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Abstract— This paper considers the problem of Quantitative
Group Testing (QGT). Consider a set of N items among which
K items are defective. The QGT problem is to identify (all
or a sufficiently large fraction of) the defective items, where
the result of a test reveals the number of defective items in
the tested group. In this work, we propose a non-adaptive
QGT scheme using sparse graph codes over bi-regular bipartite
graphs and binary t-error-correcting BCH codes. The proposed
scheme provides exact recovery with probabilistic guarantee,
i.e. recovers all the defective items with high probability. In
particular, we show that for the sub-linear regime where K

N
vanishes as K,N →∞, the proposed scheme requires at most
m ≈ 1.19K log2

(
4.74N

K

)
tests to recover all the defective items

with probability approaching one as K,N →∞. This bound
can be achieved by t = 2. The testing and recovery algorithms
of the proposed scheme for any t ≤ 4 have the computational
complexity of O(K log2 N

K
) and O(K log N

K
), respectively. Our

simulation results also show that the proposed scheme sig-
nificantly outperforms a non-adaptive semi-quantitative group
testing scheme recently proposed by Abdalla et al. in terms of
the required number of tests for identifying all the defective
items with high probability.

I. INTRODUCTION

In this work, we consider the problem of Quantitative
Group Testing (QGT). Consider a set of N items among
which K items are defective. The QGT problem is to identify
(all or a sufficiently large fraction of) the defective items,
where the result of a test reveals the number of defective
items in the tested group. The key difference between the
QGT problem and the original group testing problem is that,
unlike the former, in the latter the result of each test is either
1 or 0 depending on whether the tested group contains any
defective items or not. The objective of QGT is to design a
test plan with minimum number of tests that identifies (all
or a sufficiently large fraction of) the defective items.

There are two general categories of test strategies: non-
adaptive and adaptive. In an adaptive scheme, each test
depends on the outcomes of the previous tests. On the
other hand, in a non-adaptive scheme, all tests are planned
in advance. In other words, the result of one test does
not affect the design of another test. Not only are order-
optimal non-adaptive algorithms as effective as order-optimal
adaptive algorithms asymptotically, but also in most practical
applications non-adaptive algorithms are preferred since they
allow one to perform all tests at once in parallel.
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Let S be the index set of the defective items and Ŝ be
an estimation of S. Depending on the application at hand,
there can be different requirements for the closeness of Ŝ to
S [1], [2]. The strongest condition for closeness is exact
recovery when it is required that Ŝ = S. Two weaker
conditions are partial recovery without false detections when
it is required that Ŝ ⊆ S and |Ŝ|≥ (1 − ε)|S|, and partial
recovery without missed detections when it is required that
S ⊆ Ŝ and |Ŝ|≤ (1 + ε)|S|. There are also different types
of the recovery guarantees [2]. The strongest guarantee is
perfect recovery guarantee when the exact or partial recovery
needs to be achieved with probability 1 (over the space
of all problem instances). A slightly weaker guarantee is
probabilistic recovery guarantee when it suffices to achieve
the exact or partial recovery with high probability only (and
not necessarily with probability 1). In this work, we are
interested in the exact recovery of all defective items with
the probabilistic recovery guarantee.

A. Related Work and Applications

The QGT problem has been extensively studied for a wide
range of applications, e.g., multi-access communication,
spectrum sensing, and network tomography, see, e.g., [3],
and references therein. This problem was first introduced
by Shapiro in [4]. Several non-adaptive and adaptive QGT
strategies have been previously proposed, see, e.g., [3], [5],
[6]. It was shown in [7] that any non-adaptive algorithm
must perform at least (2K log2(N/K))/log2K tests. Var-
ious order optimal or near-optimal non-adaptive strategies
were previously proposed, see, e.g., [5]–[8]. In particular,
the work of [8] gives a non-constructive probabilistic proof
for the existence of an order-optimal non-adaptive algorithm.
The best known polynomial-time non-adaptive algorithms
require K log2N tests [7]. Recently, a semi-quantitative
group testing scheme based on sparse graph codes was
proposed in [9], where the result of each test is an integer
in the set {0, 1, 2, . . . , L}. This strategy identifies a (1 − ε)
fraction of defective items using c(ε, L)K log2N tests with
high probability, where c(ε, L) depends only on ε and L.

B. Connection with Compressed Sensing

A closely related problem to QGT is the problem of
compressed sensing (CS) in which the goal is to recover
a sparse signal from a set of (linear) measurements. Given
an N -dimensional sparse signal with a support size up to
K, the objective is to identify the indices and the values of
non-zero elements of the signal with minimum number of
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measurements. The main differences between the CS prob-
lem and the QGT problem are in the signal model and the
constraints on the measurement matrix. Most of the existing
works on the CS problem consider real-valued signals and
measurement matrices. The QGT problem, however, requires
both the signal and the measurement matrix to be binary.

There are a number of CS algorithms in the literature that
use binary measurement matrices, see, e.g. [10], [11] and
references therein. However, these strategies either use tech-
niques not applicable to binary signals, or provide different
types of closeness and guarantee than those required in this
work. There are also several CS algorithms for the support
recovery where the objective is to determine the indices of
the non-zero elements of the signal but not their values [12],
[13]. The support recovery problem is indeed equivalent to
the QGT problem. Notwithstanding, the existing schemes for
support recovery rely on non-binary measurement matrices,
and hence are not suitable for the QGT problem.

Last but not least, to the best of our knowledge, the
majority of works on the CS problem focus mainly on the
order optimality of the number of measurements, whereas
in this work for the QGT problem we are also interested in
minimizing the constant factor hidden in the order.

C. Main Contributions

In this work, we propose a non-adaptive quantitative group
testing strategy for the sub-linear regime where K

N vanishes
as K,N →∞. We utilize sparse graph codes over bi-regular
bipartite graphs and binary t-error-correcting BCH codes for
the design of the proposed strategy. Leveraging powerful
density evolution techniques for the analysis enables us not
only to determine the exact value of constants in the number
of tests needed but also to provide provable performance
guarantees. We show that the proposed scheme provides
exact recovery with probabilistic guarantee, i.e. recovers all
the defective items with high probability. In particular, for
the sub-linear regime, the proposed scheme requires at most
m ≈ 1.19K log2

(
4.74NK

)
tests to recover all the defective

items with probability approaching one as K,N →∞. This
bound can be achieved by t = 2. Moreover, for any t ≤ 4,
the testing and recovery algorithms of the proposed scheme
have the computational complexity of O(K log2 NK ) and
O(K log N

K ), respectively.
Due to the space constraints, the proofs of lemmas are not

presented here, and can be found in [14].

II. PROBLEM SETUP AND NOTATION

Throughout the paper, we use bold-face small and capital
letters to denote vectors and matrices, respectively.

In this work, we consider the problem of quantitative
group testing (QGT) with exact recovery and probabilistic
guarantee, defined as follows. Consider a set of N items
among which K items are defective. We focus on the sub-
linear regime where the ratio K

N vanishes as K,N → ∞.
The problem is to identify all the defective items with high
probability while using minimum number of tests on subsets

(groups) of the items, where the result of each test shows
the number of defective items in the tested group.

Let x ∈ {0, 1}N represent the set of N items in which the
coordinates with value 1 correspond to the defective items. A
non-adaptive group testing problem consisting of m tests can
be represented by a measurement matrix A ∈ {0, 1}m×N ,
where the i-th row of the matrix corresponds to the i-th
test. That is, the coordinates with value 1 in the i-th row
correspond to the items in the i-th test. The results of the m
tests are expressed in the test vector y ∈ {0, 1, . . . }m, i.e.,

y = [y1, · · · , ym]T = Ax. (1)

The goal is to design a testing matrix A that has a small
number of rows (tests), m, and can identify with high
probability all the defective items given the test vector y.

III. PROPOSED SCHEME

A. Binary t-error-correcting codes and t-separable matrices
Definition 1. (t-separable matrix) A binary matrix
D ∈ {0, 1}m×n (for n > t) is t-separable over field F if
the sum (over field F) of any set of t columns is distinct.

By the definition, it can be easily seen that if a matrix D
(with n columns) is t-separable over a field F, then D is also
s-separable over F for any 1 ≤ s < t < n.

The vector of test results, y, is the sum of the columns
in the testing matrix corresponding to the coordinates of
the defective items. When a t-separable matrix over R is
used as the testing matrix, the vector y will be distinct
for any set of t defective items. Thus, a t-separable matrix
over R can be used as the testing matrix for identifying
t defective items. However, the construction of t-separable
matrices for arbitrary t with minimum number of rows is
an open problem. Instead, we can leverage the idea that the
parity-check matrix of any binary t-error-correcting code is
a t-separable matrix over F2. Note that t-separability over
F2 results in t-separability over R. Hence, a possible choice
for designing a t-separable matrix over R is utilizing the
parity-check matrix of a binary t-error-correcting code.

In this work, we use binary BCH codes for this purpose. It
should be noted that Reed-Solomon (RS) codes can also be
used; however, due to the restriction on testing matrix to be
binary, RS codes are as efficient as BCH codes for the QGT
problem. The key feature of the BCH codes which make
them suitable for designing t-separable matrices is that it is
possible to design binary BCH codes, capable of correcting
any combination of t or fewer errors.

Definition 2. [15] (Binary BCH codes) For any positive
integers m ≥ 3 and t < 2m−1, there exists a binary t-error-
correcting BCH code with the following parameters:

n = 2m − 1 block length
n− k ≤ mt number of parity-check digits
dmin ≥ 2t+ 1 minimum Hamming distance

The t × n parity-check matrix of such a code is given
by Ht =

(
α(2i−1)(j−1))

i∈{1,···,t},j∈{1,···,n}, where α is a
primitive element in F2m .
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Since each entry of Ht is an element in F2m , it can be
represented by an m-tuple over F2. Thus, the number of rows
in the binary representation of Ht is given by

R = tm = t log2(n+ 1). (2)

B. Testing Algorithm

The design of the measurement matrix A in our scheme
is based on an architectural philosophy that was proposed
in [2] and [16]. The key idea is to design A using a sparse bi-
regular bipartite graph and to apply a peeling-based iterative
algorithm for recovering the defective items given y.

Let G`,r(N,M) be a randomly generated bipartite graph
where each of the N left nodes is connected to ` right nodes
uniformly at random, and each of the M right nodes is
connected to r left nodes uniformly at random. Note that
there are N` edge connections from the left side and Mr
edge connections from the right side,

N` =Mr (3)

Let TG ∈ {0, 1}M×N be the adjacency matrix of the
graph G`,r(N,M), where each column in TG corresponds to
a left node and has exactly ` ones, and each row corresponds
to a right node and has exactly r ones. Let ti ∈ {0, 1}N
denote the i-th row of TG, i.e., TG = [tT1 , t

T
2 , · · · , tTM ]T.

We assign s tests to each right node based on a signature
matrix U ∈ {0, 1}s×r. The signature matrix is chosen as
U = [1T

1×r,H
T
t ]

T, where 11×r is an all-ones row of length
r, and Ht ∈ {0, 1}t log2(r+1)×r is the parity-check matrix
of a binary t-error-correcting BCH code. The first row of
the signature matrix counts the number of defective items
connected to a right node, and given that this quantity is
no more than t, the rest of the rows find the indices of the
connected defective items. From (2), it can be easily seen
that s = R+ 1 = t log2(r + 1) + 1.

The measurement matrix is given by A = [AT
1 , · · · ,AT

M ]T

where Ai ∈ {0, 1}s×N is a matrix that defines the s tests at
the i-th right node. There are exactly r ones in each row ti
of TG, and the signature matrix U = [u1,u2, · · · ,ur] has r
columns. Note that ui = [1,hT

i ]
T is the i-th column of U,

where hi is the i-th column of Ht. Ai is obtained by placing
the r columns of U at the coordinates of the r ones of the
row vector ti, and replacing zeros by all-zero columns,

Ai = [0, . . . ,0,u1,0, . . . ,u2,0, . . . ,ur] (4)

where ti = [0, . . . , 0, 1, 0, . . . , 1, 0, . . . , 1].
The number of rows in the measurement matrix A,

m =M × s where s = t log2(r + 1) + 1, represents the
total number of tests in the proposed scheme.

C. Recovery algorithm

Let the observation vector corresponding to the i-th right
node be defined as zi = [zi,1, zi,2, · · · , zi,s]T = Aix, for all
∀i ∈ {1, · · · ,M}. Note that zi = [y(i−1)s+1, · · · , yis]T.

Definition 3. (t-resolvable right node) A right node is called
t-resolvable if it is connected to t or fewer defective items.

TABLE I: The function c(t) and the optimal left degree `.

t 1 2 3 4 5 6 7 8
c(t) 1.222 0.597 0.388 0.294 0.239 0.202 0.176 0.156
` 3 2 2 2 2 2 2 2

The recovery algorithm performs in rounds as follows.
In each round, the recovery algorithm first iterates through
all the right node observation vectors {zi}Mi=1, and resolves
all the t-resolvable right nodes (for more details, see the
proof of [14, Lemma 1]). Then, given the identities of the
recovered left nodes, the edges connected to these defective
items are peeled off the graph. That is, the contributions
of the recovered defective items will be removed from the
unresolved right nodes so that new right nodes may become
t-resolvable for the next round. The recovery algorithm
terminates when there is no more t-resolvable right nodes.

IV. MAIN RESULTS

In this section, we present our main results. Theorem 1
characterizes the required number of tests that guarantees
the identification of all the defective items with probability
approaching one as K,N → ∞. Theorem 2 presents the
computational complexity of the proposed scheme. The
proofs of Theorems 1 and 2 are given in Section V.

Theorem 1. For the sub-linear regime, the proposed
scheme recovers all defective items with probability
approaching one (as K,N → ∞) with at most
m = c(t)K

(
t log2

(
`N
c(t)K + 1

)
+ 1
)
+ 1 tests, where c(t)

depends only on t. Table I shows the values of c(t) for t ≤ 8.

Theorem 2. The testing and recovery algorithms of the
proposed scheme for any t ≤ 4 have the computational
complexity of O(K log2 NK ) and O(K log N

K ), respectively.

V. PROOFS OF MAIN THEOREMS

A. Proof of Theorem 1

Consider a set of N items out of which K items are defec-
tive. Note that in the QGT problem, performing one initial
test (on all items) would suffice to obtain the number of
defective items. As mentioned in Section III-C, our scheme
employs an iterative recovery algorithm. In each iteration,
the algorithm finds and resolves all the t-resolvable right
nodes. At the end of each iteration, the decoder subtracts
the contribution of the identified defective items from the
unresolved right nodes. This process is repeated until there
is no t-resolvable right nodes left in the graph. The fraction
of defective items that remain unidentified at the end of each
iteration can be analyzed using density evolution as follows.

Assuming that the exact number of the defective items,
K, is known and the values assigned to the defective and
non-defective items are one and zero, respectively, the left-
and-right-regular bipartite graph can be pruned. All the zero
left nodes and their respective edges are removed from the
graph. The number of left nodes in the pruned graph is K,
but the degree of these nodes remains unchanged. On the
other hand, the number of right nodes remains unchanged,
but the resulting graph is not right-regular any longer.
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Let λ be the average right degree, i.e., λ = K`
M . Let

ρ(x) ,
∑min(K,r)
i=1 ρix

i−1 be the right edge degree distribu-
tion, where ρi is the probability that a randomly picked edge
in the pruned graph is connected to a right node of degree i,
and min(K, r) is the maximum degree of a right node. As
shown in [16], as K,N →∞, we have ρi = e−λ λi−1

(i−1)! .

Lemma 1. Let pj be the probability that a randomly chosen
defective item is not recovered at iteration j of the recovery
algorithm; and let qj be the probability that a randomly
picked right node is resolved at iteration j of the recovery
algorithm. The relation between pj and pj+1 is determined
by the following density evolution equations:

qj =
t∑
i=1

ρi+

min(K,r)∑
i=t+1

ρi

t−1∑
k=0

(
i− 1

k

)
pkj (1− pj)i−k−1, (5)

pj+1 = (1− qj)`−1, (6)

where t is the level of separability, and ρi is the probability
that a randomly picked edge in the pruned graph is connected
to a right node of degree i.

Note that pj is only a function of the variables t, `,
and λ when min(K, r) → ∞. Recall that the goal is to
minimize the total number of tests m =M × s, where M is
the number of right nodes, and s is the number of rows
in the signature matrix. The number of rows, s, in the
signature matrix depends only on the level of separability,
t. For a given t, we can minimize the number of right nodes
M = `

λK subject to the constraint limj→∞ pj(`, λ) = 0, so
as to minimize the total number of the tests. The con-
straint limj→∞ pj(`, λ) = 0 guarantees that running the
recovery algorithm for sufficiently large number of itera-
tions, the probability that a randomly chosen defective item
remains unidentified approaches zero. For any ` ≥ 2, let
λT (`) , sup{λ : limj→∞ pj(`, λ) = 0}. Then, for any ` ≥ 2
and λ < λT (`), we have limj→∞ pj(`, λ) = 0. Accordingly,
for any ` ≥ 2 and M = `

λK > `
λT (`)K, it follows that

limj→∞ pj(`, λ) = 0. Our goal is then to compute

min
`∈{2,3,... }

`

λT (`)
K. (7)

We can solve this problem numerically and attain
the optimal `?. Let c(t) , `?

λT (`?) . The number of
right nodes can be chosen as M = c(t)Kβ for any
β > 1 to guarantee that M > c(t)K = `?

λT (`?)K.
Substituting M = c(t)Kβ in (3) results in r = `N

c(t)Kβ .
Therefore, the total number of tests will become
m =M × s = c(t)Kβ

(
t log2

(
`N

c(t)Kβ + 1
)
+ 1
)

.

Lemma 2. There exist some β > 1 such that

c(t)K

(
t log2

(
`N

c(t)K
+ 1

)
+ 1

)
+ 1 ≥

c(t)Kβ

(
t log2

(
`N

c(t)Kβ
+ 1

)
+ 1

)
.

From Lemma 2, it follows that with probability approach-
ing one as K,N →∞, c(t)K

(
t log2

(
`N
c(t)K + 1

)
+ 1
)
+1

tests would suffice for the proposed scheme to recover all
the defective items. This completes the proof.

B. Proof of Theorem 2

Lemma 3. For any t ≤ 4, the computational complexity of
resolving each t-resolvable right node is O(log r).

This can be done by first finding the error locator poly-
nomial using the Berlekamp-Massey algorithm [15] with
complexity O(t2 log r), and then finding the roots of this
polynomial directly using the algorithm of [17] with com-
plexity O(t log r).

The total number of right nodes, M , is O(K). From
Lemma 3, it then follows that the complexity of the recovery
algorithm is O(K log r). Using (3), it is easy to see that
for any t ≤ 4 the recovery algorithm has complexity
O(K log N

K ). The total number of measurements is m and
for each measurement r summations are performed. Hence,
the complexity of the testing algorithm is O(mr), which
becomes equivalent to O(K log2 NK ) for any t ≤ 4.

VI. EVALUATION OF c(t)

In this section, we present the complete analysis for the
case of t = 1, and show how one can evaluate c(t) at t = 1,
i.e., c(1). The same procedure can be used for evaluating
c(t) at any t > 1.

For the case of t = 1, the density evolution
equations (5) and (6) can be combined as
pj+1 = (1−

∑min(K,r)
i=1 ρi(1− pj)i−1)`−1. Clearly, p1 = 1.

Substituting ρi = e−λ λi−1

(i−1)! , we can rewrite this equation as

pj+1 = (1− e−λ
∑min(K,r)
i=1

λi−1

(i−1)! (1− pj)
i−1)`−1. Letting

min(K, r)→∞, we get pj+1 =
(
1− e−λpj

)`−1
.

Lemma 4. For any ` ≥ 2 and any λ > 0, the infinite
sequence {p1, p2, · · ·} converges.

Lemma 5. Let p∞ be the limit of the sequence {p1, p2, · · ·},
and let

λT , inf
0<x<1

(
ln(1− x

1
`−1 )

−x

)
.

Then, for any ` ≥ 2, we have{
p∞ = 0, 0 < λ < λT ,

p∞ > 0, λ ≥ λT .

To solve the optimization problem in (7), for any ` ≥ 2
the corresponding λT must be computed. Then, the optimal
`? and c(1) = `?

λT (`?) will be attained easily.

VII. COMPARISON RESULTS

In this section we will evaluate the performance of the
proposed scheme based on our theoretical analysis and the
Monte Carlo simulations.

Based on the results in Theorem 1 and Table I, Fig. 1
depicts the total number of tests (m) required to identify
all K defective items among a total of N = 216 items,
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Fig. 1: The number of required tests (m) to identify all K defective
items (for different values of K) among N = 216 items for different
values of t obtained via analysis.

for different values of t. For reference, the performance of
the best known polynomial-time (O(KN logN)) algorithm
proposed in [7] is also shown in Fig. 1. As it can be
seen, when t ∈ {1, 2, 3} the required number of tests for
identifying all the defective items is less than that for larger
values of t. The results of our theoretical analysis reveal
that the minimum number of required tests for the proposed
scheme is achieved by t = 2.

Using the Monte Carlo simulation, we also compare the
performance of the proposed scheme for t ∈ {1, 2, 3}
with the performance of the Multi-Level Group Testing
(MLGT) scheme from [9]. The MLGT scheme is a semi-
quantitative group testing scheme where the result of each
test is an integer in the set {0, 1, 2, · · · , L}. Letting L→∞,
the MLGT scheme becomes a QGT scheme. Based on the
optimization that we have performed, the optimal left degree
for the MLGT scheme is `? = 3 when L→∞. For K = 100
defective items among a population of N = 216 items, the
probability of error, defined as the probability of a defective
item to remain unidentified, for the MLGT scheme and the
proposed scheme are shown in Fig. 2 for different values of
m/K. As it can be observed, the proposed scheme for all
the three tested values of t outperforms the MLGT scheme
significantly. For instance, when the probability of error is
2×10−4, the required number of tests for the MLGT scheme
(for ` = 3) is 3, 5, and 7 times more than that of the proposed
scheme for t = 1, 2, and 3, respectively.

Simulation results suggest a trade-off between the total
number of tests and the probability of error as functions of
the variable t. For larger values of t, the proposed scheme
requires more number of tests whereas the probability of
error tends to zero faster.
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