
Constant Girth Approximation for Directed Graphs in
Subquadratic Time∗

Shiri Chechik

Tel Aviv University

Tel Aviv, Israel

shiri.chechik@gmail.com

Yang P. Liu

Stanford University

Stanford, California, USA

yangpliu@stanford.edu

Omer Rotem

Tel Aviv University

Tel Aviv, Israel

omer.rotem1@gmail.com

Aaron Sidford

Stanford University

Stanford, California, USA

sidford@stanford.edu

ABSTRACT

In this paper we provide a Õ (m
√
n) time algorithm that computes

a 3-multiplicative approximation of the girth of a n-nodem-edge

directed graph with non-negative edge lengths. This is the first

algorithm which approximates the girth of a directed graph up to a

constant multiplicative factor faster than All-Pairs Shortest Paths

(APSP) time, i.e. O (mn). Additionally, for any integer k ≥ 1, we

provide a deterministic algorithm for aO (k log logn)-multiplicative

approximation to the girth in directed graphs in Õ (m1+1/k) time.

Combining the techniques from these two results gives us an algo-

rithm for a O (k logk)-multiplicative approximation to the girth in

directed graphs in Õ (m1+1/k) time. Our results naturally also pro-

vide algorithms for improved constructions of roundtrip spanners,

the analog of spanners in directed graphs.

The previous fastest algorithms for these problems either ran

in All-Pairs Shortest Paths (APSP) time, i.e. O (mn), or were due
Pachocki et al. [16] which provided a randomized algorithm that

for any integer k ≥ 1 in time Õ (m1+1/k) computed with high

probability a O (k logn) multiplicative approximation of the girth.

Our first algorithm constitutes the first sub-APSP-time algorithm for

approximating the girth to constant accuracy, our second removes

the need for randomness and improves the approximation factor

in Pachocki et al. [16], and our third is the first time versus quality

trade-off for obtaining constant approximations.

CCS CONCEPTS

• Theory of computation→ Sparsification and spanners.

KEYWORDS

Graphs, girth, spanners

ACM Reference Format:

Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford. 2020. Constant

Girth Approximation for Directed Graphs in Subquadratic Time. In Proceed-

ings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing

(STOC ’20), June 22–26, 2020, Chicago, IL, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3357713.3384330

∗
Several results and proofs will be deferred to the full version of the paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384330

1 INTRODUCTION

The girth of a graphG is the length of the shortest cycle inG . It is an
important graph quantity that has been studied extensively in both

combinatorial settings (see Bollobás’s book [3] for a discussion) and

computational settings. In particular, exact algorithms for the girth

running in timeO (mn) in weighted directed graphs [15] are known.

On the other hand, a result of Vassilevska W. and Williams show

that a truly subcubic algorithm for girth (i.e. running in time n3−ε

for some ε > 0) implies a truly subcubic algorithm for the All Pairs

Shortest Path (APSP) problem [22]. As it is a longstanding open

problem whether APSP admits a truly subcubic time algorithm,

exact computation of the girth in truly subcubic time would be a

major breakthrough.

This has motivated the study of efficient approximation algo-

rithms for the girth. There has been extensive work on approxi-

mating the girth in undirected graphs [9, 11, 13, 20]. Many such

algorithms use the concept of a α-spanner of a graph G, a funda-
mental combinatorial object which was introduced by Chew [4].

An α-spanner of a graph G is a subgraph of G which multiplica-

tively preserves distances up to a factor of α . It is well-known

that (2k − 1)-spanners with O (n1+1/k) edges exist for any undi-

rected weighted graph [1], and work on the efficient construction

of such spanners [2, 19, 21] implies a O (mn
1

k) time algorithm for

(2k − 1)-multiplicative girth approximation in undirected graphs.

There has also been work on improved spanner constructions in

the case of undirected unweighted graphs [13, 20], and these algo-

rithms also immediately imply algorithms for girth approximation

in undirected unweighted graphs.

Therefore, in order to obtain efficient constant factor girth ap-

proximations in directed graphs, it is natural to study an analog of

spanners in directed graphs. Unfortunately, approximately comput-

ing all pairs distances in directed graphs is a notoriously difficult

problem and while sparse spanners do exist in all undirected graphs,

they do not exist in all directed graphs. For example, any directed

spanner for the “directed" complete bipartite graph with n vertices

on the left directed towards n vertices on the right clearly requires

all n2 edges. This problem seems to arise from the fact that the

distance metric d (u,v) in directed graphs is asymmetric. There-

fore, if we want to construct sparse spanners, it is natural to work

instead with the symmetric roundtrip distance metric, defined as

d (u ⇆ v) := d (u,v)+d (v,u) [8] and similarly define an α-roundtrip
spanner of a directed graphG to be a subgraph that multiplicatively

preserves roundtrip distances up to a factor of α .
Interestingly, there do exist roundtrip spanners for directed

graphs with comparable sparsity as spanners for undirected graphs.

A result of Roditty, Thorup, and Zwick [18] shows that for any

k ≥ 1 and ε > 0, every graph has a (2k + ε)-roundtrip spanner

https://doi.org/10.1145/3357713.3384330
https://doi.org/10.1145/3357713.3384330

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford

with O (k2n1+1/k log(nW)ε−1) edges, where W is the maximum

edge weight. Unforunately, this algorithm ran in time Ω(mn), as
it requires the computation of all pairs distances in the graph. Re-

cent work Pachocki et al. [16] gave a randomized algorithm run-

ning in time Õ (m1+1/k) which on weighted directed graphs G re-

turns a O (k logn)-roundtrip spanner with Õ (n1+1/k) edges and
an O (k logn) approximation to the girth. Up to a logarithmic ap-

proximation factor, this matches the sparsity and runtime known

for spanners on undirected weighted graphs and girth on sparse

graphs.

The result of Pachocki et al. [16] constitutes one of small, but

rapidly growing [6, 7], set of instances where it is possible to obtain

robust nearly linear time approximations to fundamental quantities

of directed graphs in nearly linear time, overcoming typical running

time gaps between solving problems on directed and undirected

graphs.

However, a fundamental open problem left open by this work

is whether it is possible to achieve subquadratic algorithms for

constant factor approximation of the girth in directed graphs, and

more ambitiously to fully close this gap and provide algorithms

for O (k) girth approximation and O (k) roundtrip spanners in di-

rected graphs that fully match the runtime and sparsity of those

in undirected graphs. This is the primary problem this paper seeks

to address and this paper provides multiple new girth approxima-

tion algorithms with improved runtime, approximation quality, and

dependency on randomness.

1.1 Our Results

In this paper we provide a subquadratic algorithm for constant

factor girth approximation in directed graphs and in turn show

several improvements on the girth approximation algorithms and

roundtrip spanner constructions in the work of Pachocki et al. [16].

Here and throughout the remainder of the paper we use Õ (·) nota-
tion to hide factors polylogarithmic in n, where n is the number of

vertices in the graph.

In Section 3 we consider obtaining constant approximations to

the girth. In particular we provide a randomized algorithm that

obtains a 3-approximation to the girth on graphs with non-negative

integer edge weights in Õ (m
√
n) time. Up to logarithmic factors

this matches the runtime that would be predicted from the fact

that (2k − 1)-undirected spanners with Õ (n1+1/k) edges can be

constructed in Õ (mn1/k) time for k = 2. Further, we show that this

procedure can be used to with high probability obtain constant

multiplicative roundtrip spanners in directed graphs with arbitrary

edge weights in Õ (m
√
n) time.

Theorem 1 (3-Multiplicative Girth Approximation). For

any directed graph G with n vertices,m edges, integer non-negative

edge weights, and unknown girth д we can compute in Õ (m
√
n) time

an estimate д′ such that д ≤ д′ ≤ 3д with high probability in n.

Theorem 2 (8-Multiplicative Roundtrip Spanners). For any

directed graph G with n vertices,m edges, integer non-negative edge

weights, we can compute in Õ (m
√
n) time an 8-multiplicative roundtrip

spanner with Õ (n3/2) edges with high probability in n.

Then, in Section 4 we give algorithms for a

O (k log logn)-multiplicative approximation of the the girth and

construct O (k log logn) multiplicative roundtrip spanners with

Õ (n1+1/k) edges for a weighted directed graph G with n vertices

andm edges in Õ (m1+1/k) time. These algorithms are deterministic

and constitute the first deterministic nearly linear time algorithms

for Õ (1) multiplicative approximation of the girth and Õ (1) multi-

plicative roundtrip spanners with Õ (n) edges.

Theorem 3 (Deterministic Multiplicative Girth Approx-

imation). For any integer k ≥ 1 and weighted directed graph G
with n vertices, m edges, and unknown girth д we can compute in

Õ (m1+1/k) time an estimate д′ such that д ≤ д′ ≤ O (k log logn) · д.

Theorem 4 (Deterministic Multiplicative Roundtrip Span-

ners). For any integer k ≥ 1 and any weighted directed graph G

with n vertices and m edges, we can compute in Õ (m1+1/k) time

an O (k log logn) multiplicative roundtrip spanner with Õ (n1+1/k)
edges.

Setting k =
logn

log logn yields the following corollaries. For k =

Ω(logn) these results nearly match the optimal algorithms in undi-

rected graphs for O (k) girth approximation and the construction

of O (k) spanners.

Corollary 1.1. For any weighted directed graphG with n vertices,

m edges, and unknown girth д we can compute in Õ (m) time an

estimate д′ such that д ≤ д′ ≤ O (logn) · д.

Corollary 1.2. For any weighted directed graphG with n vertices

andm edges, we can compute in Õ (m) time anO (logn) multiplicative

roundtrip spanner with Õ (n) edges.

Interestingly, our results for constant factor randomized ap-

proximations and our results for deterministic approximations are

achieved in different ways. Highlighting this, in Section 5 we show

how to combine the techniques of these algorithms to obtain both

O (k logk) multiplicative approximations to the girth andO (k logk)

multiplicative roundtrip spanners of size Õ (n1+1/k) in Õ (mn1/k)
time with high probability in n.

Theorem 5 (Constant Multiplicative Girth Approxima-

tion). For any integer k ≥ 1 and any weighted directed graph G
with n vertices, m edges, and unknown girth д we can compute in

Õ (m1+1/k) time an estimate д′ such that д ≤ д′ ≤ O (k logk) · д
with high probability in n.

Theorem 6 (Constant Multiplicative Roundtrip Spanners).

For any integer k ≥ 1 and any weighted directed graph G with n ver-

tices andm edges, we can compute in Õ (m1+1/k) time an O (k logk)

multiplicative roundtrip spanner with Õ (n1+1/k) edges with high

probability in n.

This shows that for any fixed ε > 0, that there is an algorithm run-

ning in timem1+ε
that approximates the girth of a directed graph to

within a constant depending on ε , but not onm or n. Additionally,
this almost matches the O (k)-multiplicative girth approximation

algorithms running inm1+1/k
time in undirected graphs.

1.2 Comparison to previous work

While the existence of roundtrip spanners matching the quality in

undirected graphs was shown in [18], the runtime was O (mn) and

Constant Girth Approximation for Directed Graphs in
Subquadratic Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

required an APSP computation. Our results, Theorem 1, Theorem 2

are the first to show that constant factor girth approximation and

construction of constant factor roundtrip spanners with Õ (n
√
n)

edges can be built in subquadratic Õ (m
√
n) time. This algorithm

leverages new randomized techniques for testing a notion we call

similarity between vertices not present in previous girth approx-

imation and roundtrip spanner algorithms and we believe is of

independent interest.

Our Theorem 3 and Theorem 4 offer direct improvements over

the analogous results in [16]. Specifically, our algorithms provide a

tighter multiplicative girth approximation and multiplicative span-

ner stretch in the same runtime as the algorithms in [16], which

produce a O (k logn) girth approximation and O (k logn) roundtrip

spanner with Õ (n1+1/k) edges in time Õ (m1+1/k).
Additionally, our algorithm is deterministic and in our opinion,

simpler. The algorithm of Pachocki et al. [16] involved the following

pieces. First, they use a method of Cohen to estimate ball sizes

[5] and resolve the case where there is a vertex whose inball and

outball (of some small radius) intersect in a significant fraction

of the vertices. In the other case, they use exponential clustering

(see [14]) to partition the graph and recurse. Finally, they rerun

the algorithm n1/k times. On the other hand, our algorithm simply

grows inballs and outballs from various vertices, and uses a delicate

cutting conditition to decide when to cut and recurse.

Additionally, Theorem 5 and Theorem 6 further improve upon

Pachocki et al. [16] by combining the ideas from the constant factor

girth approximation algorithm and the deterministic ball-growing

algorithm, completely removing the dependence on n in the approx-

imation factor while still running in time Õ (m1+1/k). We remark

that the ideas for our deterministic algorithm are essential in ob-

taining this last result, and that more directly combining the ideas

of [16] with our constant factor approximation algorithm does not

seem to give an O (k logk) multiplicative girth approximation in

Õ (m1+1/k) time.

1.3 Overview of Approach

Summary of randomizedO (1) approach. Our approach to obtain-

ing a 3-approximation in Section 3 to the girth is rooted in the

simple insight that if a vertex v is in a cycle of length R then every

vertex in the ball of radius α from v is at distance at most α + R
from every vertex in the cycle. Consequently, for each vertex if we

repeatedly prune vertices from its outball of radius R if they do not

have the property that they can reach every vertex in this ball by

traversing a distance at most 2R, then we will never prune away

vertices in a cycle of length R from that vertex.

Leveraging these insights, we can show that if we randomly

compute distances to and from a random Õ (
√
n) vertices and if a

cycle of length O (R) is not discovered immediately then we can

efficiently implement a pruning procedure so that each vertex only

has in expectation Õ (
√
n) vertices that could possibly be in a cycle of

lengthO (R) through that vertex. By then checking each of these sets
for a cycle and being careful about the degrees of the vertices (and

therefore the cost of the algorithm) this approach yields essentially a

4-approximation to the girth in Õ (m
√
n) time with high probability

in n.

Our 3-approximation is then obtained by carefully applying this

argument to both outballs and inballs and leveraging the simple

fact that if a vertexv is on a cycleC of length R then for every c ∈ C
either d (v, c) ≤ R/2 or d (c,v) ≤ R/2.

Overview of deterministic O (k log logn) results: Our determinis-

tic algorithm in Section 4 is based on a different approach than our

randomized constant approximation algorithms in Section 3. We

think this approach is of independent interest and further demon-

strate its utility in Section 5 by showing how to combine the insights

that underly it with the algorithm from Section 4 to achieve arbi-

trary constant approximations.

For the sake of simplicity, we focus on unweighted directed

graphs G and for a parameter R, construct a subgraph (roundtrip

spanner) H so that if the roundtrip distance between u and v is at

most R inG , then their roundtrip distance is at mostO (Rk log logn)
in H .

The key insight of guiding our algorithm is the following: instead

of partitioning the graph into disjoint pieces and recursing (as

is done in [16]), we instead allow the pieces to overlap on the

boundaries. This is justified by the following observation. Consider

a subgraphW of G, and letW ′ denote the subgraph consisting of

all vertices within distance R ofW . Then if we recursively build

a roundtrip spanner onW ′, then we are guaranteed that we can

delete W from our graph. Indeed, if u ∈ W and the roundtrip

distance between u and v is at most R, then u,v ∈W ′. This simple

observation allows us to overcome the critical challenge in [16],

arguing that that graph can be broken apart, while nevertheless

preserving roundtrip distance.

This observation also forms the basis of an optimal spanner

construction on unweighted undirected graphs, which appears in a

book of Peleg (exercise 3 on page 188 in [17]). Specifically, for any

integer k ≥ 1, we can construct a (2k − 1)-spanner with O (n1+1/k)
edges in time O (m). The construction works as follows. Start at

any vertex v , let Bi denote the ball of radius i centered at v , and let

|Bi | denote the number of vertices in Bi . Grow such balls around

v until we find an index i with |Bi+1 | ≤ n1/k |Bi |.We can clearly

guarantee that i ≤ k . At this point, add a spanning tree on Bi+1
to your spanner and delete all vertices in Bi . Now, recurse on the

remaining graph. It is easy to check that the resulting spanner is as

desired. Our algorithm for directed graphs is similar, and we give a

more specific overview in Section 4.1.

We gain anO (log logn) dependence over the undirected spanner
algorithm presented because we must recurse on the balls we grew

instead of simply building a spanning tree on them. The precise con-

dition for recursion and corresponding calculation are performed

in the algorithms GoodCut (Algorithm 4) and Lemma 4.2.

Further, our O (k logk) approximations of Section 5 are then

achieved by using the techniques of the algorithms in Section 3 to

better control the size of the outballs and inballs in an invocation

of the deterministic algorithm of Section 4.

2 PRELIMINARIES

For weighted directed graph G, we let V (G) and E (G) denote the
vertex and edge sets of G. We assume all edge lengths are nonneg-

ative. For a subgraph S ⊆ G (not necessarily vertex induced), let

V (S) denote the set of vertices of G, and let E (S) denote the set

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford

of edges. For a subsetW ⊆ V (G), we defineG[W] to be subgraph

induced byW . When the graph G is clear from context, we let n
andm denote |V (G) | and |E (G) | respectively.

For a weighted directed graphG with non-negative edge lengths,

we let dG (u,v) denote the (shortest path) distance from u to v inG .
When the graph G is clear from context, we simply denote this as

d (u,v). If there is no path fromu tov , we letd (u,v) = ∞.When S is
a subgraph ofG , we let dS (u,v) denote the (shortest path) distance
from u to v only using the edges in E (S).We denote the roundtrip

distance between u and v as dG (u ⇆ v) := dG (u,v) +dG (v,u) and
define a roundtrip spanner.

Definition 2.1 (Roundtrip Spanner). We say that a subgraph

S ⊆ G is an α-roundtrip spanner if dS (u ⇆ v) ≤ α · dG (u ⇆ v) for
all u,v ∈ V (G).

For weighted directed graph G we define the inball and outball

of radius r around a vertex v as

Binv (r) := G[{u : d (u,v) ≤ r }] and Boutv (r) := G[{u : d (v,u) ≤ r }]

respectively. In other words, the inball of radius r around v is the

subgraph induced by vertices u with d (u,v) ≤ r . The outball is

defined similarly. We define the ball of radius r around vertex v as

Bv (r) := G[{u : d (u ⇆ v) ≤ r }].

In other words, the ball of radius r aroundv is the subgraph induced

by vertices u within roundtrip distance r of v .

3 RANDOMIZED CONSTANT

APPROXIMATIONS

Here we provide algorithms for efficiently computing a

3-approximation to the girth Section 3.1. To simplify our algorithm

and analysis we assume that the maximum degree of G is bounded

by O (m/n), i.e. we assume it is only a constant larger than the

average degree, which is 2m/n. We justify this assumption by show-

ing that we can always reduce to this case as is formalized in the

following lemma.

Lemma 3.1. Given a directed weighted graph G = (V ,E) of n
vertices andm edges with non negative edge weights, one can construct

a graph H in O (m) time of O (n) vertices and O (m) edges with non

negative edge weights and of maximum degree O (m/n) such that

(1) All roundtrip distances (between pairs of vertices in G) in H
and in G are the same.

(2) Given a cycle in H , one can find in O (m) time a cycle in G of

the same length.

(3) Given a subgraph H ′ of H , one can find in O (m) time a sub-

graph G ′ of G such that the number of edges in G ′ is at most

the number of edges in H ′ and the roundtrip distances in H ′

and G ′ are the same.

3.1 An Õ (m
√
n) Time 3-approximation to Girth

In this section we show a procedure that given a directed weighted

graphG and a girth estimateR, returns a cycle of length at most 3R if

the girth inG is at most R. The algorithm is given by GirthApprox

(See Algorithm 1) which in turn invokes the subroutine SimilarSet

(See Algorithm 2).

In order to approximate the girth of G we invoke this procedure

for every r = (1 + ϵ)i for 1 ≤ i ≤ log
1+ϵ nW and stop once

the procedure returns a cycle. If д is the girth of G this incurs an

additional log
1+ϵ д factor to the running time (as for the first index

i such that (1 + ϵ)i > д the algorithm will return a cycle w.h.p.)

and an additional (1 + ϵ) factor in the approximation ratio. The

additional (1 + ϵ) factor in the approximation ratio can be avoided

if the weights are integers by simply using binary search on the

range between 1 and nW (whereW is the maximum edge weight

inG) and finding two consecutive integers i and i + 1 such that the

procedure returned a cycle of length at most 3(i + 1) when invoked

on i + 1 but not a cycle when invoked on i . This incurs a lognW
factor in the running time that can be improved to O (logn) by the

same method as done in [16] of contracting small weight strongly

connected components and deleting large weight edges (see Section

5.1 in [16] for more details).

Let G = (V ,E) be a directed graph with n vertices andm edges.

We assume the graph G is of average degree δ = 2m/n and that

also the maximum degree in the graph is also O (δ).
The subroutine SimilarSet gets as an input the graphG and the

target distance R and either returns a cycle of length at most 3R or

returns a subset Av of vertices for every v ∈ V . The subset Av for

a vertex v ∈ V consists of vertices at distance at most R/2 from v
with the guarantee that Av contains all vertices that are

(1) At distance at most R/2 from v and

(2) On a cycle of length R with v .

Procedure GirthApprox invokes the Procedure SimilarSet twice,

once onG and once on the reversed graph ofG (the graph obtained

by reversing every edge of G). If a cycle of length 3R is returned

in one of these calls then procedure GirthApprox returns such a

cycle. Otherwise, let {Ain

v }v ∈V be the sets returned from invoking

SimilarSet on the graph G and {Aout

v }v ∈V on the reversed graph.

Next, the procedure for every v ∈ V checks if there is a cycle

containing v of length at most R in the induced graph of Ain

v ∪A
out

v .

If such a cycle exists then the procedure returns such a cycle.

Procedure SimilarSetworks as follows. The algorithms starts by

sampling O (logn) independent subsets Si of expected size O (
√
n)

each for 1 ≤ i ≤ M where M = 50 logn. From every vertex w ∈⋃
1≤i≤M Si the algorithm runs Dijkstra from and to w in G. If a

cycle of length 3R is detected then the algorithm returns it.

Next for every vertex v ∈ V and index 1 ≤ i ≤ M the algorithm

defines a set Ti (v) ⊆ Si . The sets Ti (v) will be used to reduce the

number of potential vertices that can be on a cycle of length at most

R with v . First, the set T0 (v) consists of all vertices in S0 that are at
distance at most R/2 from v . Let R0 (v) be a sampled set ofO (logn)
vertices from T0 (v). Now, the sets Ti (v) and Ri (v) are defined as

follows. The set Ti (v) is the set of all vertices s ∈ Si such that

d (v, s) ≤ R/2 and d (s, t) ≤ 3R/2 for all t ∈
⋃

0≤j≤i−1 Rj (v). Again,
define Ri (v) as a sampled set of O (logn) vertices from Ti (v).

To gain intuition for the definition of Ti (v) and Ri (v), consider
the set Gi (v) of all vertices s ∈ V (G) such that d (v, s) ≤ R/2
and d (s, t) ≤ 3R/2 for all t ∈

⋃
0≤j≤i−1 Rj (v). We remark that our

algorithm does not computeGi (v), but its definition is essential for

the analysis. Intuitively, the setGi (v) consists of the vertices after i
rounds that the algorithm still believes could be in a cycle of length

R with v . If |Gi (v) | ≥ 100

√
n logn, then by the choice of Si as an

Constant Girth Approximation for Directed Graphs in
Subquadratic Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

independent random set of expected sizeO (
√
n), we have thatTi (v)

is a random sample of Gi (v) of expected size at least 100 logn. In
this way, Ri (v) is just a random sample of Gi (v) of size O (logn).

As we show in Lemma 3.4, if |GM (v) | ≥ 100

√
n logn, our algo-

rithm discovers w.h.p. a cycle of length at most 3R sometime during

the shortest path computations done at the beginning. On the other

hand, if |GM (v) | ≤ 100

√
n logn, then we can grow a shortest path

tree from v but only include vertices inGM (v) to search for a cycle

of length R, only paying runtime |GM (v) | = Õ (
√
n) for that vertex

v .
Formalizing this final step, the algorithm computes a short-

est path tree T (v) from v up to depth R/2, keeping only vertices

s ∈ V such that d (v, s) ≤ R/2 and d (s, t) ≤ 3R/2 for all t ∈⋃
0≤j≤M Rj (v). The set Av is the set of vertices in T (v).

Algorithm1GirthApprox(G,R), takes a graphG and a parameter

R. If the girth ofG is at most R this algorithm outputs w.h.p. a cycle

of length at most 3R

1: Invoke SimilarSet(G,R) to either find a cycle of length at most

3R or set Aout

v ⊆ V for each v ∈ V (G).
2: Invoke SimilarSet(Grev,R) whereGrev

is the graph where the

direction of every edge is reversed to either find a cycle of

length at most 3R or sets Ain

v ⊆ V for each v ∈ V (G).
3: If a cycle of length at most 3R has yet to be found for each

v ∈ V (G) perform Dijsktra from v in the graph induced by

Aout

v ∪ Ain

v to find a cycle of length at most R through one of

the v .
4: Return any cycle of length at most 3R found.

Next we prove the correctness of our girth computation algo-

rithm GirthApprox (Algorithm 1) and bound its running time.

First we prove the following lemma which provides a fairly straight-

forward argument that the algorithm always outputs the correct

result. The more challenging part of the analysis will be to bound

its running time.

Lemma 3.2. If G contains a cycle of length at most R then

GirthApprox(G,R) (Algorithm 1) returns a cycle of length at most

3R.

Proof. Assume G contains a cycle C of length at most R. Let
v be a vertex in C . If the algorithm returns a cycle in line 3 of

SimilarSet (Algorithm 2) then since this cycle has length at most

3R, the algorithm works as desired.

Consequently, we assume that this is not the case. Our goal is now

to show thatAout

v contains all vertices c ∈ C such that d (v, c) ≤ R/2

and that Ain

v contains all vertices c ∈ C such that d (c,v) ≤ R/2.
Since for all c ∈ C either d (v, c) ≤ R/2 or d (c,v) ≤ R/2 this will
imply thatC ⊆ Aout

v ∪Ain

v and therefore a cycle of length at most R
will be found in Line 3 of GirthApprox(G,R) (Algorithm 1) and

the algorithm works as desired. Further, note that it suffices to show

that Aout

v contains all vertices c ∈ C such that d (v, c) ≤ R/2 as this

will imply the desired claimed regarding Ain

v by symmetry.

Consider the execution of SimilarSet (Algorithm 2) from Line 1

of GirthApprox(G,R) (Algorithm 1). Further, consider a vertex

t ∈ Ti (v) for some 0 ≤ i ≤ M − 1. Recall that d (v, t) ≤ R/2 (by

definition and construction ofTi (v)). Consider a vertex c inC . As v

Algorithm 2 SimilarSet(G,R), takes a graph G and a parameter

R. This algorithm either computes a cycle of length 3R or a set

Av ⊆ V (G) of “similar” vertices to v (with respect to balls of radius

R/2) for each v ∈ V (G).

1: For M = 50 logn, sample sets S0, S1, · · · , SM ⊆ V (G), each of

expected sizeO (n1/2) by sampling every vertexv ∈ V indepen-

dently with probability p = n−1/2.
2: Run Dijkstra to/from each vertex v ∈ Si for every 1 ≤ i ≤ M .

3: If there exists a vertex v ∈ ∪1≤i≤MSi such that v is on a cycle

of length 3R then return the shortest such cycle.

4: for every vertex v ∈ V do

5: Set T0 (v) ← {s ∈ S0 | d (v, s) ≤ R/2}.
6: for i = 1, . . . ,M do

7: if |Ti−1 (v) | > 100 logn then

8: Let Ri−1 (v) be 100 logn vertices chosen indepen-

dently at random from Ti−1 (v)
9: else

10: Let Ri−1 (v) = Ti−1 (v).

11: Ti (v) ← {s ∈ Si | d (v, s) ≤ R/2 and d (s, t) ≤
3R/2 for all t ∈ ∪0≤j≤i−1Rj (v)}

12: Compute a shortest path tree T (v) up to depth R/2 keep-
ing only vertices s such that d (s, t) ≤ 3R/2 for all t ∈
∪0≤j≤MRj (v)}.

13: Set Av to be the set of vertices in T (v).
return Av for all v ∈ V

and c are on a cycle of length R we have d (c,v) ≤ R and therefore

d (c, t) ≤ d (c,v) + d (v, t) ≤ 3R/2 by triangle inequality. It follows

by construction that each vertex c ∈ C with d (v, c) ≤ R/2 will be
added to Av as desired. □

With the correctness of GirthApprox (Algorithm 1) established,

in the remainder of this section we focus on analyzing its running

time. To do this we will consider an invocation of SimilarSet (Al-

gorithm 2) and both bound its running time and the size of the sets

Av it computes.

Before setting up the proofs, for each vertex v ∈ V we define

G0 (v) = {s ∈ V |d (v, s) ≤ R/2} and

Gi (v) = {s ∈ V |d (v, s) ≤ R/2 and

d (s, t) ≤ 3R/2 for all t ∈ ∪0≤j≤i−1Rj (v)} .

Notice that the distribution of Ti (v) is the distribution on vertices

that results from taking each s ∈ Gi (v) and including it in Ti (v)
with probability p = 1/

√
n.

Loosely speaking, the analysis of the running time is roughly as

follows. Themain non trivial part is to show that the expected size of

the sets Ain

v and Aout

v is Õ (
√
n). This, together with the assumption

that the maximum degree is O (m/n), will imply that the running

time of our algorithm is Õ (m
√
n). We roughly speaking show the

following for the set Aout

v (similarly for the set Ain

v). We want to

claim that w.h.p. the setsGi (v) are decreasing by at least a constant
factor until there is a set Gi (v) of Õ (

√
n) size. As Aout

v is a subset

of GM (v) ⊆ Gi (v), the claim follows. Assume this is not case, i.e.,

there exists an index i such that |Gi+1 (v) | > 0.8|Gi (v) |. Note that by
construction for every vertex s inGi+1 (v) all vertices in Ri (v) are at

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford

distance at most 3R/2 from it. As Ri (v) is a sampled set ofGi (v), we
can show that w.h.p. most vertices inGi (v) (say 0.9 fraction of them)

are at distance at most 3R/2 from s . As |Gi+1 (v) | > 0.8|Gi (v) |, this
means that this is also true for most vertices inGi (v). That is, most

vertices in Gi (v) are at distance at most 3R/2 to most of the other

vertices in Gi (v). We show by counting argument that in this case

there must be many pairs of vertices u and v such that u,v ∈ Gi (v)
and dG (u,v) ≤ 3R/2 and dG (v,u) ≤ 3R/2 (hence u and v are both

on a cycle of length at most 3R). That is, w.h.p.Gi (v) contains many

vertices that are on cycles of length at most 3R. W.h.p. we can show

that such a vertex will belong to Si (v) and therefore the algorithm

will detect a cycle of length 3R and will not continue to computing

the sets Aout

v .

Lemma 3.3. Consider a vertexv , index i ∈ [M] such that |Gi (v) | ≥
200

√
n logn and a vertex u ∈ V . If there are less than 0.9|Gi (v) |

vertices s ∈ Gi (v) such that d (u, s) ≤ 3R/2 then with probability at

least 1 − 2/n10, u < Gi+1 (v).

Proof. Note that the distribution of obtaining Tj (v) is equiva-
lent to the distribution of picking every vertex inG j (v) with prob-

ability p for every 1 ≤ j ≤ M .

We first show that with high probability Ti (v) contains at least
100 logn vertices (and therefore alsoRi (v)). As |Gi (v) | ≥ 200

√
n logn

then the expected size of |Ti (v) | is at least 200 logn. Therefore, by
Chernoff Bound the probability that |Ti (v) | ≤ 100 logn is at most(
e−1/2
1/21/2

100 logn
)
< 1/n10.

Assume this is indeed the case, that is, Ti (v) contains at least
100 logn vertices. The set Ri (v) is a sampled set of 100 logn vertices

from Ti (v). As the distribution of obtaining the set Ti (v) is equiva-
lent to distribution of picking every vertex inGi (v) with probability
p then the distribution of Ri (v) is equivalent to picking 100 logn
vertices fromGi (v) (every vertex inGi (v) has the same probability

appearing in Ri (v)). Consider a uniformly random vertex s from
Gi (v). With probability at least 1/10 we have d (u, s) > 3R/2. In
other words with probability at most 9/10 we have d (u, s) ≤ 3R/2.
Therefore, the probability that for every vertex s in Rj (v) we have

d (u, s) ≤ 3R/2 is at most (9/10)100 logn ≤ 1/n10.
The lemma follows by union bound over the events that either

|Ti (v) | is smaller than 100 logn or for all s ∈ Ri (v) we haved (u, s) ≤
3R/2. □

Lemma 3.4. If there exists a vertex v and an index i such that

|Gi (v) | ≥ 200

√
n logn and |Gi+1 (v) | ≥ 0.8|Gi (v) | then with proba-

bility at least 1 − 1/n8 there exists a vertex in Ti (v) that is contained
in a cycle of length at most 3R.

Proof. Assume such a vertex v and index i exist.
We say that a vertexu is (v, i)-dense if there are at least 0.9|Gi (v) |

vertices s ∈ Gi (v) such that d (u, s) ≤ 3R/2.
By union bound on all vertices v ∈ V on Lemma 3.3, with proba-

bility at least 1 − 2/n9, all vertices in Gi+1 (v) are (v, i)-dense.
As Gi+1 (v) ⊆ Gi (v) and |Gi+1 (v) | ≥ 0.8|Gi (v) |, we also have

that with probability at least 1 − 2/n9, 0.8|Gi (v) | vertices in Gi (v)
are (v, i)-dense. Assume this is indeed the case.

Imagine constructing the following directed graph H whose set

of vertices is Gi (v) and set of edges is the following. For every

vertex u inGi (v) add an outgoing edge for every vertex s such that

d (u, s) ≤ 3R/2. Note that if there exists two edges in the graph (u, s)
and (s,u) then both u and s are on a cycle of length at most 3R. We

next show that by counting argument there are many vertices in

Gi (v) that are on a cycle of length at most 3R. Every (v, i)-dense
vertex u has 0.9|Gi (v) | outgoing edges in H . There are at least

0.9|Gi (v) | (v, i)-dense vertices in H . We get that the number of

edges E (H) is at least 0.71|Gi (v) |
2
, that is, |E (H) | ≥ 0.71|Gi (v) |

2
.

On the other hand let α be the fraction of vertices in Gi (v) that
do appear on a cycle of length at most 3R. For every edge in H give

a credit of 1/2 for each of its endpoints vertices. Note that every

vertex x that do not belong to a cycle of length at most 3R can

get a credit of less than |Gi (v) |/2. To see this, note that there is

no other vertex with both incoming and outgoing edge to x (as

otherwise x is on a cycle of length at most 3R) so the total number

of incoming and outgoing edges of x is at most |Gi (v) | − 1 <

|Gi (v) |. Hence, the total credit of x is less than |Gi (v) |/2. The total
credit of a vertex x that do participate in a cycle of length at most

3R is less than |Gi (v) |. We get that the total credit of all vertices,

which is also equal to the total number of edges in H , is less than

α |Gi (v) | |Gi (v) |/2 + (1 − α) |Gi (v) |
2
. It follows that 0.71|Gi (v) |

2 ≤

α |Gi (v) | |Gi (v) |/2 + (1 − α) |Gi (v) |
2
. Straight forward calculation

show that α < 0.58 and thus 1 − α > 0.42. In other words, at least

0.42|Gi (v) | vertices inGi (v) belong to a cycle of length at most 3R.
Next, we claim that w.h.p. there is such a vertex in Ti (v). Recall

that the distribution ofTi (v) is equivalent to picking every vertex in
Gi (v) with probability p. Consider one vertex that participates in a

cycle of length at most 3R the probability it does not belong toTi (v)
is 1−p. The probability that none of the 0.42|Gi (v) | vertices belong

to Ti (v) is at most (1 − p)0.42 |Gi (v) | ≤ (1 − p)84 logn/p ≤ 1/n10.
The lemma follows (as 1/n10 + 2/n9 < 1/n8 for large enough

n). □

Finally, the following concludes the running time of our algo-

rithm.

Lemma 3.5. The expected running time of Algorithm 1 is

O (m
√
n logn + n

√
n log3 n) = Õ (m

√
n).

Proof. Consider one of the executions of SimilarSet (Algo-

rithm 2) by GirthApprox (Algorithm 1). This algorithm computes

Dijkstra to/from each vertexw ∈ Si for every 1 ≤ i ≤ M in O (m +

n logn) time. The expected size of each Si is O (n1/2). Thus, the ex-
pected time of this computation for Si isO (m

√
n+n
√
n logn). There

are O (logn) sets Si and therefore there is at most O (m
√
n logn +

n
√
n log2 n) expected time for the computation of all Dijkstra’s.

Next, for every vertex v the algorithm computes the sets Ti (v) for
every i ∈ [M]. The setT0 (v) can be computed easily inO (|S0 |) time

which isO (n1/2) in expectation. In order to computeTi (v) for i > 0,

the algorithm considers every vertex s ∈ Si and it check if s is at
distance at most 3R/2 from every vertex in t ∈ ∪j ∈[0, ...,i−1]Rj (v).

There are O (log2 n) vertices t in ∪j ∈[0, ...,i−1]Rj (v). The distance
d (s,v) is already computed and thus can be retrieved in O (1) time.

Overall, computing the set Ti (v) takes O (n1/2 log2 n) in expecta-

tion. Therefore,O (n1/2 log3 n) for all indices i ∈ [M]. Hence, for all

vertices v O (n3/2 log3 n) expected time for this part.

Next, we bound the cost of computing the balls, Av , and we

bound their size. By a slight abuse of notation we call a vertex s

Constant Girth Approximation for Directed Graphs in
Subquadratic Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

(v,M)-dense if it satisfies

d (v, s) ≤ R/2 and d (s, t) ≤ 3R/2 for all t ∈ ∪j ∈[0, ...,M]
Rj (v).

The algorithm grows a ball from every vertexv ∈ V by only keeping

vertices s that are (v,M)-dense to compute Av .
We first show that if there is no index i such that |Gi (v) | ≥

200

√
n logn and |Gi+1 (v) | ≥ 0.8|Gk (v) | then the expected time

to compute the ball of v is O (n1/2 log3 n + n1/2 logn · δ). We do

that by showing that the expected number of vertices in GM (v) is

O (n1/2 logn). As the maximum degree in G is O (δ) and checking

if a vertex s is (v,M)-dense takes O (log2 n) time, then the claim

follows.

As for every i such that

|Gi (v) | ≥ O (
√
n logn)we have |Gi+1 (v) | ≤ 0.8|Gi (v) | then straight

forward calculation shows that there exists an indexM ′ ∈ [1..M]

such that |GM ′ (v) | < O (
√
n logn). Note that the ball of v contains

only vertices from GM ′ (v) and thus the claim follows.

We now assume that there exists a vertex v and index i such
that |Gi (v) | ≥ O (

√
n logn) and |Gi+1 (v) | ≥ 0.8|Gi (v) |. By claim

3.4 in this case with probability at least 1 − 1/n8 the algorithm

finds a cycle of length 3R and returns it in Line 3. Therefore, in

this case the algorithm does not compute the balls in Line 13. With

probability at most 1/n8 the algorithm does not find a cycle in Line

3 and therefore continues to computing the balls in Line 13. The

computation of all balls in Line 13 is bounded byO (mn) in this case.

As this happens with very small probability this does not effect

the asymptotic bound of the expected running time. The lemma

follows. □

We conclude this section with the proof of Theorem 1.

Proof of Theorem 1. The algorithm calls Algorithm

GirthApprox using a binary search on the range [1,nW] to find a

parameter R such that Algorithm GirthApprox returns a cycle (of

length at most 3(R + 1)) when invoked on R + 1 but not on R. As
mentioned above the dependency on lognW can be improved to

logn using the method used in [16] (Section 5.1). Roughly speaking

this method constructs in O (m logn) time a set of graphs such that

the number of vertices in all these graphs together is O (n logn),
the number of edges isO (m logn), the ratio between the maximum

edge weight and the minimum edge weight in all these graphs is

O (n) and the shortest cycle is contained in one of these graphs.

Instead of running binary search on G, we run it in each of these

graphs.

Now using Lemma 3.2 and Lemma 3.5 the theorem follows. □

We give our result on constant approximation roundtrip span-

ners in Õ (m
√
n) time and show Theorem 2 in the full version.

4 DETERMINISTIC O (k log logn)
APPROXIMATION ALGORITHMS

In this section we present our deterministic algorithms for com-

puting a O (k log logn) approximation to the girth and computing

O (k log logn) multiplicative roundtrip spanners. Our main result

will be showing how to compute improved roundtrip covers as

defined originally in [18]. Leveraging this result we will prove

Theorem 3 and Theorem 4.

First, leveraging the definitions of balls in Section 2 we define

roundtrip covers. Intuitively, roundtrip covers are a union of balls

of radius kR such that if vertices u,v ∈ V (G) satisfy d (u ⇆ v) ≤ R
then u,v are both in some ball in the cover.

Definition 4.1 (Roundtrip Covers). A collection C of balls is a

(k,R) roundtrip cover of a weighted directed graph G if and only if

every ball in C has radius at most kR, and for any u,v ∈ V (G) with
d (u ⇆ v) ≤ R there is a ball B ∈ C such that u,v ∈ B.

Specifically, we show the following theorem.

Theorem 7 (Improved Roundtrip Covers). For an n-vertexm-

edge graph G, an execution of RoundtripCover(G,k,R) returns a
collectionC of balls that forms a (O (k log logn),R) roundtrip cover of

a weighted directed graphG in timem1+O (1/k)
where

∑
B∈C |V (B) | =

n1+O (1/k) .

To show Theorem 3 from Theorem 7, we can compute (k, 2i)
roundtrip covers for all 0 ≤ i ≤ O (logn), and set our girth estimate

as the minimum radius of any ball in the cover that has a cycle. To

compute a roundtrip spanner, simply take the union of all the balls

in the (k, 2i) roundtrip covers for all i = O (logn).
The rest of the section is organized as follows. In Section 4.2 we

state our main algorithm. In Section 4.3 we analyze the algorithm

and prove Theorem 7. In Section 4.4 we use Theorem 7 to formally

prove Theorem 3 and Theorem 4.

4.1 Technical Overview

We focus on unweighted directed graphs G and for a parameter R,
construct a roundtrip spanner H so that if the roundtrip distance

between u and v is at most R in G, then their roundtrip distance is

at most O (Rk log logn) in H .

Our approach is based on growing inballs and outballs in the

graphG . Fix a vertexv , and letBini ,B
out

i denote the inball and outball

of radius iR around v , and let |Bini |, |B
out

i | denote the number of

vertices in the balls and fix d = O (k log logn).We start by growing

and inball and outball around v . First, if |Bind ∩ Boutd | ≥
n
2
, then we

can build a roundtrip ball of radius 2dR + R and delete Bind ∩ B
out

d
from our graph. This is safe essentially by our observation above.

Otherwise, we find an index i such that |Bini+1 | isn’t much larger

than |Bini |, we recursively build a roundtrip cover on Bini+1 and then

delete Bini . This is safe to do by our observation above. Similarly,

if there is an index i such that |Bouti+1 | isn’t much larger than |Bouti |,

we recursively build a roundtrip cover on Bouti+1 and then delete

Bouti . Through standard ball cutting inequalities we can show that

such an index i exists (Lemma 4.2). We would like to elaborate on

a few points. First, when we compare the sizes of |Bini+1 | and |B
in

i |,

we compare both the number of vertices and edges, the former to

control the size of the roundtrip spanner constructed, and the latter

to control runtime. Second, we grow the inball and outball at the

same rate, i.e. we alternately add an edge at a time to the inball and

outball to maintain that the work spent on each is the same.

4.2 Main Algorithm

Wefirst give a high-level description of our algorithm for computing

Roundtrip Covers, RoundtripCover, which is presented formally

as Algorithm 3.

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford

High-level Description of Algorithm. As discussed in Sections 1.3

and 4.1, our algorithm is based on ball growing along with the

following observation: if for a radius r ′ we compute a roundtrip

cover of Binv (r ′ +R) and add all the balls in the computed roundtrip

cover on Binv (r ′ + R) to our final cover, then we can safely delete

all vertices u ∈ Binv (r ′) from our graph and recurse on the rest

of graph; the deleted vertices are already satisfied in the sense

that for every u ′ ∈ V (G) with d (u ⇆ u ′) ≤ R there is a ball

B in the cover such that u,u ′ ∈ B. Indeed, if u ∈ Binv (r ′) and

d (u ⇆ u ′) ≤ R then u,u ′ ∈ Binv (r ′ + R) and therefore we are

guaranteed that the roundtrip cover on Binv (r ′ + R) contains a ball
B such that u,u ′ ∈ B. Using this observation, we grow inballs and

outballs around vertices in our graph G to “partition" our graph

into pieces that possibly overlap, where the overlap corresponds to

the boundary Binv (r ′ + R)\Binv (r ′) in our example.

We describe our algorithm in more detail now. Consider any

vertex v . We grow an inball and outball around v at the same

rate, spending the same time on the inball and outball. First, we

consider the case that |V (Binv (r)) |, |V (Boutv (r)) | ≥ 3n
4
for some r =

O (Rk log logn), as was done in Pachocki et al. [16]. Then we know

that |V (Binv (r))∩V (Boutv (r)) | ≥ n
2
. By our observation above, we can

add the ball Bv (2r+R) to our roundtrip cover, delete B
in

v (r)∩Boutv (r)
fromG , and recurse on the remainder. Otherwise, if we find a radius

r ′ such that say Binv (r ′) and Binv (r ′ + R) satisfy the conditions of

GoodCut (Algorithm 4), then we recurse on Binv (r ′ + R) and delete

Binv (r ′) from our graph and recurse on the remaining graph. This is

safe to do by our observation above. We can also do an analogous

process on Boutv (r ′) and Boutv (r ′ + R). By a variant of the standard

ball-growing inequality (Lemma 4.2) we can show that a good cut

always exists.

We now will give some intuition about the condition in Good-

Cut and the (somewhat strange) appearance of the O (log logn) in
our algorithm. First, we remark that the condition in GoodCutmust

track both the number of vertices and edges in the ball: the former

to control recursion depth and roundtrip cover size, and the lat-

ter to control runtime. Now we give intuition for why we require

an O (k log logn) approximation factor in our algorithm. Consider

growing inballs Binv (r) from v for various radii r , and recall that

we make a cut depending on the relative sizes of |V (Binv (r)) | and

|V (Binv (r + R)) |. Now, note that if for example |V (Binv (r)) | = O (1),

we can afford to have |V (Binv (r + R)) | = O (n1/k), as we can sim-

ply run a naive algorithm on Binv (r + R) now. On the other hand,

if for example |V (Binv (r)) | = Ω(n), we can essentially only afford

to have |V (Binv (r + R)) | ≤
(
1 + 1

k

)
|V (Binv (r)) |. To see the latter,

note that the recurrence T (m) =
(
1 + 1

k

)
(T (m/2) + T (m/2)) has

solutionT (m) =m1+O (1/k) . Now, interpolating between these two

extremes allows us to compute the optimal way to do ball cutting

(which is done in GoodCut). This leads to a ball cutting proce-

dure withO (k log logn) levels, and thus results in anO (k log logn)
approximation ratio.

Explanation of Algorithm 3: We now explain what each piece of

Algorithm 3 is doing. Here, iin and iout track the radius of the inball
and outball that we are growing. We grow the balls at the same rate.

If we notice that at any point we are in position to make a good cut

(see lines 7, 9) then we do so. Otherwise, we know that both balls

Algorithm 3 RoundtripCover(G,k,R), takes a graph G with

n vertices, m edges, and parameters k and R. Returns a

(O (k log logn),R) roundtrip cover C = {B1,B2, . . . , }

1: iin, iout ← 0.

2: r ← 5kR log logn.
3: Take any v ∈ V (G).
4: while true do \\some condition below in lines 5, 7, 9 will trigger

eventually

5: if min(|V (Binv ((iin + 1)R)) |, |V (Boutv ((iout + 1)R)) | ≥ 3n
4

then

6: return {Bv (2r +R)}∪ RoundtripCover(G\(Binv ((iin +
1)R) ∩ Boutv ((iout + 1)R)),R,k).

7: if GoodCut(G,Binv (iinR),B
in

v ((iin + 1)R)) then

8: return RoundtripCover(Binv ((iin +

1)R),R,k)∪RoundtripCover(G\Binv (iinR),R,k).

9: if GoodCut(G,Boutv (ioutR),B
out

v ((iout + 1)R)) then
10: return RoundtripCover(Boutv ((iout +

1)R),R,k)∪RoundtripCover(G\Boutv (ioutR),R,k).

11: if |E (Binv (iinR)) | ≤ |E (B
out

v (ioutR)) | or |V (Boutv (ioutR)) | ≥
3n
4

then

12: iin ← iin + 1
13: else

14: iout ← iout + 1

Algorithm 4 GoodCut(G,B1,B2), takes a graphG with n vertices

andm edges, balls B1 ⊆ B2, and determines whether recursing on

B2 and then deleting B1 from our graph is good progress

1: if |V (B2) | ≤
3

4
n and |V (B2) | ≤ |V (B1) |

k−1
k n

1

k and

2: |E (B2) | ≤ max((1 + 1

k) |E (B1) |, |E (B1) |
k−1
k m

1

k) then
3: return true

4: else

5: return false

will eventually contain many vertices (see line 5). In this case, we

add Bv (2r +R) to our roundtrip cover, delete B
in

v (iinR)∩B
out

v (ioutR)
from our graph, and recurse. To grow the inball and outball at the

same rate, we run Dijkstra to grow the inball and outball, alternately

processing an edge at a time from the inball and outball. We check

the condition of GoodCut on a ball when we have certified that we

have processed all vertices up to distance iinR or ioutR respectively.

4.3 Analysis of RoundtripCover and proof of

Theorem 7

In this section we prove Theorem 7, bounding the performance of

our roundtrip cover algorithm Algorithm 3. We start by showing

that 1 +max(iin, iout) ≤ 5k log logn at all points in the algorithm,

hence some condition in lines 5, 7, 9 will trigger eventually.

Lemma 4.2. At all points during Algorithm 3, we have that 1 +

max(iin, iout) ≤ 5k log logn.

Proof. We show 1+ iin ≤ 5k log logn, and the bound on 1+ iiout
is analogous. To prove this we assume that none of the conditions

Constant Girth Approximation for Directed Graphs in
Subquadratic Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

in the inner loop of the algorithm trigger, and compute the result-

ing vertex and edge sizes of Binv (iinR) and B
out

v (ioutR). To this end,

assume that |V (Binv (iinR)) | ≤
3n
4

and |E (Binv (iinR)) | ≤ m. By the

conditions of lines 5, 7, and 11 we know that each timewe increment

iin either

|V (Binv ((iin + 1)R)) | ≥ |V (Binv (iinR)) |
k−1
k n

1

k (1)

or

|E (Binv ((iin + 1)R)) | ≥ |E (B
in

v (iinR)) |
k−1
k m

1

k and (2)

|E (Binv ((iin + 1)R)) | ≥
(
1 +

1

k

)
|E (Binv (iinR)) |. (3)

We first show that Eq. (1) can only hold for 2k log 4 logn values of iin.

To this end, define a sequence {xi }i≥0 as x0 = 1 and xi+1 = x
k−1
k

i n
1

k .

By induction it follows that xi = n
1−

(
k−1
k

)i
. In particular,

x
2k log 4 logn = n

1−
(
k−1
k

)
2k log 4 logn

≥
3

4

n.

This shows that the condition in Eq. (1) can only hold at most

2k log 4 logn times. Similarly, after Eq. (2) holds for 2k log 4 logn
different iin, we will have that |E (B

in

v (iinR)) | ≥
3m
4
. At this point,

Eq. (3) can hold at most k times. This gives us that in total

1 + iin ≤ 1 + 2k log 4 logn + 2k log 4 logn + k ≤ 5k log logn

as desired. □

Now we proceed to proving Theorem 7.

Proof of Theorem 7. We first show that the algorithm indeed

returns a (O (k log logn),R) roundtrip cover. Then we bound the

total size of balls in the roundtrip cover, as well as the runtime.

Returns a (O (k log logn),R) roundtrip cover. We analyze lines

6, 8, and 10. In line 6, note that by Lemma 4.2, we know that

(iin + 1)R, (iout + 1)R ≤ r . Therefore, we know that Binv (iinR) ∩
Boutv (ioutR) ⊆ Bv (2r). Additionally, it is clear that for any vertex

u ∈ Binv (iinR) ∩ Boutv (ioutR), if another vertex u ′ satisfies d (u ⇆
u ′) ≤ R then u ′ ∈ Bv (2r + R). Therefore, the ball Bv (2r + R) con-
tains both u and u ′, so we can safely delete Binv (iinR) ∩ B

out

v (ioutR)
from G and recurse. This is exactly what is happening in line 6. In

line 8, note that for any vertex u ∈ Binv (iinR), if another vertex u
′

satisfies d (u ⇆ u ′) ≤ R then u ′ ∈ Binv ((iin + 1)R). Therefore, if we

construct a roundtrip cover on Binv ((iin + 1)R), then we can safely

delete Binv (iinR) fromG and recurse. This is exactly what occurs in

line 8. The same argument now applies to line 10. Finally, note that

all balls we create are of radius 2r + R = O (Rk log logn).

Total sizes of balls is n1+O (1/k)
. We show by induction that the

total number of vertices among all balls in the rountrip cover com-

puted is at most 10n
k
k−1 for an input graph G with n vertices. We

show this by analyzing lines 6, 8, and 10. For line 6, note that

because min(|V (Binv ((iin + 1)R)) |, |V (Boutv ((iout + 1)R)) |) ≥
3n
4
, we

know that |V (Binv ((iin+1)R))∩V (Boutv ((iout+1)R)) | ≥
n
2
. Therefore,

it suffices to verify

2n + 10
(n
2

) k
k−1
≤ 10n

k
k−1

which is clear. For line 8, for simplicity let s = |V (Binv (iinR)) |. Then
by the condition of GoodCut, it suffices to note that

10|V (Binv ((iin + 1)R)) |
k
k−1 + 10(n − s)

k
k−1

≤ 10(s
k−1
k n

1

k)
k
k−1 + 10(n − s)

k
k−1

≤ 10sn
1

k−1 + 10(n − s)n
1

k−1 = 10n
k
k−1 .

The same argument now applies to line 10.

Can be implemented to run in timem1+O (1/k)
. We can implement

the algorithm to grow Binv (iinR) and Boutv (ioutR) at the same rate,

i.e., we process a single inedge and outedge at a time, and increment

iin and iout when we are sure that we’ve processed the whole inball

or outball. This can be done with Dijkstra’s algorithm. We stop

growing a ball once it contains at least
3n
4

vertices. This way, any

timewe recurse, the total amount of workwe have done to this point

is at most twice the number of edges in the piece we are recursing

on in lines 6, 8, and 10. To bound the runtime, we imagine lines 8

and 10 as partitioning the graph into pieces of the form Binv (iinR) or

Boutv (ioutR) and then recursing on B
in

v ((iin+1)R) or B
out

v ((iout+1)R).
This way, the depth of the recursion is at mostO (logn) because we
know that |V (Binv ((iin + 1)R)) |, |V (Boutv ((iout + 1)R)) | ≤

3n
4

when

we recurse.

We will now show that the total number of edges in level ℓ of

the recursion is bounded by

(
1 + 2

k

)ℓ
m

k
k−1 , where the top level

is level 0. We proceed by induction on ℓ. Say that the algorithm

partitionsG intoG = G1∪G2∪· · ·∪G j ,where eachGi is either of the

form Binv (iinR) or B
out

v (ioutR). For simplicity, let si = |E (Gi) | and let

ti = |E (B
in

v ((iin+1)R)) | or ti = |E (B
out

v ((iout+1)R)) | corresponding
to what Gi was. We know by the condition of GoodCut that ti ≤

max(
(
1 + 1

k

)
si , s

k−1
k

i m
1

k). By induction, we know that the total

number of edges processed in level ℓ is at most∑
i

(
1 +

2

k

)ℓ−1
t

k
k−1
i

≤

(
1 +

2

k

)ℓ−1 ∑
i
max

((
1 +

1

k

)
si , s

k−1
k

i m
1

k

) k
k−1

≤

(
1 +

2

k

)ℓ−1 ∑
i

(
1 +

2

k

)
sim

1

k−1 ≤

(
1 +

2

k

)ℓ
m

k
k−1

as

∑
i si ≤ m obviously.

Now, it is clear that the total work done on a graph G at some

node of the recursion tree is Õ (|E (G) |) as line 6 only occursO (logn)
times. Now taking ℓ = O (logn) in the above claim completes the

proof. □

4.4 Proofs of Theorem 3 and Theorem 4

Both theorems follow easily from Theorem 7.

Proof of Theorem 3. We first show the result for unweighted

graphs. To show this, run

RoundtripCover(G,O (k), 2i) for 0 ≤ i ≤ O (logn).

Now, set our estimate д′ of the girth to be the smallest radius of any

nontrivial ball that we had in a roundtrip cover. By the guarantees

of RoundtripCover, it is clear that д ≤ д′ ≤ O (k log logn) · д

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford

as desired. It is clear that the algorithm runs in time Õ (m1+ 1

k) by
Theorem 7.We can extend this to weighted graphs by instead taking

0 ≤ i ≤ O (lognW), whereW is the maximum edge weight. This

can be improved to O (logn) by the same method as done in [16],

where they give a general reduction by contracting small weight

strongly connected components and deleting large weight edges

(see Section 5.1 in [16] for more details). □

Proof of Theorem 4. We first show the result for unweighted

graphs. It is easy to see that

O (logn)⋃
i=0

RoundtripCover(G,O (k), 2i)

is an O (k log logn) spanner with Õ (n1+1/k) edges by Theorem 7.

It is clear that the algorithm runs in time Õ (m1+ 1

k). The extension
to weighted graphs follows as in the above paragraph (proof of

Theorem 3). □

5 AN O (k logk) APPROXIMATION IN Õ (m1+1/k)
TIME

In this section we explain how to combine the ideas from Algo-

rithm 3 and Algorithm 1 to give an algorithm for (O (k logk),R)-

roundtrip covers with Õ (n1+1/k) edges in time Õ (m1+1/k). Then
Theorem 5 and Theorem 6 follow from this in the same way that

Theorem 3 and Theorem 4 followed from Theorem 7.

Theorem 8 (Improved Randomized Roundtrip Cover). For an

n-vertexm-edge graphG , an execution of RoundtripCover2(G,k,R)
returns a collection C of balls that form a (O (k logk),R) roundtrip

cover of a weighted directed graph G in timem1+O (1/k)
where∑

B∈C |V (B) | = n1+O (1/k) .

The remainder of the section is organized as follows.We first give

an overview for our approach, which combines the complementary

approaches of sections Section 4 and Section 3. We then state our

main algorithm, Algorithm 5. Afterwards, we analyze Algorithm 5

to prove Theorem 8 in Section 5.2. Finally, we apply Theorem 8 to

prove Theorem 5 and Theorem 6.

Overview of approach. Throughout this section, we assume that

we have applied Lemma 3.1 to make our graph G approximately

regular. Here we give a high level overview for the ideas behind the

algorithm. LetG be an n-vertexm-edge graph and letK := 10k logk
for integer k . We start by generalizing Algorithm 1 and Algorithm 2

slightly, where we consider the case where the sampled sets Si
have size Õ (n1/k) instead of Õ (n1/2). To elaborate, we first view

Algorithm 1 and Algorithm 2 as algorithms with the following

guarantees. They add Õ (n3/2) edges towards a spanner, and then

for each vertex v which is not yet in a cycle of length 4R using the

current spanner edges builds a data structure Dv (corresponding to

Algorithm 2) which certifies that for all but at most O (n1/2) other
vertices u we have that d (v ⇆ u) > 4R. We can generalize this as

follows. There is a corresponding algorithm (Algorithm 6) which

has the following guarantees. It adds Õ (n1+1/k) edges towards a
spanner, and then for each vertex v which is not yet in a cycle of

length 2KR using the current spanner edges builds a data structure

Dv which certifies that for all but at most O (n
k−1
k) other vertices u

we have that d (v ⇆ u) > KR.
After running this generalized algorithm (Algorithm 6), for a

vertex v , we can define i-similar vertices to v , which are intuitively

the vertices that the data structure Dv thinks could still possibly be

in a cycle of length kR withv and which are within distance iR ofv .
Then we define a sequence E0v ,E

1

v , · · · ,E
K
v of “balls" centered at v ,

where Eiv is the outball from v consisting of i-similar vertices. The

following important conditions hold: v ∈ E0v , and E
i
v ⊆ Ei+1v for all

0 ≤ i < K . Finally, if u ∈ Eiv and d (u ⇆ u ′) ≤ R, then u ′ ∈ Ei+1v .

This allows us to apply the ball-growing procedure in Algorithm 3

but using the balls Eiv . Note that by our choice of K and a variant

of Lemma 4.2, there exists a good cut. This is because

n1−
(
k−1
k

)K
≥ n1−

1

k = n
k−1
k .

Hence, we can make this good cut and then recurse. Here, our cut-

ting condition is simpler (only checks vertices, not edges) because

we have reduced to the case of regular graphs through Lemma 3.1.

Algorithm 5 RoundtripCover2(G,k,R). Takes in a n-vertexm-

edge graphG , parameter k , and distance R. Returns a (O (k logk),R)
roundtrip cover C = {B1,B2, . . . , }

1: C ← ∅.
2: (G ′,C ′,D) ← BuildSimilar(G,k,R)
3: C ← C ′.
4: C ← C ∪ BallGrow(G ′,k,R,D).
5: return C .

5.1 Explanation of algorithms

Explanation of Algorithm 5, Algorithm 6, Algorithm 7, Algorithm 8,

Algorithm 9. Throughout, we let n̂ be the number of vertices at the

top level of recursion in the algorithms and we let K := 10k logk
for integer k .

We start by explaining Algorithm 6 (BuildSimilar), which builds

a data structure which allows efficient similarity queries. It follows

the same blueprint as Algorithm 2. The algorithm first selects sets

Si for 1 ≤ i ≤ 100 log n̂, where |Si | = 100n1/k log2 n̂ for all i . It then
computes shortest path trees to and from all vertices in all Si . The
algorithm then adds roundtrip balls of radius O (KR) centered at

each u ∈ Si to our roundtrip cover. The algorithm then marks all

vertices v from the graph that are within distance 2KR both to and

from some vertex u in some Si as not turned on anymore. Then for

all vertices v ∈ V (G) the algorithm builds sets T iv and a uniform

sample Siv of T iv of size O (log n̂) that allow us to “test" whether

another vertex u is similar tov , i.e. could potentially be in a cycle of

lengthO (KR) withv . Eventually, |T iv | gets small, and the algorithm

stops processing vertex v . Finally, it returns the graphG ′ of all still
on vertices, the updated roundtrip cover, and the data structure D
for similarity testing consisting of all the Siv for each vertex v and

shortest path trees from all u ∈ Si .
Now we explain Algorithm 8 (Similar), which uses the data

structure D computed by BuildSimilar to decide whether vertex u

Constant Girth Approximation for Directed Graphs in
Subquadratic Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

Algorithm 6 BuildSimilar(G,k,R). Takes in a n-vertexm-edge

graph G, parameter k , and distance R. Returns a triple (G ′,C,D),
where G ′ ⊆ G is a subgraph which still needs to be processed, C
is a set of balls to include in the roundtrip cover, and D is a data

structure which supports similarity queries. n̂ is the number of

vertices at the top level of recursion.

1: C ← ∅.
2: K ← 10k logk .

3: Select uniformly random subsets S1, S2, · · · , S100 log n̂ ⊆ V (G)

where |Si | = 100n
1

k log
2 n̂ for all i .

4: For all vertices u ∈ Si for some i , build a shortest path tree to

and from u.
5: C ←

⋃100 log n̂
i=1

⋃
u ∈S i Bu ((4K + 1)R).

6: for v ∈ V (G) do

7: if v ∈
(
Binu (2KR) ∩ Boutu (2KR)

)
for some u ∈ Si for some i

then on[v]← false.

8: for v ∈ V (G) do
9: for i = 1 to K do

10: T iv = {u ∈ Si : d (v,u) ≤ KR and d (u,w) ≤

2KR for allw ∈ S
j
v for all 1 ≤ j < i .}

11: if |T iv | ≥ 50 log n̂ then

12: Siv ← uniform sample of T iv of size 50 log n̂.
13: else

14: Return to line 8.

15: Have D store all the Siv and shortest path trees from all vertices

u ∈ Si for some i .
16: return (G [{v : on[v] = true}] ,C,D) .

Algorithm 7 BallGrow(G,k,R,D). Takes in a n-vertex m-edge

graphG, parameter k , distance R, and data structure D supporting

similarity queries. Returns a setC of balls to include in the roundtrip

cover.

1: C ← ∅.
2: K ← 10k logk .
3: on[v]← true for all v ∈ V (G).
4: while there exists v with on[v] = true do

5: for i = 0 to K − 1 do
6: Eiv ← {u ∈ V (G) : on[u] and Similar(G,u,v,D, i,R)

and u reachable from v through Eiv }.
▷We elaborate on this definition Section 5.1.

7: Ei+1v ← {u ∈ V (G) : on[u]
and Similar(G,u,v,D, i + 1,R)
and u reachable from v through Ei+1v }.

8: if GoodCut2(G,Eiv ,E
i+1
v) then

9: C ← C ∪ RoundtripCover2(Ei+1v ,k,R).
10: on[v]← false for all v ∈ Eiv .
11: Break loop and return to line 4.

12: return C .

is i-similar to vertex v . It returns true if and only if

d (v,u) ≤ iR and

d (u,w) ≤ (i + K)R for allw ∈ S
j
v for all 1 ≤ j ≤ 100 log n̂.

Intuitively, this contains a ball aroundv of distance iR that contains

Algorithm 8 Similar(G,u,v,D, i,R), Takes in a n-vertexm-edge

graph G, vertices u,v ∈ V (G), data structure D, parameter R, de-
cides whether u is i-similar to v

1: K ← 10k logk .
2: if d (v,u) > iR then

3: return false

4: for 1 ≤ j ≤ 100 log n̂ do

5: forw ∈ S
j
v do

6: if d (u,w) > (i + K)R then

7: return false

return true

Algorithm9GoodCut2(G,B1,B2), takes a graphG withn vertices
andm edges, balls B1 ⊆ B2, and determines whether recursing on

B2 and then deleting B1 from our graph is good progress

1: if V (B2) ≤ n
1

k |V (B1) |
k−1
k then

2: return true

3: else

4: return false

all vertices which could potentially be in a cycle of length KR with

v , according to the algorithm.

Nowwe explainAlgorithm 9 (GoodCut2), which decideswhether

cutting out ball B1 and recursing on B2 constitutes good enough

progress. This simply takes as input two balls B1 and B2 and de-

cides whether recursing on B2 and then deleting B1 is good enough

progress in trying to achieve a Õ (n1+O (k−1)) total size of roundtrip
covers. Here, we check only the vertex condition instead of the edge

condition (different from Algorithm 4 GoodCut) because we have

already reduced to the case where our graph G is approximately

regular (Lemma 3.1).

Nowwe explain Algorithm 7 (BallGrow), which grows the balls

Eiv . on[v] = false if vertex v has been resolved, i.e. we can ensure

that for any u with d (v ⇆ u) ≤ R, that v and u are in a roundtrip

ball of diameter O (KR). Otherwise, on[v] = true.We now grow

balls E0v ,E
1

v , · · · ,E
K
v around v , up until line 8 is satisfied. Our main

claim is that when we recurse on Ei+1v , then we can safely remove

all vertices in Eiv . While the definition in line 6

Eiv ← {u ∈ V (G) : on[u] and Similar(G,u,v,D, i,R)

and u reachable from v through Eiv }

may seem recursive, all we mean is to say that we run a search

from v , only keeping vertices which are i-similar, i.e.

Similar(G,u,v,D, i,R) is true.
Finally, our main algorithm Algorithm 5 (RoundtripCover2)

first calls BuildSimilar to build the similarity data structure needed

for BallGrow. It also removes vertices fromG that were already

resolved (i.e. in cycles of length 2KR) to get a graph G ′. Then it

grows balls to partition G ′ and recurse.

5.2 Analysis

In this section we analyze the above algorithms. We first show that

the number of similar vertices to any vertex v in G ′ (line 4) is at

most n
k−1
k with high probability.

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford

Lemma 5.1. Consider an execution of RoundtripCover2(G0,k, r)
on an n̂-vertex vertex graph G0. Consider a recursive execution of

RoundtripCover2(G,k, r) on an n-vertexm-edge graphG . Consider
the resulting execution BallGrow(G ′,k,R,D) (line 4). With proba-

bility at least 1− n̂−7 we have that for all v ∈ V (G ′) that the number

of vertices u ∈ V (G ′) satisfying

d (v,u) ≤ KR and

d (u,w) ≤ 2KR for allw ∈ S
j
v for all 1 ≤ j ≤ 100 log n̂

is at most n
k−1
k .

Proof. We follow the same approach as the proofs in Section 3.

Consider a vertex v ∈ V (G). Define

H i
v := {u ∈ V (G) :d (v,u) ≤ KR and

d (u,w) ≤ 2KR for allw ∈ S
j
v for all 1 ≤ j < i},

i.e. all verticesu ∈ V (G) which would “pass" the i-th level similarity

test for v . Our main claim is that if |H i
v | ≥ n

k−1
k , then we have that

|H i+1
v |

|H i
v |
≤ 9

10
with high probability. This implies the result, because

if |H
100 log n̂
v | ≥ n

k−1
k still, then we have that

|H
100 log n̂
v | ≤

(
9

10

)
100 log n̂

n < 1,

an obvious contradiction.

Nowwe show that if |H i
v | ≥ n

k−1
k , then we have that

|H i+1
v |

|H i
v |
≤ 9

10

with high probability. Note that by definition that T iv = Si ∩ H i
v .

It is direct to verify by a Chernoff bound that |T iv | ≥ 50 log n̂ with

probability at least 1 − n̂−10 assuming that |H i
v | ≥ n

k−1
k . By the

definition of Siv (a uniformly random subset of T iv of size 50 log n̂)
and symmetry we can think of Siv simply as a uniformly random

subset of H i
v of size 50 log n̂.

We now argue that for at least
9

10
fraction of vertices inw ∈ H i

v
we have that

Pr

w ′∈H i
v

[
d (w,w ′) ≤ 2KR

]
≤

4

5

,

i.e. only
4

5
fraction of vertices w ′ ∈ H i

v satisfy d (w,w ′) ≤ 2KR.
Assume the contrary for contradiction. By the Pigeonhole principle,

there are at least (
9

10

·
4

5

−
1

2

)
|H i

v |
2 = .22|H i

v |
2

(unordered) pairs of verticesw,w ′ ∈ H i
v such that both d (w,w ′) ≤

2KR and d (w ′,w) ≤ 2KR. By the Pigeonhole principle again, there

must be a vertex w ∈ H i
v for which at least .44|H i

v | vertices w
′

satisfy both d (w,w ′) ≤ 2KR and d (w ′,w) ≤ 2KR, so d (w,w ′) ≤

4KR. Now, note that .44|H i
v | ≥ .44n

k−1
k by our condition. We argue

that this is impossible because v should have been marked as not

on with high probability in line 7. Indeed, the probability that v
failed to get marked as not on is at most

*
,
1 −
.44n

k−1
k

n
+
-

∑100 log n̂
i=1 |S i |

≤ 1 − n̂−20

as desired.

Now, consider the
9

10
fraction of verticesw ∈ H i

v with

Pr

w ′∈H i
v

[
d (w,w ′) ≤ 2KR

]
≤

4

5

.

For each of these vertices, the probability that d (w,w ′) for allw ′ ∈

Siv is at most

(
4

5

)
50 log n̂

≤ 1 − n̂−10. By definition then, we have

that
|H i+1

v |

|H i
v |
≤ 1

10
by definition, as the

9

10
fraction of vertices in H i

v
discussed in this paragraph will with high probability not be in

H i+1
v . □

We next claim that the ball growing scheme of Algorithm 7

satisfies some important conditions, which intuitively make the Eiv
look like balls of radius iR.

Lemma 5.2. Consider an execution of RoundtripCover2(G0,k,R)
on n-vertexm-edge graph G0. Now, consider the resulting execution

of BallGrow(G,k,R,D) on graphG. We have that in the execution

for all v ∈ V (G) that

(1) v ∈ E0v .
(2) Eiv ⊆ Ei+1v for 0 ≤ i ≤ K − 1.
(3) For 0 ≤ i ≤ K − 1, if u ∈ Eiv and d (u ⇆ u ′) ≤ R, then

u ′ ∈ Ei+1v .

Proof. For the first claim, note that vertices w ∈ S
j
v for all j

satisfy d (v,w) ≤ KR by line 11 of BuildSimilar. Therefore, v
satisfies all conditions of being in Eiv on line 6 of BallGrow.

The second claim is obvious from looking at the the definition

of Eiv in line 6 of BallGrow.

For the third claim, note that if u ∈ Eiv and d (u ⇆ u ′) ≤ R

then d (v,u ′) ≤ d (v,u) + R = (i + 1)R. Also, for any w ∈ S
j
v for

1 ≤ j ≤ 100 log n̂ we have thatd (u ′,w) ≤ d (u,w)+R ≤ (i+1+K)R.
Hence u ′ ∈ Ei+1v as desired. □

We now show the analogue to Lemma 4.2, specifically that for

some iteration 0 ≤ i ≤ K − 1 in BallGrow, we have that the

condition in line 8 triggers.

Lemma 5.3. Consider an execution of RoundtripCover2(G0,k,R)
on n-vertexm-edge graphG0. Now, consider the resulting execution of

BallGrow(G,k,R,D) on graph G. For some 0 ≤ i ≤ K − 1 we have
that the condition in line 8 is true, i.e. we get a good cut.

Proof. The computation proceeds the sameway as in Lemma 4.2.

Assume for contradiction that the condition in line 8 is never true,

so

|V (Ei+1v) | > n
1

k |V (Eiv) |
k−1
k .

By Lemma 5.2, we know that |V (E0v) | ≥ 1, as v ∈ E0v . Therefore,
one can check by induction that

|V (Eiv) | ≥ n1−
(
k−1
k

)i
.

For K = 10k logk we have that

|V (EKv) | ≥ n1−
(
k−1
k

)K
> n

k−1
k ,

which contradicts Lemma 5.1. □

We turn to proving Theorem 8.

Constant Girth Approximation for Directed Graphs in
Subquadratic Time STOC ’20, June 22–26, 2020, Chicago, IL, USA

Proof. We break the analysis into pieces. We show that exe-

cuting RoundtripCover2(G,k,R) on a n-vertexm-edge graph G
returns a (O (k logk),R) roundtrip coverC with total size of all balls

at most n1+O (
1

k) in timem1+O (1

k) with high probability.

Returns a (O (k logk),R) roundtrip cover. We first argue that in

a call to BuildSimilar(G,k,R) that for all vertices v where we

marked on[v] = false thatv is properly resolved, i.e. for any vertex

u with d (v ⇆ u) ≤ R that u and v are in a roundtrip ball of radius

at most (4K + 1)R. Indeed, note that if we mark on[v] = false, then

there must have been a vertexw for whichw ∈ S j for some j, and
d (v ⇆ w) ≤ 2KR + 2KR = 4KR. Then d (u ⇆ w) ≤ (4K + 1)R. We

have added the ball Bw ((4K + 1)R) to our roundtrip cover C , as
desired (line 5).

The only other piece to verify is that when we mark on[v] =
false in an execution of BallGrow(G,k,R,D) that v is properly

resolved, i.e. that in some recursive subproblem we have that for

all u with d (v ⇆ u) ≤ R that v and u are in a roundtrip ball of

radius at mostO (KR). But this holds immediately by Lemma 5.2: if

v ∈ Eiw for somew , and d (v ⇆ u) ≤ R, then u ∈ Ei+1w as desired.

Total size of balls in C is n1+O (
1

k) with high probability. The

analysis here follows closely to the corresponding paragraph in

Section 4. We will show that the total size of all graphs processed in

a single level of recursion the algorithm is at most n
k
k−1 , where our

initial call was RoundtripCover2(G,k,R) for a n-vertexm-edge

graphG . Then, the total size of all graphs processed in the recursion

is Õ (n
k
k−1), as the recursion depth is at most logarithmic. Then the

bound on total size of balls inC follows as for a graphG with n ver-

tices, the total size of balls added toC during BuildSimilar(G,k,R)
is at most

100 logn∑
j=1

|S j | = Õ (n1+
1

k).

To show that the total size of all graphs processed at recur-

sion depth ℓ in the algorithm is at most n
k
k−1 , we use induction.

Indeed, this holds at the bottom level of recursion. Consider an

execution of BallGrow(G,k,R,D) on an n-vertexm-edge graphG .
Let F 1

1
, F 1

2
, · · · , F 1t be all the balls Eiv for which line 8 was satisfied

(and we know that line 8 is satisfied for some i by Section 5.2).

Let F 2
1
, F 2

2
, · · · , F 2t be the corresponding balls Ei+1v . We have that∑t

i=1 |V (F 1i) | ≤ n, as we marked all vertices in Eiv as not on any-

more if line 8 was satisfied for Eiv and Ei+1v . Additionally, by the

condition of GoodCut2, we have that |V (F 2i) | ≤ n
1

k |V (F 1i) |
k−1
k . By

induction, the total sizes of all graphs processed at depth ℓ through

recursion on F 2
1
, F 2

2
, · · · , F 2t is at most

t∑
i=1
|V (F 2i) |

k
k−1 ≤

t∑
i=1

(
n

1

k |V (F 1i) |
k−1
k

) k
k−1
≤

t∑
i=1

n
1

k−1 |V (F 1i) | ≤ n
k
k−1 .

Can be implemented to run in timem1+O (1

k) with high probability.
The analysis in the above section on the total size of balls, we know

that the total number of vertices in all graphs processed during the

algorithm RoundtripCover2(G,k,R) is at most n1+O (
1

k) . As we
have reduced to the case of regular graphs through Lemma 3.1, the

total number of edges in all graphs processed during

RoundtripCover2(G,k,R) is at most

Õ (δn1+O (
1

k)) ≤ Õ (m1+O (1

k)) for δ = O (m/n).
We now argue that the non-recursive runtime of

RoundtripCover2(G,k,R) on a graph G with n vertices and m

edges is Õ (m1+1/k). We start by analyzing Algorithm 6

(BuildSimilar). We have in BuildSimilar(G,k,R) that∑100 log n̂
i=1 |Si | ≤ Õ (n1/k), where n̂ is the number of vertices in the

graph at the top level of recursion. Therefore, building a shortest

path tree to and from all vertices in

⋃
i S

i
takes Õ (m1+1/k) time

using Dijkstra’s algorithm. Computing all the sets T iv clearly takes

time

n ·

100 log n̂∑
i=1

|Si | · K = Õ (m1+1/k).

We proceed to analyze Algorithm 8 (Similar). This clearly takes

Õ (1) time per call, as we have precomputed all shortest path trees

and distances to and from all vertices u ∈ Si in Algorithm 6. Also,

Algorithm 9 (GoodCut2) also obviously takes O (1) time per call.

Now we analyze Algorithm 7 (BallGrow). We can build the

sets Eiv by running any search from v , only keeping vertices u
that satisfy Similar(G,u,v,D, i,R). This takes time proportional to

Õ (δ |Ei+1v |), where we have used that each call to Similar takes Õ (1)
time. In accounting for this runtime, we can push the contribution

to the next recursion level (as we are recursing on Ei+1v). Therefore,

the total non-recursive runtime used is Õ (m1+1/k) as claimed for

an input graph withm edges.

Now, as the total number of edges over all graphs is Õ (m1+O (1

k)),

the total runtime would also be Õ (m1+O (1

k)) as desired. □

We now use Theorem 8 to get multiplicative girth approximation

and roundtrip spanners, proving Theorem 5 and Theorem 6.

Proof of Theorem 5. We first show the result for unweighted

graphs. To show this, run

RoundtripCover2(G,O (k), 2i) for 0 ≤ i ≤ O (logn).

Now, set our estimate д′ of the girth to be the smallest radius of any

nontrivial ball that we had in a roundtrip cover. By the guarantees

of RoundtripCover2, it is clear that д ≤ д′ ≤ O (k logk) · д as

desired. It is clear that the algorithm runs in time Õ (m1+ 1

k) by
Theorem 8. We can extend this to weighted graphs by instead

taking 0 ≤ i ≤ O (lognW), whereW is the maximum edge weight.

This can be improved to O (logn) by the same method as done

in [16], where they give a general reduction by contracting small

weight strongly connected components and deleting large weight

edges (see Section 5.1 in [16] for more details). □

Proof of Theorem 6. We first show the result for unweighted

graphs. It is easy to see that

O (logn)⋃
i=0

RoundtripCover2(G,O (k), 2i)

is an O (k logk) spanner with Õ (n1+
1

k) edges by Theorem 8. It

is clear that the algorithm runs in time Õ (m1+ 1

k). The extension
to weighted graphs follows as in the above paragraph (proof of

Theorem 5). □

STOC ’20, June 22–26, 2020, Chicago, IL, USA Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford

6 CONCLUSION AND OPEN PROBLEMS

In this paper we provided multiple results on computing round-

trip spanners and multiplicative approximations to the girth of an

arbitrary directed graph. Our results all either improve running

times, decrease the use of randomness, or improve the approxima-

tion quality of previous results. Ultimately, this work brings the

state-of-the art performance of roundtrip spanners algorithms on

directed graphs closer to matching that for undirected graphs.

An immediate open problem left open by our work is to fully

close the gap between algorithmic guarantees for spanners of undi-

rected graphs and roundtrip spanners of directed graphs and pro-

vide a deterministic algorithm which for all k in Õ (mn1/k) time

computes a O (k) roundtrip spanner with Õ (n1+1/k) edges. This
paper resolves this problem for k = Ω(logn) and makes progress

on it for smaller values of k ; it is still open to resolve it for all k .
Another key open problem is to further clarify the complexity

of approximating the girth of a directed graph. Currently the only

algorithms which provably outperform APSP for approximating

the girth of a graph are Pachocki et. al. [16] and this paper. Con-

sequently, all known girth approximation algorithms for directed

graphs leverage techniques immediately applicable for spanner

computation (with the sole possible exception of the algorithms of

Section 3). Therefore, beyond improving roundtrip spanner routines

to obtain an algorithm which can compute an O (k)-multiplicative

approximation to the girth in Õ (mn1/k), this suggests the even

more challenging open problem of circumventing this “spanner bar-

rier” to obtaining even faster running times. For undirected graphs,

it possible to overcome this barrier in certain cases [9, 11, 13, 20].

However, some of the techniques used in these results are known

not to extend to directed graphs, see e.g. [16, 20]. Consequently,

further clarifying the complexity of girth approximation beyond the

spanner barrier with either improved algorithms or new conditional

lower bounds remains an difficult and interesting frontier.

One final open problem is to improve the parallel complexity

of these routines. Previous work on the efficient construction of

roundtrip spanners [16] provided such a result. Further, there have

been recent advances in the efficient parallel computation of reach-

ability in directed graphs [10, 12] and commute times of random

walks. The combination of the ideas from these works with the

results of this paper could be useful for obtaining further improve-

ments for the efficient parallel computation of girth and roundtrip

spanners [7].

7 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for helpful feedback and sug-

gestion of many of the open problems discussed in Section 6. We

thank Jakub Pachocki, Liam Roditty, Roei Tov, and Virginia Vas-

silevska Williams for helpful discussions. Yang P. Liu is supported

by the U.S. Department of Defense via an NDSEG fellowship. Aaron

Sidford is supported by NSF CAREER Award CCF-1844855. This

project has received funding from the European Union’s Horizon

2020 research grant agreement 803118.

REFERENCES

[1] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares.

1993. On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 1 (1993),

81–100. https://doi.org/10.1007/BF02189308

[2] Surender Baswana and Sandeep Sen. 2003. A simple linear time algorithm for

computing a (2k−1)-spanner ofO (n1+1/k) size inweighted graphs. InAutomata,

languages and programming. Lecture Notes in Comput. Sci., Vol. 2719. Springer,

Berlin, 384–396. https://doi.org/10.1007/3-540-45061-0_32

[3] Béla Bollobás. 1998.Modern graph theory. Graduate Texts inMathematics, Vol. 184.

Springer-Verlag, New York. xiv+394 pages. https://doi.org/10.1007/978-1-4612-

0619-4

[4] L. Paul Chew. 1989. There are planar graphs almost as good as the complete

graph. J. Comput. System Sci. 39, 2 (1989), 205–219. https://doi.org/10.1016/0022-

0000(89)90044-5 Computational geometry.

[5] Edith Cohen. 1997. Size-estimation framework with applications to transitive

closure and reachability. J. Comput. System Sci. 55, 3 (1997), 441–453. https:

//doi.org/10.1006/jcss.1997.1534 35th Annual Symposium on Foundations of

Computer Science (Santa Fe, NM, 1994).

[6] Michael B. Cohen, Jonathan A. Kelner, Rasmus Kyng, John Peebles, Richard Peng,

Anup B. Rao, and Aaron Sidford. 2018. Solving Directed Laplacian Systems

in Nearly-Linear Time through Sparse LU Factorizations. In 59th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October

7-9, 2018. 898–909. https://doi.org/10.1109/FOCS.2018.00089

[7] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B.

Rao, Aaron Sidford, and Adrian Vladu. 2017. Almost-linear-time algorithms for

Markov chains and new spectral primitives for directed graphs. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

Montreal, QC, Canada, June 19-23, 2017. 410–419.

[8] Lenore Cowen and Christopher G. Wagner. 2004. Compact roundtrip routing in

directed networks. J. Algorithms 50, 1 (2004), 79–95.

[9] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. 2017. Finding

Even Cycles Faster via Capped K-walks. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing (Montreal, Canada) (STOC 2017).

ACM, New York, NY, USA, 112–120. https://doi.org/10.1145/3055399.3055459

[10] Jeremy T. Fineman. 2018. Nearly work-efficient parallel algorithm for digraph

reachability. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 457–470.

[11] Alon Itai and Michael Rodeh. 1977. Finding a Minimum Circuit in a Graph.

In Proceedings of the Ninth Annual ACM Symposium on Theory of Computing

(Boulder, Colorado, USA) (STOC ’77). ACM, New York, NY, USA, 1–10. https:

//doi.org/10.1145/800105.803390

[12] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. 2019. Parallel Reachability

in Almost Linear Work and Square Root Depth. CoRR abs/1905.08841 (2019).

arXiv:1905.08841 http://arxiv.org/abs/1905.08841

[13] Andrzej Lingas and Eva-Marta Lundell. 2009. Efficient approximation algorithms

for shortest cycles in undirected graphs. Inform. Process. Lett. 109, 10 (2009),

493–498. https://doi.org/10.1016/j.ipl.2009.01.008

[14] Gary L. Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph decomposi-

tions using random shifts. In 25th ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA ’13, Montreal, QC, Canada - July 23 - 25, 2013. 196–203.

https://doi.org/10.1145/2486159.2486180

[15] James B. Orlin and Antonio Sedeño-Noda. 2017. AnO (nm) time algorithm for

finding the min length directed cycle in a graph. In Proceedings of the Twenty-

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia,

PA, 1866–1879. https://doi.org/10.1137/1.9781611974782.122

[16] Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vas-

silevska Williams. 2018. Approximating cycles in directed graphs: fast algorithms

for girth and roundtrip spanners. In Proceedings of the Twenty-Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, 1374–1392.

https://doi.org/10.1137/1.9781611975031.91

[17] David Peleg. 2000. Distributed computing. SIAM Monographs on Discrete Mathe-

matics and Applications, Vol. 5. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA. xvi+343 pages. A locality-sensitive approach.

[18] Iam Roditty, Mikkel Thorup, and Uri Zwick. 2008. Roundtrip spanners and

roundtrip routing in directed graphs. ACM Trans. Algorithms 4, 3 (2008), Art. 29,

17. https://doi.org/10.1145/1367064.1367069

[19] Liam Roditty, Mikkel Thorup, and Uri Zwick. 2005. Deterministic constructions

of approximate distance oracles and spanners. In Automata, languages and

programming. Lecture Notes in Comput. Sci., Vol. 3580. Springer, Berlin, 261–272.

https://doi.org/10.1007/11523468_22

[20] Liam Roditty and Virginia Vassilevska Williams. 2012. Subquadratic time ap-

proximation algorithms for the girth. In Proceedings of the Twenty-Third Annual

ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 833–845.

[21] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. J. ACM 52, 1

(2005), 1–24. https://doi.org/10.1145/1044731.1044732

[22] Virginia Vassilevska Williams and Ryan Williams. 2010. Subcubic equivalences

between path, matrix, and triangle problems. In 2010 IEEE 51st Annual Sympo-

sium on Foundations of Computer Science—FOCS 2010. IEEE Computer Soc., Los

Alamitos, CA, 645–654.

https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/3-540-45061-0_32
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1016/0022-0000(89)90044-5
https://doi.org/10.1016/0022-0000(89)90044-5
https://doi.org/10.1006/jcss.1997.1534
https://doi.org/10.1006/jcss.1997.1534
https://doi.org/10.1109/FOCS.2018.00089
https://doi.org/10.1145/3055399.3055459
https://doi.org/10.1145/800105.803390
https://doi.org/10.1145/800105.803390
http://arxiv.org/abs/1905.08841
http://arxiv.org/abs/1905.08841
https://doi.org/10.1016/j.ipl.2009.01.008
https://doi.org/10.1145/2486159.2486180
https://doi.org/10.1137/1.9781611974782.122
https://doi.org/10.1137/1.9781611975031.91
https://doi.org/10.1145/1367064.1367069
https://doi.org/10.1007/11523468_22
https://doi.org/10.1145/1044731.1044732

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Comparison to previous work
	1.3 Overview of Approach

	2 Preliminaries
	3 Randomized Constant Approximations
	3.1 An (m n) Time 3-approximation to Girth

	4 Deterministic O(k loglogn) Approximation Algorithms
	4.1 Technical Overview
	4.2 Main Algorithm
	4.3 Analysis of RoundtripCover and proof of thm:cover
	4.4 Proofs of thm:girth and thm:spanner

	5 An O(k logk) Approximation in (m1+1/k) Time
	5.1 Explanation of algorithms
	5.2 Analysis

	6 Conclusion and Open Problems
	7 Acknowledgements
	References

