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Abstract— In this paper, we consider the multi-server setting
of Private Information Retrieval with Private Coded Side
Information (PIR-PCSI) problem. In this problem, there is a
database of K messages whose copies are replicated across
N servers, and there is a user who knows a random linear
combination of a random subset of M messages in the database
as side information. The user wishes to download one message
from the servers, while protecting the identities of both the
demand message and the messages contributing to the side
information. We assume that the servers know the number of
messages contributing to the user’s side information in advance,
whereas the indices of these messages and their coefficients in
the side information are not known to any of the servers a
priori.

Our goal is to characterize (or derive a lower bound on) the
capacity, i.e., the maximum achievable download rate, for the
following two settings. In the first setting, the set of messages
contributing to the linear combination available to the user as
side information, does not include the message demanded by
the user. For this setting, we show that the capacity is equal
to

(
1 + 1/N + · · ·+ 1/NK−M−1

)−1. In the second setting, the
demand message contributes to the linear combination available
to the user as side information, i.e., the demand message is
one of the messages that form the user’s side information.
For this setting, we show that the capacity is lower-bounded
by

(
1 + 1/N + · · ·+ 1/NK−M

)−1. The proposed achievability
schemes and proof techniques leverage ideas from both our
recent methods proposed for the single-server PIR-PCSI prob-
lem as well as the techniques proposed by Sun and Jafar for
multi-server private computation problem.

I. INTRODUCTION

In the Private Information Retrieval (PIR) problem, a
database of K messages is replicated at N servers. There is
a user who wishes to retrieve a single or multiple messages
belonging to the database while protecting the identity of the
demanded message(s) from any individual server [1]–[4]. In
order to retrieve the desired message(s), the user generates
one query for each server. Upon receiving the user’s query,
each server will return an answer to the user, which depends
on the stored messages and the received query. To ensure
that each server learns nothing about the identity of the
message(s) being retrieved by the user, in an information
theoretic sense, each query must be marginally independent
of the desired message(s) index.

In a single-server setting or a multi-server setting when all
servers can fully collude, the user must download the whole

The authors are with the Department of Electrical and Computer Engi-
neering, Texas A&M University, College Station, TX 77843 USA (E-mail:
{fatemeh.kazemi, esmaeil.karimi, anoosheh, spalex}@tamu.edu).

This material is based upon work supported by the National Science
Foundation under Grants No. 1718658 and 1642983.

database to achieve privacy in the information-theoretic
sense [1]. However, when the user has some side information
about the messages in the database [5]–[18] or when the
servers do not fully collude [2]–[4], the privacy can be
achieved more efficiently in terms of the download cost (i.e.,
the amount of information downloaded from the server(s)).

For the PIR problem in the presence of side information,
two different types of privacy can be considered: (i) W -
privacy, which requires that the identity of the message(s)
demanded by the user is protected, and (ii) (W,S)-privacy,
which requires that the identities of both the message(s)
demanded by user and the message(s) in the user’s side
information are protected. When the side information is a
random subset of messages, the problem is referred to as
PIR with Side Information (PIR-SI) or PIR with Private
Side Information (PIR-PSI) when W -privacy or (W,S)-
privacy is required, respectively. The single-server settings
of these problems were studied in [5]–[7], and their multi-
server settings were studied in [8]–[10]. In [11] and [12],
we studied the single-server setting of a related problem in
which the side information is a random linear combination
of a random subset of messages. This problem is referred
to as PIR with Coded Side Information (PIR-CSI) or PIR
with Private Coded Side Information (PIR-PCSI) when W -
privacy or (W,S)-privacy is required, respectively. Also, in
[13], we recently studied the multi-server setting of the PIR-
CSI problem.

In this work, we consider the multi-server setting of
the PIR-PCSI problem. In this setting, a database of K
messages is replicated across N servers, and a user, who
knows a random linear combination of a random subset of
M messages in the database, wishes to obtain a message by
sending queries to the servers. The goal is to design a scheme
that protects the identities of both the message demanded by
the user and the messages contributing to the user’s side
information, and minimizes the download cost. We assume
that the servers know the number of messages contributing
to the user’s side information beforehand. However, the
indices and the coefficients of the messages contributing to
the user’s side information are not known to the servers in
advance. The motivation for this type of side information
comes from several practical scenarios. For instance, the side
information could have been obtained in advance from a
trusted server with limited knowledge about the database,
or through overhearing in a wireless network, or from the
information locally stored in the user’s cache.
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A. Main Contributions

We consider two settings of the PIR-PCSI problem de-
pending on whether the user’s demanded message is one
of the messages contributing to the user’s side information
or not. We characterize (or derive a lower bound on) the
capacity of each setting, where the capacity is defined as
the supremum of all achievable rates (i.e., the inverse of the
normalized download cost). In the first setting, the message
demanded by the user is not one of the messages contributing
to the user’s side information. For this setting, we prove that
the capacity is equal to

(
1 + 1/N + · · ·+ 1/NK−M−1)−1.

Interestingly, the capacity in this setting is equal to the capac-
ity of multi-server PIR-PSI problem [8] in which M uncoded
messages are available at the user as side information. This
result shows that there is no loss in capacity due to restricting
the user’s side information to one random linear combination
of M messages, instead of M uncoded messages.

The converse proof readily follows from the fact that the
capacity of this setting is upper-bounded by the capacity of
the multi-server setting of the PIR-PSI which is given by(
1 + 1/N + · · ·+ 1/NK−M−1)−1 (see [8, Theorem 1]).

For the achievability proof, we devise a new protocol
that builds upon two existing achievability schemes for two
different problems: (i) the Private Computation (PC) scheme
of [19] for multi-server private computation where a user
wishes to privately retrieve one arbitrary linear combination
of the messages replicated at multiple servers, and (ii) our
Specialized GRS Code scheme proposed in [12] for single-
server PIR-PCSI.

The main ideas of our achievability scheme are as follows.
First, the user utilizes the Specialized GRS Code scheme
of [12] for single-server PIR-PCSI to construct K − M
independent coded messages which are linearly independent
combinations of the original messages, to play the role of
the original messages in a multi-server private computation
problem. Then, the user and the N servers leverage the PC
scheme of [19] for the constructed K −M coded messages
in such a way that the user can privately download one of(

K
M+1

)
linear combinations of the K −M coded messages

where the support of each linear combination is a distinct
subset of [K] of size M + 1.

Additionally, for the setting wherein the demanded mes-
sage is one of the messages contributing to the user’s side
information, we show that the capacity is lower-bounded
by
(
1 + 1/N + · · ·+ 1/NK−M)−1. The proof is based on

a new achievability scheme that leverages the PC scheme
of [19] for multi-server private computation, combined
with our Modified Specialized GRS Code scheme proposed
in [12] for single-server PIR-PCSI.

II. PROBLEM FORMULATION

We denote random variables by bold letters and their
realizations by non-bold letters. For a positive integer i, let
[i] , {1, . . . , i}. Let Fq be a finite field for some prime q,
and let F×q , Fq \{0} be the multiplicative group of Fq . Let
Fqm be an extension field of Fq for some integer m ≥ 1.

Consider N non-colluding identical servers, each of which
stores K messages X1, . . . , XK , where Xi is independently
and uniformly distributed over Fqm , i.e., for all i ∈ [K], it
holds that

H(Xi) = L , m log2 q, and H(X1, . . . ,XK) = KL.

Suppose that there is a user that wishes to retrieve a
message XW from the servers for some W ∈ [K], and
has a linear combination Y [S,C] ,

∑
i∈S ciXi for some S ,

{i1, . . . , iM} ∈ S and some C , {ci1 , . . . , ciM } ∈ C, where
S is the set of all M -subsets of [K], and C is the set of all
length-M sequences with elements from F×q . We refer to W
as the demand index, XW as the demand, Y [S,C] as the side
information, S as the side information index set, and M as
the side information size.

We assume that S is uniformly distributed over S , and
that C is uniformly distributed over C. Also, two different
models for the conditional distribution of W given S = S
are considered:
• Model I: W is uniformly distributed over [K] \ S;
• Model II: W is uniformly distributed over S.
It is assumed that 1 ≤ M ≤ K − 1 and 2 ≤ M ≤ K

for Model I and Model II, respectively. Note that for both
models it holds that W is uniformly distributed over [K]. We
assume that no server knows the realizations of S,C,W in
advance. In contrast, we assume that all servers know the
considered model (i.e., whether W 6∈ S or W ∈ S), the side
information size M , the distributions of S and C, and the
conditional distribution of W given S.

For any S, C, W , in order to retrieve XW , the user
generates N queries Q[W,S,C]

1 , . . . , Q
[W,S,C]
N , and sends to

the n-th server the query Q[W,S,C]
n . Each query Q[W,S,C]

n is
assumed to be a (potentially stochastic) function of W , S,
C, and Y [S,C]. Upon receiving the query Q[W,S,C]

n , the n-th
server responds to the user with an answer A[W,S,C]

n . The
answer A[W,S,C]

n is a (deterministic) function of the query
Q

[W,S,C]
n and the messages in X[K] , {X1, . . . , XK}. Note

that for all n ∈ [N ], it holds that

(W,S)→ (Q[W,S,C]
n ,X[K])→ A[W,S,C]

n

forms a Markov chain, and

H(A[W,S,C]
n |Q[W,S,C]

n ,X[K]) = 0.

The answers A
[W,S,C]
1 , . . . , A

[W,S,C]
N from all servers

along with the side information Y [S,C] and the queries
Q

[W,S,C]
1 , . . . , Q

[W,S,C]
N must enable the user to retrieve the

demand XW , i.e.,

H(XW|A[W,S,C],Q[W,S,C],Y[S,C],W,S,C) = 0,

where
A[W,S,C] , {A[W,S,C]

1 , . . . , A
[W,S,C]
N },

and
Q[W,S,C] , {Q[W,S,C]

1 , . . . , Q
[W,S,C]
N }.

This condition is referred to as the recoverability condition.
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In addition, the queries Q[W,S,C]
1 , . . . , Q

[W,S,C]
N must not

reveal any information about the user’s demand index W and
side information index set S to any server,

I(W,S;Q[W,S,C]
n ,A[W,S,C]

n ,X[K]) = 0 ∀n ∈ [N ].

This condition is referred to as the (W,S)-privacy condition.
For both models (Model I and Model II), we

would like to design a protocol for generating queries
{Q[W,S,C]

1 , . . . , Q
[W,S,C]
N } for any given W,S,C. The pro-

tocol also prescribes, for all n ∈ [N ], how the n-th server
generates the answer A[W,S,C]

n , given Q[W,S,C]
n and X[K].

A protocol that satisfies both the (W,S)-privacy and
recoverability conditions for all W,S,C with W 6∈ S (or
W ∈ S), is referred to as a PIR-PCSI–I (or PIR-PCSI–II)
protocol. The problem of designing a PIR-PCSI–I (or PIR-
PCSI–II) protocol is referred to as the PIR-PCSI–I (or PIR-
PCSI–II) problem.

The rate of a PIR-PCSI–I or PIR-PCSI–II protocol is
defined as the ratio of the entropy of a message, i.e., L, to the
total entropy of answers from all servers, i.e., H(A[W,S,C]).

The capacity of the PIR-PCSI–I (PIR-PCSI–II) problem is
defined as the supremum of rates over all PIR-PCSI–I (PIR-
PCSI–II) protocols. We denote by C(W,S)−I the capacity
of the PIR-PCSI–I problem, and denote by C(W,S)−II the
capacity of the PIR-PCSI–II problem.

In this work, our goal is to characterize (or derive lower
bounds on) C(W,S)−I and C(W,S)−II, and to design PIR-
PCSI–I and PIR-PCSI–II protocols that achieve the capacity
(or the derived lower bound on the capacity).

III. MAIN RESULTS

In this section, we present our main results. Theorem 1
characterizes the capacity of the PIR-PCSI–I problem
C(W,S)−I, and Theorem 2 presents a lower-bound on the
capacity of the PIR-PCSI–II problem C(W,S)−II. The proofs
of the theorems 1 and 2 are given in sections IV and V,
respectively.

Theorem 1. The capacity of the PIR-PCSI–I problem
with N servers, K messages, and side information size
1 ≤M ≤ K − 1 is given by

C(W,S)−I =

(
1 +

1

N
+ · · ·+ 1

NK−M−1

)−1
.

Interestingly, this result indicates that the capacity of
multi-server PIR-PCSI–I, i.e., C(W,S)−I, is equal to the
capacity of the multi-server PIR-PSI [8] where M uncoded
messages are available at the user as side information. Note
that having only a random linear combination of M messages
as side information instead of M uncoded messages, cannot
increase the capacity which implies the converse. Thus, to
complete the proof of Theorem 1, we only need to prove the
achievability which is presented in Section IV. Notably, our
results show that having only one random linear combination
of messages instead of multiple uncoded messages does not
decrease the capacity, either.

Theorem 2. The capacity of the PIR-PCSI–II problem
with N servers, K messages, and side information size
2 ≤M ≤ K is lower-bounded by

C(W,S)−II ≥
(
1 +

1

N
+ · · ·+ 1

NK−M

)−1
.

This result is interesting because it shows that the lower-
bound on the capacity of the multi-server PIR-PCSI–II is
the same as the capacity of multi-server PIR-SI when the
size of side information is M − 1. That is, having a side
information which is only a random linear combination of M
messages including the demanded message would be at least
as effective as knowing M − 1 messages separately in terms
of minimizing the download cost. For the proof, we construct
a PIR-PCSI–II protocol that achieves the capacity lower-
bound of Theorem 2. It should be noted that the tightness of
this lower bound remains open in general.

IV. THE PIR-PCSI-I PROBLEM

In this section, we complete the proof of Theorem 1
by proposing an achievability scheme for arbitrary N ,
K ≥ 1 and 0 ≤M ≤ K − 1 that achieves the rate(
1 + 1/N + · · ·+ 1/NK−M−1)−1. The proposed protocol,

referred to as the Multi-Server PIR-PCSI–I protocol, is a
non-trivial combination of the Specialized GRS Code scheme
of [12] for single-server PIR-PCSI problem and the Private
Computation (PC) scheme of [19] for multi-server private
computation problem.

For the proposed protocol, we assume that q ≥ K, and
each message Xi consists of m = N( K

M+1) symbols over Fq .

Multi-Server PIR-PCSI–I protocol: The protocol con-
sists of the following five steps:

Step 1: The user utilizes the Specialized GRS Code
protocol proposed in [12] to first construct a polynomial

p(x) =

K−M−1∑
i=0

pix
i ,

∏
i6∈S∪W

(x− ωi)

where ω1, . . . , ωK are K arbitrarily chosen distinct elements
from Fq , and then construct r , K−M vectors u1, . . . , ur,
each of length K, such that ui = [β1ω

i−1
1 , . . . , βKω

i−1
K ] for

i ∈ [r], where βj =
cj

p(ωj)
for j ∈ S, and βj is a randomly

chosen element from F×q for j 6∈ S.
Step 2: Let X̂i ,

∑K
j=1 βjω

i−1
j Xj for i ∈ [r]. Each X̂i

is referred to as a coded message. Note that the vector ui
(constructed in Step 1) is the vector of coefficients of the
messages {Xi}i∈[K] in the coded message X̂i. Let F ,(

K
M+1

)
, and let J1, J2, . . . , JF be the collection of all (M +

1)-subsets of [K] in a lexicographical order. The structure of
the Specialized GRS Code protocol [12] ensures that for each
Jf , f ∈ [F ], there exist exactly q − 1 linear combinations
Z1
f , Z

2
f , . . . , Z

q−1
f of the messages {Xi}i∈Jf

with (non-zero)
coefficients from F×q , such that for every k ∈ [q−1], Zk

f can
be written as a linear combination of the coded messages
X̂1, . . . , X̂r. Let vkf , [vkf,1, . . . , v

k
f,r] be a vector of length

r such that Zk
f =

∑r
i=1 v

k
f,iX̂i.
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Note that, for each f ∈ [F ], Z1
f , Z

2
f , . . . , Z

q−1
f are the

same up to a scalar multiple, i.e., for each k ∈ [q − 1],
Zk
f = αkZ

1
f , or equivalently, vkf = αkv

1
f , for some distinct

αk ∈ F×q . For each f ∈ [F ], let if , min(Jf ). Note also
that for every f ∈ [F ], there exists a unique kf ∈ [q − 1]
such that the coefficient of the message Xif in the linear
combination Zkf

f is equal to 1. The user then constructs F
vectors v1, . . . , vF , each of length r, such that vf = v

kf

f .
(Note that the above procedure dictates a specific choice of
the coefficient vectors vf . However, for each f ∈ [F ], the
vector vf can be chosen arbitrarily from the set of vectors
{vkf}k∈[q−1].) Let Zf , Z

kf

f for f ∈ [F ]. Each Zf is
referred to as a (linear) function. Note that vf is the vector of
coefficients of the coded messages {X̂i}i∈[r] in the function
Zf .

Step 3: The user sends to all servers the vectors u1, . . . , ur
(associated with the coded messages X̂1, . . . , X̂r), and
the vectors v1, . . . , vF (associated with the functions
Z1, . . . , ZF ). It is noteworthy that the user needs only to
send the vectors {ui}i∈[r] to all servers, and each server
can construct the vectors {vf}f∈[F ] by using {ui}i∈[r]
(according to the procedure described in Step 2).

Step 4: The user and the servers leverage the PC scheme
of [19] with r (independent) messages and F (linear) func-
tions of these messages in order for the user to privately
retrieve one of these functions. In particular, the r = K−M
coded messages {X̂i}i∈[r] and the F functions {Zf}f∈[F ]

play the role of the original messages and the functions
in the PC scheme, respectively, and the user is interested
in retrieving the function Zf∗ privately, where Zf∗ is an
F×q -linear combination (i.e., a linear combination with non-
zero coefficients only) of the messages {Xi}i∈W∪S . (By the
construction, there exists one (and only one) function Zf

among Z1, . . . , ZF such that Zf is an F×q -linear combination
of the messages {Xi}i∈W∪S .) To be more specific, each
server first constructs the coded messages {X̂i}i∈[r] by using
the coefficient vectors {ui}i∈[r] (defined in Step 3), and
then constructs the functions {Zf}f∈[F ] by using the coded
messages {X̂i}i∈[r] and the coefficient vectors {vf}f∈[F ]

(defined in Step 3). Note that each function Zf for f ∈
[F ] consists of m = NF Fq-symbols where N is the
number of servers. Then, each server sends to the user
m(1/N + 1/N2 + · · ·+ 1/NK−M ) carefully designed lin-
ear combinations of all Fq-symbols associated with all func-
tions {Zf}f∈[F ]. The details of the design of the user’s query
to each server as well as the linear combinations transmitted
by each server (which also depend on the query of the user)
can be found in [19, Section 4].

Example 1. (Multi-Server PIR-PCSI–I protocol) Assume
that there are N = 2 servers, K = 4 messages from
F516 , and M = 2. Note that each message consists of
m = N( K

M+1) = 16 symbols from F5. Suppose that the user
demands the message X1 and has a coded side information
Y = X2 +X3, i.e., W = 1, S = {2, 3}, and C = {1, 1}
(i.e., c2 = 1, c3 = 1).

First, the user picks K = 4 distinct elements ω1, . . . , ω4

from F5. Suppose that the user chooses ω1 = 0, ω2 = 1,
ω3 = 2, ω4 = 3. Then, the user constructs the polynomial

p(x) =
∏

i6∈S∪W

(x− ωi) = x− ω4 = x− 3.

The user then computes βj for j ∈ S, i.e., β2 and β3, by
setting β2 = c2

p(ω2)
= 2 and β3 = c3

p(ω3)
= 4, and chooses βj

for j 6∈ S, i.e., β1 and β4, at random (from F×5 ). Assume
that the user chooses β1 = 1 and β4 = 2. Then, the
user constructs r = K −M = 2 vectors u1 and u2, each
of length K = 4, such that ui = [β1ω

i−1
1 , . . . , βKω

i−1
K ] for

i ∈ {1, 2}. That is, the user constructs u1 = [1, 2, 4, 2] and
u2 = [0, 2, 3, 1]. For set J1 = {1, 2, 3}, there exist exactly
q − 1 = 4 vectors vk1 = [k, 3k] for k ∈ {1, . . . , 4} such that
ku1 + 3ku2 = k[1, 3, 3, 0].

It should be noted that there exists no other vector
v = [v1, v2] such that the support of the vector v1u1 + v2u2
is J1 = {1, 2, 3}. Note that the coefficient of the message
Xi1 = X1 (i.e., i1 = min(J1) = 1) in the function Z1 is
equal to 1 when k = 1. Thus, the user constructs the vector
v1 = v11 = [1, 3]. Similarly, the user constructs the vectors
v2 = [1, 2], v3 = [1, 4] and v4 = [0, 3]. Then, the user sends
to all servers the vectors u1 and u2 (associated with the coded
messages X̂1 and X̂2), and the vectors v1, . . . , v4 (associated
with the functions Z1, . . . , Z4). Using the coefficient vectors
u1 and u2, each server first constructs the following two
coded messages

X̂1 = X1 + 2X2 + 4X3 + 2X4

and
X̂2 = 2X2 + 3X3 +X4.

Then, the user constructs the functions Z1, . . . , Z4 using
the coded messages X̂1 and X̂2 and the coefficient vectors
v1, . . . , v4 as follows:

Z1 = X̂1 + 3X̂2 = X1 + 3X2 + 3X3

Z2 = X̂1 + 2X̂2 = X1 +X2 + 4X4

Z3 = X̂1 + 4X̂2 = X1 +X3 +X4

Z4 = 3X̂2 = X2 + 4X3 + 3X4

Finally, the user and the servers apply the PC scheme
of [19] for two coded messages X̂1, X̂2 in order for the user
to privately retrieve the function Z1. (Note that among the
functions Z1, . . . , Z4, only Z1 is an F×5 -linear combination
of the messages {Xi}i∈W∪S = {X1, X2, X3}.) The details
of the PC scheme for this example are as follows. Let
π : [16]→ [16] be a randomly chosen permutation. Let

uf (i) , σiZf (π(i))

for f ∈ [4] and i ∈ [16], where Zf (π(i)) is the π(i)-th
F5-symbol of Zf , and σi is a randomly chosen element
from {−1,+1}. For simplifying the notation, we define the
following:

(ai, bi, ci, di) = (u1(i), u2(i), u3(i), u4(i)) for ∀i ∈ [16].
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TABLE I
THE QUERIES OF THE PC PROTOCOL FOR N = 2, 2 CODED MESSAGES,

F = 4, WHEN THE USER DEMANDS Z1 [19].

S1 S2
a1, b1, c1, d1 a2, b2, c2, d2

a3 − b2 a6 − b1
a4 − c2 a7 − c1
a5 − d2 a8 − d1
b4 − c3 b7 − c6
b5 − d3 b8 − d6
c5 − d4 c8 − d7

a9 − b7 + c6 a12 − b4 + c3
a10 − b8 + d6 a13 − b5 + d3
a11 − c8 + d7 a14 − c5 + d4
b11 − c10 + d9 b14 − c13 + d12

a15 − b14 + c13 − d12 a16 − b11 + c10 − d9

Then, from each of the two servers (S1 and S2), the
user queries 15 carefully designed linear combinations of
the symbols {{ai}i∈[16], {bi}i∈[16], {ci}i∈[16], {di}i∈[16]}, as
given in Table I [19].

As shown in [19], among the 15 symbols queried from
S1 (or S2), based on the information obtained from S2 (or
S1), 3 symbols are redundant. For instance, consider the
15 symbols queried from S1. (Similar observations can be
made regarding the queries from S2.) Among the 4 symbols
{a1, b1, c1, d1}, any 2 symbols suffice to recover the other
2 symbols. For example, c1 and d1 can be obtained from
a1 and b1. (Note that Z3 and Z4 can be written as a linear
combination of Z1 and Z2.)

Thus, the server S1 needs to send two arbitrary symbols
from {a1, b1, c1, d1}. In addition, given any 2 symbols
from {a2, b2, c2, d2}, any 5 symbols among the 6 symbols
{a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, c5 − d4}
queried from S1 would suffice to recover the remaining
symbol. For example, c5 − d4 can be obtained from the
symbols {a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, b2, d2}
(for the details, see [19, Section 5.1]). Thus, each of
the two servers S1 and S2 needs to send to the user
only 12 symbols. In particular, S1 transmits 2 arbitrary
symbols from {a1, b1, c1, d1}, 5 arbitrary symbols from
{a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, c5 − d4}, and
the 4 symbols {a9 − b7 + c6, a10 − b8 + d6, a11 − c8 + d7,
b11 − c10 + d9}, and the symbol {a15 − b14 + c13 − d12};
and the server S2 transmits 2 arbitrary symbols from
{a2, b2, c2, d2}, 5 arbitrary symbols from {a6 − b1, a7 − c1,
a8 − d1, b7 − c6, b8 − d6, c8 − d7}, and the 4 symbols
{a12− b4+ c3, a13− b5+d3, a14− c5+d4, b14− c13+d12},
and the symbol {a16 − b11 + c10 − d9}.

From the answers by the servers, the user obtains all 16
symbols a1, . . . , a16, and accordingly, all 16 symbols of Z1.
(Note that ai = u1(i) = σiZ1(π(i)) for i ∈ [16].) From
Z1 (= X1 + 3X2 + 3X3), the user can decode the desired
message X1 by subtracting off the contribution of their side
information X2 +X3.

In order to retrieve X1 which consists of 16 symbols (over
F5), according to the proposed protocol, the user downloads
24 symbols (over F5) from both servers, and hence the rate
of the proposed protocol is 16/24 = 2/3.

Note that for every 3-subset {Xj1 , Xj2 , Xj3} of the mes-
sages {Xi}i∈[4], in the proposed protocol there exists one
(and only one) linear combination Zf for some f ∈ [4] of the
messages Xj1 , Xj2 , Xj3 . On the other hand, the PC scheme
guarantees that no server can obtain any information about
the index (f ) of the linear combination Zf being requested
by the user. Thus, the proposed scheme satisfies the (W,S)-
privacy condition, as desired.

Lemma 1. The Multi-Server PIR-PCSI–I protocol satisfies
the recoverability and (W,S)-privacy conditions, and achieves
the rate C(W,S)−I =

(
1 + 1/N + · · ·+ 1/NK−M−1)−1.

Proof: Since the messages X[K] are uniformly and
independently distributed over Fqm , and {X̂1, . . . , X̂r}
are linearly independent combinations of the messages
in X[K], thus {X̂1, X̂2, . . . , X̂r} are uniformly and
independently distributed over Fqm as well, i.e.,
H(X̂1) = · · · = H(X̂r) = m log q = L. Hence, the rate of
the Multi-Server PIR-PCSI–I protocol is the same as the
rate of the PC protocol for N servers and K −M messages,
which is given by

(
1 + 1/N + · · ·+ 1/NK−M−1)−1 (see

[19, Theorem 1]).
From the step 4 of the Multi-Server PIR-PCSI–I protocol,

it is evident that the recoverability condition is satisfied.
The proof of the (W,S)-privacy of the proposed protocol
is as follows. The PC protocol protects the privacy of the
function (linear combination) requested by the user. That is,
given the query, no server can obtain any information about
the index of the function requested by the user. Consider
an arbitrary server n ∈ [N ], and an arbitrary query Qn to
server n, generated by the proposed protocol. Thus, given
Q

[W,S,C]
n = Qn, from the perspective of server n, every

function Zf for f ∈ [F ] is equally likely to include the
demanded message. We denote the support of Zf by Zf ,
i.e., Zf is the set of all indices i ∈ [K] such that Xi has a
non-zero coefficient in the linear combination Zf . Thus, for
all f ∈ [F ], we have

Pr(W ∈ Zf |Q[W,S,C]
n = Qn) =

1(
K

M+1

) , (1)

noting that F =
(

K
M+1

)
. Note that any given index W ′ ∈ [K]

is in the support of exactly
(
K−1
M

)
functions Zf , f ∈ [F ].

For any given f ∈ [F ], given Q
[W,S,C]
n = Qn and W ∈ Zf ,

from the perspective of server n, every index W ′ ∈ Zf is
equally likely to be the demand index. That is, for all f ∈
[F ], we have

Pr(W =W ′|Q[W,S,C]
n = Qn,W ∈ Zf )

=

{
1

M+1 , W ′ ∈ Zf ,

0, otherwise.
(2)
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Furthermore, for any given f ∈ [F ] and W ′ ∈ Zf , we have

Pr(S = S′|Q[W,S,C]
n = Qn,W ∈ Zf ,W =W ′)

=

{
1, S′ = Zf \ {W ′},
0, otherwise.

(3)

Consider arbitrary W ′ ∈ [K] and S′ ⊂ [K]\{W ′}, |S′|=M .
Let f ′ ∈ [F ] be the (unique) index such that Zf ′ =W ′∪S′.
It is easy to see that

Pr(W =W ′,S = S′,W ∈ Zf |Q[W,S,C]
n = Qn) = 0

for all f ∈ [F ], f 6= f ′. Thus, by using (1)-(3), we can write

Pr(W =W ′,S = S′|Q[W,S,C]
n = Qn)

=
∑
f∈[F ]

Pr(W =W ′,S = S′,W ∈ Zf |Q[W,S,C]
n = Qn)

= Pr(W =W ′,S = S′,W ∈ Zf ′ |Q[W,S,C]
n = Qn)

= Pr(W ∈ Zf ′ |Q[W,S,C]
n = Qn)

× Pr(W =W ′|Q[W,S,C]
n = Qn,W ∈ Zf ′)

× Pr(S = S′|Q[W,S,C]
n = Qn,W ∈ Zf ′ ,W =W ′)

=
1(
K

M+1

) × 1

M + 1
× 1

=
M ! (K −M − 1)!

K!
(4)

On the other hand, we have

Pr(W =W ′,S = S′)

= Pr(W =W ′)× Pr(S = S′|W =W ′)

=
1

K
× 1(

K−1
M

)
=
M ! (K −M − 1)!

K!
. (5)

From (4) and (5), for any W ′ ∈ [K] and S′ ⊂ [K] \ {W ′},
|S′|=M , we have

Pr(W =W ′,S = S′|Q[W,S,C]
n = Qn)

= Pr(W =W ′,S = S′).

This completes the proof of (W,S)-privacy of the proposed
protocol.

V. THE PIR-PCSI-II PROBLEM

In this section, we prove the result of Theorem 2
by constructing a PIR-PCSI–II protocol, referred to
as the Multi-Server PIR-PCSI–II protocol, for arbitrary
N , K ≥ 2 and 2 ≤M ≤ K that achieves the rate(
1 + 1/N + · · ·+ 1/NK−M)−1.

For the proposed protocol, we assume that q ≥ K, and
each message is comprised of m = N(KM) symbols over Fq .

Multi-Server PIR-CSI–II protocol: The protocol con-
sists of four steps, where the steps 2-4 are the same as the
steps 2-4 in the Multi-Server PIR-PCSI–I protocol, except
that M is replaced with M − 1 everywhere. The step 1 of
the proposed protocol is as follows:

Step 1: The user utilizes the Modified Specialized GRS
Code protocol proposed in [12] to first construct the poly-
nomial p(x) as follows

p(x) =
K−M∑
i=0

pix
i ,

∏
i6∈S

(x− ωi)

where ω1, . . . , ωK are K arbitrarily chosen distinct
elements from Fq , and then construct r , K −M + 1
vectors u1, . . . , ur, each of length K, such that
ui = [β1ω

i−1
1 , . . . , βKω

i−1
K ] for i ∈ [r], where βj =

cj
p(ωj)

for j ∈ S \W , βW = c
p(ωW ) where c is chosen uniformly

at random from F×q \ {cW }, and βj is a randomly chosen
element from F×q for j 6∈ S.

Lemma 2. The Multi-Server PIR-PCSI–II protocol satisfies
the recoverability and (W,S)-privacy conditions, and achieves
the rate

(
1 + 1/N + · · ·+ 1/NK−M)−1.

Proof: The proof is similar to the proof of Lemma 1, and
hence omitted to avoid repetition.

VI. CONCLUSION

In this paper, we studied the multi-server setting of the
Private Information Retrieval with Private Coded Side In-
formation (PIR-PCSI) problem. In this problem, there is a
database of K messages replicated across N servers, and
there is a user who initially has a random linear combination
of a random subset of M messages in the database as
side information. The goal of the user is to retrieve one
message from the servers, while protecting the identities of
both the demand message and the side information messages
jointly. We considered two different models for this problem
depending on whether the side information is a function of
the demand message or not. First, we focused on the setting
in which the side information is not a function of the demand
message. For this setting, we proved that the capacity is given
by
(
1 + 1/N + · · ·+ 1/NK−M−1)−1. Then, we considered

the setting in which the side information is a function of the
demand message. For this setting, we show that the capacity
is lower-bounded by

(
1 + 1/N + · · ·+ 1/NK−M)−1. Our

proposed achievability schemes are inspired by our recently
proposed scheme for the single-server PIR-PCSI problem in
conjunction with the scheme proposed by Sun and Jafar for
multi-server private computation problem.
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