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Abstract— This paper considers the problem of single-server
Private Computation (PC) in the presence of Side Information
(SI). In this problem, there is a server that stores K i.i.d. mes-
sages, and a user who has a subset of M uncoded messages or
a coded linear combination of them as side information, where
the identities of these messages are unknown to the server.
The user wants to privately compute a linear combination of a
subset of D other messages by downloading information from
the server, where the identities of these messages must be kept
private individually or jointly. For each setting, we define the
capacity as the supremum of all achievable download rates.

We characterize the capacity of both PC with coded and un-
coded SI when individual privacy is required, for all K,M,D.
Our results indicate that both settings have the same capacity.
In addition, we establish a non-trivial lower bound on the
capacity of PC with coded SI when joint privacy is required, for
a range of parameters K,M,D. This lower bound is the same
as the lower bound we previously established on the capacity
of PC with uncoded SI when joint privacy is required.

I. INTRODUCTION

In this work, we consider the problem of Private Com-
putation (PC) in the presence of side information. In this
problem, there is a single (or multiple) remote server(s)
storing (identical copies of) a database of i.i.d. messages;
and there is a user who initially has a side information about
some subset of messages in the database, where the identities
of the messages in the support of the side information
are initially unknown to the server. The user wishes to
privately compute a linear combination of a different subset
of database messages by downloading the minimum possible
amount of information from the server(s).

We consider two different types of side information: (i)
uncoded side information - where the user knows a subset
of database messages, and (ii) coded side information - where
the user holds a linear combination of a subset of database
messages. These settings are referred to as PC with Side
Information (PC-SI) and PC with Coded Side Information
(PC-CSI), respectively. We also consider two different pri-
vacy conditions: (i) individual privacy - where the identity
of each message in the support set of the demanded linear
combination needs to be kept private individually, and (ii)
joint privacy - where the identities of all messages in the
support set of the demanded linear combination must be kept
private jointly. Note that neither individual nor joint privacy
requires the coefficients of messages in the demanded linear
combination to be kept private. When the condition (i) or
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(ii) is required, we refer to the PC problem as Individually-
Private Computation (IPC) or Jointly-Private Computation
(JPC), respectively. In both problems, the goal is to design a
protocol for generating the user’s query and the server(s)’ an-
swer(s) such that the entropy of the answer(s) is minimized,
while the query satisfies the underlying privacy condition.

Both IPC and JPC settings are related to the problem
of Private Computation, introduced in [1], where the goal
is to compute a linear combination of the messages in the
database, while hiding both the identities and the coefficients
of these messages. Several variants of this problem were also
studied in [2]–[5]. These works consider neither individual
nor joint privacy, nor any type of side information.

The JPC-SI setting, initially introduced in [6], is closely
related to the problem of Private Information Retrieval with
Side Information (PIR-SI), which was initially introduced
in [7], [8] and later extended in several works, e.g., [9]–
[12]. In the PIR-SI problem, a user wishes to retrieve a
subset of database messages with the help of an uncoded side
information, while achieving joint privacy. Several variants
of PIR with different types of side information and privacy
conditions were also studied in [13]–[20]. The IPC-SI setting
is an extension of the PIR-SI problem when individual
privacy is required. This problem, known as IPIR-SI, was
introduced in [21]. The JPC-CSI and IPC-CSI settings are
two generalizations of PIR with Coded Side Information
(PIR-CSI), previously studied in [22] and [23].

A. Main Contributions

In this work, we focus on the single-server case. For each
type of side information (coded or uncoded) and each privacy
condition (individual or joint), the capacity of the setting
being considered is defined as the supremum of all achievable
download rates, where the download rate is the ratio of the
entropy of a message to the entropy of the server’s answer.

We characterize the capacity of both the IPC-SI and IPC-
CSI settings, for all parameters. These results subsume sev-
eral existing results in the PIR literature. The converse proof
is information-theoretic, and the achievability scheme is a
non-trivial generalization of our recently proposed scheme
in [24] for the PIR-CSI setting. Our results show that the
capacity of both settings are the same. This implies that,
when individual privacy is required, having only one linear
combination of a subset of messages as side information is
as efficient as having them all separately. In addition, we
establish a non-trivial lower bound on the capacity of the
JPC-CSI setting for a range of parameters. Interestingly, this
lower bound is the same as the lower bound we previously
established in [6] on the capacity of the JPC-SI setting.
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The proof of achievability is based on a modification of the
scheme we proposed in [6] for the JPC-SI setting.

Our results for both IPC and JPC settings, when compared
to the existing results in the PIR literature, indicate that
one can privately compute a linear combination of multiple
messages much more efficiently than privately retrieving
multiple messages, and linearly combining them locally. In
addition, comparing our results with those in [1], one can
see that hiding only the identities of the messages (either
individually or jointly) and not their coefficients —which
may still provide a satisfactory level of privacy in many
applications, can be done with much less cost, even if there
is only one server and/or the user has no side information.

II. PROBLEM FORMULATION

Throughout, random variables and their realizations are
denoted by bold-face letters and regular letters, respectively.

Let Fq be a finite field of size q, and let Fq` be an
extension field of Fq for a positive integer `. Let K,M,D
be non-negative integers such that K ≥M +D. We denote
{1, . . . ,K} by K, and let KM (or KD) be the set of all M -
subsets (or D-subsets) of K. We also denote by C the set of
all nonzero elements in Fq , and let CM (or CD) be the set of
all ordered multisets of C of size M (or D).

Consider a single server that stores a dataset of K mes-
sages, XK , {X1, . . . , XK}, where each message Xi is
independently and uniformly distributed over Fq` . That is,
H(Xi) = L for i ∈ K, and H(XK) = KL, where XK ,
{X1, . . . ,XK}, and L , ` log2 q. Consider a user that
knows a linear combination Y [S,U ] ,

∑
i∈S uiXi of M

messages XS , {Xi}i∈S for some S ∈ KM and some U ,
{ui}i∈S ∈ CM , and wishes to retrieve a linear combination
Z [W,V ] ,

∑
i∈W viXi from the server for some W ∈ KD,

W ∩ S = ∅, and some V , {vi}i∈W ∈ CD. We refer to
Y [S,U ] as the side information, XS as the side information
support set, S as the side information support index set, M
as the side information support size, Z [W,V ] as the demand,
XW as the demand support set, W as the demand support
index set, and D as the demand support size.

We assume that S, U, V are distributed uniformly over
KM , CM , CD, respectively, and W, given S = S, is
uniformly distributed over all W ∈ KD, W ∩ S = ∅. Also,
we assume that the server initially knows M,D, and the
joint distribution of (W,V,S,U), whereas the realization
(W,V, S, U) is not initially known to the server.

For any given (W,V, S, U), the user sends to the server a
query Q[W,V,S,U ], which is a (potentially stochastic) function
of (W,V, S, U), in order to retrieve Z [W,V ]. Note that in this
work we focus on queries that are “universal” in the sense
that they do not depend on the content of any message, and
hence are applicable for all realizations of messages. For
simplifying the notation, we denote Q[W,V,S,U] by Q. The
query must satisfy one of the following privacy conditions:
(i) Individual Privacy: every message in XK must be

equally likely to be in the user’s demand support set,
i.e., for all i ∈ K, it must hold that

Pr(i ∈W|Q = Q[W,V,S,U ]) = Pr(i ∈W).

(ii) Joint Privacy: every D-subset of messages in XK must
be equally likely to be the user’s demand support set,
i.e., for all W ∗ ∈ KD, it must hold that

Pr(W =W ∗|Q = Q[W,V,S,U ]) = Pr(W =W ∗).

Note that joint privacy implies individual privacy, but not
vice versa. The main difference between these two privacy
conditions is that for joint privacy which is a stronger notion
of privacy, the query must protect the correlation between
the indices in the demand support index set, whereas for
individual privacy some information about this correlation
may be leaked, and hence a weaker notion of privacy.

Neither individual nor joint privacy requires the privacy
of the coefficients in the demand to be protected. This is in
contrast to the privacy condition being considered in [1],
and as a result of this relaxation one can expect more
efficient private computation schemes in our settings. In
particular, for single-server private computation without any
side information, the user must download the entire dataset
in order to protect the privacy of both the identities of the
messages in the demand support set and their coefficients
in the demand [1]. However, for neither of the two privacy
conditions being considered here the entire dataset needs to
be downloaded, even when the user has no side information.

Upon receiving Q[W,V,S,U ], the server sends to the user
an answer A[W,V,S,U ], which is a (deterministic) function of
the query Q[W,V,S,U ] and the messages in XK. We denote
A[W,V,S,U] by A. Note that H(A|Q,XK) = 0. The col-
lection of A[W,V,S,U ], Q[W,V,S,U ], Y [S,U ], and (W,V, S, U)
must enable the user to retrieve the demand Z [W,V ], i.e.,

H(Z[W,V]|A,Q,Y[S,U],W,V,S,U) = 0.

We refer to this condition as the recoverability condition.
For each type of privacy, the problem is to design a proto-

col for generating a query Q[W,V,S,U ] (and the corresponding
answer A[W,V,S,U ], given Q[W,V,S,U ] and XK) for any given
(W,V, S, U), such that both the privacy and recoverability
conditions are satisfied. We refer to this problem as single-
server Individually-Private Computation with Coded Side
Information (IPC-CSI) or Jointly-Private Computation with
Coded Side Information (JPC-CSI), when individual or joint
privacy is required, respectively. We similarly define the IPC-
SI and JPC-SI problems for the settings in which the user’s
side information is the support set XS itself, instead of a
linear combination of the messages in XS .

A protocol that generates query/answer for the IPC-CSI or
JPC-CSI setting is referred to as an IPC-CSI or a JPC-CSI
protocol, respectively. The rate of an IPC-CSI or a JPC-CSI
protocol is defined as the ratio of the entropy of a message,
i.e., L, to the entropy of the answer A. The capacity of the
IPC-CSI or JPC-CSI setting is defined as the supremum of
rates over all IPC-CSI or JPC-CSI protocols, respectively.
An IPC-SI or a JPC-SI protocol, its rate, and the capacity of
the IPC-SI or JPC-SI setting are defined similarly.

Our goal in this work is to establish lower and/or upper
bounds on the capacity of IPC-CSI, JPC-CSI, IPC-SI, and
JPC-SI settings, in terms of the parameters K,M,D.

1113

Authorized licensed use limited to: National Science Foundation. Downloaded on January 26,2021 at 23:24:47 UTC from IEEE Xplore.  Restrictions apply. 



III. NECESSARY CONDITIONS

The following two lemmas provide a necessary condition
for individual and joint privacy, for both types of side
information. The proofs are straightforward by the way of
contradiction, and hence omitted for brevity.

Lemma 1 (Individual Privacy). For any i ∈ K, there exist
W ∗ ∈ KD, V ∗ ∈ CD, and S∗ ∈ KM where i ∈ W ∗ and
S∗ ∩W ∗ = ∅, such that

H(Z[W∗,V ∗]|A,Q,XS∗) = 0.

Lemma 2 (Joint Privacy). For any W ∗ ∈ KD, there exist
V ∗ ∈ CD and S∗ ∈ KM where S∗ ∩W ∗ = ∅, such that

H(Z[W∗,V ∗]|A,Q,XS∗) = 0.

Thinking of scalar-linear IPC or JPC protocols —where
the answer consists only of scalar-linear combinations of
the messages in XK, the necessary conditions in Lemmas 1
and 2 imply the need for linear codes that satisfy certain
combinatorial requirements. (Recently, in [12], we made
a similar connection between single-server PIR with side
information and locally recoverable codes.) In particular, for
constructing a scalar-linear IPC-CSI (or IPC-SI) protocol
one requires a (linear) code of length K that satisfies the
following requirement: for any i ∈ K, there is a codeword
of (Hamming) weight D or M+D (or at least D and at most
M +D) whose support includes the index i. Minimizing the
entropy of the answer to maximize the rate of the protocol
translates into minimizing the dimension of the code. In this
work, we design optimal codes with minimum dimension for
all K,M,D for the IPC-CSI setting. These codes naturally
serve also as optimal codes for the IPC-SI setting.

The problem of designing a scalar-linear JPC-CSI (or JPC-
SI) protocol reduces to the problem of designing a code of
length K with minimum dimension satisfying the following
requirement: for any D-subset W ⊆ K, there is a codeword
of weight D or M +D (or at least D and at most M +D)
whose support includes the D-subset W . The design of
optimal codes satisfying this requirement remains an open
problem. In [6], we initiated the study of the JPC-SI setting,
and established a non-trivial upper bound on the dimension
of optimal codes for this setting. In this work, we make the
first attempt towards characterizing the dimension of optimal
codes for the JPC-CSI setting; and provide a non-trivial
upper bound for a range of parameters K,M,D.

IV. MAIN RESULTS

Our main results for the IPC and JPC settings with both
coded and uncoded side information are summarized in
Sections IV-A and IV-B, respectively.

A. IPC-SI and IPC-CSI

The capacity of IPC-SI and IPC-CSI for arbitrary K,M,D
are characterized in Theorems 1 and 2, respectively.

Theorem 1. For the IPC-SI setting with K messages, side
information of size M , and demand support size D, the
capacity is given by d K

M+D e
−1

.

Theorem 2. For the IPC-CSI setting with K messages, side
information support size M , and demand support size D, the
capacity is given by d K

M+D e
−1

.

For the converse proof, we use information-theoretic argu-
ments relying primarily on the result of Lemma 1, to upper
bound the rate of any IPC-SI protocol (see Section V-A).
This upper bound obviously holds for any IPC-CSI protocol.
For the proof of achievability, we construct a new scalar-
linear IPC-CSI protocol, termed the Generalized Modified
Partition-and-Code (GMPC) protocol, which achieves the
rate upper bound (see Section V-B). This protocol naturally
serves also as an IPC-SI protocol. The GMPC protocol is
based on the idea of non-uniform randomized partitioning,
and generalizes our recently proposed protocol in [24] for
the PIR-CSI setting. Examples of the GMPC protocol can
be found in a longer version of this work, [25].

Remark 1. The matching capacity of the IPC-SI and IPC-
CSI settings shows that achieving individual privacy comes
at no loss in capacity if the user has only one random linear
combination of M random messages, instead of M random
messages separately as their side information.

Remark 2. As shown in [21], for the IPIR-SI setting, the
normalized download cost of K −Mb K

M+D c or Dd K
M+D e

(depending on K,M,D) is achievable, where the normalized
download cost is defined as the download cost normalized
by the entropy of a message. Comparing this with the result
of Theorem 1, one can see that, when individual privacy
is required, one can privately compute a linear combination
of multiple messages much more efficiently than retrieving
them privately and linearly combining them locally.

Remark 3. For the case of M = 0, the capacity of both
IPC-SI and IPC-CSI settings is equal to dKD e

−1. Depending
on the value of D, the capacity can be substantially larger
than 1

K , which was shown to be the capacity of single-server
private computation where the privacy of both the demand
support index set and the coefficients in the demand must
be preserved [1]. For the case of D = 1, both the IPC-
SI and IPC-CSI problems reduce to the problems of PIR-
SI [7] and PIR-CSI where the demanded message does not
lie in the support of the side information [22], respectively.
The capacity of these settings were shown to be equal to
d K
M+1e

−1, matching the results of Theorems 1 and 2.

B. JPC-SI and JPC-CSI

Theorem 3 lower bounds the capacity of JPC-SI for all
K,M,D, and Theorem 4 establishes a lower bound on the
capacity of JPC-CSI for some values of K,M,D.

Theorem 3 ( [6]). For the JPC-SI setting with K messages,
side information of size M , and demand support size D, the
capacity is lower bounded by (dK−M−DbM/Dc+1e+ 1)−1.

Theorem 4. For the JPC-CSI setting with K messages, side
information support size M , and demand support size D,
the capacity is lower bounded by (K−M−DbM/Dc+1 + 1)−1 when
bMD c+ 1 divides K −M −D.
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The capacity lower bound in Theorem 3 is achievable by a
scalar-linear JPC-SI protocol, called Partition-and-Code with
Interference Alignment (PC-IA), which we recently proposed
in [6]. The PC-IA protocol is applicable for all K,M,D, and
relies on the idea of a probabilistic partitioning that allows
the parts to overlap and have multiple blocks of interference
that are aligned (for details, see [6]).

Theorem 4, which appears without proof, follows from an
observation that the PC-IA protocol (with a slight modifica-
tion in the choice of coefficients in the linear combinations
that constitute the server’s answer to the user’s query) serves
also as a scalar-linear JPC-CSI protocol for some values
of K,M,D, particularly when the divisibility condition in
the theorem’s statement holds. Notwithstanding, the PC-
IA protocol is not a JPC-CSI protocol in general, and the
construction of JPC-CSI protocols for arbitrary K,M,D is
a challenging open problem, and the focus of an ongoing
work. Examples of the PC-IA protocol can be found in [25].

Remark 4. As was shown in [6], when joint privacy is
required, with the help of an uncoded side information the
download cost for the private computation of one linear
combination of multiple messages can be much lower than
that of privately retrieving multiple messages and computing
the linear combination of them. For instance, for K even,
when the user has M = 2 messages as side information, for
privately computing a linear combination of D = 2 messages
the normalized download cost is equal to K

2 − 1 (see The-
orem 3); whereas, privately retrieving D = 2 messages in-
curs a normalized download cost of min{K − 2,K − bK3 c},
which is significantly higher than K

2 −1 (see [9, Theorem 2]).
Surprisingly, the result of Theorem 4 shows that for some
values of K,M,D (e.g., K even and M = D = 2), only
one linear combination of M messages suffices to achieve
the same normalized download cost (e.g., K

2 − 1). This is
interesting because regardless of the values of M and D,
when joint privacy is required, with the help of only one
linear combination of M messages the normalized download
cost for retrieving D messages is equal to K − 1, which is
much higher than, for instance, K2 − 1.

Remark 5. The capacity lower bounds in Theorems 3 and 4
are tight for the cases of D = 1 and M = 0 (see [7], [22]).
We have been able to prove the tightness of these bounds for
small values of K,M,D, particularly for M = D = 2 and
several values of K. Nevertheless, it remains open whether
these lower bounds are tight for all K,M,D in general.

Remark 6. The matching capacity lower bounds in Theo-
rems 3 and 4 raises an intriguing question whether, similar to
the IPC-SI and IPC-CSI settings, the capacity of the JPC-SI
and JPC-CSI settings are the same. We conjecture that the
answer is affirmative for both linear and non-linear protocols.

V. PROOFS OF THEOREMS 1 AND 2
Since any IPC-CSI protocol is an IPC-SI protocol, for the

converse we only need to upper bound the rate of any IPC-SI
protocol, whereas for the achievability it suffices to design
an IPC-CSI protocol that achieves the rate upper bound.

A. Converse

Lemma 3. The rate of any IPC-SI protocol for K messages,
side information of size M , and demand support size D, is
upper bounded by d K

M+D e
−1

.

Proof: We need to show that H(A) ≥ d K
M+D eL. Fix

arbitrary W ∈ KD, V ∈ CD, S ∈ KM such that S ∩W = ∅.
Let Z , Z[W,V ]. By the recoverability condition, we have
H(Z|A,Q,XS) = 0. By a simple application of the chain
rule of entropy, we have

H(A) ≥ H(A|Q,XS) +H(Z|A,Q,XS)

= H(Z|Q,XS) +H(A|Q,XS ,Z)

= H(Z) +H(A|Q,XS ,Z), (1)

noting that H(Z|Q,XS) = H(Z) because Z is only a linear
combination of messages XW , and hence independent of XS

since W ∩S = ∅, and Q is independent of all messages XK.
We consider two cases: (i) W ∪S = K, and (ii) W ∪ S 6=

K. In the case (i), M + D = K, and d K
M+D eL = L.

Hence, (1) yields H(A) ≥ H(Z) = L, as was to be shown.
In the case (ii), we further lower bound H(A|Q,XS ,Z)

as follows. Choose an arbitrary message, say Xi1 , for
some i1 6∈ W ∪ S. By the result of Lemma 1, there
exist W1 ∈ KD, i1 ∈ W1, V1 ∈ CD, and S1 ∈ KM ,
S1 ∩W1 = ∅, such that H(Z1|A,Q,XS1

) = 0, or in turn,
H(Z1|A,Q,XS ,Z,XS1

) = 0, where Z1 , Z[W1,V1]. Thus,

H(A|Q,XS ,Z) ≥ H(A|Q,XS ,Z,XS1)

+H(Z1|A,Q,XS ,Z,XS1)

= H(Z1|Q,XS ,Z,XS1)

+H(A|Q,XS ,Z,XS1 ,Z1)

= H(Z1) +H(A|Q,XS ,Z,XS1 ,Z1) (2)

where Z1 and (Q,XS ,Z,XS1) are independent because
i1 ∈ W1 and i1 6∈W ∪ S ∪ S1. Let n , d K

M+D e. Using
Lemma 1 recursively, it follows that for all 1 ≤ k < n there
exist i1, . . . , ik ∈ K, W1, . . . ,Wk ∈ KD, V1, . . . , Vk ∈ CD,
and S1, . . . , Sk ∈ KM satisfying il ∈Wl, Sl ∩ Wl = ∅,
il 6∈ ∪l−1j=1(Wj ∪ Sj) ∪ (W ∪ S) for all 1 ≤ l ≤ k, such that

H(Zk|A,Q,XS ,Z,XS1
,Z1, . . . ,XSk−1

,Zk−1,XSk
) = 0,

where Zl , Z[Wl,Vl] for all 1 ≤ l ≤ k. Obvi-
ously,

∣∣∪k−1j=1 (Wj ∪ Sj) ∪ (W ∪ S)
∣∣ ≤ (M + D)k for all

1 ≤ k < n. Applying the same technique as in (2), one can
see that for all 1 ≤ k < n, we have

H(A|Q,XS ,Z,XS1
,Z1, . . . ,XSk−1

,Zk−1)

≥ H(Zk) +H(A|Q,XS ,Z,XS1
,Z1, . . . ,XSk

,Zk).

Putting together these lower bounds for all k, we have

H(A|Q,XS ,Z) ≥
n−1∑
k=1

H(Zk) = (n− 1)L, (3)

since Z1, . . . ,Zn−1 are independent by the choice of
i1, . . . , in−1 in the construction. Combining (1) and (3), we
get H(A) ≥ nL = d K

M+D eL, as was to be shown.
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B. Achievability

For the ease of notation, we define n , d K
M+D e,

m , n(M +D)−K, and r ,M +D −m.

Generalized Modified Partition-and-Code (GMPC)
Protocol: This protocol consists of three steps as follows:

Step 1: For any 1 ≤ l < n, let Il ,
{(l − 1)(M +D) + 1, . . . , l(M +D)}, and let
In , {1, . . . ,m, (n− 1)(M +D) + 1, . . . ,K}. Note
that I1 ∩ In = {1, . . . ,m}.

First, the user constructs a random permutation π on K
as follows. With probability α , m+2r

K , the user chooses
l∗ ∈ {1, n} uniformly at random; otherwise, with probability
1− α, the user randomly chooses l∗ ∈ {2, . . . , n− 1}.

If l∗ ∈ {1, n}, with probability β (or 1 − β) where the
choice of β will be specified shortly, the user assigns µ ,
min{D,m} (or D− ρ , D−min{D, r}) randomly chosen
indices from W and m−µ (or m−D+ρ) randomly chosen
indices from S to {π(j) : 1 ≤ j ≤ m} at random, and
randomly assigns the rest of the indices in W ∪S to {π(j) :
j ∈ Il∗ \ {1, . . . ,m}}. Otherwise, if l∗ ∈ {2, . . . , n − 1},
the user randomly assigns the M + D indices in W ∪ S
to {π(j) : j ∈ Il∗}. Then, the user assigns the (not-yet-
assigned) indices in K \ (W ∪ S) to {π(j) : j 6∈ Il∗}.

The value of β, which depends on the values of K,M,D,
is carefully chosen to satisfy the individual privacy condition:

β ,


m

m+2r , D ≤ m,D ≤ r,
D

m+2r , D > m,D ≤ r,
1− 2D

m+2r , D ≤ m,D > r,
r
M

(
1− 2D

m+2r

)
, D > m,D > r.

Next, the user constructs n ordered sets Q′1, . . . , Q
′
n, each

of size M + D, defined as Q′k , {π(j) : j ∈ Il}; and
constructs an ordered multiset Q′′ of size M + D, defined
as Q′′ , {cj : j ∈ Il∗} where cj = vπ(j) or cj = uπ(j)
when π(j) ∈W or π(j) ∈ S, respectively. Recall that vπ(j)
or uπ(j) is the coefficient of the message Xπ(j) in the user’s
demand or side information, respectively.

The user then constructs Ql = (Q′l, Q
′′) for 1 ≤ l ≤ n,

and sends the query Q[W,V,S,U ] = {Q1, . . . , Qn} to the
server.

Step 2: By using Ql = (Q′l, Q
′′)’s, the server com-

putes Al’s, defined as Al ,
∑M+D
j=1 cijXij where Q′l =

{i1, . . . , iM+D} and Q′′ = {ci1 , . . . , ciM+D
}, and sends the

answer A[W,V,S,U ] = {A1, . . . , An} back to the user.
Step 3: Upon receiving the server’s answer, the user re-

trieves the demand Z [W,V ] by subtracting off the contribution
of the side information Y [S,U ] from Al∗ = Z [W,V ] +Y [S,U ].

Lemma 4. The GMPC protocol is a scalar-linear IPC-CSI
protocol, and achieves the rate d K

M+D e
−1

.

Proof: The rate and the scalar-linearity of the GMPC
protocol are obvious from the construction. Clearly, the
recoverability condition is also satisfied.

To prove that the GMPC protocol satisfies the individual
privacy condition, we need to show that for any given query

Q generated by the protocol, for all i ∈ K, it holds that

Pr(i ∈W|Q = Q) = Pr(i ∈W) =
D

K
,

noting that W is distributed uniformly over KD.
Fix an arbitrary i ∈ K. We consider the following three

different cases separately: (i) π−1(i) ∈ {1, . . . ,m}; (ii)
π−1(i) ∈ Il \ {1, . . . ,m} for some l ∈ {1, n}; and (iii)
π−1(i) ∈ Il for some l 6∈ {1, n}, where π−1(i) = j if and
only if π(j) = i.

First, consider the case (i). In this case, we have

Pr(i ∈W|Q = Q)

=
∑

l∈{1,n}

Pr(i ∈W, l∗ = l|Q = Q)

=
∑

l∈{1,n}

Pr(l∗ = l|Q = Q)× Pr(i ∈W|Q = Q, l∗ = l)

= 2

(
1

2
× α

(
β ×

(
m−1
µ−1

)(
m
µ

) + (1− β)×
(
m−1
D−ρ−1

)(
m
D−ρ

) ))

=


αβ
(
D
m

)
, D ≤ m,D ≤ r,

αβ, D > m,D ≤ r,
α
(
β
(
D
m

)
+ (1− β)

(
D−r
m

))
, D ≤ m,D > r,

α
(
β + (1− β)

(
D−r
m

)
)
)
, D > m,D > r,

=
D

K
,

for our choice of β for each range of values of m and r.
Next, consider the case (ii). In this case, we have

Pr(i ∈W|Q = Q)

= Pr(i ∈W, l∗ = l|Q = Q)

= Pr(l∗ = l|Q = Q)× Pr(i ∈W|Q = Q, l∗ = l)

=
1

2
× α

(
β ×

(
r−1

D−µ−1
)(

r
D−µ

) + (1− β)×
(
r−1
ρ−1
)(

r
ρ

) )

=


α
2 (1− β)

(
D
r

)
, D ≤ m,D ≤ r,

α
2

(
β
(
D−m
r

)
+ (1− β)

(
D
r

))
, D > m,D ≤ r,

α
2 (1− β), D ≤ m,D > r,
α
2

(
β
(
D−m
r

)
+ (1− β)

)
, D > m,D > r,

=
D

K
,

for our choices of β specified earlier.
Lastly, consider the case (iii). In this case, we have

Pr(i ∈W|Q = Q)

= Pr(i ∈W, l∗ = l|Q = Q)

= Pr(l∗ = l|Q = Q) Pr(i ∈W|Q = Q, l∗ = l)

=
1

n− 2
× (1− α)

(
D

M +D

)
=

(
M +D

K −m− 2r

)(
K −m− 2r

K

)(
D

M +D

)
=
D

K
.

This completes the proof.
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