ for how set size relates 

to memory errors and note that previous work that 

claims to find such rules7,8 has almost never 

examined whether those rules hold when 

manipulating other factors that will also 

independently impact memory strength, like encoding 

time and delay.  

 

In addition, in the current work, we present a 

straightforward version of the TCC model that does 

not account for all possible factors. For example, it is 
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possible to make different predictions for different 

target colors, taking into account category effects 

(e.g., Extended Data Fig. 5). In addition, while in the 

current data we see almost no ‘swaps’ or location-

based confusions (because we use long encoding 

times and placeholders), it is of course possible to 

implement a ‘swap’ parameter in TCC (as in 

Williams, Brady & Stoermer42) or explicitly model the 

psychophysical similarity structure of location and 

therefore make parameter-free location confusion 

predictions. Similarly, hierarchical models of 

ensemble coding and grouping, or other forms of 

integration across items could potentially be 

implemented using TCC as the basis of memory 

responses. If there is significant integration across 

items or across time in a particular paradigm, more 

complex models like these would be needed because 

TCC’s item-based prediction about error distributions 

would no longer be a valid assumption. 

 

While TCC is a theory about the fundamental nature 

of the underlying memory signal in visual working 

and long-term memory tasks, and about how this 

signal is used to make decisions, there are many 

potential cognitive and neural explanations (shared 

or independent across systems) that may instantiate 

the model. Indeed, in long-term memory, signal 

detection models have often been conceptualized in 

relation to neural measures, including both 

neuroimaging43 and single-unit recording44.  

 

The central feature of TCC is the psychophysical 

similarity measurement, which provides the basis for 

the straightforward signal detection model. This 

similarity function is naturally understood using 

models of efficient coding18  or population coding10. 

For example, the idea that far away items in feature 

space are all approximately equally similar arises 

naturally from population codes —if individual 

neurons’ tuning functions only represent a small part 

of color space (e.g., 15° on the color wheel), there 

would be extremely limited overlap in the population 

of neurons that code for any two colors even a 

medium distance apart on the wheel. There would 

also be correlated noise between nearby colors, as 

we assume in TCC. 

 

Thus, the current model is in many ways related to 

existing models of working memory based on 

population codes9,10. Indeed, the similarities between 

the framework of population coding and the cognitive 

model proposed here offers significant promise for 

bridging across levels of understanding in 

neuroscience, with a population coding 

implementations of TCC possible45,46. However, as 

compared to existing population-based models10, the 

cognitive basis of the current model —with the 

measured scaling function following the well-known 

cognitive laws of similarity17,19 —allows us to fit data 

with an extremely simple 1-parameter model that 

allows generalization across tasks and draws strong 

connections to signal detection theory and long-term 

memory that are not apparent when thinking about 

population coding alone without this cognitive basis. 

In addition, framing our model in terms of signal 

detection theory allows a very general model of the 

decision process, compared to population coding 

models where the decision process is based on 

variability in spikes in a fixed neural population22, 

which are hard to reconcile with data from high-level 

stimuli like faces, which are likely encoded in many 

distinct populations, and data from long-term 

memory, which is not stored ‘online’ in a fixed neural 

population.  

 

Previous work has shown psychophysical similarity 

metrics are likely distinct for different stimuli in the 

same stimulus space (e.g., memory varies across 

colors12,13; Extended Data Fig. 5). The underlying 

space upon which the exponential similarity function 

is imposed may be designed to take advantage of 

efficient coding of environmental regularities47, such 

that the more frequent the stimuli, the more neural 

resources we devote, giving improved discriminability 

and predictable memory biases48. Taking this into 

account may allow a simple parameterization of not 

only the average similarity function, but the particular 

functions for individual stimuli (as in Fig. 1D). In 

addition, psychophysical similarity may not be a fixed 

property but may be dependent on how the current 

environment affects discriminability49,50. For example, 

memory biases are altered when discriminability is 

affected by adaptation or contextual effects48.  
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Some previous models of visual working memory 

have, like TCC, rejected the idea that the ‘fat tails’ in 

the error distribution (Fig. 1) arise from 

unrepresented items8,9. For example, models like the 

variable precision model8 hold that items vary in the 

precision with which they are encoded, and this 

heterogeneity between items is critical to explaining 

the shape of the error distribution; i.e., extremely 

poorly represented items, rather than completely 

unrepresented items, explain the tail of the error 

distribution. Like TCC, this model holds that there is 

not in fact a completely uniform, flat tail in the 

distribution; and assumes that items vary in 

representational fidelity (i.e., the independent noise 

for different items in TCC).  

 

However, in other ways, the two models differ 

substantial. The variable precision models, like other 

previous memory models, relies on the assumption 

that the response axis can usefully be thought of as 

linear. By contrast, we have shown that similarity and 

memory confusability are deeply non-linear along this 

axis, in agreement with decades of work suggesting 

psychological similarity is globally exponential (e.g., 

the universal law of generalization17,18). This results in 

significant differences between the variable precision 

model and TCC. In particular, in the variable 

precision model, the latent distribution of precisions is 

an unknown that is taken to vary between situations, 

whereas TCC uses the insight that similarity is non-

linear and relatively fixed to greatly simplify the model 

of the error distribution (allowing, for example, the 

generalizations from 180o 2-AFC that are not 

possible in the variable precision model). 

 

Finally, TCC provides a compelling connection 

between working memory and long-term recognition 

memory, which is often conceptualized in a signal 

detection framework. In particular, it can be naturally 

adapted to explain a number of findings that are in 

common between the working memory and long-term 

memory literatures but have been difficult to explain 

with previous working memory models, like the 

relationship between confidence and accuracy52,53 

(Extended Data Fig. 7 and 8) and the ability of 

participants to respond correctly when given a 

second chance even if their first response was a 

‘guess’ or ‘low precision response’51. Thus, despite 

research on working and long-term memory 

operating largely independent of one another, TCC 

provides a unified framework for investigating the 

distinctions and similarities in memory across both 

domains by emphasizing that competition and 

perceptual confusability between items is a major 

limiting factor across both working memory and long-

term memory. 
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Methods  

All conducted studies were approved by the 

Institutional Review Board at the University of 

California, San Diego, and all participants gave 

informed consent before beginning the experiment. 

All color experiments used a circle in CIE L*a*b* 

color space, centered in the color space at (L = 54, a 

= 21.5, b = 11.5) with a radius of 49. All sample sizes 

were decided a priori, and are similar to those in 

previous publications7-9,31. Approximately half of the 

data comes from experiments run in the lab, with the 

others were conducted using Amazon Mechanical 

Turk. Mechanical Turk users form a representative 

subset of adults in the United States54, and data from 

Turk are known to closely match data from the lab on 

visual cognition tasks40,55, including providing 

extremely reliable and high-agreement on color 

report data41. Any systematic differences between the 

lab studies – where we collect most memory data – 

and the Turk studies – where we collect most 

similarity data – would decrease the appropriateness 

of the similarity function for fitting the memory data, 

hurting the fit of TCC. Data collection and analysis 

were performed with knowledge of the conditions of 

the experiments.  All statistical tests are two-tailed. 

 

1. Fixed distance triad experiment. N=40 

participants on Amazon Mechanical Turk judged 

which of two colors presented was more similar to a 

target color. The target color was chosen randomly 

from 360 color values that were evenly distributed 

along a circle in the CIE L*a*b* color space, as 

described above. The pairs of colors were chosen to 

be 30 degrees apart from one another, with the offset 

of the closest color to the target being chosen with an 

offset (in deg) of either 0, 5, 10, 20, 30, 40, 50, 60, 

70, 80, 90, 120, 150 (e.g., in the 150 degree offset 

condition, the two choice colors were 150 and 180 

degrees away from the target color; in the 0 deg 

offset condition, one choice exactly matched the 

target and the other was 30 deg away). 

 

Participants were asked to make their judgments 

solely based on intuitive visual similarity and to 

repeat the word ‘the’ for the duration of the trial to 

minimize the use of verbal strategies. Each 

participant completed 130 trials, including 10 repeats 

of each of the 13 offset conditions, each with a 

different distance to the closest choice color to the 

target, and trials were conducted in a random order. 

The trials were not speeded, and the colors remained 

visible until participants chose an option. To be 

conservative about the inclusion of participants, we 

excluded any participant who made an incorrect 

response in any of the 10 trials where the target color 

exactly matched one of the choice colors, leading to 

the exclusion of 7 of the 40 participants, and based 

on our a priori exclusion rule, excluded any 

participants whose overall accuracy was 2 standard 

deviations below the mean, leading to the exclusion 

of 0 additional participants. In addition, based on an a 

priori exclusion rule, we excluded trials with reaction 

times <200ms or >5000ms, which accounted for 

1.75% (SEM:0.5%) of trials. The data from a subset 

of offset conditions is plotted in Figure 1C, and the 

full dataset is plot in Extended Data Fig. 1.  

 

2. Psychophysical scaling triad experiment. 

N=100 participants on Mechanical Turk judged which 

of two colors presented was more similar to a target 

color, as in the fixed distance triad experiment. 

However, the pairs of colors now varied in offset from 

each other and from the target to allow us to 

accurately estimate the entire psychophysical 

distance function. In particular, the closest choice 

item to the target color could be one of 21 distances 

away from the target color: 0, 3, 5, 8, 10, 13, 15, 20, 

25, 30, 35, 45, 55, 65, 75, 85, 100, 120, 140, 160, or 

180 degrees. If we refer to these offsets as oi, such 

that o1 is 0 degrees offset and o21 is 180 degrees 

offset, then given a first choice item of oi, the second 

choice item was equally often oi+1, oi+2, oi+3, oi+4, or 

oi+8 degrees from the target color (excluding cases 

where such options were >21). 

 

Participants were asked to make their judgments 

solely based on intuitive visual similarity and to 

repeat the word ‘the’ for the duration of the trial to 

prevent the usage of words or other verbal 

information. Each participant completed 261 trials, 

including 3 repeats of each of the possible pairs of 

offset conditions, and trials were conducted in a 

random order. The trials were not speeded, and the 

colors remained visible until participants chose an 
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option. Following our a priori exclusion rule, we 

excluded any participant whose overall accuracy was 

2 standard deviations below the mean (M=77.5%) 

leading to the exclusion of 8 of the 100 participants. 

In addition, based on an a priori exclusion rule, we 

excluded trials with reaction times <200ms or 

>5000ms, which accounted for 1.7% (SEM:0.26%) of 

trials.  

 

To compute psychophysical similarity from these 

data, we used a modified version of the model 

proposed by Maloney and Yang16, the Maximum 

Likelihood Difference Scaling method. Rather than 

using this model to measure the distance between 

e.g., red and green, we adapted it to measure the 

appropriate psychophysical scaling of similarity 

between colors as a function of their distance 

between colors along the wheel rather than their 

absolute color. In particular, any given trial has a 

target color, Si, and two options for which is more 

similar, Sj and Sk,. Let lij = Sj – Si, the distance 

between Si and Sj on the color wheel, which is 

always in the set [0,3,5,...180], and ψij, the 

psychophysical similarity to which this distance 

corresponds. If people made decisions without noise 

then they should pick item j if and only if ψij > ψik. We 

add noise by assuming participants decisions are 

affected by Gaussian error, such that they pick item j 

if ψij + ε > ψik. We set the standard deviation of the 

Gaussian ε noise to 1, consistent with a signal 

detection model. Thus, the model has 20 free 

parameters, corresponding to the similarity scaling 

values for each possible distance length (e.g., how 

similar a distance of 5 or 10 on the color wheel really 

is to participants), and then we fit the model using 

maximum likelihood search (fmincon in MATLAB). 

Thus, these scaled values for each interval length 

most accurately predict observers’ similarity 

judgments, in that equal intervals in the scaled space 

are discriminated with equal performance. Once the 

scaling is estimated, we normalize the 

psychophysical scaling parameters so that 

psychophysical similarity ranges from 0 to 1.   

 

We did not test all possible pairings, but simply a 

subset (5 different offsets) because collecting more 

pairs does not improve the estimate of the 

psychophysical scaling function much, if at all, since 

the pairs we used ‘overlap’ enough without doing all 

of them. Each possible pairing provides an estimate 

of a ‘slope’ on the psychophysical similarity graph. 

For each pair, the relevant part of the x-axis is 

known, and people’s d’ at discriminating each pair 

(“which is closer? target+10 degrees or target+45 

degrees”?) is an estimate of the y-axis difference / 

slope in that range (i.e. the difference in 

psychophysical similarity between those two points). 

Having 21 (distances) * 5 (offsets from those 

distances) = 105 such slope estimates, some 

covering wide ranges of the x-axis and some small 

ranges, and each well estimated, is sufficient to 

constrain the global shape of the function when using 

the MLDS method. 

 

3. Likert color similarity experiment. N=50 

participants on Mechanical Turk judged the similarity 

of two colors presented simultaneously on a Likert 

scale, ranging from 1 (least similar) to 7 (most 

similar). The colors were chosen from a wheel 

consisting of 360 color values that were evenly 

distributed along the response circle in the CIE 

L*a*b* color space. The pairs of colors were chosen 

by first generating a random start color from the 

wheel and then choosing an offset (in degrees) to the 

second color, from the set 0, 5, 10, 20, 30, 40, 50, 

60, 70, 80, 90, 120, 150, 180. Participants were given 

instructions by showing them two examples: (1) in 

example 1, the two colors were identical (0 deg apart 

on the color wheel) and participants were told they 

should give trials like this a 7; (2) in example 2, the 

two colors were maximally dissimilar (180 deg apart 

on the color wheel) and participants were told they 

should give this trial a 1. No information was given 

about how to treat intermediate trials. Participants 

were asked to make their judgments solely based on 

intuitive visual similarity and to repeat the word ‘the’ 

for the duration of the trial to prevent the usage of 

words or other verbal information. Each participant 

did 140 trials, including 10 repeats of each of the 14 

offset conditions, each with a different starting color, 

and trials were conducted in a random order. The 

trials were not speeded, and the colors remained 

visible until participants chose an option. 2 

participants were excluded for failing a manipulation 
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check (requiring similarity >6 for trials where the 

colors were identical). Based on an a priori exclusion 

rule, we excluded trials with reaction times <200ms 

or >5000ms, which accounted for 3.0% (SEM:0.4%) 

of trials. Similarity between two colors separated by 

x° was measured using a 7-point Likert scale, where 

Smin = 1 and Smax = 7. To generate the 

psychophysical similarity function, we simply 

normalize this data to range from 0 to 1, giving a 

psychophysical similarity metric, such that f(x) = ((Sx  

- Smin) / (Smax - Smin)). 

 

4. Perceptual matching experiment. N=40 

participants on Mechanical Turk were shown a color 

and had to match this color, either using a continuous 

report color wheel (100 trials) or choosing among 60 

options (100 trials; spaced 6 degrees apart on the 

color wheel, always including the target color). The 

60-AFC version was designed to limit the contribution 

of motor noise, since the colors in this condition were 

spaced apart and presented as discrete boxes that 

could not easily be ‘misclicked’. Colors were 

generated using the same color wheel as other 

experiments, and participants had unlimited time had 

to choose the matching color. The color and color 

wheel/response options remained continuously 

visible until participants clicked to lock in their 

answer. The color was presented at one of 4 

locations centered around fixation (randomly), 

approximately matching the distance to the color 

wheel and variation in position used in the continuous 

report memory experiments. 1 participant’s data was 

lost due to experimenter error and 2 participants 

were excluded for an average error rate greater than 

2 standard deviations away from the mean. 

 

To convert this data into a perceptual correlation 

matrix —asking how likely participants are to confuse 

a color x degrees away in a perception experiment —

we relied upon the 60-AFC data alone, since this 

data has no contribution from motor noise and so is 

solely a measure of perceptual noise. However, 

using the continuous report data instead result in no 

difference in any subsequent conclusions, as the 

contribution of motor noise in that task appeared to 

be minimal. To create the perceptual correlation 

matrix, we created a normalized histogram across all 

participants of how often they made errors of each 

size up to 60 degree errors (-60, -54… 0, … 54, 60), 

and then linearly interpolated between these to get a 

value of the confusability for each degree of distance. 

We then normalized this to range from 0 to 1.  

 

5. Modeling Data Using the Target Confusability 

Competition (TCC) Model. The model is explained 

interactively here: https://bradylab.ucsd.edu/tcc/ In 

general, the model is typical of a signal detection 

model of long-term memory, but adapted to the case 

of continuous report, which we treat as a 360 

alternative forced-choice for the purposes of the 

model. The analysis of such data focuses on the 

distribution of errors people make measured in 

degrees along the response wheel, x, where correct 

responses have x=0° error, and errors range up to 

x=±180°, reflecting the incorrect choice of the most 

distant item from the target on the response wheel 

(Fig. 1B). In the TCC model, when probed on a single 

item and asked to report its color, (1) each of the 

colors on the color wheel generates a memory-match 

signal mx, with the strength of this signal drawn from 

a Gaussian distribution, mx ~ N( dx, 1), (2) 

participants report whichever color x has the 

maximum mx, (3) the mean of the memory-match 

signal for each color, dx, is determined by its 

psychophysical similarity to the target according to 

the measured function (f(x)), such that dx = d′ f(x) 

(Figure 2) and (4) the noise is correlated across 

nearby colors according to confusability in a 

perceptual matching task. As f(x), the psychophysical 

similarity function, we use the smooth function 

estimated from the Likert similarity experiment 

although the triad task modeled similarity function 

predicts fundamentally the same results (Extended 

Data Fig. 4).  

 

According to the model, the mean memory-match 

signal for a given color x on the working memory task 

is given by dx = d′ f(x), where d′ is the model’s only 

free parameter. When x = 0, f(x) = 1, so d0 = d′. By 

contrast, when x = 180, f(x) = 0, so d180 = 0. Then, as 

noted above, at test each color on the wheel 

generates a memory-match signal, mx, 

conceptualized as a random draw from that color’s 

distribution centered on dx. That is, if the noise was 

https://bradylab.ucsd.edu/tcc/
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uncorrelated between nearby colors, mx ~ N( dx, 1). 

The response (r) on a given trial is made to the color 

on the wheel that generates the maximum memory-

match signal, r = argmax(m).  

 

Thus, the full code for sampling an absolute value of 

error from such a TCC-like (uncorrelated noise) 

model is only two lines of MATLAB: 
memMatchStrengths = randn(1,180)+ 

similarityFunction * dprime; 

[~,memoryError] = max(memMatchStrengths); 

 

This model fits the data well as-is (see Extended 

Data Fig. 2), but as specified so far, this model 

assumes that 360 independent color probes elicit 

independent noisy memory-match signals. The 

shape of the distributions the model predicts are 

effectively independent of how many color channels 

we assume, so this number is not important to TCC’s 

ability to fit working memory data, but the d′  value in 

the model does change depending on the number of 

color channels used. Thus, to make the d′ value in 

TCC comparable to real signal detection d′ values, it 

is important to consider “how many” color channels 

people are accessing.   

 

Rather than make this a discrete decision (e.g., ‘there 

are 30 independent colors on the color wheel, so 

people consider 30 channels’), we instead estimated 

the covariance between nearby channels in a 

continuous manner. The familiarity value of color 181 

and 182 on the wheel cannot possibly be fully 

independent, since these two colors are perceptually 

indistinguishable. Following this intuition, we make a 

simple assumption: the amount of shared variance in 

the noise between any two color channels is simply 

how often colors at that distance are confused in a 

perceptual matching task. Thus, p(x), the correlation 

in the noise between any two colors x apart on the 

color wheel, is given by Cx / C0, where Cx is how often 

colors x degrees away from the target are chosen in 

the perceptual matching task (with these values 

interpolated from the histogram of errors; see 

Methods section 4). On average, colors 1 degree 

away are chosen about 96% as often as the correct 

color in the matching task, so the noise between any 

two channels 1 degree apart is assumed to share 

96% of its variance; 82% at 5 degrees; etc. Thus, 

having measured both the similarity function and the 

perceptual matching matrix, to sample from the full 

(correlated-noise) TCC model, we can use MATLAB 

code that is nearly as straightforward as the 

uncorrelated model: 
memMatchStrengths = mvnrnd(similarityFunction * 

dprime, percepCorrMatrix); 

[~,memoryError] = max( memMatchStrengths); 

 

Thus, in the full version of TCC, the mean of the 

memory-match signal for each color, dx, is determined 

by its psychophysical similarity to the target 

according to the measured function f(x), which is 

taken to be symmetrical for the fitting based on the 

averaged similarity data, such that dx = d′ f(|x|), for x’s 

[-179,180]. The covariance between colors (R) is 

given by the perceptual confusability of colors at that 

distance, p(x), which is also taken to be symmetric: 
 

 
To use the perceptual correlation data as the 

covariance in the correlated model, because it might 

not always be a perfect correlation matrix (e.g., not 

perfectly symmetric, as it was based on real data), 

we first computed R and then iteratively removed 

negative eigenvalues from this matrix and forced it to 

be symmetric until it was a valid correlation matrix. 

This resulted in only minimal changes compared to 

the raw perceptual correlations inferred from the 

perceptual confusability data. 

 

Then let (X-179, ... , X180) be a multivariate normal 

random vector with mean d, unit variance, and 

correlation matrix R. The winning memory strength 

(m; i.e., subjective confidence) and reported color 

value, r, are then the max and argmax, respectively, 

of this vector:  

 m = max(X-179, ... , X180) 

r = argmax(X-179, ... , X180) 
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And the error, e, is the circular distance from r to 0. 

The distribution of m is in theory directly 

computable56, but we rely on sampling from this 

distribution for the fits in the current paper (see 

below).  

 

Although also not important to the fit of the current 

data, the model can also be adapted to include a 

motor error component. Whereas existing mixture 

models predict the shape of the response distribution 

directly and thus confound motor error with the 

standard deviation of memory (see Fougnie et al.57 

for an attempt to de-confound these), our model 

makes predictions about the actual item that 

participants wish to report. Thus, if participants do not 

perfectly pick the exact location of their intended 

response on a continuous wheel during every trial, a 

small degree of Gaussian motor error can be 

assumed to be included in responses, e.g., the 

response on a given trial, rather than being 

argmax(X-179, ... , X180), likely includes motor noise of 

some small amount, for example, 2°: 

r ~ N(argmax(X-179, ... , X180), 2°)  

 

Thus, for accuracy to the real generative model of 

responses, in the model fitting reported in the present 

paper, we include a fixed normally distributed motor 

error with SD=2°, although we found the results are 

not importantly different if we do not include this in 

the model. 

 

For fits using the uncorrelated noise model, fits of the 

d’ parameter of the model to datasets were 

performed using the MemToolbox58 making use of 

maximum likelihood (see code on OSF). For fits of 

the correlated model  —which is difficult to compute a 

likelihood function for but straightforward to sample 

from  —we relied on sampling 500,000 samples from 

the model’s error at each of a range of d’ values (0 to 

4.5 in steps of 0.02) and slightly smoothing the result 

to get a pdf for the model at each d′ value. The 

uncorrelated noise version of TCC  —which can be 

directly maximized  —results in the same fits as the 

correlated version, with d′ linearly scaled by ~0.65. 

(See Extended Data Figure 2). Thus, it is also 

possible to fit the correlated noise version by fitting 

the uncorrelated version through maximum likelihood 

with the appropriate adjustment to d′, and doing so 

results in the same fits. 

 

6. Continuous color report data (set size 1, 3 and 

6, 8). The continuous color report data used for fitting 

the model was collected in the lab to allow a larger 

number of trials per participant. N = 20 participants 

performed 100 trials of a memory experiment at each 

of set size 1, 3, 6 and 8, for a total of 400 trials (plus 

4 practice trials). The display consisted of 8 

placeholder circles. Colors were then presented for 

1000ms, followed by an 800ms ISI. For set sizes 

below 8, the colors appeared at random locations 

with placeholders in place for any remaining locations 

(e.g. at set size 3, the colors appeared at 3 random 

locations with placeholders remaining in the other 5 

locations). Colors were constrained to be at least 15° 

apart in color space along the response wheel. After 

the ISI, a target item was probed by marking a 

placeholder circle was marked with a thicker outline, 

and participants were asked to respond on a 

continuous color wheel to indicate what color had 

been presented at that location. The response wheel 

was held constant from trial-to-trial. Error was 

calculated as the number of degrees on the color 

wheel between the probed item and the response. 

No subjects were excluded. 

 

7. Continuous report memory as a function of 

delay (set size 1, 3, 6). N = 20 participants in-lab 

completed a color working memory task similar to the 

previous high set size experiment, but with the 

following exceptions. Participants performed 12 

blocks of 75 trials (900 trials total). Each block 

contained an equal number of trials at set size 1, 3, 

and 6. The display consisted of 6 placeholder circles. 

Colors were presented for 500ms, and followed by a 

delay of either 1000ms, 3000ms, or 5000ms. Delay 

time was blocked, and participants were informed at 

the beginning of each block the delay time for that 

block. Each combination of the 3 set sizes and the 3 

delays was used in 100 trials. One participant was 

excluded for having performance greater than 2 

standard deviations worse than average (across all 

conditions), leaving a final sample of 19. 
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8. Continuous report memory as a function of 

encoding time (set size 1, 3, 6). N = 20 participants 

in-lab completed a color working memory task 

identical to the delay experiment, but with the 

following exceptions. Participants performed 12 

blocks of 75 trials. Each block contained an equal 

number of trials at set size 1, 3, and 6. Colors were 

presented for either 100ms, 500ms, or 1500ms. 

Encoding time was blocked, and participants were 

informed at the beginning of each block the encoding 

time for that block. Following encoding, there was a 

1000ms delay before a target item was probed. Each 

combination of the 3 set sizes and the 3 encoding 

times was used in 100 trials. No subjects were 

excluded. 

 

9. Model comparisons to mixture models. For all 

model comparisons in the paper, we created new 

versions of mixture models designed to be directly 

comparable to TCC. In particular, to make predictions 

derived from mixture models comparable to those 

derived from TCC (which specifies a probability of 

response discretely for each 1 degree of the wheel, 

not over a continuous distribution), we use discrete 

versions of the 2-parameter and 3-parameter mixture 

models in which the probabilities of the data are 

normalized over each of 360 possible integer error 

values (not over the continuous space of errors).  

 

We performed two types of model comparisons: one 

to simply assess the fit of the model to the data, and 

one designed to penalize more complex models. In 

particular, we first performed a cross-validation 

procedure to assess the fit of each model59. 

Specifically, we fit the TCC and the 2- parameter and 

variable precision mixture models to data from each 

set of N-1 trials separately for each subject and set 

size and then evaluated the log-likelihood of this 

model using data from the single held out trial. We 

then assessed the reliability of this likelihood 

difference across subjects separately for each set 

size. TCC and mixture models provided relatively 

comparable fits (see Supplementary Table 2), which 

is to be expected given the mixture model can almost 

perfectly accurately mimic TCC (see Supplementary 

Fig. 3) and given that the amount of data used to fit 

the models is much greater than the number of 

parameters in either model (which ranges from 1-3), 

so cross-validation provides effectively no penalty for 

complexity.  

 

We then compared how well the competing models 

(TCC; 2-parameter mixture model; 3-parameter 

variable precision mixture model) fit data from 

individual participants for the color report data when 

using an explicit penalty for the greater complexity of 

the mixture models. In particular, we assessed BIC 

separately for each set size and each participant. We 

found a strong preference for TCC over both mixture 

models when penalizing complexity (see 

Supplementary Table 2). Note that this was true even 

though TCC fits are based on aggregated similarity 

functions from a different group of participants, 

collected in a different way (online vs. in lab), 

suggesting the global structure of the psychophysical 

similarity function is largely a fixed aspect of a given 

stimulus space. Ideally, TCC would be fit with a 

similarity function specific to each individual target 

color (which can be done and predicts the 

appropriate deviations; see Extended Data Fig. 5), 

which would almost certainly improve the fit of TCC 

even further with no added parameters (because the 

added complexity would simply be more measured 

perceptual data). However, in the current fits we rely 

solely on averaged similarity to demonstrate how it is 

the global, not local, structure of the similarity space 

that is critical to the fit of TCC.  

 

10. 2-AFC at different foil similarities. N=60 

participants on Mechanical Turk completed 200 trials 

of a 4-item working memory task. On each trial, they 

saw 4 colors randomly chosen from the color wheel 

(subject to the constraint that no two colors were 

within 15 deg. of each other). The colors were 

presented for 1000ms and then after an 800ms 

delay, had to answer a 2-AFC memory probe about 

one of the colors. The foil color in the 2-AFC could be 

offset from the target 180, 72, 24, or 12 degrees (50 

trials/condition). These conditions were interleaved 

so that participants needed to maintain detailed 

memories of the color on every trial, since 

conceivably if only 180 degree foils were present for 

a block or in an entire experiment, participants would 

be likely to encode only categorical, not perceptual 
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information. The response options were presented at 

appropriate locations along a full color wheel -- e.g., 

the 180 degree foils were presented 180 deg. apart 

on the screen, and the 12 deg. foils were presented 

12 deg. apart on the screen, to visually indicate the 

distance between the target and foil in color space. 

The response wheel was rotated from trial-to-trial. 

 

Performance was scored as the number correct out 

of 50 at each offset of the memory foil. 5 participants 

were excluded for below chance performance in the 

maximally easy 180 deg. offset condition, leaving 

N=55 participants. 

 

In order to assess the predictions of TCC for this data 

in a way amenable to the use of Bayes factors, we 

took the number correct out of 50 in the 180 deg. foil 

condition and used this to calculate a probability 

distribution over d’ values (e.g., any given d′ predicts, 

according to the binomial function, a likelihood over 

all numbers of correct responses). In TCC, a given d′ 

value for 180 deg. foils predicts d′ for all other offsets 

straightforwardly, although for the correlated-noise 

TCC, performance is not simply d′ modulated by 

similarity (for similar foils, the correlated noise plays a 

role). Thus, to predict performance we sampled from 

the model repeatedly, e.g., for 24 deg. foils, in 

MATLAB notation: 
memoryMatchStrengths  = 

mvnrnd(similarityFunction * dprime180, 

percepCorrMatrix, 50); 

isCorrect=memoryMatchStrengths0deg>memoryMatchStr

engths24deg 

 

In other words, to assess performance in the 24 deg. 

offset condition, we assumed responses were 

generated according to the argmax of only these 

values: 

r = argmax(X0, X24) 

To preserve all uncertainty, we marginalized over the 

distribution of d′ values implied by the number of 

correct trials in the 180 deg. foil case and used this to 

make a prediction about the distributions of correct 

answers expected for each of the other offset 

conditions. This allows us to understand the 

likelihood of each subjects’ performance in the other 

conditions given their 180 deg. foil performance in 

TCC. 

 

To assess the likelihood of performance at different 

offsets in the mixture model framework of Zhang and 

Luck7, we use performance at the 180 deg. foil 

conditions to assess the “guess rate” of participants 

(guess rate = 1 - (2*percentCorrect180-1)) in the 

standard way (e.g., Brady et al.60). However, in this 

framework, 180 deg. foils leave an unknown free 

parameter: memory precision cannot be assessed 

using such foils, and thus is free to vary. Thus, to 

predict a likelihood of each performance level at each 

other foil offset, we needed to marginalize over the 

unknown precision parameter. To minimize 

assumptions about this, we used the same prior on 

precisions that van den Berg et al.8 used when fitting 

both the standard mixture model and their own 

variable precision model, a uniform prior over the 

concentration parameter of the von Mises from 0-

200. For any given ‘guess rate’ and ‘precision’, we 

then calculated the percentage of the PDF that was 

closest to each 2-AFC response option at each offset 

to generate a likelihood for the data (as in 

MemToolbox58). To calculate Bayes factors, we used 

a grid of values for both the d′ in TCC and for the 

precision in the mixture model, using steps of 1 in the 

precision and steps of 0.01 in d′, and we assessed 

the summed log likelihood of each of the 3 other 

offsets (e.g., not including the 180 deg. condition) as 

our final data likelihood. 

 

11. 2-AFC generalization to n-AFC and 

continuous report. N=60 participants on Mechanical 

Turk completed 200 trials of a 4-item working 

memory task. On each trial, they saw 4 colors 

randomly chosen from the color wheel (subject to the 

constraint that no two colors were within 15 deg. of 

each other). The colors were presented for 1000ms 

and then after an 800ms delay, had to answer a 

probe about one of the colors. This probe could be a 

2-AFC (with 180 deg. different foil), an 8-AFC (with 

the choices equally spaced around the color wheel, 

and always including the target), a 60-AFC (similarly 

equally spaced), or continuous report (360-AFC).  

These conditions were interleaved so that 

participants needed to maintain detailed memories of 

the color on every trial, since conceivably if only 180 

degree foils were present for a block or in an entire 
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experiment, participants would be likely to encode 

only categorical, not perceptual information. The 

response options were presented at appropriate 

locations along a full color wheel -- e.g., the 2-AFC 

180 degree foils were presented 180 deg. apart on 

the screen, and the 60-AFC foils deg. foils were 

presented 6 deg. apart on the screen, to visually 

indicate the distance between the target and foils in 

color space. The response wheel was rotated from 

trial-to-trial. 

 

Performance was scored as the number correct out 

of 50 at each offset of the memory foil. One 

participant’s data was lost, and 7 participants were 

excluded for below chance performance in the 

maximally easy 2-AFC, 180 deg. offset condition, 

leaving N=52 participants. 

 

The simplest metric is simply to compare the d’ 

computed from 2-AFC performance (e.g., 

(norminv(hit)-norminv(fa))/sqrt(2)) to the d’ from fitting 

TCC to the continuous report data. These are 

extremely strongly related (Fig. 5B).  

 

In order to assess the predictions of TCC for this data 

in a way amenable to the use of Bayes factors, we 

again took the number correct out of 50 in the 2-AFC 

180 deg. foil condition and used this to calculate a 

distribution over d’ values (e.g., any given d′ predicts, 

according to the binomial function, a likelihood over 

all numbers of correct responses). In TCC, a given d′ 

value for 180-foils predicts d′ for all other n-AFCs 

(including 360-AFC) straightforwardly, by simply first 

choosing the maximum out of the relevant foil options 

that are present, e.g., at 8-AFC: 

 

r = argmax(…, X-45, X0, X45, …) 

 

To preserve all uncertainty, we marginalized over the 

distribution of d′ values implied by the number correct 

in the 180 deg. foil case and used this to make a 

prediction about the distributions of responses to 

each foil expected for each of the other n-AFC 

conditions. This allows us to understand the 

likelihood of each subjects’ performance in the other 

conditions given their 180 deg. foil performance in 

TCC. 

 

To assess the likelihood of performance in 

continuous report given performance in the 2-AFC 

task,  in the mixture model framework of Zhang and 

Luck7, we use performance at the 180 deg. foil 

conditions to assess the “guess rate” of participants 

(guess rate = 1 - (2*percentCorrect180-1)) in the 

standard way (e.g., Brady et al.60). However, in this 

framework, 180 deg. foils again leave an unknown 

free parameter: memory precision cannot be 

assessed using such foils, and thus is free to vary. 

Thus, to predict a likelihood of each performance 

level at each other foil offset, we needed to 

marginalize over the unknown precision parameter. 

To minimize assumptions about this, we used the 

same prior on precisions that van den Berg et al.8 

used when fitting both the standard mixture model 

and their own variable precision model, a uniform 

prior over the concentration parameter of the von 

Mises from 0-200. For any given ‘guess rate’ and 

‘precision’, we then calculated the likelihood of 

subject’s continuous report performance under these 

parameters. To calculate Bayes factors, we used a 

grid of values for both the d′ in TCC and for the 

precision in the mixture model, using steps of 1 in the 

precision and steps of 0.01 in d′. We assessed the 

log likelihood of TCC and the mixture model only in 

the continuous report case, having fit the 

parameter(s) using only the data from the 2-AFC 180 

deg. condition. 

  

12. Face identity continuous report data (set size 

1 and 3). We utilized the same continuous report 

task, but adapted the stimulus space to face identity 

using the continuous face identity space and 

continuous response wheel created in Haberman, 

Brady and Alvarez29. In particular, as described in 

that work, the faces were 360 linearly interpolated 

identity morphs, taken from the Harvard Face 

Database, of three distinct male faces (A-B-C-A; see 

Figure 6), generated using MorphAge 

software(version 4.1.3, Creaceed). Face morphs 

were nominally separated from one another in 

identity units, which corresponded to steps in the 

morph space. Prior to morphing, face images were 

luminance normalized. In our memory task, we used 

set sizes 1 and 3, showing either 1 or 3 faces at 
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once, and the encoding display was shown for 1.5 

seconds due to the increased complexity of the face 

stimuli and task difficulty. Participants on Mechanical 

Turk (N=50) completed 180 trials. The first 20 trials 

were practice and not included in the analysis. 14 

participants were excluded for having near-chance 

performance levels (d′<0.50) at set size 3, although 

including all subjects with d′>=0 does not affect our 

conclusions or the fit of TCC.   

 

13. Face identity similarity ‘quad’ task. N=102 

participants on Mechanical Turk judged which of two 

pairs of faces presented were more distinct (e.g., 

which pair had constituent items that were more 

different from each other). On each trial, we chose 2 

pairs of faces, with the first item in each pair being 

randomly chosen and the second item in each pair 

always having an offset of 0, 5, 10, 20, 40, 60, 80, 

100, 140, or 180 away. Altogether, they completed 

18 trials of each kind, giving a total of 180 trials each. 

 

Participants were asked to make their judgments 

solely based on intuitive visual similarity, rather than 

the use of knowledge of faces or using verbal labels. 

We excluded participants whose overall performance 

level was more than 2 standard deviations below the 

mean, resulting in a final sample of N=85.  

 

To compute psychophysical distance from these 

data, we used a similar model as for colors, based on 

the model proposed by Maloney and Yang16, the 

Maximum Likelihood Difference Scaling method. In 

particular, any given trial has two pairs of faces, 

where their face-wheel values are, Si, Sj and Sk, Sl. 

Let lij = Sj – Si, the length of the physical interval 

between Si and Sj, which is always in the set 

[0,5,10...180], and ψij, the psychophysical similarity to 

which this distance corresponds. If people made 

decisions without noise then they should pick pair i,j if 

and only if ψij > ψkl. We add noise by assuming 

participants decisions are affected by Gaussian error, 

such that they pick pair i,j if ψij + ε > ψkl. We set the 

standard deviation of the Gaussian ε noise to 1, so 

that the model has 9 free parameters, corresponding 

to the psychophysical scaling values for each 

possible interval length (e.g., how similar a distance 

of 5 or 10 ‘really’ is to participants), and then we fit 

the model using maximum likelihood search (fmincon 

in MATLAB). Thus, these scaled values for each 

interval length most accurately predict observers’ 

judgments, in that equal intervals in the scaled space 

are discriminated with equal performance. Once the 

scaling is estimated, we normalize the 

psychophysical scaling parameters so that 

psychophysical similarity ranges from 0 to 1.  

 

14. Face identity perceptual matching. N=40 

participants on Mechanical Turk were shown a face 

and had to match this face using a continuous report 

wheel (100 trials). Because the contribution of motor 

noise appeared to be minimal in the color matching 

task (relative to perceptual error), we used only a 

continuous report wheel (no 60-AFC). Faces were 

generated from the same continuous face space 

used in other experiments, and participants had 

unlimited time had to choose the matching face. The 

face and face wheel/response options remained 

continuously visible until participants clicked to lock in 

their answer. The face was presented at one of 4 

locations centered around fixation (randomly), 

approximately matching the distance to the face 

wheel and variation in position used in the continuous 

report memory experiments. 7 participants were 

excluded for below chance error rates. 

 

To convert this data into a perceptual correlation 

matrix -- asking how likely participants are to confuse 

a face x degrees away in a perception experiment -- 

we created a normalized histogram across all 

participants of how often they made errors of each 

size (in bins of 5 deg.: -180, -175, … 180) and then 

linearly interpolated between these to get a value of 

the confusability for each degree of distance. We 

then normalized this to range from 0 to 1.  

 

15. Visual long-term memory color report task. 

Long-term memory data from Fig. 6 was taken from 

Miner, Schurgin, Brady30, Experiment 2A. N=30 

participants in the lab at UC San Diego performed 5 

blocks of a long-term memory experiment. In each 

block they memorized real-world objects’ colors, and 

then after a brief delay, were shown a sequence of 

memory tests. Each block’s study session consisted 

of 20 items of distinct categories seen only once and 
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10 items also of distinct categories seen twice, for a 

total of 40 presentations of colored objects. Each 

presentation lasted 3 seconds followed by a 1 

second inter-stimulus interval. At test, 20 old objects 

were presented (10 seen once, 10 seen twice) and 

20 new objects of distinct categories were presented. 

Participants saw each object in grayscale and made 

an old/new judgment, and then, if they reported the 

item was old, they reported its color using a 

continuous color wheel. As described in Miner et 

al.30, 6 participants were excluded per the criterion 

used in that paper.   

 

Note that long-term memory performance in this task 

likely depends on a two part decision -- item memory 

and source memory (e.g., the object itself, and then 

its color). This two-part decision is related to the 

processes of recollection and familiarity that can be 

modeled in various ways61, and likely introduces 

significant heterogeneity into the color memory 

strength, since some items will have weak item 

memories, preventing the retrieval of color 

information. TCC provides a strong fit here, and to 

the other long-term memory data plotted in Fig. 8, 

without addressing this, likely due to the fact that item 

memory in all of these studies was very strong (only 

a small number of categorically distinct items needed 

to be remembered). Future research should clarify 

how TCC connects to distinctions between 

recollection and familiarity and the extent to which 

heterogeneity in d’ between items in long-term 

memory must be assumed for fitting a wider variety 

of tasks.  

 

16. Literature Analysis. To assess our model’s 

prediction that previously observed trade-offs 

between different psychological states are measuring 

the same underlying parameter (d′), we conducted a 

literature analysis of data from color working memory 

research. In particular, we examined the two 

parameters most commonly reported by those fitting 

mixture models to their data, precision (in terms of 

SD) and guessing.  

 

We searched for papers in mid-2018 that used these 

mixture model techniques by finding papers that cited 

the most prominent mixture modeling toolboxes, 

Suchow, Brady, Fougnie & Alvarez58 and Bays et 

al.62. We used a liberal inclusion criteria in order to 

obtain as many data points as possible. Our inclusion 

criteria were papers that cite either of these 

toolboxes and report data where: 1) There was some 

delay between the working memory study array and 

test; 2) Instructions were to remember all the items; 

3) SD/guess values were reported or graph axes 

were clearly labeled; 4) Participants were normal, 

healthy, and between ages 18-35. 5). Colors used 

were widely spaced, discriminable colors from the 

CIE L*a*b* color space. Note that even slight 

changes in the color wheel used between papers (or 

the addition of noise to stimuli7) changes the 

perceptual confusability of the stimuli and therefore 

ideally calls for a different similarity function to be 

measured and therefore a different prediction from 

TCC about the relationship between ‘guess rate’ and 

‘SD’. However, in the current literature analysis we 

simply assumed these were the same for all papers. 

For papers that did not report SD/guess values in the 

text or tables, these values were obtained by 

digitizing figures with clear axis labels63.  

 

These inclusion criteria resulted in a diverse set of 

data points, including studies using sequential or 

simultaneous presentation, feedback vs no feedback, 

cues vs no-cues, varying encoding time (100-2000 

ms), and variable delay (1-10 sec). A total of 14 

papers and 56 data points were included 

(Supplementary Table 4). In general, TCC provides a 

strong fit to this existing data given the heterogeneity 

in methods (Supplementary Fig.  4) and this data is 

also consistent with the idea that there is no added 

‘guessing’ at high set sizes (Supplementary Fig. 5). 

 

Data Availability Statement 

All relevant data for this manuscript are available at: 

https://osf.io/j2h65/?view_only=fdd51dd775a945508c

7cbbf25b662692 

 

Code Availability Statement 

All relevant analysis code for this manuscript is 

available at: 

https://osf.io/j2h65/?view_only=fdd51dd775a945508c
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Extended Data Figures 

 

 
 

Extended Data Figure 1. (A) Data from all distances in the fixed distance triad task (Figure 1C). On each trial, there was 
a target color, here always at 0°, and participants' task was to choose which of two other colors was closer to the target 
color in color space. The two choice colors always differed by 30°. The x-axis shows the closer color of the two choice 
colors. That is, the 150° label on the x-axis reflects performance on a condition where the two choices were 150° and 
180° away from the target color. As shown with a subset of this data in Figure 1C, increasing distance from the target 
results in a decreased ability to tell which of two colors is closer to the target in color space. This shows the non-linearity 
of color space with respect to judgments of color similarity. Note that this function does not depict the actual 
psychophysical similarity function: Roughly speaking, the d′ estimate in this graph is the estimate of instantaneous slope 
(over a 30 deg. range) in the similarity function in Figure 1F. (B) Despite being conceived of as a color wheel in many 
memory experiments, in reality, participants internal representation of color -- and thus the confusability between colors -- 
ought to be a function of their linear distance in an approximately 3D color space, not their angular distance along the 
circumference of an artificially imposed wheel. Since the colors are equal luminance, we can conceive of this on a 2D 
plane. Thus, on this plane the confusability of a color “180 degrees away” on the wheel is only slightly lower than one “150 
degrees away” on the wheel, since in 2D color space it is only slightly further away. This simple non-linearity from ignoring 
the global structure of the color ‘wheel’ partially explains the long tails observed in typical color report experiments, 
although it does not explain the full degree of this non-linearity, which is additionally attributable to psychophysical 
similarity being a non-linear function even of distance across 2D color space. (C) The similarity function remains non-
linear even in 2D color space. Distances here are scaled relative to the color wheel rather than in absolute CIELa*b* 
values., e.g., an item 180 degrees opposite on the color wheel is “120” in real distance since if the distance along the 
circumference is 180, 120 is the distance across the color wheel. (D) Plotted on a log axis, the similarity falls off 
approximately linearly, indicating that similarity falls of roughly exponentially with the exception of colors nearby the target. 
The non-exponential fall-off near the 0 point reflects perceptual noise/lack of perceptual discriminability between nearby 
colors. As shown in Figure 1, when you convolve measured perceptual noise with an exponential function, this provides a 
very good fit to the similarity function, consistent with a wide-variety of evidence about the structure of similarity and 
generalization19. 
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Extended Data Figure 2. Simulations of uncorrelated vs. correlated noise versions of TCC. Only the correlated-noise 
TCC produces true d′ values -- those that are interchangeable with d′ you’d estimate from a same/diff task with the same 
stimuli. However, the simpler uncorrelated noise TCC predicts the exact same distributions of errors in continuous report, 
and the d’ values between the correlated and uncorrelated noise models are linearly related by a factor of ~0.65. Thus, in 
many cases it may be useful to fit the uncorrelated TCC to data and then adjust the d′ rather than fitting correlated noise 
TCC. This also means that for color, similarity alone without perceptual confusion data can be used to make linear (but 
not exact) predictions about confusability in n-AFC tasks outside the range of perceptual confusion (approx. 15 deg).  
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Extended Data Figure 3. Simulations show data sampled from TCC, using either the measured psychological similarity 

function or a linear similarity function. Given a linear similarity function, it is clear TCC does not predict response 

distributions similar to human performance -- such fits are critically dependent on the well-known exponential-like shape of 

similarity functions. Notice also how the max rule from the signal detection decision process plays a major role in the 

shape of the distributions. Since people pick the strongest signal, the distribution of max signals is peakier than the 

underlying signals themselves (which always follows the similarity function). 
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Extended Data Figure 4. Comparison of fit to memory data for similarity functions reported in main text. In the current 
data for color, both the model-based triad psychophysical scaling data and the Likert similarity rating produce extremely 
similar data (see Figure 1). Thus, they all produce similar fits to the memory data (shown here are the set size data). It is 
important to note that depending on the number of trials, a large number of data points (i.e. subjects) may be necessary in 
order to obtain reliable estimates of a given stimulus space in the triad and quad scaling tasks (we use the quad task for 
face similarity). The Likert task requires considerably less data to estimate, and it was in agreement with the results of the 
triad task for colors, so we rely on it as our primary measure of similarity in the current fits. However, depending on the 
stimulus space, observers may utilize different strategies in such subjective similarity tasks (particularly for spaces, like 
orientation, where it is obviously a linear physical manipulation), and ultimately an objective task like the quad task may be 
best to understand the psychophysical similarity function. This is why for the face space task we used the quad similarity 
task. The task used to estimate similarity is important in that it is important that participants provide judgments of the 
absolute interval between stimuli and not rely on categories or verbal labels, or, in the triad task, that participants not rely 
on a relational or relative encoding of the two choice items rather than their absolute distance to the target item. How best 
to ensure that participants rely on absolute intervals is represented in a large literature dating to Thurstone65 and 
Torgerson15. 
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Extended Data Figure 5. Non-uniformities in memory and similarity for set size data reported in the main text. Many 
stimulus spaces contain non-uniformities, which may affect subsequent working memory performance. Indeed, Bae et 
al.12 discovered non-uniformities in working memory for color, where responses for targets tend to be more precise for 
some colors than others and can be biased towards nearby categorical anchors (i.e. red, blue, yellow, etc). While many 
assume randomizing target colors in working memory should account for potential biases arising from a non-uniform 
feature space, others have suggested these differences may have broader consequences than previously considered13,14. 
A key advantage of TCC is that by taking into account the psychophysical similarity function, non-uniformities within 
whatever feature space being probed can be automatically captured if psychophysical similarity data is measured 
separately from each relevant starting point in the feature space (e.g., Figure 1D). In the current work, we mostly use only 
a single psychophysical similarity estimate averaged across possible starting points and fit memory data averaged across 
starting points. However, this is not necessary to the TCC framework, and is only a simplification -- if we wish to fit 
memory data averaged across all targets, we should use similarity averaged across all targets (or use the particular 
similarity function relevant to each item on each trial). Here we show that rather than using a psychophysical similarity 
function that averages over all targets, one can also use similarity specific to each possible target, which differ and have 
predictable consequences for memory in our set size experiment. For example, the propensity of errors (at set size 1, 3, 6 
and 8) in the clockwise vs. counterclockwise direction for a given target color is directly predicted by the similarity function 
-- even when very similar colors have more similar colors in opposite directions (top row), and this is true across all color 
bins (bottom right). Thus, using target-specific similarity functions naturally captures potential non-uniformities or biases 
within a feature space with no change in the TCC framework. 
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Extended Data Figure 6. Data from the set size experiment reported in the main text. While memory strength varies 
according to a variety of different factors, many researchers have been particularly interested in the influence of set size. 
TCC shows that at a fixed encoding time and with a fixed delay, memory strength (d’) decreases according to a power law 
as set size changes, broadly consistent with fixed resource theories of memory10,25. However, capacity cannot be fixed 
globally, as the total “capacity” appears to smoothly change with encoding time. 
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Extended Data Figure 7. Simulation from TCC illustrating how signal detection can predict variance in representational 
fidelity as a function of confidence even with a fixed d’ (see also42). Some studies used to support variability of information 
across individual items or trials have done so by using a confidence metric28. While variability and confidence are distinct 
from one another, in a large amount of research they are inextricably linked. An interesting advantage and implication of 
signal detection-based models is that they naturally predict confidence data67. In particular, the strength of the winning 
memory match signal is used as the measure of memory strength -- and confidence -- in signal detection models of 
memory. Thus, even with a fixed d′  value for all items, TCC naturally predicts varying distributions relative to confidence. 
This likely explains some of the evidence previously observed in the literature that when distinguishing responses 
according to confidence, researchers found support for variability in precision among items / trials. Note that this occurs in 
TCC even though d′ is fixed in this simulation -- that is, all trials are generated from a process with the same signal-to-
noise ratio. Thus, variability in responses as a function of confidence (or related effects, like improved performance when 
participants choose their own favorite item to report23) are not evidence for variability in d′ in TCC, but simply a natural 
prediction of the underlying signal detection process. Of course, it is possible d′ may also vary between items, which 
remains an open question. 
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Extended Data Figure 8. Simulation of confidence in TCC. Participants in a set size 8 working memory experiment often 
feel like they do not remember an item and are “guessing”, leading to a wide variety of models that predict people know 
nothing about many items at high set sizes and truly are objectively guessing. However, as noted in Extended Data Figure 
7, signal detection naturally accounts for varying confidence, and so can easily account for this subjective feeling of 
guessing even though in fact, models like TCC predict that people are almost never responding based on no information 
at all about the item they just saw. In particular, confidence in signal detection is based on the strength of the winning 
memory signal. Imagine that the subjective feeling of guessing occurs whenever your memory match signal is below 
some threshold (here, arbitrarily set to 2.75). This would lead to people never feeling like they are guessing at set size 1, 
and nearly always feeling like they are guessing if they objectively closed their eyes and saw nothing. However, this would 
also make people feel like they are guessing a large part of the time at set size 6 and 8, even though this data is 
simulated from TCC -- and the generative process always contains information about all items. This is the key distinction 
in signal detection models between the subjective feeling of guessing and the claim that people are objectively guessing. 
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Supplementary Information 
 

Supplementary Discussion 
 
Measuring psychophysical similarity 
The psychophysical similarity function we measure naturally captures two key aspects of how stimuli are 
perceived: The relationship between the physical stimulus and the psychological representation of that 
stimulus is rarely linear (e.g., CIELab is a complex transform of light wavelengths), and the similarity between 
stimuli as a function of distance is additionally non-linear17,19. In spaces that are already scaled to be 
approximately psychophysically uniform (e.g., CIELab), then, only the approximately-exponential fall-off in 
similarity remains to be modeled; whereas in spaces that are not equalized in advance (e.g., face space), both 
factors will be measured together, and inhomogeneities may need to be taken into account when modeling 
memory (e.g., Extended Data Figure 5, fitting each color separately).  
 
In the current manuscript, we present several examples of tasks that naturally capture both of these insights 
and can be translated to a psychophysical similarity function, including the triad task, the quad task, and a 
subjective Likert similarity judgment (see Methods). It is important to note that depending on the number of 
trials, a large number of data points (and many subjects) may be necessary in order to obtain reliable 
estimates of a given stimulus space in the triad and quad tasks (in the current methods we collected n = 100 
participants and pooled across them completely to obtain reliable group estimates). A Likert similarity task may 
be sufficient to capture this function under some circumstances, like for color in the current study. In such 
tasks, participants are simply asked to rate the similarity of two items (varying in distance from one another) on 
a Likert scale from 1 to 7, and these ratings can then be normalized. In color space, we observed this similarity 
rating task provided a measure of psychophysical similarity that is in close agreement with the results of the 
quad and triad tasks and requires considerably less data to estimate (Figure 1).  
 
However, it is important to note that depending on the stimulus space, observers may utilize different strategies 
in such subjective similarity tasks, and that ultimately objective tasks like the quad task may be best to 
understand the psychophysical similarity function. In particular, to ensure the similarity function is properly 
measured, is important to ensure that participants provide judgments of the absolute interval between stimuli 
and not rely on categories or verbal labels, or, in the triad task, that participants not rely on a relational or 
relative encoding of the two choice items rather than their absolute distance to the target item (that is, the 
modeling assumes they compare each choice entirely separately to the target item -- not relying on comparing 
the two choices, say, considering which choice is more clockwise in an orientation task). How best to ensure 
that participants rely on absolute intervals is represented in a large literature dating to Thurstone64 and 
Torgerson13.  
 
Multidimensional stimuli, like color or faces, seem to have general agreement across many methods of 
measuring psychophysical similarity. However, we expect that collecting the psychophysical similarity 
measurements will be particularly challenging in single-dimensional stimulus spaces whose true objective 
distance function is transparent to participants. For example, when asking to judge orientation similarity or 
location similarity along a circle, participants are likely to be aware that the stimuli are physically manipulated 
on only a single dimension (angle), and will thus be inclined to report linear similarity judgments along this 
dimension. Less transparent similarity tasks, like the quad task, may help with this, but it may ultimately be 
difficult to prevent participants from using this knowledge. How best to deal with this remains a question for 
future work. For example, it may be possible to instead “back out” the similarity function from memory data, or 
from alternative tasks (like speeded same-different tasks), or to use speeded similarity tasks to reduce such 
cognitive strategies. Alternatively, performing multidimensional scaling on the stimuli to create a 
psychophysically uniform space (as in CIELab for color; for example, in orientation this would “stretch” the 
space near the cardinals and shrink it near the obliques), could allow relatively simple similarity models. After 
such scaling, it would be likely that the similarity function beyond the perceptual discrimination limit would be 
an exponential function, which could allow the parameterization of the similarity function in relatively 
straightforward terms without the need for complex measurements. 
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It is important to note that while we emphasize the stability of the similarity function across conditions in the 
current work, the psychophysical similarity we measure could not possibly be a fixed property of the colors per 
se, but must be at least partially contextual. For example, if the background color of the display was blue rather 
than light gray, this would certainly alter the perception of -- and discriminability of -- colors from each other, as 
would adaptation and many other factors49,50, which would necessarily have consequences for memory.  
 
In addition, extremely brief presentations or extremely long presentations that allow verbal coding would be 
expected to alter this similarity function. It is expected this would result in changes in memory performance as 
well, in the same way that observed memory biases are altered when discriminability is affected by adaptation 
or contextual effects48. Thus, while we find the similarity function is fixed across a wide range of encoding 
times, delays and set sizes, there are likely to be conditions which change the underlying perception of the 
memoranda (e.g., very very short encoding times; different backgrounds) which will necessarily have an effect 
on memory.  
 
“Dissociating” guess rate and precision 
In addition to fitting a two parameter model, some previous research has claimed to dissociate these 
parameters. If a one-parameter model can account for the data, how has previous research so often found 
dissociations between these parameters?  
 
The majority of these dissociations find that precision (SD) does not change when the ‘guess rate’ (or capacity) 
does change7,31. However, this dissociation is naturally explained by TCC because at low d' values, ‘guess 
rate’ can change by a huge amount with SD changing by only a few degrees. For example, over a wide range 
of guess rates, precision may only vary between SD=21 and SD=24, a difference that is visually 
indistinguishable and would require extremely high power to detect (e.g., Supplementary Figure 4). As an 
example, sampling 20 subjects of 100 trials each of data from the TCC at d'=1.0 vs. d'=0.7 and fitting these 
data with the 2-parameter mixture model reveals that such an experiment would find p<0.05 for ‘capacity’ 
greater than 60% of the time but p<0.05 for ‘precision’ approximately 11% of the time, despite both parameters 
being necessarily linked in the data from TCC. In line with this interpretation, many researchers have now 
found that with high enough power, previous studies claiming only a change in ‘guess rate’ but not ‘SD’ actually 
find changes in both, with very small changes in SD present along with large changes in ‘guess rate’65. Other 
dissociations have sometimes been found -- for example, Zhang and Luck7 report a manipulation that causes a 
change in SD but not ‘guess rate’ -- but these dissociations inevitably rely on comparisons across different sets 
of stimuli with different psychophysical similarity functions (e.g., the Zhang and Luck manipulation adds color 
noise to the items, making them less distinct), which is perfectly consistent with TCC. 
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Supplemental Figures 
 
 

 
 

Supplementary Figure 1. Fits of TCC to the all encoding and delay conditions, including those not plotted in Fig. 3. TCC 
provides a strong fit at all encoding and delays (see correlations and model comparisons in Fig. 3). 
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Supplementary Figure 2.  Model predictions vs. data for 2-AFC generalization task reported in the main text. Given 2-
AFC performance with maximally distinct 180 degree foils (black dot), TCC makes a unique prediction about exactly how 
well people should perform on other foils -- with no free parameters. By contrast, using the 180 degree foils to constrain 
the mixture model allows this model to set the ‘guess rate’, but it leaves the precision of memory unknown. Thus, mixture 
models, while capable of fitting the data the same as TCC for a certain precision parameter (since ultimately they can 
predict any distribution TCC can, as they are much more flexible), do not make a unique prediction. Making strong 
predictions is the most critical test of a model26 and can be formalized using a Bayes factor, which provides strong 
evidence in favor of TCC in this case. Similar logic applies in the experiment taking 180 degree 2-AFC and generalizing to 
continuous report and other n-AFC conditions. 
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Supplementary Figure 3. Simulation of mixture model vs. TCC fits. (A) We generated data from both TCC (d′) and the 
standard mixture model (precision [SD] and guessing), performing 50 simulations of 2000 trials worth of data each for 
each of the models (consistent with the amount of group data in the main experiments), and then fit both models to the 
generated data to see which yielded a higher log-likelihood. With no penalty for complexity -- simply using log likelihood -- 
for data generated by TCC, the standard mixture model fit all data with a d′ < 1 better than TCC itself. Thus, for data 
generated by TCC, the standard mixture model, being considerably more flexible than TCC in the range of distributions it 
can fit,  fits the data about as well -- and in some cases, better -- than TCC. When fitting data generated by the mixture 
model, TCC was dispreferred at all values in terms of fit, and strongly dispreferred for huge swaths of potential mixture 
model parameters. This is because the mixture model can generate a huge variety of distributions that TCC cannot mimic. 
The same is true, but even more so, for the 3-parameter variable precision model, which can fit an even much larger 
range of distributions than even the standard 2-parameter mixture model. Only a miniscule part of the distributions 
predicted by the 3-parameter variable precision model can even be approximated by TCC, and this model can perfectly 
mimic TCC. (B) Same data, with BIC instead of log-likelihood. Taking into account model complexity increases the 
preference for TCC in TCC-generated data and creates a very slight TCC preference in mixture model data with simulated 
“guess rates” very near 1.0, where the two models make identical predictions in terms of error (of equal responding to all 
options); though note the two models make differing predictions about confidence at these values, predicting different 
ROCs. In general, with this amount of data, BIC appears well-calibrated, accurately recovering the appropriate model in 
nearly all cases and with a stronger preference for the relevant models where they diverge from each other more.  
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Supplementary Figure 4. Analysis of previous literature measuring the most widely used model parameters currently 
used to analyze working memory performance. Gray dots are values reported in papers found in the literature; the dashed 
black curve is a LOESS (local regression) smoothed version of these points. The solid blue curve reflects the average 
“guess” and “SD” parameters when fitting the mixture model to data generated by TCC, as a function of the d' of TCC. 
The blue shading shows 2 standard deviations when each participant has 100 trials/condition. Despite claiming to 
independently model multiple parameters, this entire diverse set of data points falls near the trade-off between these 
parameters predicted when fitting data sampled from the TCC with the 2-parameter model -- in other words, one 
parameter is sufficient to capture much of the data observed in working memory tasks (data that has previously been 
thought to require at least two -- and often 3 parameters -- to explain). Note that the region in Supplementary Figure 4 
TCC predicts is also the only region of Supplementary Figure 3 where the TCC can fit data generated from the mixture 
model. In addition, note that some of these papers use different color wheels than the one we use to generate the 
similarity function, and thus some of the deviation from the TCC prediction line -- minor as it is -- is caused by using an 
“incorrect” TCC prediction (e.g., using a prediction from an incorrect stimulus space).  
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Supplementary Figure 5. Analysis of previous literature measuring the most widely used model parameters currently 
used to analyze working memory performance. Existing working memory data from high set sizes (4+) is often claimed to 
provide evidence for ‘slots’ or for the existence of very low precision items, with these items that are unrepresented or 
poorly represented giving rise to the long tails of the distribution. By contrast, TCC predicts such long tails with no sense 
of unrepresented or poorly represented items. Here we show how TCC predicts that mixture model parameters from the 
standard two parameter mixture model should change as a function of d' in the TCC model. The blue line and all of the 
data points are the same as Supplementary Figure 4, but with the data points now labeled by set size and only “high” set 
sizes (>=4) plotted, as these are the points where traditional models claim many items must be unrepresented or 
extremely poorly represented. Note that the vast majority of the points are better fit by the straightforward TCC model -- 
which simply assumes all items are equally well represented -- than by models that add some proportion of 
‘unrepresented’ items to TCC (plotted in green; note that as expected, these models selectively change the predicted 
‘guess rate’ parameter). For a slot model prediction with 3 items represented, nearly 50% of items should be 
unrepresented at set size 6, and this is clearly incompatible with the previous data as well as the data we report in the 
main manuscript. In general, the parameters found in the previous literature are perfectly consistent with the basic TCC 
prediction with no added assumptions about unrepresented items or poorly represented items. Note that the two set size 6 
points outlined in yellow come from the original Zhang and Luck7 paper that introduced mixture models to this literature 
and used them to argue for slots. The fact that they are an outlier on this plot may be the reason those authors proposed 
a model that argues that only ‘guess rate’ but not ‘standard deviation’ changes as a function of set size.  
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Supplementary Figure 6. Plot of the best fit TCC d’ vs. the circular standard deviation of the error data (a circular analog 
of the standard deviation; as computed with MATLAB’s circ_std function) for all 22 datasets from Fig. 3. For data like the 
current data where there is nearly no location-based confusions (‘swaps’), the simpler analysis of this descriptive statistic 
(circular standard deviation, or more formally the angular deviation) is linearly related to d’ for d’ less than approximately 
3.0, and thus, for data not near ceiling, may be an adequate substitute for fitting the full TCC. This is useful because the 
circular standard deviation is just a descriptive statistic of the data and thus does not require the collection of similarity 
data or perceptual confusability data. Note that just as with percent correct -- which is approximately linear with d’ when 
far from ceiling, but becomes deeply non-linear near ceiling -- the d’ curve begins to bend near ceiling. This is because 
improving from 95% correct to 99% correct requires a very large change in d’, and similarly, improving your performance 
in continuous report when it is already very good requires a large change in memory strength. In theory the same should 
be true near floor, although these 22 datasets do not clearly demonstrate that because there is little data with d’<1.0. 
However, for data away from ceiling and floor and with little or no ‘swaps’, computing circular standard deviation may be 
sufficient to summarize data in a framework compatible with TCC. 
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Supplementary Tables 

 
Supplementary Table 1 TCC’s fit to binned color memory errors (Fig. 3).  All correlations are Pearson correlations.  
 

Set size experiment  

Set size 1 r=0.998, p<0.001, 
CI=(0.997, 0.999) 

Set size 3 r=0.996, p<0.001, 
CI=(0.993, 0.998) 

Set size 6 r=0.984, p<0.001, 
CI=(0.969, 0.991) 

Set size 8 r=0.976, p<0.001, 
CI=(0.954, 0.987) 

 

Delay experiment 1 sec delay 3 sec delay 5 sec delay 

Set size 1 r=0.997, p<0.001, 
CI=(0.994, 0.998) 

r=0.998, p<0.001, 
CI=(0.995, 0.999) 

r=0.995, p<0.001, 
CI=(0.990, 0.997) 

Set size 3 r=0.993, p<0.001, 
CI=(0.986, 0.996) 

r=0.992, p<0.001, 
CI=(0.985, 0.996) 

r=0.994, p<0.001, 
CI=(0.988, 0.997) 

Set size 6 r=0.989, p<0.001, 
CI=(0.979, 0.994) 

r=0.971, p<0.001, 
CI=(0.946, 0.985) 

r=0.986, p<0.001, 
CI=(0.973, 0.992) 

 

Encoding time experiment 100ms 
encoding 

500ms 
encoding 

1.5 sec 
encoding 

Set size 1 r=0.992, p<0.001, 
CI=(0.984, 0.996) 

r=0.997, p<0.001, 
CI=(0.994, 0.998) 

r=0.998, p<0.001, 
CI=(0.996, 0.999) 

Set size 3 r=0.971, p<0.001, 
CI=(0.945, 0.985) 

r=0.991, p<0.001, 
CI=(0.983, 0.995) 

r=0.995, p<0.001, 
CI=(0.990, 0.997) 

Set size 6 r=0.975, p<0.001, 
CI=(0.952, 0.987) 

r=0.993, p<0.001, 
CI=(0.987, 0.997) 

r=0.990, p<0.001, 
CI=(0.981, 0.995) 
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Supplementary Table 2. TCC’s fit to color memory data is reliably preferred by model comparison metrics that 

emphasize simplicity (e.g., BIC) across all set sizes compared to mixture models and variable precision mixture models. It 

provides a similar fit to these models when using leave-one-out cross validation on log likelihood, as both TCC as well as 

the two mixture models predict effectively the same distribution of errors when fit with N-1 error points (as N=2000 error 

datapoints  >> the number of parameters for all models). Fitting to the group data rather than individual subjects gives BIC 

values at set size 1,3,6 and 8 of -24, -56, -26, -25 for TCC vs. standard mixture model (all very strong evidence favoring 

TCC), and BIC values of -2, -23, -15, -19 for TCC vs. variable precision model (e.g., both models fit set size 1 data well -- 

the least distinct set size, since there are no long tails --  but all others are very strong evidence in favor of TCC). Note 

that, as shown in Supplementary Figure 3, model recovery using BIC is well calibrated using this number of trials.  

 

BIC avg. (S.E.M.); 
negative favors TCC 

Set size 1 Set size 3 Set size 6 Set size 8 

TCC - Mixture model -3.64 (1.67) -6.48 (0.95) -6.08 (0.88) -4.77 (0.67) 

TCC - variable precision 
mixture model 

-7.85 (1.14) -10.65 (0.60) -11.21 (0.67) -10.82 (0.63) 

 

Leave one out cross 
validation log likelihood 
difference (S.E.M.); 
positive favors TCC 

Set size 1 Set size 3 Set size 6 Set size 8 

TCC - Mixture model 1.54 (1.71) 1.22 (0.80) 0.14 (0.83) 0.07 (0.47) 

TCC - variable precision 
mixture model 

0.43 (1.32) 0.10 (0.43) -0.31 (0.70) 0.21 (0.59) 
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Supplementary Table 3.  TCC applied to face memory. As with colors, TCC is reliably preferred by model comparison 
metrics that emphasize simplicity (e.g., BIC) across all set sizes compared to mixture models and variable precision 
mixture models. Also, as with color, it provides a similar fit to these models when using leave-one-out cross validation on 
log likelihood, as both TCC as well as the two mixture models predict effectively the same distribution of errors when fit 
with N-1 points (as N >> the number of parameters for all models). Fitting to the group data rather than individual subjects 
gives BIC values at set size 1 and 3 of -177 and -24 for TCC vs. standard mixture model (all very strong evidence favoring 
TCC), and BIC values of -53, -10 for TCC vs. variable precision model (all very strong evidence in favor of TCC). Note 
that, as shown in Supplementary Figure 3, model recovery using BIC is well calibrated using this number of trials.  
 

BIC avg. (S.E.M.); 
negative favors TCC 

Set size 1 Set size 3 

TCC - Mixture model -8.1 (0.7) -5.3 (0.4) 

TCC - variable precision 
mixture model 

-11.4 (0.5) -10.8 (0.3) 
 

 

Leave one out cross 
validation log likelihood 
difference (S.E.M.); 
positive favors TCC 

Set size 1 Set size 3 

TCC - Mixture model 2.5 (0.46) 0.51 (0.45) 

TCC - variable precision 
mixture model 

0.87 (0.41) -0.05 (0.36) 
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Supplementary Table 4. Data points used in the literature review collected from a total of 14 papers.  

 

 
 


