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Abstract: Almost all models of visual memory
implicitly assume that errors in mnemonic
representations are linearly related to distance in
stimulus space. Here, we show that neither
memory nor perception are appropriately scaled
in stimulus space; instead, they are based on a
transformed similarity representation that is non-
linearly related to stimulus space. This result
calls into question a foundational assumption of
extant models of visual working memory. Once
psychophysical similarity is taken into account,
aspects of memory that have been thought to
demonstrate a fixed working memory capacity of
~3-4 items and to require fundamentally different
representations -- across different stimuli, tasks,
and types of memory -- can be parsimoniously
explained with a unitary signal detection
framework. These results have significant
implications for the study of visual memory and
lead to a substantial reinterpretation of the
relationship between perception, working
memory and long-term memory.

Working memory is typically conceptualized as a
fixed capacity system, with a discrete number of
items, each represented with a certain degree of
precision’2, It is thought to be a core cognitive
system3#, with individual capacity differences
strongly correlating with measures of broad cognitive
function such as fluid intelligence and academic
performance®®. As a result, many researchers are
deeply interested in understanding and quantifying
working memory capacity and understanding the
connections between working memory and long-term
memory..

Continuous feature spaces are often used to
investigate memory, as they allow the precise
quantification of information stored in memory?738, In
one prominent paradigm, researchers present a set
of stimuli to remember and then probe one item after
a delay, asking participants to report the target by
clicking on a circular stimulus report wheel (Fig. 1A).
The data are typically analyzed using the circular
difference between the true stimulus and reported
stimulus, which is then modeled to quantify memory
performance’8. Because errors that arise in this task

have a “fat tail” — there are more far away errors
than you might expect (Fig. 1B) — the dominant
models of working memory draw critical distinctions
between fundamentally different kinds of memory
errors: those caused by limits in how many items are
represented vs. how precisely they are represented’
or those caused by items encoded with high
precision vs. extremely low precision?®.

Here we present evidence that these small vs. large
errors are not distinct kinds of errors, or evidence of
multiple psychological constructs being measured
(e.g., precision vs. guessing). Instead, we
demonstrate that these responses arise
fundamentally from a single process. To describe this
new conceptualization of memory, we begin with
working memory for color as our main case study
and then expand the model to encompass working
memory for faces (a multi-feature stimulus space)
and long-term memory for real-world objects.

The model we propose is a straightforward extension
of standard signal detection-based accounts of
memory, with the fundamental insight of our
framework being the nature of the psychophysical
similarity function that explains how familiarity
spreads. Consider the simplest case of memory,
where you are asked to remember just a single color.
When you encode this color — say, red — it will now
have significantly enhanced familiarity. Thus, if you
are later asked to distinguish the color you saw from
a foil color (e.g., red vs. green), the color you saw will
likely be more familiar. However, due to noise which
corrupts the familiarity signals, this will not always be
the case, and on some trials, green might feel more
familiar than red.

The critical insight of our model is that when you see
red, it does not boost only familiarity associated with
red. Instead, a gradient of familiarity will spread to
other colors according to a fixed psychophysical
similarity function, with considerable activity
spreading to similar colors (e.g., pink will also feel
familiar), but with much less spreading to dissimilar
colors (e.g., yellow, blue and green will experience
virtually no boost in familiarity). If asked to hold this
color in mind, these initial familiarity signals will be
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corrupted by noise, and when memory is probed —
say, if people are asked to report what color they saw
on a color wheel — people will report the color of the
response option that currently has maximum
familiarity. Although the encoded color is most likely
to generate the maximum familiarity signal,
competition from other colors (especially from similar
colors) ensures that this will not always be the case,
and the more noise accumulates, the more likely a
very dissimilar color is to be reported. Notably, in this
model, memory is not simply a point representation
(“l think this item is red”) but instead an entire
population of familiarity signals (similar to neural
models®'"). (We've built an interactive demonstration
of this model at https://bradylab.ucsd.edu/tcc/ to
explain it dynamically.)

According to the model, the way familiarity spreads is
a fixed perceptual property, one that can be
independently measured using a conventional
psychophysical similarity function. Once the nature of
the familiarity gradient for a given stimulus space is
measured, memory is simply modeled by taking this
fixed property of the stimuli and adding noise, with
the signal-to-noise ratio (d’) being the only memory-
based parameter of the model. This model thus
uniquely explains the complex shape of error data
with only a single free parameter (memory strength,
d’) and permits parameter-free generalization across
different tasks (i.e., without any free parameters,
using only measured memory strength and similarity
values from different participants). Because this
model operates in a signal detection framework, as
most models of long-term memory do, it also
suggests a unified framework can be used to
understand the nature of mnemonic representations
and decision-making across working memory and
long-term memory.

Results

Psychophysical similarity. The most critical
component of our proposed model is the
psychophysical similarity function that explains how
familiarity spreads within a stimulus space (e.g.,
across the color wheel). While previous work has
documented local inhomogeneities in the structure of
stimulus spaces'?'* we were primarily interested in

the global structure of similarity: for a stimulus 10
degrees away on the color wheel from a target color
(regardless of what the target color is), how similar is
this color to the target on average? Thus, we
measured how similarity scales with distance
measured in terms of degrees along the color wheel
(Methods 1). To do so, we tested how accurately
participants could determine which of two test colors
was closer in color space to a target color using a
triad task'>'6. This is a perceptual task, but it is
analogous to the working memory situation where
participants have a target color in mind and are
asked to compare other colors to that target. We
found that with a fixed 30° distance between two
color choices, participants are significantly more
accurate at determining which color is closer to the
target when the two colors are close to the target in
color space compared to when they are far from the
target (Fig. 1C, Extended Data Fig. 1; ANOVA
F(12,384) = 71.8, p<0.00001, 1?=0.69). In other
words, in a purely perceptual task, participants
largely could not tell whether a color 120°or 150°
from the target was closer to the target, whereas this
ask is trivial if the colors are 5° and 35° from the
target. This demonstrates a strong non-linearity in
perceptual similarity.

To compute a full psychophysical similarity function,
we utilized the just-described triad task with
additional distance pairs (Methods 2). We then
applied the maximum likelihood difference scaling
technique'® (MLDS) commonly used for perceptual
scaling to estimate how differences between color
stimuli are actually perceived. The estimated
psychophysical similarity function falls off in a
nonlinear, exponential-like fashion with respect to
distance (Fig. 1F). In color space, it is also well-
matched by a smoother measure that requires
substantially less data, namely, the pairwise
subjective similarity ratings of colors at different
distances along the color wheel using a Likert scale
(Methods 3; Fig. 1F).

While there are also small local inhomogeneities (Fig
1D), we are primarily interested in the fact that the
global structure of similarity space is strongly non-
linear, in agreement with decades of work suggesting
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Figure 1. (A) A widely used method in working memory is to select a color circle from a slice of color space, show
memory items drawn from this circle, and then, at test, probe the contents of a memory item by presenting the entire
continuous circle to participants to make a response. Similar response wheels are used for other features, such as face
identity. (B) A histogram of results generally observed for such tasks, traditionally plotted as a function of distance in
degrees of error along the response wheel. There is a ‘long, fat tail’ of errors far from 0 that is often interpreted as
evidence for distinct memory states (e.g., guesses or items encoded with very low precision). (C) In a triad
psychophysical scaling task, N=40 participants had to say which of two colors in the bottom row was more similar to the
top (target) color. Despite the difference between the two choice colors always being 30° on the color wheel, sensitivity
(d") dramatically decreased as the choices became more distant from the target, ANOVA F(12,384) = 71.8, p<0.00001,
n?=0.69. Error bars are within-subject S.E.M. and dots represent individual subjects. See Extended Fig. 1 for the full data.
(D) We can use the data from another similarity task, a simple pairwise Likert rating of similarity (N=50), to infer the global
psychophysical distance of colors at different physical distances along the color wheel. Here we plot this data for sets of
target colors, demonstrating previously observed local non-uniformities in color space as the small differences across
rows (see Bae et al.'?).Critically, all of these rows demonstrate a much larger global structure, separate from this local
structure: overall similarity falls in an approximately exponential manner. (E) Some aspects of this similarity must derive
from perceptual discrimination failures (e.g., there are not really 360 independent colors on the color wheel). To estimate
this underlying perceptual noise, we use a continuous report task where participants must match a visible color using the
same color wheel (N=40) (F). We can plot the global psychophysical function -- averaged over all target colors -- using
the triad task or the Likert task. Both are very similar and show the same underlying shape. Consistent with previous
work, we find this similarity function is exponential once perceptual noise is taken into account (e.g., an exponential
convolved with the measured perceptual noise function provides an excellent fit to this data).
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psychological similarity is globally exponential (e.g.,
the universal law of generalization'”'8), with
confusions for very similar colors also caused by
perceptual noise'® (measured here using a
perceptual matching task, Methods 4; Fig 1E, F).

A key implication of these similarity scaling results is
that the linear axis of error along the response wheel
(e.g., -180 deg. to 180 deg.) previously used to
analyze working memory capacity does not capture
the psychological representation of the stimuli. This
poses a significant challenge to existing memory
models, as their parameters are derived assuming
linear similarity (i.e. treating the axis of error in
degrees as a linear scale). However, this axis is not
linear even in a perceptual task: Since participants
are essentially incapable of discerning whether an
item 120° or 180° from the target in color space is
more similar to the target, it is not surprising that they
confuse these colors equally often with the target in
memory.

Incorporating psychophysical similarity into a
signal detection model. Psychophysical scaling
formalizes how similar two stimuli are perceived to be
and is the first critical aspect of our proposed model.
The next aspect is that signals are corrupted by
noise, which we formalize using signal detection
theory.

In particular, the model we propose here is
fundamentally the same longstanding signal
detection model used across decades of research on
long-term memory and perception?®-?2, modified to
take into account psychophysical similarity. The basis
of signal detection theory is that when deciding
among each of the colors at test, participants rely
upon a noisy, cue-dependent familiarity signal for
each color, and the color that generates the
maximum familiarity signal is selected (Fig. 2). The
stronger the maximum signal is, the higher the
confidence in the selected color.

Our model differs from a standard model of the n-
alternative forced choice only in the usage of the
psychophysical similarity measure. In a standard
signal detection model of an n-alternative forced-

choice task, it is generally assumed that exactly one
item has been previously seen, so its familiarity is
centered on d', whereas the other n - 1 items are
equally unfamiliar and therefore centered on zero
familiarity?'. However, when memory is tested using
a continuous stimulus space, it would be implausible
to assume that a color 1° away in color space from
the target would have no added familiarity and would
have noise that is totally uncorrelated with the target.

Thus, in our model, the mean memory signal for a
given color x on the color wheel, denoted dy, is based
on that color’s separately measured similarity to the
target, i.e., dx = d' f(x), where d'is the model’s only
free parameter (memory strength) and f(x) is the
empirically determined psychophysical similarity
function (i.e. a measurement, done in different
participants, of the similarity structure of the color
space). The noise added to each color is also
correlated between nearby colors according to the
empirically measured proportion of how often colors
at that distance are confused in a perceptual
matching task (Fig 1E), although this is not critical for
fitting continuous report error distributions (Extended
Data Figure 2).

Because of the nonlinear similarity function, colors in
the >~90° physical distance range all cluster near

f(x)=f(x)min such that dx=0 for x~=90° to 180°. Thus,

when participants encode a color—say, purple—it
increases the average familiarity signal in the purple
channel and also in nearby (similar-to-purple)
channels while having almost no effect in dissimilar
color channels (Fig. 2B). The familiarity signals in
each channel are then corrupted by noise, and the
resulting reports are based on this noisy signal. In the
case of continuous report, people theoretically report
the color with maximum familiarity.

Importantly, this Target Confusability Competition
(TCC) model can explain all the key features of visual
working memory. In particular, it accurately
characterizes memory performance across a variety
of domains, including different set sizes, encoding
times and delays (Fig. 3; Supplementary Figure 1).
Previous cognitive models of visual working memory
allow for many ways in which memory for an
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Figure 2. For an interactive version of this figure, see https://bradylab.ucsd.edu/tcc/ (A) Our TCC model applied to a
hypothetical 10-alternative forced-choice memory test. In standard 2-alternative long-term recognition memory
experiments, unseen items vary in their familiarity, which is modeled as a normal distribution. Previously encoded
items elicit higher familiarity on average, modeled (in the simplest case) as a normal distribution with a mean of d',
where d' indicates how many standard deviations of memory strength is added to seen items. When asked what they
remember, people pick whichever color elicits higher familiarity on that trial. To generalize to a 10 alternative forced-
choice, we thus only need to specify the average familiarity strength of every lure. Usually, all 9 lures are assumed to
have a mean of 0 -- with no added familiarity -- when modeling such tasks?!. However, in a continuous space this is not
plausible. Thus, in TCC, we propose that familiarity spreads according to similarity: the mean of each lure’s familiarity
distribution is simply its similarity to the target. For example, if the target is purple, other purples will have boosted
familiarity as well, and thus people will choose a slightly different purple lure much more often than an entirely
unrelated lure such as green. Examples of d'=3 and d'=1 illustrate the idea that when memory for the target color is
weaker, more of the lure distributions cluster near the target — and at d'=1, all of the far away colors are in a position
to sometimes ‘win the competition’ by having the highest familiarity, but will do so on average equally often, creating a
long fat tail. The 10-AFC logic provided here can then simply be adapted to 360-AFC to model continuous report, but
with the added knowledge that very similar colors also have correlated noise (measured using the perceptual matching
function); i.e., there are not 360 independent colors on the color wheel. (B) An alternative way of plotting the same
model is to consider a single trial, rather than the distribution of memory strengths across trials. When we encode a
purple color, with memory strength d’=3, the familiarity of purple as well as similar colors is increased (according to the
measured psychophysical similarity function). Then, we add SD=1 noise to each color channel. The resulting familiarity

values, after being corrupted by noise, guide participants' decisions. In a continuous report task, people simply report
the color that generates the maximum familiarity value.

individual item can vary (e.g., guess rate, precision, complex changes in the shape of the error

variation in precision’#2%). By contrast, TCC holds distribution arise not from multiple parameters, but
that these experimental manipulations affect only a simply from the similarity function combined with the
single fundamental underlying parameter (the non-linearity inherent in selecting only your strongest
memory strength parameter, d'), and that the familiarity value for report. Thus, the fact that
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Figure 3. (A) TCC fits to group data at set size 1, 3, 6, and 8 (N=20). Despite no concept of unrepresented items or
guessing or poorly encoded items, and adopting for the sake of simplicity the assumption that all items are encoded
equally (i.e., with the same d’) -- TCC fits even the high set size data accurately because of the noisy nature of the signal
detection process combined with the non-linear psychophysical similarity function. (B) TCC fits to N=20 group data with
varying delay (only set size 6 shown; remainder of data in Supplementary Figure 1). (C) TCC fits to N=20 group data
across different encoding times (only two set sizes shown; see Supplementary Figure 1). Across several key
manipulations of visual working memory (set size, delay, and encoding time), which drastically alter the response
distributions collected, TCC accurately captures (with only a single free parameter d') the response distribution typically
attributed to multiple parameters / psychological states by existing frameworks and models of working memory. Only a
subset of the delay and encoding time fits are plotted here, but all fits are accurate, as demonstrated by the Pearson
correlation between the binned data and model fits as a function of set size (Supplementary Table 1). Note that d’ of the fit
to the group data, as plotted, is not the same as the average of individual subject d’s, as used in the model comparisons.

markedly simpler than alternative theories. It is
markedly simpler because it proposes a unified
generative process for all responses instead of
requiring different states to generate different subsets
of responses (as in the encoding variability or lack of
represented items proposed by previous models’™

manipulations of set size, delay and encoding time —
22 different manipulations in total — result in
distributions that can be accurately characterized

with only a single varying parameter is strong
evidence in favor of TCC, as is the fact that it
describes the data extremely well despite being
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8.23), and because it replaces free parameters (like
precision) with independently measured values (like
similarity, which is independently measured and fixed
for all participants and conditions; Extended Figure
4).

The measured non-linear similarity function is critical
to the ability of TCC to fit the data. While reporting
the color that is maximally familiar does, on it own,
introduce a non-linearity that favors the strongest
signals, this alone is not sufficient to explain the data
(Extended Data Figure 3). Instead, the explanatory
value of TCC comes from the combination of the
non-linear similarity function and signal detection
theory.

While the main evidence in favor of TCC is its ability
to parsimoniously characterize the effects of
qualitatively different experimental manipulations
(Fig. 3, Supplementary Table 1) and to make precise
predictions across tasks and stimuli (see below), we
also compared the fit provided by TCC to the fit
provided by mixture models of visual working
memory, including the standard two-parameter
mixture model that interprets performance as arising
from distinct concepts of ‘capacity’ and ‘precision’”
and a three-parameter version of the mixture model
that allows for variable precision?®. Despite being
simpler and having fewer parameters, TCC was just
as good at predicting held-out data in a cross-
validation test and was reliably preferred in every
subject across set sizes when using metrics
preferring simpler models (Supplementary Table 2).
This was true even though TCC fits are based on
aggregated similarity functions from a different group
of participants, suggesting the global structure of the
psychophysical similarity function is largely a fixed
aspect of a given stimulus space. Taking into account
color-specific similarity functions (e.g., Fig 1D) or
individual differences in similarity scaling should
further improve the fit of the model (Extended Data
Fig. 5), , and would be necessary for comparing the
model to others that do take into account such
information, but here we focus on the general case of
treating all colors and participants as sharing a
similarity function.

While memory strength varies according to a variety
of different factors (Fig. 3), many researchers have
been particularly interested in the influence of set
size. TCC shows that at a given encoding time and
delay, d'—theoretically an interval-scale measure of
memory strength?'?* —decreases according to a
power law as set size changes (Extended Data
Figure 6), broadly consistent with fixed resource
theories of memory?425, Critically, memory strength
decreases most at low set sizes (e.g., 1 to 3),
suggesting limits of working memory may be best
studied across lower set sizes, contrary to the
majority of the field which seeks to pressure
“capacity” via high set sizes to understand the nature
of working memory.

TCC accurately predicts connections between
working memory paradigms that mixture models
claim are impossible. Ultimately, evaluating
theories based on model comparisons of fit —when
all models fit the data well, as here —is not as useful
as investigating what they accurately predict?®. TCC
makes a precise and unique prediction that since all
responses are generated from the same underlying
process, measuring d'in any way that avoids floor
and ceiling performance—even using only two
maximally dissimilar 180-degree away colors in a
2AFC task —is sufficient to accurately predict (with
no free parameters) memory performance involving
more similar colors and/or more response options
(including continuous report). This is in direct contrast
to the inability of mixture models and variable
precision models to make such predictions. Such
models claim memory varies in multiple
fundamentally distinct ways (i.e., precision and
guessing can both vary, or the distribution of
precisions can vary), and clearly, a single measure of
accuracy cannot possibly measure more than one
fundamental distinct property of memory.

Specifically, such existing models insist that such
predictions should not be possible because they
claim that heterogeneity between items is crucial to
explaining large vs. small errors. That is, existing
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Figure 4. (A) Since TCC states that visual working memory performance is determined by simply d’ (memory signal
strength) once perceptual similarity is known for a given feature space, it makes novel predictions no other theory of
working memory can make. In particular, it predicts that d' measured with a 180 degree, maximally dissimilar foil (i.e.,
d'1s0°) should be completely sufficient to predict all of memory performance, unlike models where errors to maximally
dissimilar foils arise from different processes than errors to similar foils, e.g., where errors to maximally dissimilar foils
solely from ‘guessing’ (in some models) or from extremely poorly encoded items (in other models). For example, after
measuring d'1soc, TCC predicts that since a 24 degree foil is ~35% similar to the target, discriminability on a 2-AFC task
in which the foil is 24 degrees away from the target should be ~35% of d"1soc. (Although note that correlated noise makes
this more complex for very similar foils) (B) On a single trial, this prediction can be visualized in a straightforward way: If
we know the target was encoded with d'1s0- = 1.7, then TCC makes a strong prediction about how this familiarity spreads
to other colors and how it is corrupted by noise. In continuous report, the decision rule is to report the maximum of the

resulting color channel familiarity responses; in 2AFC, the decision rule —based on the exact same underlying color

channel responses —is to choose the highest familiarity signal of your response options. Thus, in this example trial, the
participant in a 2AFC task would choose the 0°-target over a 180°-foil, but would choose a 24°-foil over the 0°-target.
Because TCC specifies this entire generative process, it makes precise predictions about how often people will make
errors to different distance foils. (C) Here we plot the predicted percent correct of different distances of colors from the
target (blue), a prediction based only on performance from the 180 degree condition (black) with no free parameters.
When comparing subject’s performance at different foil distances (gray, N=60) we demonstrate TCC accurately predicts

performance across different foil distances.

models claim that fundamentally distinct items and
memory states explain close-to-target responses on
the color wheel (e.g., “precision errors for
remembered items” or “high precision items”) vs.
responses far away from the target (e.g., “guesses”
or “low precision items”). Thus, existing models
inherently assume that a singular measure of how
well participants can discriminate 180°changes (e.g.,

was it red or green?), which measures only
information about items that cause large errors,
cannot, even in principle, measure the properties of
the items that cause small errors. By contrast, TCC
says all responses to more similar colors are directly
predictable using the fixed similarity function, and
that memory varies in only one way (memory
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strength), and thus such a 2-AFC task is sufficient to
measure memory performance.

In two experiments, we tested TCC’s prediction that a
single measured d'is sufficient to characterize
memory performance across a variety of tasks that
are currently thought to tap different memory
processes. In both experiments we had participants
perform a memory task involving a 2-AFC test with
maximally dissimilar colors (two options: 0° away
from the target color vs. 180° away from the target
color). We used the data from this 2-AFC task to
compute d'in the standard way (denoted d'iso°) and
then used TCC —with this exact d'—to compute
parameter-free predictions for a variety of other
conditions. We intermixed all the conditions —
including conditions that require participants to
remember the precise color they saw -- so that
participants could not rely on a categorical memory
strategy in the maximally distinct 2-AFC task.

In one experiment involving a 2AFC task (Fig. 4), we
used TCC with fixed d'igo- to predict how well
participants could discriminate the target from more
similar foils (e.g., to predict d"2- from a 2-AFC task
involving the color they saw vs. a color only 12°
away). With no free parameters, memory
performance was accurately predicted over the entire
range of intermediate foil similarities (Fig 4C). TCC
accomplished this with no free parameters because it
specifies how the perceptual similarity of the two
colors on a 2-AFC task (measured in a separate
psychophysical procedure) should impact memory
performance (see also Kahana & Sekuler?’;
Nosofsky'®). By contrast, mixture models, based on
the distinct concepts of guessing and precision,
anticipate no particular relationship between
performance on a 2-AFC task involving maximally
dissimilar foils and performance on a 2-AFC task
involving more similar foils. 2-parameter mixture
models can use 180° 2-AFC performance only to
measure ‘guess rate,’ leaving precision unspecified.
Thus, with only 180° 2-AFC performance in hand,
these models are able to predict a wide range of
possible outcomes on 2-AFC tasks with more similar
foils, depending on the unknown factor of ‘memory
precision’ (Supplementary Figure 2). Note that

precision, unlike similarity, is thought to be changed
by memory strength and differ across subjects, and
thus precision measures are not constrained by fixed
perceptual similarity data that TCC can utilize so
effectively. Because the mixture model predictions
are largely unconstrained, TCC is strongly preferred
to mixture models by a Bayes factor model
comparison (group Bayes factor preference for TCC
> 200:1, individual subjs: 1(54)=11.19, p<0.001,
d-=1.51, CI=(2.9:1, 4.2:1)).

In a second experiment we went further, showing that
TCC — again using only measured d'iso° from a
2AFC task and separately measured perceptual
similarity between the response-option colors in
different participants — can accurately predict
performance when there are more than two response
options, up to and including continuous report, again
with no free parameters (Figure 5). In this
experiment, we once again found a strong preference
for TCC’s prediction over the mixture model models
in generalizing from 2-AFC to continuous report,
which is the only condition the mixture model can be
fit to (group BIC preference for TCC > 650:1,
individual subjects: t(51)=7.64, p<0.001, d,=1.06,
CI=(9.5:1, 16.2:1)). We also found that 2-AFC d"
measured in the standard way (i.e., d"iso’) maps
directly to TCC’s d', which explains the full
continuous report distribution (Fig. 5B). The lopsided
Bayes factors arise because TCC precisely predicts
the outcomes (outcomes that, when tested, are
empirically observed), whereas competing models
necessarily claim that the 2-AFC data are insufficient
to completely measure memory since they do not
measure the ‘precision’ of memory.

Thus, with TCC, measuring only how well
participants can distinguish between far apart test
items (0° vs.180°) using a 2-AFC task is sufficient to
predict the distribution of responses from a
continuous report task and to predict 2-AFC
performance for distinguishing targets and foils of
varying similarity (so long as the 2-AFC task is not at
ceiling or floor). Together, these experiments provide
compelling evidence against previous models of
visual working memory where the tails of the
continuous-report distribution (the only aspect of
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a) d’ measured with 180°foil is completely sufficient to predict all of memory in TCC
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Figure 5. (A) According to TCC, the d'in a 2AFC task is fundamentally the same d' in continuous report tasks (or any
other AFC task). Thus, unlike other models, TCC makes a strong prediction that d' as measured with a 180 degree foil
(d'1s0°) is completely sufficient to predict all of memory across any number of options presented at test, including
completely sufficient to predict the entire distribution of errors in continuous report (since ultimately this distribution does
not arise from distinct psychological states, but simply from combining the fixed similarity structure of the stimulus space
with memory strength). To test this prediction, N=60 participants encoded items into memory and were then tested
using 2-AFC, 8-AFC, 60-AFC or continuous report (360-AFC). During 2AFC trials, the foil was always 180 degrees
away, which we used to calculate d'1so.. We then used TCC, with this measured d' but with no free parameters, to
accurately predict 8-, 60-, and 360-AFC performance. The accuracy of these predictions provides further evidence there
is no need for forgotten or low-precision items to account for the tail of continuous report distributions. Instead, for a
given stimulus space, the continuous report distribution is modulated by memory strength but is otherwise always the
same shape, determined by the shape of the similarity function for that stimulus space. (B) We can also independently
estimate d' from the continuous report data and from the 2-AFC data. We find a strong subject-level correspondence
between TCC'’s continuous-report estimate of d’' and d' estimated from the 2-AFC task in the traditional way (i.e., d'1so-),

Pearson r=0.89, p<0.001, CI=(0.81,0.93), in line with what is expected simply from the noise ceiling of these
measurements. Each point is a subject mean.

performance that is theoretically measured with 180°
foils in 2-AFC) are fundamentally distinct from the
center of the distribution.

from high precision memories. If these models were
correct, it should not be possible for TCC to make
such accurate predictions across tasks using a single
d'and no free parameters. The fact that TCC can
make such accurate predictions allows the
reintegration of a huge literature on change detection
with very distinct foils, with important theoretical and

In other words, in the competing models, responses
in the tails of the distribution result from ‘guesses’ or
‘low precision’, whereas the central responses result
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Figure 6. (A) Examples from a previously used continuous face space?® (adapted from 29). (B) Using a ‘quad’ similarity
task to reduce relational encoding, and the same MLDS method and perceptual matching task as with color, we collected
a psychophysical distance function for face identity, N=102. (C) TCC fits to working memory data (N=50) using face
identity at set size 1 and 3 (r=0.997, p<0.001, CI=(0.993, 0.998); r=0.985, p<0.001, CI=(0.971, 0.992). TCC accurately
captures face identity data, demonstrating its generalizability across diverse stimulus spaces. (D) To show generalization
to other memory systems, we fit data on a visual long-term memory continuous report task with colors®. N=30
participants performed blocks of memorizing 40 items, and then after a delay, reported the colors of the items using a
color wheel. Some items were seen only once, and some repeated twice in the same color within a block. (E) TCC fits to
visual long-term memory data for items seen only once and for items repeated twice (r=0.978, p<0.001, CI=(0.958,
0.988); r=0.991, p<0.001, CI=(0.983, 0.995)). TCC accurately captures visual long-term memory data, suggesting the
psychological similarity function is a constraint on both working and long-term memory systems. Note that long-term
memory performance in this task likely depends on a two-part decision —item memory and source memory (e.g., the
object itself, and then its color). This two-part decision is related to the processes of recollection and familiarity and likely
introduces heterogeneity in memory strength into the color memory reports. Here, where item memory was consistently
strong and color memory was the main factor, this does not affect the fits of TCC, but in other data where heterogeneity
in strength of item memory is greater, variability in d’ between items would likely need to be accounted for.

clinical implications??, as it shows that measuring d’ Generalization across different stimulus spaces.
with maximally distinct foils is sufficient to understand So far we have focused largely on color space, which
memory response distributions —there is no is the dominant way visual working memory is
separate “precision” that is not being measured in studied’. However, TCC is not limited to color and
such tasks. can be applied to any stimulus space. To

demonstrate its generality, we applied TCC to the
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Figure 7. (A) To validate whether TCC could detect objective guessing (i.e. a separate psychological state with no
information) if present in the data, we considered a mixture of responses from TCC plus objective guessing, creating a
mixture model of TCC and a uniform distribution. (B) Although model comparison strongly preferred TCC with no
guessing, we nevertheless fit a hybrid TCC+guessing model (2 parameters) to real participant data, and found that the
guessing parameter in real data is estimated at ~0 across all set sizes. (C) However, when fitting the hybrid
TCC+guessing model to simulated data, we observed accurate recovery of guessing if present in the data -- even 20%
‘guesses’ added to set size 8 d' levels is accurately recovered and never estimated as 0 (data are violin plots, showing
entire distribution of recovered parameters). Furthermore, model comparison metrics —even those, like BIC, designed to
prefer simpler models— prefer the hybrid model with the guessing parameter in every simulation with guessing added
(all BIC>30:1 in favor of hybrid model). This provides strong evidence there is little objective ‘guessing’ in visual working
memory data, and that our modeling with TCC would be able to detect any significant number of added no-information
responses if they were present.

case of face identity, since it is a complex stimulus and 3 (see Fig. 6) and fit reliably better than existing
space that contains multiple low- and high-level mixture models (Supplementary Table 3).

features. Using a previously created face-identity

continuous report procedure?®, we collected memory Thus, TCC accounts for data across multiple stimulus

data for set size 1 and 3. We also measured the spaces. As long as the perceptual similarity space of
psychophysical similarity function and measured the the stimuli is accurately measured using

accuracy of perceptual matching on this face space psychophysical scaling (see Supplementary

(Fig. 6). Again, we found the TCC fit observed Discussion), TCC’s straightforward signal detection
memory data extremely well across both set sizes 1 account, with only a single d' parameter, accurately

captures the data.
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Generalization across different memory systems.
To demonstrate TCC’s applicability to multiple
memory systems, not just visual working memory, we
fit data from a visual long-term memory continuous
report task with colors. Unlike the previous datasets,
this data had been previously reported in the
literature®. Participants performed blocks where they
sequentially saw 40 real-world objects’ that were
randomly colored, and then after a delay, reported
the color of the object using a color wheel (as in
Brady et al.?"). Some items were seen only once, and
some repeated twice in the same color within a block
(Fig. 6D). Again, we found that TCC fit the observed
memory data extremely well across both the
unrepeated and repeated items (Fig. 6E). Thus,
unlike working memory modeling frameworks which
propose system-specific mechanisms (e.g.,
population coding combined with divisive
normalization'?), TCC naturally fits data from both
visual working memory and long-term memory with
the same underlying similarity function and signal
detection process applicable across both memory
systems.

Implications of TCC: no objective guessing. One
particularly important implication of TCC'’s fit to the
data with just a single parameter is that it implies
there is little-to-no objective “guessing” in working
memory. This provides evidence against a fixed
capacity limit where participants only remember ~3-4
items™2 and is consistent with more continuous
conceptions of working memory*. In particular, while
colors far from the target in color space sometimes
‘win the competition’ (e.g., have maximal familiarity
after noise is added), this is not because the target
was fundamentally unrepresented or varied hugely in
encoded memory strength trial to trial. In a stochastic
competition, the strongest representation does not
always win. Moreover, the target will be more likely to
lose the competition the weaker its representation is.
Critically, in TCC, at least as proposed so far, the
target is always represented —that is, people’s
familiarity signals are never unaffected by what they
just saw 1 second ago (as in d=0).

While these conclusions follow from the excellent fits
of the straightforward 1-parameter TCC model to a
wide variety of data (data widely thought to provide
prima facie evidence for the existence of
unrepresented items) and from the generalization of
maximally-dissimilar 2-AFC performance to other
conditions, to evaluate this claim further, we
assessed a 2-parameter hybrid model based on TCC
but mixed with objective ‘guessing’. This hybrid
model assumes only a subset of items are
represented and that the remainder have d=0.
Focusing on the highest set sizes (6 and 8), we found
such a model was dispreferred in model comparisons
in 100% of subjects compared to TCC (BIC, set size
6: 1(19)=-41.99, p<0.001, d.=9.39, CI=(6.2:1, 6.9:1);
t(19)=-16.09, p<0.001, d,=3.60, CI=(5.3:1, 6.9:1)),
and BIC was well calibrated for these model
comparisons (Supplementary Figure 3). Furthermore,
while this hybrid model accurately recovered its own
parameters from simulated hybrid data, showing it
detects objective ‘guessing’ if it is present (Fig. 7C),
when fit it to empirical data it estimates ‘guessing’
rates near O in every set size in group data (Fig. 7B),
and a guess rate <5% in the majority of individual
subjects at every set size. Thus, although some
items may occasionally have a d' of O (perhaps
because they were completely unattended during
encoding), it appears to happen too infrequently to
appreciably affect the fit, and it happens far less often
than required for ‘slot’ models of working memory
that suppose 4-5 of the 8 items are always entirely
unrepresented?. The simulation results demonstrate it
is possible to detect “random guesses” if present in
the data, but TCC finds no evidence for such
objective ‘guessing’ in real data. Critically, however,
like any standard signal detection model, TCC
naturally accounts for the subjective feeling of
guessing/low confidence?! that arises when
memories tend to be weak, like at high set sizes
(Extended Data Fig. 7 and 8).

Implications of TCC: mixture models are not
measuring distinct psychological states. The
dominant quantitative model of visual memory is the
mixture model, which claims to measure two distinct
psychological concepts from continuous report error
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Figure 8. The currently dominant conception of memory arises from mixture models which claim that memory varies in
at least two psychologically distinct ways: the precision of memory and the number of represented items (modeled as
“guess rate”). TCC makes a strong counter prediction: that if the stimulus space, and thus psychophysical similarity
function, is held constant, memory report distributions vary in only one way, in memory strength. Thus, TCC claims that
the particular manipulation (encoding, set size, delay) used to change memory strength should not selectively change
one mixture model parameter or another (e.g., encoding changing precision; high set sizes affecting only guess rate,
etc), but that both should always change together. To visualize this, we show a state-trace plot of mixture model
parameters across a wide range of manipulations of working memory (from the current paper) and long-term memory
(from Miner et al.3%), with one point per condition. We find that despite the huge number of different ways we vary
memory strength, all the points lie on a single line, consistent with only a single parameter being varied; and that this line
is extremely well predicted by the O-free-parameter prediction of TCC. TCC can only predict an extremely small part of
the possible space the mixture model can predict, and only a very particular relationship between the two mixture model
parameters, and the data from all of these conditions land on this line. This provides strong evidence against mixture
models measuring two distinct parameters and in favor of the TCC conception of memory.

data: how precisely people remember items they
have in mind (e.g., “precision”; “variability in
precision”) and how often people have an item in
mind (“likelihood of retrieval”, or its opposite, “guess
rate”). The fundamental claim that there are two
distinct ways memory can fail —loss of precision or
loss of discrete items —permeates a huge variety of
literature in working memory, attention®?, iconic
memory3® and long-term memory®*. TCC makes a
counterclaim: the fact that manipulations of set size,
delay and encoding time that hold the stimulus space
constant (e.g., use a particular color wheel) can be fit
by varying a single memory strength parameter; and
that measuring how well people can distinguish only
maximally distinct comparisons (like red vs. green) is
sufficient to characterize memory appears to falsify
the idea that memory changes in two or three
psychologically distinct ways (e.g., precision vs.
guess rate). Another way to test this is to fit the
mixture model —which purports to measure two
distinct parameters —to data from a single stimulus
space (e.g., from a single color wheel) and ask
whether the state-trace plot shows evidence of a
single way memory changes or multiple ways®°.

Figure 8 shows this plot for all data from the current
paper (e.g., the 22 conditions shown above, plus the
other experiments) and from all the conditions in
Miner et al.®°, which provided the long-term memory
data fit above. As can be clearly seen in this plot, the
two parameters always change together: while not
linear in their relationship, they are nearly perfectly
related —and their relationship is well predicted by
the zero-free-parameter prediction of TCC (e.g.,
TCC'’s prediction across a range of d'values). The
non-linear relationship accounts for most cases
where people have found evidence to “dissociate” the
two parameters (see Supplementary Discussion).
This is further evidence that TCC'’s single parameter
conception of performance is correct and that mixture
models are not measuring distinct psychological
constructs (see also Supplementary Figure 4 and 5
and Supplementary Table 4, which use data from the
literature, although not holding the stimulus space
constant as here).

Discussion
Most previous theories and models of visual working
memory have not considered the relationship
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between stimuli and the psychological similarity of
those stimuli. In the absence of psychophysical
scaling and without regard for its theoretical
implications, the use of these models has led to what
we show are illusory ‘independent’ estimates of
‘guessing/capacity’ and ‘precision’ and to arguments
for limited capacity characterized by so-called
“discrete failures” of working memory, attention®?,
iconic memory®® and long-term memory?*. Indeed,
claims about selective deficits in clinical
populations®-3¢ and even about the nature of
consciousness®? have been made based on
dissociations between model-based estimates of
‘precision’ and ‘guessing’. Here, we have shown
these apparent dissociations are an illusion of
modeling the data without taking into account the
non-linear way the familiarity spreads in stimulus
space. When this fixed perceptual similarity structure
is taken into account, TCC provides a unifying theory
of visual memory strength, one that is capable of
bridging distinct tasks and stimulus conditions that
would not be possible using previous models and that
undermines the interpretation of apparent ‘discrete’
failures of attention and memory32-34:36-38,

While TCC rejects the idea that the distribution of
responses collected from continuous report is
explained primarily by remembered and not-
remembered items (or items that are encoded with
extremely different precisions?), this does not mean
some variability between items is not present in
working memory tasks. Psychophysical scaling can
naturally account for many stimulus-specific
variability effects (e.g., some colors being more
distinct than others, Extended Data Fig. 5) by using
separate similarity functions for each target color.
Furthermore, in light of the signal detection
framework of TCC, much of the existing evidence for
‘variable precision’ does not actually provide direct
evidence of variability in the d' parameter of the TCC
model. Many aspects of variability between items
arise in TCC naturally from the independent noise
added to different items that is at the heart of signal
detection theory, such as the effect of varying
confidence on continuous report data or allowing
participants to choose their best item for report
(Extended Data Fig. 7 and 8). Thus, it remains an

open question to what extent d' varies between items
and trials. In TCC, if such variation needs to be
accounted for, this would be done by moving to an
unequal variance signal detection model, whereas
the current modeling has used a purely equal
variance model. Critically, however, we show that
mixing in items that are unrepresented (d'=0) is
inconsistent with the data. Thus, any variability in d'
that does exist across items likely does not include
an appreciable role for items with d'= 0.

Many models of working memory focus almost
exclusively on how memory strength changes with
set size, taking this as the central factor in how much
understanding of working memory they have
achieved. We take a fundamentally different view,
seeing our measure of memory strength (d’) as a
measure of signal-to-noise that is likely modulated by
many factors, and which has a shared structure not
only in working memory, where set size matters so
much, but also in long-term memory, which appears
to follow fundamentally the same rules of memory
confusability and a similar decision process (Fig. 8;
Miner et al.3%). Notably, we find that while set size
modulates memory strength in the current work,
there are many other factors that affect memory
strength nearly as much. For example, increased
delay decreases d' (more noise accumulates even
with the same ‘signal’), and increased encoding time
improves d' (more signal relative to the same noise).
Similarly, in some situations other factors like location
noise (e.g., “swaps”; Bays et al.*®) and ensemble
coding*®#! seem to play a major role in memory
errors. Thus, while we find an approximately power
law-like relationship between set sized and d’
(Supplementary Figure 4), we are hesitant to assume
that there will be a fixed ‘law’ for how set size relates
to memory errors and note that previous work that
claims to find such rules”® has almost never
examined whether those rules hold when
manipulating other factors that will also
independently impact memory strength, like encoding
time and delay.

In addition, in the current work, we present a
straightforward version of the TCC model that does
not account for all possible factors. For example, it is
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possible to make different predictions for different
target colors, taking into account category effects
(e.g., Extended Data Fig. 5). In addition, while in the
current data we see almost no ‘swaps’ or location-
based confusions (because we use long encoding
times and placeholders), it is of course possible to
implement a ‘swap’ parameter in TCC (as in
Williams, Brady & Stoermer*?) or explicitly model the
psychophysical similarity structure of location and
therefore make parameter-free location confusion
predictions. Similarly, hierarchical models of
ensemble coding and grouping, or other forms of
integration across items could potentially be
implemented using TCC as the basis of memory
responses. If there is significant integration across
items or across time in a particular paradigm, more
complex models like these would be needed because
TCC’s item-based prediction about error distributions
would no longer be a valid assumption.

While TCC is a theory about the fundamental nature
of the underlying memory signal in visual working
and long-term memory tasks, and about how this
signal is used to make decisions, there are many
potential cognitive and neural explanations (shared
or independent across systems) that may instantiate
the model. Indeed, in long-term memory, signal
detection models have often been conceptualized in
relation to neural measures, including both
neuroimaging*® and single-unit recording**.

The central feature of TCC is the psychophysical
similarity measurement, which provides the basis for
the straightforward signal detection model. This
similarity function is naturally understood using
models of efficient coding'® or population coding™.
For example, the idea that far away items in feature
space are all approximately equally similar arises
naturally from population codes —if individual
neurons’ tuning functions only represent a small part
of color space (e.g., 15° on the color wheel), there
would be extremely limited overlap in the population
of neurons that code for any two colors even a
medium distance apart on the wheel. There would
also be correlated noise between nearby colors, as
we assume in TCC.

Thus, the current model is in many ways related to
existing models of working memory based on
population codes®'°. Indeed, the similarities between
the framework of population coding and the cognitive
model proposed here offers significant promise for
bridging across levels of understanding in
neuroscience, with a population coding
implementations of TCC possible*>#¢. However, as
compared to existing population-based models'®, the
cognitive basis of the current model —with the
measured scaling function following the well-known
cognitive laws of similarity’”'®* —allows us to fit data
with an extremely simple 1-parameter model that
allows generalization across tasks and draws strong
connections to signal detection theory and long-term
memory that are not apparent when thinking about
population coding alone without this cognitive basis.
In addition, framing our model in terms of signal
detection theory allows a very general model of the
decision process, compared to population coding
models where the decision process is based on
variability in spikes in a fixed neural population??,
which are hard to reconcile with data from high-level
stimuli like faces, which are likely encoded in many
distinct populations, and data from long-term
memory, which is not stored ‘online’ in a fixed neural
population.

Previous work has shown psychophysical similarity
metrics are likely distinct for different stimuli in the
same stimulus space (e.g., memory varies across
colors'?'3; Extended Data Fig. 5). The underlying
space upon which the exponential similarity function
is imposed may be designed to take advantage of
efficient coding of environmental regularities*’, such
that the more frequent the stimuli, the more neural
resources we devote, giving improved discriminability
and predictable memory biases*®. Taking this into
account may allow a simple parameterization of not
only the average similarity function, but the particular
functions for individual stimuli (as in Fig. 1D). In
addition, psychophysical similarity may not be a fixed
property but may be dependent on how the current
environment affects discriminability*®*°. For example,
memory biases are altered when discriminability is
affected by adaptation or contextual effects.
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Some previous models of visual working memory
have, like TCC, rejected the idea that the ‘fat tails’ in
the error distribution (Fig. 1) arise from
unrepresented items®®°. For example, models like the
variable precision model® hold that items vary in the
precision with which they are encoded, and this
heterogeneity between items is critical to explaining
the shape of the error distribution; i.e., extremely
poorly represented items, rather than completely
unrepresented items, explain the tail of the error
distribution. Like TCC, this model holds that there is
not in fact a completely uniform, flat tail in the
distribution; and assumes that items vary in
representational fidelity (i.e., the independent noise
for different items in TCC).

However, in other ways, the two models differ
substantial. The variable precision models, like other
previous memory models, relies on the assumption
that the response axis can usefully be thought of as
linear. By contrast, we have shown that similarity and
memory confusability are deeply non-linear along this
axis, in agreement with decades of work suggesting
psychological similarity is globally exponential (e.g.,
the universal law of generalization'”-'8). This results in
significant differences between the variable precision
model and TCC. In particular, in the variable
precision model, the latent distribution of precisions is
an unknown that is taken to vary between situations,
whereas TCC uses the insight that similarity is non-
linear and relatively fixed to greatly simplify the model
of the error distribution (allowing, for example, the
generalizations from 180° 2-AFC that are not
possible in the variable precision model).

Finally, TCC provides a compelling connection
between working memory and long-term recognition
memory, which is often conceptualized in a signal
detection framework. In particular, it can be naturally
adapted to explain a number of findings that are in
common between the working memory and long-term
memory literatures but have been difficult to explain
with previous working memory models, like the
relationship between confidence and accuracy®?>3
(Extended Data Fig. 7 and 8) and the ability of
participants to respond correctly when given a
second chance even if their first response was a

‘guess’ or ‘low precision response’®'. Thus, despite
research on working and long-term memory
operating largely independent of one another, TCC
provides a unified framework for investigating the
distinctions and similarities in memory across both
domains by emphasizing that competition and
perceptual confusability between items is a major
limiting factor across both working memory and long-
term memory.
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Methods

All conducted studies were approved by the
Institutional Review Board at the University of
California, San Diego, and all participants gave
informed consent before beginning the experiment.
All color experiments used a circle in CIE L*a*b*
color space, centered in the color space at (L = 54, a
= 21.5, b = 11.5) with a radius of 49. All sample sizes
were decided a priori, and are similar to those in
previous publications’®3!. Approximately half of the
data comes from experiments run in the lab, with the
others were conducted using Amazon Mechanical
Turk. Mechanical Turk users form a representative
subset of adults in the United States®*, and data from
Turk are known to closely match data from the lab on
visual cognition tasks*®®°, including providing
extremely reliable and high-agreement on color
report data*'. Any systematic differences between the
lab studies — where we collect most memory data —
and the Turk studies — where we collect most
similarity data — would decrease the appropriateness
of the similarity function for fitting the memory data,
hurting the fit of TCC. Data collection and analysis
were performed with knowledge of the conditions of
the experiments. All statistical tests are two-tailed.

1. Fixed distance triad experiment. N=40
participants on Amazon Mechanical Turk judged
which of two colors presented was more similar to a
target color. The target color was chosen randomly
from 360 color values that were evenly distributed
along a circle in the CIE L*a*b* color space, as
described above. The pairs of colors were chosen to
be 30 degrees apart from one another, with the offset
of the closest color to the target being chosen with an
offset (in deg) of either 0, 5, 10, 20, 30, 40, 50, 60,
70, 80, 90, 120, 150 (e.g., in the 150 degree offset
condition, the two choice colors were 150 and 180
degrees away from the target color; in the 0 deg
offset condition, one choice exactly matched the
target and the other was 30 deg away).

Participants were asked to make their judgments
solely based on intuitive visual similarity and to
repeat the word ‘the’ for the duration of the trial to
minimize the use of verbal strategies. Each
participant completed 130 trials, including 10 repeats

of each of the 13 offset conditions, each with a
different distance to the closest choice color to the
target, and trials were conducted in a random order.
The trials were not speeded, and the colors remained
visible until participants chose an option. To be
conservative about the inclusion of participants, we
excluded any participant who made an incorrect
response in any of the 10 trials where the target color
exactly matched one of the choice colors, leading to
the exclusion of 7 of the 40 participants, and based
on our a priori exclusion rule, excluded any
participants whose overall accuracy was 2 standard
deviations below the mean, leading to the exclusion
of 0 additional participants. In addition, based on an a
priori exclusion rule, we excluded trials with reaction
times <200ms or >5000ms, which accounted for
1.75% (SEM:0.5%) of trials. The data from a subset
of offset conditions is plotted in Figure 1C, and the
full dataset is plot in Extended Data Fig. 1.

2. Psychophysical scaling triad experiment.
N=100 participants on Mechanical Turk judged which
of two colors presented was more similar to a target
color, as in the fixed distance triad experiment.
However, the pairs of colors now varied in offset from
each other and from the target to allow us to
accurately estimate the entire psychophysical
distance function. In particular, the closest choice
item to the target color could be one of 21 distances
away from the target color: 0, 3, 5, 8, 10, 13, 15, 20,
25, 30, 35, 45, 55, 65, 75, 85, 100, 120, 140, 160, or
180 degrees. If we refer to these offsets as 0, such
that o1 is O degrees offset and 021 is 180 degrees
offset, then given a first choice item of o;, the second
choice item was equally often 0i+1, Oi+2, Oi+3, Oi+4, OF
oi+g degrees from the target color (excluding cases
where such options were >21).

Participants were asked to make their judgments
solely based on intuitive visual similarity and to
repeat the word ‘the’ for the duration of the trial to
prevent the usage of words or other verbal
information. Each participant completed 261 trials,
including 3 repeats of each of the possible pairs of
offset conditions, and trials were conducted in a
random order. The trials were not speeded, and the
colors remained visible until participants chose an
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option. Following our a priori exclusion rule, we
excluded any participant whose overall accuracy was
2 standard deviations below the mean (M=77.5%)
leading to the exclusion of 8 of the 100 participants.
In addition, based on an a priori exclusion rule, we
excluded trials with reaction times <200ms or
>5000ms, which accounted for 1.7% (SEM:0.26%) of
trials.

To compute psychophysical similarity from these
data, we used a modified version of the model
proposed by Maloney and Yang'é, the Maximum
Likelihood Difference Scaling method. Rather than
using this model to measure the distance between
e.g., red and green, we adapted it to measure the
appropriate psychophysical scaling of similarity
between colors as a function of their distance
between colors along the wheel rather than their
absolute color. In particular, any given trial has a
target color, S;, and two options for which is more
similar, Sjand Sk. Let I = S; — S;, the distance
between S; and S; on the color wheel, which is
always in the set [0,3,5,...180], and yj, the
psychophysical similarity to which this distance
corresponds. If people made decisions without noise
then they should pick item j if and only if g > pi. We
add noise by assuming participants decisions are
affected by Gaussian error, such that they pick item j
if wj + € > Yik. We set the standard deviation of the
Gaussian € noise to 1, consistent with a signal
detection model. Thus, the model has 20 free
parameters, corresponding to the similarity scaling
values for each possible distance length (e.g., how
similar a distance of 5 or 10 on the color wheel really
is to participants), and then we fit the model using
maximum likelihood search (fmincon in MATLAB).
Thus, these scaled values for each interval length
most accurately predict observers’ similarity
judgments, in that equal intervals in the scaled space
are discriminated with equal performance. Once the
scaling is estimated, we normalize the
psychophysical scaling parameters so that
psychophysical similarity ranges from 0 to 1.

We did not test all possible pairings, but simply a
subset (5 different offsets) because collecting more
pairs does not improve the estimate of the

psychophysical scaling function much, if at all, since
the pairs we used ‘overlap’ enough without doing all
of them. Each possible pairing provides an estimate
of a ‘slope’ on the psychophysical similarity graph.
For each pair, the relevant part of the x-axis is
known, and people’s d’ at discriminating each pair
(“which is closer? target+10 degrees or target+45
degrees”?) is an estimate of the y-axis difference /
slope in that range (i.e. the difference in
psychophysical similarity between those two points).
Having 21 (distances) * 5 (offsets from those
distances) = 105 such slope estimates, some
covering wide ranges of the x-axis and some small
ranges, and each well estimated, is sufficient to
constrain the global shape of the function when using
the MLDS method.

3. Likert color similarity experiment. N=50
participants on Mechanical Turk judged the similarity
of two colors presented simultaneously on a Likert
scale, ranging from 1 (least similar) to 7 (most
similar). The colors were chosen from a wheel
consisting of 360 color values that were evenly
distributed along the response circle in the CIE
L*a*b* color space. The pairs of colors were chosen
by first generating a random start color from the
wheel and then choosing an offset (in degrees) to the
second color, from the set 0, 5, 10, 20, 30, 40, 50,
60, 70, 80, 90, 120, 150, 180. Participants were given
instructions by showing them two examples: (1) in
example 1, the two colors were identical (0O deg apart
on the color wheel) and participants were told they
should give trials like this a 7; (2) in example 2, the
two colors were maximally dissimilar (180 deg apart
on the color wheel) and participants were told they
should give this trial a 1. No information was given
about how to treat intermediate trials. Participants
were asked to make their judgments solely based on
intuitive visual similarity and to repeat the word ‘the’
for the duration of the trial to prevent the usage of
words or other verbal information. Each participant
did 140 trials, including 10 repeats of each of the 14
offset conditions, each with a different starting color,
and trials were conducted in a random order. The
trials were not speeded, and the colors remained
visible until participants chose an option. 2
participants were excluded for failing a manipulation
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check (requiring similarity >6 for trials where the
colors were identical). Based on an a priori exclusion
rule, we excluded trials with reaction times <200ms
or >5000ms, which accounted for 3.0% (SEM:0.4%)
of trials. Similarity between two colors separated by
x° was measured using a 7-point Likert scale, where
Smin =1 and Spax = 7. To generate the
psychophysical similarity function, we simply
normalize this data to range from 0 to 1, giving a
psychophysical similarity metric, such that f(x) = ((Sx
= Smin) / (Smax = Smin)).

4. Perceptual matching experiment. N=40
participants on Mechanical Turk were shown a color
and had to match this color, either using a continuous
report color wheel (100 trials) or choosing among 60
options (100 trials; spaced 6 degrees apart on the
color wheel, always including the target color). The
60-AFC version was designed to limit the contribution
of motor noise, since the colors in this condition were
spaced apart and presented as discrete boxes that
could not easily be ‘misclicked’. Colors were
generated using the same color wheel as other
experiments, and participants had unlimited time had
to choose the matching color. The color and color
wheel/response options remained continuously
visible until participants clicked to lock in their
answer. The color was presented at one of 4
locations centered around fixation (randomly),
approximately matching the distance to the color
wheel and variation in position used in the continuous
report memory experiments. 1 participant’s data was
lost due to experimenter error and 2 participants
were excluded for an average error rate greater than
2 standard deviations away from the mean.

To convert this data into a perceptual correlation
matrix —asking how likely participants are to confuse
a color x degrees away in a perception experiment —
we relied upon the 60-AFC data alone, since this
data has no contribution from motor noise and so is
solely a measure of perceptual noise. However,
using the continuous report data instead result in no
difference in any subsequent conclusions, as the
contribution of motor noise in that task appeared to
be minimal. To create the perceptual correlation
matrix, we created a normalized histogram across all

participants of how often they made errors of each
size up to 60 degree errors (-60, -54... 0, ... 54, 60),
and then linearly interpolated between these to get a
value of the confusability for each degree of distance.
We then normalized this to range from 0 to 1.

5. Modeling Data Using the Target Confusability
Competition (TCC) Model. The model is explained
interactively here: https://bradylab.ucsd.edu/tcc/ In
general, the model is typical of a signal detection
model of long-term memory, but adapted to the case
of continuous report, which we treat as a 360
alternative forced-choice for the purposes of the
model. The analysis of such data focuses on the
distribution of errors people make measured in
degrees along the response wheel, x, where correct
responses have x=0° error, and errors range up to
x=%180°, reflecting the incorrect choice of the most
distant item from the target on the response wheel
(Fig. 1B). In the TCC model, when probed on a single
item and asked to report its color, (1) each of the
colors on the color wheel generates a memory-match
signal my, with the strength of this signal drawn from
a Gaussian distribution, my ~ N( dx, 1), (2)
participants report whichever color x has the
maximum my, (3) the mean of the memory-match
signal for each color, dx is determined by its
psychophysical similarity to the target according to
the measured function (f(x)), such that dx = d' f(x)
(Figure 2) and (4) the noise is correlated across
nearby colors according to confusability in a
perceptual matching task. As f(x), the psychophysical
similarity function, we use the smooth function
estimated from the Likert similarity experiment
although the triad task modeled similarity function
predicts fundamentally the same results (Extended
Data Fig. 4).

According to the model, the mean memory-match
signal for a given color x on the working memory task
is given by dy = d'f(x), where d'is the model’s only
free parameter. When x =0, f(x) =1, so dp = d". By
contrast, when x = 180, f(x) = 0, so d1go = 0. Then, as
noted above, at test each color on the wheel
generates a memory-match signal, my,
conceptualized as a random draw from that color’s
distribution centered on dy. That is, if the noise was
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uncorrelated between nearby colors, mx ~ N( dx, 1).
The response (r) on a given trial is made to the color
on the wheel that generates the maximum memory-
match signal, r = argmax(m).

Thus, the full code for sampling an absolute value of
error from such a TCC-like (uncorrelated noise)

model is only two lines of MATLAB:
memMatchStrengths = randn(1,180)+
similarityFunction * dprime;
[~,memoryError] = max (memMatchStrengths);

This model fits the data well as-is (see Extended
Data Fig. 2), but as specified so far, this model
assumes that 360 independent color probes elicit
independent noisy memory-match signals. The
shape of the distributions the model predicts are
effectively independent of how many color channels
we assume, so this number is not important to TCC'’s
ability to fit working memory data, but the @' value in
the model does change depending on the number of
color channels used. Thus, to make the d' value in
TCC comparable to real signal detection d' values, it
is important to consider “how many” color channels
people are accessing.

Rather than make this a discrete decision (e.g., ‘there
are 30 independent colors on the color wheel, so
people consider 30 channels’), we instead estimated
the covariance between nearby channels in a
continuous manner. The familiarity value of color 181
and 182 on the wheel cannot possibly be fully
independent, since these two colors are perceptually
indistinguishable. Following this intuition, we make a
simple assumption: the amount of shared variance in
the noise between any two color channels is simply
how often colors at that distance are confused in a
perceptual matching task. Thus, p(x), the correlation
in the noise between any two colors x apart on the
color wheel, is given by Cx / Co, where Cyis how often
colors x degrees away from the target are chosen in
the perceptual matching task (with these values
interpolated from the histogram of errors; see
Methods section 4). On average, colors 1 degree
away are chosen about 96% as often as the correct
color in the matching task, so the noise between any
two channels 1 degree apart is assumed to share
96% of its variance; 82% at 5 degrees; etc. Thus,

having measured both the similarity function and the
perceptual matching matrix, to sample from the full
(correlated-noise) TCC model, we can use MATLAB
code that is nearly as straightforward as the

uncorrelated model:

memMatchStrengths = mvnrnd(similarityFunction *
dprime, percepCorrMatrix);

[~,memoryError] = max( memMatchStrengths);

Thus, in the full version of TCC, the mean of the
memory-match signal for each color, dy is determined
by its psychophysical similarity to the target
according to the measured function f(x), which is
taken to be symmetrical for the fitting based on the
averaged similarity data, such that dx = d' f(|x|), for x’s
[-179,180]. The covariance between colors (R) is
given by the perceptual confusability of colors at that
distance, p(x), which is also taken to be symmetric:

p@ P p(2)
p(1) PO p(1)

p2 P p(O)

p(180) p(178) ... P p(1)
p(179) p(180) ... PG P2

p(178) p(179) ... pE) P

p180) p(179) p(178) .. p©) (1)

p(179) p(180) p(179) .. p(1)  p(O)

P(178) p(179)

P177) p(178)

P P2 PO P79 p(178) .. (1) p(O)
To use the perceptual correlation data as the
covariance in the correlated model, because it might
not always be a perfect correlation matrix (e.g., not
perfectly symmetric, as it was based on real data),
we first computed R and then iteratively removed
negative eigenvalues from this matrix and forced it to
be symmetric until it was a valid correlation matrix.
This resulted in only minimal changes compared to
the raw perceptual correlations inferred from the
perceptual confusability data.

Then let (X179, ... , X180) be a multivariate normal
random vector with mean d, unit variance, and
correlation matrix R. The winning memory strength
(m; i.e., subjective confidence) and reported color
value, r, are then the max and argmax, respectively,
of this vector:

m = max(X-179, ey X180)

r= argmax(X.ng, . X180)
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And the error, e, is the circular distance from r to 0.
The distribution of m is in theory directly
computable®, but we rely on sampling from this
distribution for the fits in the current paper (see
below).

Although also not important to the fit of the current
data, the model can also be adapted to include a
motor error component. Whereas existing mixture
models predict the shape of the response distribution
directly and thus confound motor error with the
standard deviation of memory (see Fougnie et al.®’
for an attempt to de-confound these), our model
makes predictions about the actual item that
participants wish to report. Thus, if participants do not
perfectly pick the exact location of their intended
response on a continuous wheel during every trial, a
small degree of Gaussian motor error can be
assumed to be included in responses, e.g., the
response on a given trial, rather than being
argmax(X-o, ..., X180), likely includes motor noise of
some small amount, for example, 2°:

r~ N(argmax(X-wg, vy X180), 2°)

Thus, for accuracy to the real generative model of
responses, in the model fitting reported in the present
paper, we include a fixed normally distributed motor
error with SD=2°, although we found the results are
not importantly different if we do not include this in
the model.

For fits using the uncorrelated noise model, fits of the
d’ parameter of the model to datasets were
performed using the MemToolbox®® making use of
maximum likelihood (see code on OSF). For fits of
the correlated model —which is difficult to compute a
likelihood function for but straightforward to sample
from —we relied on sampling 500,000 samples from
the model’s error at each of a range of d’ values (0 to
4.5 in steps of 0.02) and slightly smoothing the result
to get a pdf for the model at each d'value. The
uncorrelated noise version of TCC —which can be
directly maximized —results in the same fits as the
correlated version, with d'linearly scaled by ~0.65.
(See Extended Data Figure 2). Thus, it is also
possible to fit the correlated noise version by fitting
the uncorrelated version through maximum likelihood

with the appropriate adjustment to d’, and doing so
results in the same fits.

6. Continuous color report data (set size 1, 3 and
6, 8). The continuous color report data used for fitting
the model was collected in the lab to allow a larger
number of trials per participant. N = 20 participants
performed 100 trials of a memory experiment at each
of set size 1, 3, 6 and 8, for a total of 400 trials (plus
4 practice trials). The display consisted of 8
placeholder circles. Colors were then presented for
1000ms, followed by an 800ms ISI. For set sizes
below 8, the colors appeared at random locations
with placeholders in place for any remaining locations
(e.g. at set size 3, the colors appeared at 3 random
locations with placeholders remaining in the other 5
locations). Colors were constrained to be at least 15°
apart in color space along the response wheel. After
the ISI, a target item was probed by marking a
placeholder circle was marked with a thicker outline,
and participants were asked to respond on a
continuous color wheel to indicate what color had
been presented at that location. The response wheel
was held constant from trial-to-trial. Error was
calculated as the number of degrees on the color
wheel between the probed item and the response.
No subjects were excluded.

7. Continuous report memory as a function of
delay (set size 1, 3, 6). N = 20 participants in-lab
completed a color working memory task similar to the
previous high set size experiment, but with the
following exceptions. Participants performed 12
blocks of 75 trials (900 trials total). Each block
contained an equal number of trials at set size 1, 3,
and 6. The display consisted of 6 placeholder circles.
Colors were presented for 500ms, and followed by a
delay of either 1000ms, 3000ms, or 5000ms. Delay
time was blocked, and participants were informed at
the beginning of each block the delay time for that
block. Each combination of the 3 set sizes and the 3
delays was used in 100 trials. One participant was
excluded for having performance greater than 2
standard deviations worse than average (across all
conditions), leaving a final sample of 19.
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8. Continuous report memory as a function of
encoding time (set size 1, 3, 6). N = 20 participants
in-lab completed a color working memory task
identical to the delay experiment, but with the
following exceptions. Participants performed 12
blocks of 75 trials. Each block contained an equal
number of trials at set size 1, 3, and 6. Colors were
presented for either 100ms, 500ms, or 1500ms.
Encoding time was blocked, and participants were
informed at the beginning of each block the encoding
time for that block. Following encoding, there was a
1000ms delay before a target item was probed. Each
combination of the 3 set sizes and the 3 encoding
times was used in 100 trials. No subjects were
excluded.

9. Model comparisons to mixture models. For all
model comparisons in the paper, we created new
versions of mixture models designed to be directly
comparable to TCC. In particular, to make predictions
derived from mixture models comparable to those
derived from TCC (which specifies a probability of
response discretely for each 1 degree of the wheel,
not over a continuous distribution), we use discrete
versions of the 2-parameter and 3-parameter mixture
models in which the probabilities of the data are
normalized over each of 360 possible integer error
values (not over the continuous space of errors).

We performed two types of model comparisons: one
to simply assess the fit of the model to the data, and
one designed to penalize more complex models. In
particular, we first performed a cross-validation
procedure to assess the fit of each model®.
Specifically, we fit the TCC and the 2- parameter and
variable precision mixture models to data from each
set of N-1 trials separately for each subject and set
size and then evaluated the log-likelihood of this
model using data from the single held out trial. We
then assessed the reliability of this likelihood
difference across subjects separately for each set
size. TCC and mixture models provided relatively
comparable fits (see Supplementary Table 2), which
is to be expected given the mixture model can almost
perfectly accurately mimic TCC (see Supplementary
Fig. 3) and given that the amount of data used to fit
the models is much greater than the number of

parameters in either model (which ranges from 1-3),
so cross-validation provides effectively no penalty for
complexity.

We then compared how well the competing models
(TCC; 2-parameter mixture model; 3-parameter
variable precision mixture model) fit data from
individual participants for the color report data when
using an explicit penalty for the greater complexity of
the mixture models. In particular, we assessed BIC
separately for each set size and each participant. We
found a strong preference for TCC over both mixture
models when penalizing complexity (see
Supplementary Table 2). Note that this was true even
though TCC fits are based on aggregated similarity
functions from a different group of participants,
collected in a different way (online vs. in lab),
suggesting the global structure of the psychophysical
similarity function is largely a fixed aspect of a given
stimulus space. Ideally, TCC would be fit with a
similarity function specific to each individual target
color (which can be done and predicts the
appropriate deviations; see Extended Data Fig. 5),
which would almost certainly improve the fit of TCC
even further with no added parameters (because the
added complexity would simply be more measured
perceptual data). However, in the current fits we rely
solely on averaged similarity to demonstrate how it is
the global, not local, structure of the similarity space
that is critical to the fit of TCC.

10. 2-AFC at different foil similarities. N=60
participants on Mechanical Turk completed 200 trials
of a 4-item working memory task. On each trial, they
saw 4 colors randomly chosen from the color wheel
(subject to the constraint that no two colors were
within 15 deg. of each other). The colors were
presented for 1000ms and then after an 800ms
delay, had to answer a 2-AFC memory probe about
one of the colors. The foil color in the 2-AFC could be
offset from the target 180, 72, 24, or 12 degrees (50
trials/condition). These conditions were interleaved
so that participants needed to maintain detailed
memories of the color on every trial, since
conceivably if only 180 degree foils were present for
a block or in an entire experiment, participants would
be likely to encode only categorical, not perceptual
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information. The response options were presented at
appropriate locations along a full color wheel -- e.g.,
the 180 degree foils were presented 180 deg. apart
on the screen, and the 12 deg. foils were presented
12 deg. apart on the screen, to visually indicate the
distance between the target and foil in color space.
The response wheel was rotated from trial-to-trial.

Performance was scored as the number correct out
of 50 at each offset of the memory foil. 5 participants
were excluded for below chance performance in the
maximally easy 180 deg. offset condition, leaving
N=55 participants.

In order to assess the predictions of TCC for this data
in a way amenable to the use of Bayes factors, we
took the number correct out of 50 in the 180 deg. foil
condition and used this to calculate a probability
distribution over d’ values (e.g., any given d' predicts,
according to the binomial function, a likelihood over
all numbers of correct responses). In TCC, a given d'
value for 180 deg. foils predicts d’ for all other offsets
straightforwardly, although for the correlated-noise
TCC, performance is not simply d' modulated by
similarity (for similar foils, the correlated noise plays a
role). Thus, to predict performance we sampled from
the model repeatedly, e.g., for 24 deg. foils, in
MATLAB notation:

memoryMatchStrengths =

mvnrnd (similarityFunction * dprimeiso,
percepCorrMatrix, 50);
isCorrect=memoryMatchStrengthsggeg>memoryMatchStr
engthszsgeq

In other words, to assess performance in the 24 deg.
offset condition, we assumed responses were
generated according to the argmax of only these
values:

r = argmax(Xo, X24)
To preserve all uncertainty, we marginalized over the
distribution of d'values implied by the number of
correct trials in the 180 deg. foil case and used this to
make a prediction about the distributions of correct
answers expected for each of the other offset
conditions. This allows us to understand the
likelihood of each subjects’ performance in the other
conditions given their 180 deg. foil performance in
TCC.

To assess the likelihood of performance at different
offsets in the mixture model framework of Zhang and
Luck’, we use performance at the 180 deg. foil
conditions to assess the “guess rate” of participants
(guess rate = 1 - (2*percentCorrectigo-1)) in the
standard way (e.g., Brady et al.®°). However, in this
framework, 180 deg. foils leave an unknown free
parameter: memory precision cannot be assessed
using such foils, and thus is free to vary. Thus, to
predict a likelihood of each performance level at each
other foil offset, we needed to marginalize over the
unknown precision parameter. To minimize
assumptions about this, we used the same prior on
precisions that van den Berg et al. used when fitting
both the standard mixture model and their own
variable precision model, a uniform prior over the
concentration parameter of the von Mises from 0-
200. For any given ‘guess rate’ and ‘precision’, we
then calculated the percentage of the PDF that was
closest to each 2-AFC response option at each offset
to generate a likelihood for the data (as in
MemToolbox%®). To calculate Bayes factors, we used
a grid of values for both the d'in TCC and for the
precision in the mixture model, using steps of 1 in the
precision and steps of 0.01 in d', and we assessed
the summed log likelihood of each of the 3 other
offsets (e.g., not including the 180 deg. condition) as
our final data likelihood.

11. 2-AFC generalization to n-AFC and
continuous report. N=60 participants on Mechanical
Turk completed 200 trials of a 4-item working
memory task. On each trial, they saw 4 colors
randomly chosen from the color wheel (subject to the
constraint that no two colors were within 15 deg. of
each other). The colors were presented for 1000ms
and then after an 800ms delay, had to answer a
probe about one of the colors. This probe could be a
2-AFC (with 180 deg. different foil), an 8-AFC (with
the choices equally spaced around the color wheel,
and always including the target), a 60-AFC (similarly
equally spaced), or continuous report (360-AFC).
These conditions were interleaved so that
participants needed to maintain detailed memories of
the color on every trial, since conceivably if only 180
degree foils were present for a block or in an entire

Page 25 of 52



experiment, participants would be likely to encode
only categorical, not perceptual information. The
response options were presented at appropriate
locations along a full color wheel -- e.g., the 2-AFC
180 degree foils were presented 180 deg. apart on
the screen, and the 60-AFC foils deg. foils were
presented 6 deg. apart on the screen, to visually
indicate the distance between the target and foils in
color space. The response wheel was rotated from
trial-to-trial.

Performance was scored as the number correct out
of 50 at each offset of the memory foil. One
participant’s data was lost, and 7 participants were
excluded for below chance performance in the
maximally easy 2-AFC, 180 deg. offset condition,
leaving N=52 participants.

The simplest metric is simply to compare the d’
computed from 2-AFC performance (e.qg.,
(norminv(hit)-norminv(fa))/sqrt(2)) to the d’ from fitting
TCC to the continuous report data. These are
extremely strongly related (Fig. 5B).

In order to assess the predictions of TCC for this data
in a way amenable to the use of Bayes factors, we
again took the number correct out of 50 in the 2-AFC
180 deg. foil condition and used this to calculate a
distribution over d’ values (e.g., any given d' predicts,
according to the binomial function, a likelihood over
all numbers of correct responses). In TCC, a given d'
value for 180-foils predicts d'for all other n-AFCs
(including 360-AFC) straightforwardly, by simply first
choosing the maximum out of the relevant foil options
that are present, e.g., at 8-AFC:

r=argmax(..., Xus, Xo, X5, ...)

To preserve all uncertainty, we marginalized over the
distribution of d' values implied by the number correct
in the 180 deg. foil case and used this to make a
prediction about the distributions of responses to
each foil expected for each of the other n-AFC
conditions. This allows us to understand the
likelihood of each subjects’ performance in the other
conditions given their 180 deg. foil performance in
TCC.

To assess the likelihood of performance in
continuous report given performance in the 2-AFC
task, in the mixture model framework of Zhang and
Luck’, we use performance at the 180 deg. foil
conditions to assess the “guess rate” of participants
(guess rate = 1 - (2*percentCorrectigo-1)) in the
standard way (e.g., Brady et al.®°). However, in this
framework, 180 deg. foils again leave an unknown
free parameter: memory precision cannot be
assessed using such foils, and thus is free to vary.
Thus, to predict a likelihood of each performance
level at each other foil offset, we needed to
marginalize over the unknown precision parameter.
To minimize assumptions about this, we used the
same prior on precisions that van den Berg et al.®
used when fitting both the standard mixture model
and their own variable precision model, a uniform
prior over the concentration parameter of the von
Mises from 0-200. For any given ‘guess rate’ and
‘precision’, we then calculated the likelihood of
subject’s continuous report performance under these
parameters. To calculate Bayes factors, we used a
grid of values for both the d'in TCC and for the
precision in the mixture model, using steps of 1 in the
precision and steps of 0.01 in d'. We assessed the
log likelihood of TCC and the mixture model only in
the continuous report case, having fit the
parameter(s) using only the data from the 2-AFC 180
deg. condition.

12. Face identity continuous report data (set size
1 and 3). We utilized the same continuous report
task, but adapted the stimulus space to face identity
using the continuous face identity space and
continuous response wheel created in Haberman,
Brady and Alvarez?®. In particular, as described in
that work, the faces were 360 linearly interpolated
identity morphs, taken from the Harvard Face
Database, of three distinct male faces (A-B-C-A; see
Figure 6), generated using MorphAge
software(version 4.1.3, Creaceed). Face morphs
were nominally separated from one another in
identity units, which corresponded to steps in the
morph space. Prior to morphing, face images were
luminance normalized. In our memory task, we used
set sizes 1 and 3, showing either 1 or 3 faces at
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once, and the encoding display was shown for 1.5
seconds due to the increased complexity of the face
stimuli and task difficulty. Participants on Mechanical
Turk (N=50) completed 180 trials. The first 20 trials
were practice and not included in the analysis. 14
participants were excluded for having near-chance
performance levels (d'<0.50) at set size 3, although
including all subjects with d>=0 does not affect our
conclusions or the fit of TCC.

13. Face identity similarity ‘quad’ task. N=102
participants on Mechanical Turk judged which of two
pairs of faces presented were more distinct (e.g.,
which pair had constituent items that were more
different from each other). On each trial, we chose 2
pairs of faces, with the first item in each pair being
randomly chosen and the second item in each pair
always having an offset of 0, 5, 10, 20, 40, 60, 80,
100, 140, or 180 away. Altogether, they completed
18 trials of each kind, giving a total of 180 trials each.

Participants were asked to make their judgments
solely based on intuitive visual similarity, rather than
the use of knowledge of faces or using verbal labels.
We excluded participants whose overall performance
level was more than 2 standard deviations below the
mean, resulting in a final sample of N=85.

To compute psychophysical distance from these
data, we used a similar model as for colors, based on
the model proposed by Maloney and Yang'®, the
Maximum Likelihood Difference Scaling method. In
particular, any given trial has two pairs of faces,
where their face-wheel values are, S;, S; and Sy, S..
Let Ij = S; — Si, the length of the physical interval
between S; and S;, which is always in the set
[0,5,10...180], and yj;, the psychophysical similarity to
which this distance corresponds. If people made
decisions without noise then they should pick pair i,j if
and only if g > ww. We add noise by assuming
participants decisions are affected by Gaussian error,
such that they pick pair i,j if g + € > ww. We set the
standard deviation of the Gaussian € noise to 1, so
that the model has 9 free parameters, corresponding
to the psychophysical scaling values for each
possible interval length (e.g., how similar a distance
of 5 or 10 ‘really’ is to participants), and then we fit

the model using maximum likelihood search (fmincon
in MATLAB). Thus, these scaled values for each
interval length most accurately predict observers’
judgments, in that equal intervals in the scaled space
are discriminated with equal performance. Once the
scaling is estimated, we normalize the
psychophysical scaling parameters so that
psychophysical similarity ranges from 0 to 1.

14. Face identity perceptual matching. N=40
participants on Mechanical Turk were shown a face
and had to match this face using a continuous report
wheel (100 trials). Because the contribution of motor
noise appeared to be minimal in the color matching
task (relative to perceptual error), we used only a
continuous report wheel (no 60-AFC). Faces were
generated from the same continuous face space
used in other experiments, and participants had
unlimited time had to choose the matching face. The
face and face wheel/response options remained
continuously visible until participants clicked to lock in
their answer. The face was presented at one of 4
locations centered around fixation (randomly),
approximately matching the distance to the face
wheel and variation in position used in the continuous
report memory experiments. 7 participants were
excluded for below chance error rates.

To convert this data into a perceptual correlation
matrix -- asking how likely participants are to confuse
a face x degrees away in a perception experiment --
we created a normalized histogram across all
participants of how often they made errors of each
size (in bins of 5 deg.: -180, -175, ... 180) and then
linearly interpolated between these to get a value of
the confusability for each degree of distance. We
then normalized this to range from 0 to 1.

15. Visual long-term memory color report task.
Long-term memory data from Fig. 6 was taken from
Miner, Schurgin, Brady®°, Experiment 2A. N=30
participants in the lab at UC San Diego performed 5
blocks of a long-term memory experiment. In each
block they memorized real-world objects’ colors, and
then after a brief delay, were shown a sequence of
memory tests. Each block’s study session consisted
of 20 items of distinct categories seen only once and
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10 items also of distinct categories seen twice, for a
total of 40 presentations of colored objects. Each
presentation lasted 3 seconds followed by a 1
second inter-stimulus interval. At test, 20 old objects
were presented (10 seen once, 10 seen twice) and
20 new objects of distinct categories were presented.
Participants saw each object in grayscale and made
an old/new judgment, and then, if they reported the
item was old, they reported its color using a
continuous color wheel. As described in Miner et
al.*>%, 6 participants were excluded per the criterion
used in that paper.

Note that long-term memory performance in this task
likely depends on a two part decision -- item memory
and source memory (e.g., the object itself, and then
its color). This two-part decision is related to the
processes of recollection and familiarity that can be
modeled in various ways®', and likely introduces
significant heterogeneity into the color memory
strength, since some items will have weak item
memories, preventing the retrieval of color
information. TCC provides a strong fit here, and to
the other long-term memory data plotted in Fig. 8,
without addressing this, likely due to the fact that item
memory in all of these studies was very strong (only
a small number of categorically distinct items needed
to be remembered). Future research should clarify
how TCC connects to distinctions between
recollection and familiarity and the extent to which
heterogeneity in d’ between items in long-term
memory must be assumed for fitting a wider variety
of tasks.

16. Literature Analysis. To assess our model’s
prediction that previously observed trade-offs
between different psychological states are measuring
the same underlying parameter (d'), we conducted a
literature analysis of data from color working memory
research. In particular, we examined the two
parameters most commonly reported by those fitting
mixture models to their data, precision (in terms of
SD) and guessing.

We searched for papers in mid-2018 that used these
mixture model techniques by finding papers that cited
the most prominent mixture modeling toolboxes,

Suchow, Brady, Fougnie & Alvarez®® and Bays et
al.%2. We used a liberal inclusion criteria in order to
obtain as many data points as possible. Our inclusion
criteria were papers that cite either of these
toolboxes and report data where: 1) There was some
delay between the working memory study array and
test; 2) Instructions were to remember all the items;
3) SD/guess values were reported or graph axes
were clearly labeled; 4) Participants were normal,
healthy, and between ages 18-35. 5). Colors used
were widely spaced, discriminable colors from the
CIE L*a*b* color space. Note that even slight
changes in the color wheel used between papers (or
the addition of noise to stimuli’) changes the
perceptual confusability of the stimuli and therefore
ideally calls for a different similarity function to be
measured and therefore a different prediction from
TCC about the relationship between ‘guess rate’ and
‘SD’. However, in the current literature analysis we
simply assumed these were the same for all papers.
For papers that did not report SD/guess values in the
text or tables, these values were obtained by
digitizing figures with clear axis labels®?.

These inclusion criteria resulted in a diverse set of
data points, including studies using sequential or
simultaneous presentation, feedback vs no feedback,
cues vs no-cues, varying encoding time (100-2000
ms), and variable delay (1-10 sec). A total of 14
papers and 56 data points were included
(Supplementary Table 4). In general, TCC provides a
strong fit to this existing data given the heterogeneity
in methods (Supplementary Fig. 4) and this data is
also consistent with the idea that there is no added
‘guessing’ at high set sizes (Supplementary Fig. 5).

Data Availability Statement

All relevant data for this manuscript are available at:
https://osf.io/j2h65/?view _only=fdd51dd775a945508c
7cbbf25b662692

Code Availability Statement

All relevant analysis code for this manuscript is
available at:
https://osf.io/j2h65/?view_only=fdd51dd775a945508c
7cbbf25b662692
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Extended Data Fiqures

a] Which item on bottom is most similar to the top item? b] Color wheel induces non-linearity
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Extended Data Figure 1. (A) Data from all distances in the fixed distance triad task (Figure 1C). On each trial, there was
a target color, here always at 0°, and participants' task was to choose which of two other colors was closer to the target
color in color space. The two choice colors always differed by 30°. The x-axis shows the closer color of the two choice
colors. That is, the 150° label on the x-axis reflects performance on a condition where the two choices were 150° and

180° away from the target color. As shown with a subset of this data in Figure 1C, increasing distance from the target
results in a decreased ability to tell which of two colors is closer to the target in color space. This shows the non-linearity
of color space with respect to judgments of color similarity. Note that this function does not depict the actual
psychophysical similarity function: Roughly speaking, the d' estimate in this graph is the estimate of instantaneous slope
(over a 30 deg. range) in the similarity function in Figure 1F. (B) Despite being conceived of as a color wheel in many
memory experiments, in reality, participants internal representation of color -- and thus the confusability between colors --
ought to be a function of their linear distance in an approximately 3D color space, not their angular distance along the
circumference of an artificially imposed wheel. Since the colors are equal luminance, we can conceive of this on a 2D
plane. Thus, on this plane the confusability of a color “180 degrees away” on the wheel is only slightly lower than one “150
degrees away” on the wheel, since in 2D color space it is only slightly further away. This simple non-linearity from ignoring
the global structure of the color ‘wheel partially explains the long tails observed in typical color report experiments,
although it does not explain the full degree of this non-linearity, which is additionally attributable to psychophysical
similarity being a non-linear function even of distance across 2D color space. (C) The similarity function remains non-
linear even in 2D color space. Distances here are scaled relative to the color wheel rather than in absolute CIELa*b*
values., e.g., an item 180 degrees opposite on the color wheel is “120” in real distance since if the distance along the
circumference is 180, 120 is the distance across the color wheel. (D) Plotted on a log axis, the similarity falls off
approximately linearly, indicating that similarity falls of roughly exponentially with the exception of colors nearby the target.
The non-exponential fall-off near the 0 point reflects perceptual noise/lack of perceptual discriminability between nearby
colors. As shown in Figure 1, when you convolve measured perceptual noise with an exponential function, this provides a
very good fit to the similarity function, consistent with a wide-variety of evidence about the structure of similarity and
generalization®.
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3) Uncorrelated vs. correlated noise across channels
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Extended Data Figure 2. Simulations of uncorrelated vs. correlated noise versions of TCC. Only the correlated-noise
TCC produces true d' values -- those that are interchangeable with d' you’'d estimate from a same/diff task with the same
stimuli. However, the simpler uncorrelated noise TCC predicts the exact same distributions of errors in continuous report,
and the d’ values between the correlated and uncorrelated noise models are linearly related by a factor of ~0.65. Thus, in
many cases it may be useful to fit the uncorrelated TCC to data and then adjust the d' rather than fitting correlated noise
TCC. This also means that for color, similarity alone without perceptual confusion data can be used to make linear (but
not exact) predictions about confusability in n-AFC tasks outside the range of perceptual confusion (approx. 15 deg).
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Extended Data Figure 3. Simulations show data sampled from TCC, using either the measured psychological similarity
function or a linear similarity function. Given a linear similarity function, it is clear TCC does not predict response
distributions similar to human performance -- such fits are critically dependent on the well-known exponential-like shape of
similarity functions. Notice also how the max rule from the signal detection decision process plays a major role in the
shape of the distributions. Since people pick the strongest signal, the distribution of max signals is peakier than the
underlying signals themselves (which always follows the similarity function).
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Fit of TCC is very similar regardless of which similarity task is used === Modeled from triad task
Pairwise similarity ratings
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Extended Data Figure 4. Comparison of fit to memory data for similarity functions reported in main text. In the current
data for color, both the model-based triad psychophysical scaling data and the Likert similarity rating produce extremely
similar data (see Figure 1). Thus, they all produce similar fits to the memory data (shown here are the set size data). It is
important to note that depending on the number of trials, a large number of data points (i.e. subjects) may be necessary in
order to obtain reliable estimates of a given stimulus space in the triad and quad scaling tasks (we use the quad task for
face similarity). The Likert task requires considerably less data to estimate, and it was in agreement with the results of the
triad task for colors, so we rely on it as our primary measure of similarity in the current fits. However, depending on the
stimulus space, observers may utilize different strategies in such subjective similarity tasks (particularly for spaces, like
orientation, where it is obviously a linear physical manipulation), and ultimately an objective task like the quad task may be
best to understand the psychophysical similarity function. This is why for the face space task we used the quad similarity
task. The task used to estimate similarity is important in that it is important that participants provide judgments of the
absolute interval between stimuli and not rely on categories or verbal labels, or, in the triad task, that participants not rely
on a relational or relative encoding of the two choice items rather than their absolute distance to the target item. How best
to ensure that participants rely on absolute intervals is represented in a large literature dating to Thurstone®® and
Torgerson's.
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TCC naturally accounts for local inhomogeneity in color space
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Extended Data Figure 5. Non-uniformities in memory and similarity for set size data reported in the main text. Many
stimulus spaces contain non-uniformities, which may affect subsequent working memory performance. Indeed, Bae et
al.’? discovered non-uniformities in working memory for color, where responses for targets tend to be more precise for
some colors than others and can be biased towards nearby categorical anchors (i.e. red, blue, yellow, etc). While many
assume randomizing target colors in working memory should account for potential biases arising from a non-uniform
feature space, others have suggested these differences may have broader consequences than previously considered 34,
A key advantage of TCC is that by taking into account the psychophysical similarity function, non-uniformities within
whatever feature space being probed can be automatically captured if psychophysical similarity data is measured
separately from each relevant starting point in the feature space (e.g., Figure 1D). In the current work, we mostly use only
a single psychophysical similarity estimate averaged across possible starting points and fit memory data averaged across
starting points. However, this is not necessary to the TCC framework, and is only a simplification -- if we wish to fit
memory data averaged across all targets, we should use similarity averaged across all targets (or use the particular
similarity function relevant to each item on each trial). Here we show that rather than using a psychophysical similarity
function that averages over all targets, one can also use similarity specific to each possible target, which differ and have
predictable consequences for memory in our set size experiment. For example, the propensity of errors (at set size 1, 3, 6
and 8) in the clockwise vs. counterclockwise direction for a given target color is directly predicted by the similarity function
-- even when very similar colors have more similar colors in opposite directions (top row), and this is true across all color
bins (bottom right). Thus, using target-specific similarity functions naturally captures potential non-uniformities or biases
within a feature space with no change in the TCC framework.
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Extended Data Figure 6. Data from the set size experiment reported in the main text. While memory strength varies
according to a variety of different factors, many researchers have been particularly interested in the influence of set size.
TCC shows that at a fixed encoding time and with a fixed delay, memory strength (d’) decreases according to a power law
as set size changes, broadly consistent with fixed resource theories of memory'%25, However, capacity cannot be fixed
globally, as the total “capacity” appears to smoothly change with encoding time.
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Extended Data Figure 7. Simulation from TCC illustrating how signal detection can predict variance in representational
fidelity as a function of confidence even with a fixed d’ (see also*?). Some studies used to support variability of information
across individual items or trials have done so by using a confidence metric?8. While variability and confidence are distinct
from one another, in a large amount of research they are inextricably linked. An interesting advantage and implication of
signal detection-based models is that they naturally predict confidence data®’. In particular, the strength of the winning
memory match signal is used as the measure of memory strength -- and confidence -- in signal detection models of
memory. Thus, even with a fixed d' value for all items, TCC naturally predicts varying distributions relative to confidence.
This likely explains some of the evidence previously observed in the literature that when distinguishing responses
according to confidence, researchers found support for variability in precision among items / trials. Note that this occurs in
TCC even though d'is fixed in this simulation -- that is, all trials are generated from a process with the same signal-to-
noise ratio. Thus, variability in responses as a function of confidence (or related effects, like improved performance when
participants choose their own favorite item to report?®) are not evidence for variability in d'in TCC, but simply a natural

prediction of the underlying signal detection process. Of course, it is possible d' may also vary between items, which
remains an open question.
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Extended Data Figure 8. Simulation of confidence in TCC. Participants in a set size 8 working memory experiment often
feel like they do not remember an item and are “guessing”, leading to a wide variety of models that predict people know
nothing about many items at high set sizes and truly are objectively guessing. However, as noted in Extended Data Figure
7, signal detection naturally accounts for varying confidence, and so can easily account for this subjective feeling of
guessing even though in fact, models like TCC predict that people are almost never responding based on no information
at all about the item they just saw. In particular, confidence in signal detection is based on the strength of the winning
memory signal. Imagine that the subjective feeling of guessing occurs whenever your memory match signal is below
some threshold (here, arbitrarily set to 2.75). This would lead to people never feeling like they are guessing at set size 1,
and nearly always feeling like they are guessing if they objectively closed their eyes and saw nothing. However, this would
also make people feel like they are guessing a large part of the time at set size 6 and 8, even though this data is
simulated from TCC -- and the generative process always contains information about all items. This is the key distinction
in signal detection models between the subjective feeling of guessing and the claim that people are objectively guessing.
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Supplementary Information

Supplementary Discussion

Measuring psychophysical similarity

The psychophysical similarity function we measure naturally captures two key aspects of how stimuli are
perceived: The relationship between the physical stimulus and the psychological representation of that
stimulus is rarely linear (e.g., CIELab is a complex transform of light wavelengths), and the similarity between
stimuli as a function of distance is additionally non-linear'”'°. In spaces that are already scaled to be
approximately psychophysically uniform (e.g., CIELab), then, only the approximately-exponential fall-off in
similarity remains to be modeled; whereas in spaces that are not equalized in advance (e.g., face space), both
factors will be measured together, and inhomogeneities may need to be taken into account when modeling
memory (e.g., Extended Data Figure 5, fitting each color separately).

In the current manuscript, we present several examples of tasks that naturally capture both of these insights
and can be translated to a psychophysical similarity function, including the triad task, the quad task, and a
subjective Likert similarity judgment (see Methods). It is important to note that depending on the number of
trials, a large number of data points (and many subjects) may be necessary in order to obtain reliable
estimates of a given stimulus space in the triad and quad tasks (in the current methods we collected n = 100
participants and pooled across them completely to obtain reliable group estimates). A Likert similarity task may
be sufficient to capture this function under some circumstances, like for color in the current study. In such
tasks, participants are simply asked to rate the similarity of two items (varying in distance from one another) on
a Likert scale from 1 to 7, and these ratings can then be normalized. In color space, we observed this similarity
rating task provided a measure of psychophysical similarity that is in close agreement with the results of the
quad and triad tasks and requires considerably less data to estimate (Figure 1).

However, it is important to note that depending on the stimulus space, observers may utilize different strategies
in such subjective similarity tasks, and that ultimately objective tasks like the quad task may be best to
understand the psychophysical similarity function. In particular, to ensure the similarity function is properly
measured, is important to ensure that participants provide judgments of the absolute interval between stimuli
and not rely on categories or verbal labels, or, in the triad task, that participants not rely on a relational or
relative encoding of the two choice items rather than their absolute distance to the target item (that is, the
modeling assumes they compare each choice entirely separately to the target item -- not relying on comparing
the two choices, say, considering which choice is more clockwise in an orientation task). How best to ensure
that participants rely on absolute intervals is represented in a large literature dating to Thurstone® and
Torgerson™s,

Multidimensional stimuli, like color or faces, seem to have general agreement across many methods of
measuring psychophysical similarity. However, we expect that collecting the psychophysical similarity
measurements will be particularly challenging in single-dimensional stimulus spaces whose true objective
distance function is transparent to participants. For example, when asking to judge orientation similarity or
location similarity along a circle, participants are likely to be aware that the stimuli are physically manipulated
on only a single dimension (angle), and will thus be inclined to report linear similarity judgments along this
dimension. Less transparent similarity tasks, like the quad task, may help with this, but it may ultimately be
difficult to prevent participants from using this knowledge. How best to deal with this remains a question for
future work. For example, it may be possible to instead “back out” the similarity function from memory data, or
from alternative tasks (like speeded same-different tasks), or to use speeded similarity tasks to reduce such
cognitive strategies. Alternatively, performing multidimensional scaling on the stimuli to create a
psychophysically uniform space (as in CIELab for color; for example, in orientation this would “stretch” the
space near the cardinals and shrink it near the obliques), could allow relatively simple similarity models. After
such scaling, it would be likely that the similarity function beyond the perceptual discrimination limit would be
an exponential function, which could allow the parameterization of the similarity function in relatively
straightforward terms without the need for complex measurements.
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It is important to note that while we emphasize the stability of the similarity function across conditions in the
current work, the psychophysical similarity we measure could not possibly be a fixed property of the colors per
se, but must be at least partially contextual. For example, if the background color of the display was blue rather
than light gray, this would certainly alter the perception of -- and discriminability of -- colors from each other, as
would adaptation and many other factors*®>°, which would necessarily have consequences for memory.

In addition, extremely brief presentations or extremely long presentations that allow verbal coding would be
expected to alter this similarity function. It is expected this would result in changes in memory performance as
well, in the same way that observed memory biases are altered when discriminability is affected by adaptation
or contextual effects*®. Thus, while we find the similarity function is fixed across a wide range of encoding
times, delays and set sizes, there are likely to be conditions which change the underlying perception of the
memoranda (e.g., very very short encoding times; different backgrounds) which will necessarily have an effect
on memory.

“Dissociating” guess rate and precision

In addition to fitting a two parameter model, some previous research has claimed to dissociate these
parameters. If a one-parameter model can account for the data, how has previous research so often found
dissociations between these parameters?

The majority of these dissociations find that precision (SD) does not change when the ‘guess rate’ (or capacity)
does change’?'. However, this dissociation is naturally explained by TCC because at low d' values, ‘guess
rate’ can change by a huge amount with SD changing by only a few degrees. For example, over a wide range
of guess rates, precision may only vary between SD=21 and SD=24, a difference that is visually
indistinguishable and would require extremely high power to detect (e.g., Supplementary Figure 4). As an
example, sampling 20 subjects of 100 trials each of data from the TCC at d'=1.0 vs. d'=0.7 and fitting these
data with the 2-parameter mixture model reveals that such an experiment would find p<0.05 for ‘capacity’
greater than 60% of the time but p<0.05 for ‘precision’ approximately 11% of the time, despite both parameters
being necessarily linked in the data from TCC. In line with this interpretation, many researchers have now
found that with high enough power, previous studies claiming only a change in ‘guess rate’ but not ‘SD’ actually
find changes in both, with very small changes in SD present along with large changes in ‘guess rate’®. Other
dissociations have sometimes been found -- for example, Zhang and Luck’ report a manipulation that causes a
change in SD but not ‘guess rate’ -- but these dissociations inevitably rely on comparisons across different sets
of stimuli with different psychophysical similarity functions (e.g., the Zhang and Luck manipulation adds color
noise to the items, making them less distinct), which is perfectly consistent with TCC.
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Supplemental Figures
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Supplementary Figure 1. Fits of TCC to the all encoding and delay conditions, including those not plotted in Fig. 3. TCC
provides a strong fit at all encoding and delays (see correlations and model comparisons in Fig. 3).
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Supplementary Figure 2. Model predictions vs. data for 2-AFC generalization task reported in the main text. Given 2-
AFC performance with maximally distinct 180 degree foils (black dot), TCC makes a unique prediction about exactly how
well people should perform on other foils -- with no free parameters. By contrast, using the 180 degree foils to constrain
the mixture model allows this model to set the ‘guess rate’, but it leaves the precision of memory unknown. Thus, mixture
models, while capable of fitting the data the same as TCC for a certain precision parameter (since ultimately they can
predict any distribution TCC can, as they are much more flexible), do not make a unique prediction. Making strong
predictions is the most critical test of a model?® and can be formalized using a Bayes factor, which provides strong

evidence in favor of TCC in this case. Similar logic applies in the experiment taking 180 degree 2-AFC and generalizing to
continuous report and other n-AFC conditions.
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Supplementary Figure 3. Simulation of mixture model vs. TCC fits. (A) We generated data from both TCC (d’) and the
standard mixture model (precision [SD] and guessing), performing 50 simulations of 2000 trials worth of data each for
each of the models (consistent with the amount of group data in the main experiments), and then fit both models to the
generated data to see which yielded a higher log-likelihood. With no penalty for complexity -- simply using log likelihood --
for data generated by TCC, the standard mixture model fit all data with a d' < 1 better than TCC itself. Thus, for data
generated by TCC, the standard mixture model, being considerably more flexible than TCC in the range of distributions it
can fit, fits the data about as well -- and in some cases, better -- than TCC. When fitting data generated by the mixture
model, TCC was dispreferred at all values in terms of fit, and strongly dispreferred for huge swaths of potential mixture
model parameters. This is because the mixture model can generate a huge variety of distributions that TCC cannot mimic.
The same is true, but even more so, for the 3-parameter variable precision model, which can fit an even much larger
range of distributions than even the standard 2-parameter mixture model. Only a miniscule part of the distributions
predicted by the 3-parameter variable precision model can even be approximated by TCC, and this model can perfectly
mimic TCC. (B) Same data, with BIC instead of log-likelihood. Taking into account model complexity increases the
preference for TCC in TCC-generated data and creates a very slight TCC preference in mixture model data with simulated
“guess rates” very near 1.0, where the two models make identical predictions in terms of error (of equal responding to all
options); though note the two models make differing predictions about confidence at these values, predicting different
ROCs. In general, with this amount of data, BIC appears well-calibrated, accurately recovering the appropriate model in
nearly all cases and with a stronger preference for the relevant models where they diverge from each other more.
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Supplementary Figure 4. Analysis of previous literature measuring the most widely used model parameters currently
used to analyze working memory performance. Gray dots are values reported in papers found in the literature; the dashed
black curve is a LOESS (local regression) smoothed version of these points. The solid blue curve reflects the average
“guess” and “SD” parameters when fitting the mixture model to data generated by TCC, as a function of the d' of TCC.
The blue shading shows 2 standard deviations when each participant has 100 trials/condition. Despite claiming to
independently model multiple parameters, this entire diverse set of data points falls near the trade-off between these
parameters predicted when fitting data sampled from the TCC with the 2-parameter model -- in other words, one
parameter is sufficient to capture much of the data observed in working memory tasks (data that has previously been
thought to require at least two -- and often 3 parameters -- to explain). Note that the region in Supplementary Figure 4
TCC predicts is also the only region of Supplementary Figure 3 where the TCC can fit data generated from the mixture
model. In addition, note that some of these papers use different color wheels than the one we use to generate the
similarity function, and thus some of the deviation from the TCC prediction line -- minor as it is -- is caused by using an
“incorrect” TCC prediction (e.g., using a prediction from an incorrect stimulus space).
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Supplementary Figure 5. Analysis of previous literature measuring the most widely used model parameters currently
used to analyze working memory performance. Existing working memory data from high set sizes (4+) is often claimed to
provide evidence for ‘slots’ or for the existence of very low precision items, with these items that are unrepresented or
poorly represented giving rise to the long tails of the distribution. By contrast, TCC predicts such long tails with no sense
of unrepresented or poorly represented items. Here we show how TCC predicts that mixture model parameters from the
standard two parameter mixture model should change as a function of d'in the TCC model. The blue line and all of the
data points are the same as Supplementary Figure 4, but with the data points now labeled by set size and only “high” set
sizes (>=4) plotted, as these are the points where traditional models claim many items must be unrepresented or
extremely poorly represented. Note that the vast majority of the points are better fit by the straightforward TCC model --
which simply assumes all items are equally well represented -- than by models that add some proportion of
‘unrepresented’ items to TCC (plotted in green; note that as expected, these models selectively change the predicted
‘guess rate’ parameter). For a slot model prediction with 3 items represented, nearly 50% of items should be
unrepresented at set size 6, and this is clearly incompatible with the previous data as well as the data we report in the
main manuscript. In general, the parameters found in the previous literature are perfectly consistent with the basic TCC
prediction with no added assumptions about unrepresented items or poorly represented items. Note that the two set size 6
points outlined in yellow come from the original Zhang and Luck?” paper that introduced mixture models to this literature
and used them to argue for slots. The fact that they are an outlier on this plot may be the reason those authors proposed
a model that argues that only ‘guess rate’ but not ‘standard deviation’ changes as a function of set size.
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Supplementary Figure 6. Plot of the best fit TCC d’ vs. the circular standard deviation of the error data (a circular analog
of the standard deviation; as computed with MATLAB’s circ_std function) for all 22 datasets from Fig. 3. For data like the
current data where there is nearly no location-based confusions (‘swaps’), the simpler analysis of this descriptive statistic
(circular standard deviation, or more formally the angular deviation) is linearly related to d’ for d’ less than approximately
3.0, and thus, for data not near ceiling, may be an adequate substitute for fitting the full TCC. This is useful because the
circular standard deviation is just a descriptive statistic of the data and thus does not require the collection of similarity
data or perceptual confusability data. Note that just as with percent correct -- which is approximately linear with d’ when
far from ceiling, but becomes deeply non-linear near ceiling -- the d’ curve begins to bend near ceiling. This is because
improving from 95% correct to 99% correct requires a very large change in d’, and similarly, improving your performance
in continuous report when it is already very good requires a large change in memory strength. In theory the same should
be true near floor, although these 22 datasets do not clearly demonstrate that because there is little data with d’<1.0.
However, for data away from ceiling and floor and with little or no ‘swaps’, computing circular standard deviation may be
sufficient to summarize data in a framework compatible with TCC.
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Supplementary Tables

Supplementary Table 1 TCC'’s fit to binned color memory errors (Fig. 3). All correlations are Pearson correlations.

Set size experiment

Set size 1

r=0.998, p<0.001,
Cl=(0.997, 0.999)

Set size 3

r=0.996, p<0.001,
Cl=(0.993, 0.998)

Set size 6

r=0.984, p<0.001,
CI=(0.969, 0.991)

Set size 8

r=0.976, p<0.001,
Cl=(0.954, 0.987)

Delay experiment

1 sec delay

3 sec delay

5 sec delay

Set size 1

r=0.997, p<0.001,
Cl=(0.994, 0.998)

r=0.998, p<0.001,
Cl=(0.995, 0.999)

r=0.995, p<0.001,
Cl=(0.990, 0.997)

Set size 3

r=0.993, p<0.001,
CI=(0.986, 0.996)

r=0.992, p<0.001,
Cl=(0.985, 0.996)

r=0.994, p<0.001,
Cl=(0.988, 0.997)

Set size 6

r=0.989, p<0.001,
Cl=(0.979, 0.994)

r=0.971, p<0.001,
Cl=(0.946, 0.985)

r=0.986, p<0.001,
Cl=(0.973, 0.992)

Encoding time experiment | 100ms

encoding

500ms
encoding

1.5 sec
encoding

Set size 1

r=0.992, p<0.001,
Cl=(0.984, 0.996)

r=0.997, p<0.001,
Cl=(0.994, 0.998)

r=0.998, p<0.001,
Cl=(0.996, 0.999)

Set size 3

r=0.971, p<0.001,
Cl=(0.945, 0.985)

r=0.991, p<0.001,
Cl=(0.983, 0.995)

r=0.995, p<0.001,
Cl=(0.990, 0.997)

Set size 6

r=0.975, p<0.001,
Cl=(0.952, 0.987)

r=0.993, p<0.001,
Cl=(0.987, 0.997)

r=0.990, p<0.001,
Cl=(0.981, 0.995)
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Supplementary Table 2. TCC'’s fit to color memory data is reliably preferred by model comparison metrics that
emphasize simplicity (e.g., BIC) across all set sizes compared to mixture models and variable precision mixture models. It
provides a similar fit to these models when using leave-one-out cross validation on log likelihood, as both TCC as well as
the two mixture models predict effectively the same distribution of errors when fit with N-1 error points (as N=2000 error
datapoints >> the number of parameters for all models). Fitting to the group data rather than individual subjects gives BIC
values at set size 1,3,6 and 8 of -24, -56, -26, -25 for TCC vs. standard mixture model (all very strong evidence favoring
TCC), and BIC values of -2, -23, -15, -19 for TCC vs. variable precision model (e.g., both models fit set size 1 data well --
the least distinct set size, since there are no long tails -- but all others are very strong evidence in favor of TCC). Note
that, as shown in Supplementary Figure 3, model recovery using BIC is well calibrated using this number of trials.

mixture model

BIC avg. (S.E.M.); Set size 1 Set size 3 Set size 6 Set size 8
negative favors TCC

TCC - Mixture model -3.64 (1.67) -6.48 (0.95) -6.08 (0.88) -4.77 (0.67)
TCC - variable precision -7.85 (1.14) -10.65 (0.60) -11.21 (0.67) |-10.82 (0.63)
mixture model

Leave one out cross Set size 1 Set size 3 Set size 6 Set size 8
validation log likelihood

difference (S.E.M.);

positive favors TCC

TCC - Mixture model 1.54 (1.71) 1.22 (0.80) 0.14 (0.83) 0.07 (0.47)
TCC - variable precision 0.43 (1.32) 0.10 (0.43) -0.31 (0.70) 0.21 (0.59)
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Supplementary Table 3. TCC applied to face memory. As with colors, TCC is reliably preferred by model comparison
metrics that emphasize simplicity (e.g., BIC) across all set sizes compared to mixture models and variable precision
mixture models. Also, as with color, it provides a similar fit to these models when using leave-one-out cross validation on
log likelihood, as both TCC as well as the two mixture models predict effectively the same distribution of errors when fit
with N-1 points (as N >> the number of parameters for all models). Fitting to the group data rather than individual subjects
gives BIC values at set size 1 and 3 of -177 and -24 for TCC vs. standard mixture model (all very strong evidence favoring
TCC), and BIC values of -53, -10 for TCC vs. variable precision model (all very strong evidence in favor of TCC). Note
that, as shown in Supplementary Figure 3, model recovery using BIC is well calibrated using this number of trials.

mixture model

BIC avg. (S.E.M.); Set size 1 Set size 3
negative favors TCC

TCC - Mixture model -8.1 (0.7) -5.3 (0.4)
TCC - variable precision -11.4 (0.5) -10.8 (0.3)
mixture model

Leave one out cross Set size 1 Set size 3
validation log likelihood

difference (S.E.M.);

positive favors TCC

TCC - Mixture model 2.5(0.46) 0.51 (0.45)
TCC - variable precision 0.87 (0.41) -0.05 (0.36)
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Supplementary Table 4. Data points used in the literature review collected from a total of 14 papers.

sD

139
19.4
219
223
208
233
P
244
24.4
14.5
19.3
237
24.7
135
17.9
20
26.1
13.2
16.45
213
232
18.79
25.28
215
2278
4.7
26.24
2253
20.87
26
24.67
11.6
17.4
237
21.06
226
257
227
24
263
23.8
129
15.3
21.3
16.9
19.6
226
228
4.1
23.05
25.24
20.04
25.06
20.21
2277

Guess

Paper

0.01 Zhang & Luck 2008

0.05 Zhang & Luck 2008

0.17 Zhang & Luck 2008

0.62 Zhang & Luck 2008

0.16 Zhang & Luck 2008

0.59 Zhang & Luck 2008

0.26 Zhang & Luck 2009

0.26 Zhang & Luck 2009

0.39 Zhang & Luck 2009
0,001 Bays, Catalao & Husain 2009
0.105 Bays, Catalao & Husain 2009

0.33 Bays, Catalao & Husain 2009

0.51 Bays, Catalao & Husain 2009
0.001 Bays, Catalao & Husain 2009

0.08 Bays, Catalao & Husain 2009
0.281 Bays, Catalao & Husain 2009
0.383 Bays, Catalao & Husain 2009
0.0245 Bays, Catalao & Husain 2009
0.0565 Bays, Catalao & Husain 2009
0.207 Bays, Catalao & Husain 2009
0.375 Bays, Catalao & Husain 2009

0.23 Fougnie, Aslplund & Marois, 2010

0.3 Fougnie, Aslplund & Marais, 2010

0.18 Fougnie, Aslplund & Marois, 2010

0.52 Fougnie, Aslplund & Marois, 2010

0.53 Zhang & Luck 2011

0.51 Zhang & Luck 2011

0.39 Zhang & Luck 2011

0.39 Zhang & Luck 2011

0.43 Zhang & Luck 2011

0.46 Zhang & Luck 2011
0.011 Fougnie, Suchow & Alvarez 2012
0.141 Fougnie, Suchow & Alvarez 2012
0.216 Fougnie, Suchow & Alvarez 2012

0.2 Brady & Alvarez 2015

0.24 Brady & Alvarez 2015

0.58 Brady & Alvarez 2015
0.203 Fougnie et al 2016
0.197 Fougnie et al 2016
0.342 Xie & Zhang, 2016

0.29 Suchow, Fougnie, Alvarez 2016
0,015 Swan, Collins & Wyble, 2016
0,032 Swan, Collins & Wyble, 2016

0.25 Bocincova et al. 2017

0.05 Bocincova et al. 2017
0.117 Wee et al 2013
0.174 Wee et al 2013

0.32 Wang et al, 2016

0.39 Wang et al, 2016

0.41 Wang et al, 2016

0.37 Wang et al, 2016

0.13 Fougnie, Aslplund & Marois, 2010

0.15 Fougnie, Aslplund & Marois, 2010

0.09 Fougnie, Aslplund & Marois, 2010

0.16 Fougnie, Aslplund & Marois, 2010

Set size
551
552
553
556
553
556
553
553
553
551
552
554
556
551
552
554
556
551
552
554
556
553
553
553
553
554
554
554
554
554
554
551
553
555
551
553
556
555
555
555
553
551
551
554
552
553
8§53
555
555
555
555
553
553
553
553

MNotes

Mone

Mone

Mone

MNone

Mone

Mone

Retention interval 1 second
Retention interval 4 seconds
Retention interval 10 seconds
100ms, Collapsed with swaps
100mes, Collapsed with swaps
100ms, Collapsed with swaps
100ms, Collapsed with swaps
500ms, Collapsed with swaps
500ms, Collapsed with swaps
500ms, Collapsed with swaps
S00ms, Collapsed with swaps
2000ms, Collapsed with swaps
2000ms, Collapsed with swaps
2000ms, Collapsed with swaps
2000ms, Collapsed with swaps
Single feature

Conjunction (w/ orientation)
Single feature

Conjunction (w/ orientation)

Low Precision, None

High Precision, None

Low Precision, Feedback provided
High Precision, Feedback provided
Low Precision, Payoff provided
High Precision, Payoff provided
Mone

Mone

Mone

MNone

Mone

Mone

Only included single report condition
Only included single report condition
MNone

Random report

Pre-surprise

Post-surprise

MNone

Mone

Short delay (1 sec)

Lomg delay (10 sec)

On-probe, 200ms SOA

Off-probe, 200ms SOA

On-probe, 400ms 50A

Off-probe, 400ms S0A

Single feature & features
Conjunction (w/ orlentation) 6 features
Single feature & features
Conjunction (w/ crientation) & features

Digitized
In Paper
In Paper
In Paper
In Paper
In Paper
In Paper
In Paper
In Paper
In Paper

Fo A A R

In Paper
In Paper
In Paper
Lab Data
Lab Data
Lab Data
In Paper
In Paper
x

In Paper
In Paper
In Paper
In Paper
In Paper

X
X
X
X
X
X
X
X
X
x
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