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ABSTRACT

In this paper we provide a O(m+/n) time algorithm that computes
a 3-multiplicative approximation of the girth of a n-node m-edge
directed graph with non-negative edge lengths. This is the first
algorithm which approximates the girth of a directed graph up to a
constant multiplicative factor faster than All-Pairs Shortest Paths
(APSP) time, i.e. O(mn). Additionally, for any integer k > 1, we
provide a deterministic algorithm for a O(k log log n)-multiplicative
approximation to the girth in directed graphs in O(m!*1/¥) time.
Combining the techniques from these two results gives us an algo-
rithm for a O(k log k)-multiplicative approximation to the girth in
directed graphs in O(m!*1/ k) time. Our results naturally also pro-
vide algorithms for improved constructions of roundtrip spanners,
the analog of spanners in directed graphs.

The previous fastest algorithms for these problems either ran
in All-Pairs Shortest Paths (APSP) time, i.e. O(mn), or were due
Pachocki et al. [16] which provided a randomized algorithm that
for any integer k > 1 in time O(m'*!/ ky computed with high
probability a O(k log n) multiplicative approximation of the girth.
Our first algorithm constitutes the first sub-APSP-time algorithm for
approximating the girth to constant accuracy, our second removes
the need for randomness and improves the approximation factor
in Pachocki et al. [16], and our third is the first time versus quality
trade-off for obtaining constant approximations.
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1 INTRODUCTION

The girth of a graph G is the length of the shortest cycle in G. It is an
important graph quantity that has been studied extensively in both
combinatorial settings (see Bollobas’s book [3] for a discussion) and
computational settings. In particular, exact algorithms for the girth
running in time O(mn) in weighted directed graphs [15] are known.
On the other hand, a result of Vassilevska W. and Williams show
that a truly subcubic algorithm for girth (i.e. running in time n®¢
for some ¢ > 0) implies a truly subcubic algorithm for the All Pairs
Shortest Path (APSP) problem [22]. As it is a longstanding open
problem whether APSP admits a truly subcubic time algorithm,
exact computation of the girth in truly subcubic time would be a
major breakthrough.

This has motivated the study of efficient approximation algo-
rithms for the girth. There has been extensive work on approxi-
mating the girth in undirected graphs [9, 11, 13, 20]. Many such
algorithms use the concept of a a-spanner of a graph G, a funda-
mental combinatorial object which was introduced by Chew [4].
An a-spanner of a graph G is a subgraph of G which multiplica-
tively preserves distances up to a factor of a. It is well-known
that (2k — 1)-spanners with O(n!*!/ ky edges exist for any undi-
rected weighted graph [1], and work on the efficient construction

of such spanners [2, 19, 21] implies a O(mn%) time algorithm for
(2k — 1)-multiplicative girth approximation in undirected graphs.
There has also been work on improved spanner constructions in
the case of undirected unweighted graphs [13, 20], and these algo-
rithms also immediately imply algorithms for girth approximation
in undirected unweighted graphs.

Therefore, in order to obtain efficient constant factor girth ap-
proximations in directed graphs, it is natural to study an analog of
spanners in directed graphs. Unfortunately, approximately comput-
ing all pairs distances in directed graphs is a notoriously difficult
problem and while sparse spanners do exist in all undirected graphs,
they do not exist in all directed graphs. For example, any directed
spanner for the “directed" complete bipartite graph with n vertices
on the left directed towards n vertices on the right clearly requires
all n? edges. This problem seems to arise from the fact that the
distance metric d(u, v) in directed graphs is asymmetric. There-
fore, if we want to construct sparse spanners, it is natural to work
instead with the symmetric roundtrip distance metric, defined as
d(u S v) := d(u,v)+d(v,u) [8] and similarly define an a-roundtrip
spanner of a directed graph G to be a subgraph that multiplicatively
preserves roundtrip distances up to a factor of a.

Interestingly, there do exist roundtrip spanners for directed
graphs with comparable sparsity as spanners for undirected graphs.
A result of Roditty, Thorup, and Zwick [18] shows that for any
k > 1and ¢ > 0, every graph has a (2k + ¢)-roundtrip spanner
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with O(k%n!*+1/k log(nW)e™!) edges, where W is the maximum
edge weight. Unforunately, this algorithm ran in time Q(mn), as
it requires the computation of all pairs distances in the graph. Re-
cent work Pachocki et al. [16] gave a randomized algorithm run-
1+1/k )

ning in time O(m which on weighted directed graphs G re-

turns a O(k log n)-roundtrip spanner with O(n'*!/ ky edges and
an O(k log n) approximation to the girth. Up to a logarithmic ap-
proximation factor, this matches the sparsity and runtime known
for spanners on undirected weighted graphs and girth on sparse
graphs.

The result of Pachocki et al. [16] constitutes one of small, but
rapidly growing [6, 7], set of instances where it is possible to obtain
robust nearly linear time approximations to fundamental quantities
of directed graphs in nearly linear time, overcoming typical running
time gaps between solving problems on directed and undirected
graphs.

However, a fundamental open problem left open by this work
is whether it is possible to achieve subquadratic algorithms for
constant factor approximation of the girth in directed graphs, and
more ambitiously to fully close this gap and provide algorithms
for O(k) girth approximation and O(k) roundtrip spanners in di-
rected graphs that fully match the runtime and sparsity of those
in undirected graphs. This is the primary problem this paper seeks
to address and this paper provides multiple new girth approxima-
tion algorithms with improved runtime, approximation quality, and
dependency on randomness.

1.1 Our Results

In this paper we provide a subquadratic algorithm for constant
factor girth approximation in directed graphs and in turn show
several improvements on the girth approximation algorithms and
roundtrip spanner constructions in the work of Pachocki et al. [16].
Here and throughout the remainder of the paper we use O(-) nota-
tion to hide factors polylogarithmic in n, where n is the number of
vertices in the graph.

In Section 3 we consider obtaining constant approximations to
the girth. In particular we provide a randomized algorithm that
obtains a 3-approximation to the girth on graphs with non-negative
integer edge weights in O(m+/n) time. Up to logarithmic factors
this matches the runtime that would be predicted from the fact
that (2k — 1)-undirected spanners with é(n”l/k) edges can be
constructed in O(mn!/ k) time for k = 2. Further, we show that this
procedure can be used to with high probability obtain constant
multiplicative roundtrip spanners in directed graphs with arbitrary
edge weights in O(m+/n) time.

THEOREM 1 (3-MULTIPLICATIVE GIRTH APPROXIMATION). For
any directed graph G with n vertices, m edges, integer non-negative
edge weights, and unknown girth g we can compute in O(m+/n) time
an estimate g’ such that g < g’ < 3g with high probability in n.

THEOREM 2 (8-MULTIPLICATIVE ROUNDTRIP SPANNERS). For any
directed graph G with n vertices, m edges, integer non-negative edge
weights, we can compute in O(m+/n) time an 8-multiplicative roundtrip
spanner with O(n®/2) edges with high probability in n.

Then, in Section 4 we give algorithms for a
O(k log log n)-multiplicative approximation of the the girth and
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construct O(k loglogn) multiplicative roundtrip spanners with
O(n'*1/k) edges for a weighted directed graph G with n vertices
and m edges in O(m!*1/ k) time. These algorithms are deterministic
and constitute the first deterministic nearly linear time algorithms
for O(1) multiplicative approximation of the girth and O(1) multi-

plicative roundtrip spanners with O(n) edges.

THEOREM 3 (DETERMINISTIC MULTIPLICATIVE GIRTH APPROX-
IMATION). For any integer k > 1 and weighted directed graph G
with n vertices, m edges, and unknown girth g we can compute in
O(m*1/k) time an estimate g’ such that g < ¢’ < O(kloglogn) - g.

THEOREM 4 (DETERMINISTIC MULTIPLICATIVE ROUNDTRIP SPAN-
NERS). For any integer k > 1 and any weighted directed graph G
with n vertices and m edges, we can compute in O(m'*+1/k)
an O(k loglog n) multiplicative roundtrip spanner with O(n
edges.

time
1+1/k)

Setting k = lolgol% yields the following corollaries. For k =
Q(log n) these results nearly match the optimal algorithms in undi-
rected graphs for O(k) girth approximation and the construction
of O(k) spanners.

COROLLARY 1.1. For any weighted directed graph G with n vertices,
m edges, and unknown girth g we can compute in O(m) time an
estimate g’ such thatg < g’ < O(logn) - g.

CoROLLARY 1.2. For any weighted directed graph G with n vertices
and m edges, we can compute in O(m) time an O(log n) multiplicative
roundtrip spanner with O(n) edges.

Interestingly, our results for constant factor randomized ap-
proximations and our results for deterministic approximations are
achieved in different ways. Highlighting this, in Section 5 we show
how to combine the techniques of these algorithms to obtain both
O(k log k) multiplicative approximations to the girth and O(k log k)
multiplicative roundtrip spanners of size O(n*V/ k ) in O(mn!/ k )
time with high probability in n.

THEOREM 5 (CONSTANT MULTIPLICATIVE GIRTH APPROXIMA-
TION). For any integer k > 1 and any weighted directed graph G
with n vertices, m edges, and unknown girth g we can compute in
O(m*1/kY time an estimate g’ such that g < ¢’ < O(klogk) - g
with high probability in n.

THEOREM 6 (CONSTANT MULTIPLICATIVE ROUNDTRIP SPANNERS).
For any integer k > 1 and any weighted directed graph G with n ver-
tices and m edges, we can compute in O(m™ /%Y time an O(k log k)
multiplicative roundtrip spanner with O(n'*+1/k) edges with high
probability in n.

This shows that for any fixed ¢ > 0, that there is an algorithm run-
ning in time m!*¢ that approximates the girth of a directed graph to
within a constant depending on ¢, but not on m or n. Additionally,
this almost matches the O(k)-multiplicative girth approximation

1+1/k

algorithms running in m time in undirected graphs.

1.2 Comparison to previous work

While the existence of roundtrip spanners matching the quality in
undirected graphs was shown in [18], the runtime was O(mn) and
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required an APSP computation. Our results, Theorem 1, Theorem 2
are the first to show that constant factor girth approximation and
construction of constant factor roundtrip spanners with O(nyn)
edges can be built in subquadratic O(m+/n) time. This algorithm
leverages new randomized techniques for testing a notion we call
similarity between vertices not present in previous girth approx-
imation and roundtrip spanner algorithms and we believe is of
independent interest.

Our Theorem 3 and Theorem 4 offer direct improvements over
the analogous results in [16]. Specifically, our algorithms provide a
tighter multiplicative girth approximation and multiplicative span-
ner stretch in the same runtime as the algorithms in [16], which
produce a O(k log n) girth approximation and O(k log n) roundtrip
spanner with O(n!*1/k) edges in time O(m!*1/k).

Additionally, our algorithm is deterministic and in our opinion,
simpler. The algorithm of Pachocki et al. [16] involved the following
pieces. First, they use a method of Cohen to estimate ball sizes
[5] and resolve the case where there is a vertex whose inball and
outball (of some small radius) intersect in a significant fraction
of the vertices. In the other case, they use exponential clustering
(see [14]) to partition the graph and recurse. Finally, they rerun
the algorithm n'/* times. On the other hand, our algorithm simply
grows inballs and outballs from various vertices, and uses a delicate
cutting conditition to decide when to cut and recurse.

Additionally, Theorem 5 and Theorem 6 further improve upon
Pachocki et al. [16] by combining the ideas from the constant factor
girth approximation algorithm and the deterministic ball-growing
algorithm, completely removing the dependence on n in the approx-

1+1/k). We remark

imation factor while still running in time O(m
that the ideas for our deterministic algorithm are essential in ob-
taining this last result, and that more directly combining the ideas
of [16] with our constant factor approximation algorithm does not
seem to give an O(k log k) multiplicative girth approximation in

O(m'*1/k) time.

1.3 Overview of Approach

Summary of randomized O(1) approach. Our approach to obtain-
ing a 3-approximation in Section 3 to the girth is rooted in the
simple insight that if a vertex v is in a cycle of length R then every
vertex in the ball of radius « from v is at distance at most & + R
from every vertex in the cycle. Consequently, for each vertex if we
repeatedly prune vertices from its outball of radius R if they do not
have the property that they can reach every vertex in this ball by
traversing a distance at most 2R, then we will never prune away
vertices in a cycle of length R from that vertex.

Leveraging these insights, we can show that if we randomly
compute distances to and from a random O(+/n) vertices and if a
cycle of length O(R) is not discovered immediately then we can
efficiently implement a pruning procedure so that each vertex only
has in expectation O(+/n) vertices that could possibly be in a cycle of
length O(R) through that vertex. By then checking each of these sets
for a cycle and being careful about the degrees of the vertices (and
therefore the cost of the algorithm) this approach yields essentially a
4-approximation to the girth in O(m+/n) time with high probability
in n.
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Our 3-approximation is then obtained by carefully applying this
argument to both outballs and inballs and leveraging the simple
fact that if a vertex v is on a cycle C of length R then for every ¢ € C
either d(v,c) < R/2 or d(c,v) < R/2.

Overview of deterministic O(k loglog n) results: Our determinis-
tic algorithm in Section 4 is based on a different approach than our
randomized constant approximation algorithms in Section 3. We
think this approach is of independent interest and further demon-
strate its utility in Section 5 by showing how to combine the insights
that underly it with the algorithm from Section 4 to achieve arbi-
trary constant approximations.

For the sake of simplicity, we focus on unweighted directed
graphs G and for a parameter R, construct a subgraph (roundtrip
spanner) H so that if the roundtrip distance between u and v is at
most R in G, then their roundtrip distance is at most O(Rk log log n)
in H.

The key insight of guiding our algorithm is the following: instead
of partitioning the graph into disjoint pieces and recursing (as
is done in [16]), we instead allow the pieces to overlap on the
boundaries. This is justified by the following observation. Consider
a subgraph W of G, and let W’ denote the subgraph consisting of
all vertices within distance R of W. Then if we recursively build
a roundtrip spanner on W’, then we are guaranteed that we can
delete W from our graph. Indeed, if u € W and the roundtrip
distance between u and v is at most R, then u,v € W’. This simple
observation allows us to overcome the critical challenge in [16],
arguing that that graph can be broken apart, while nevertheless
preserving roundtrip distance.

This observation also forms the basis of an optimal spanner
construction on unweighted undirected graphs, which appears in a
book of Peleg (exercise 3 on page 188 in [17]). Specifically, for any
integer k > 1, we can construct a (2k — 1)-spanner with O(nl“/k)
edges in time O(m). The construction works as follows. Start at
any vertex v, let B; denote the ball of radius i centered at v, and let
|B;| denote the number of vertices in B;. Grow such balls around
v until we find an index i with |Bj1] < n*/|B;|. We can clearly
guarantee that i < k. At this point, add a spanning tree on Bj;;
to your spanner and delete all vertices in B;. Now, recurse on the
remaining graph. It is easy to check that the resulting spanner is as
desired. Our algorithm for directed graphs is similar, and we give a
more specific overview in Section 4.1.

We gain an O(log log n) dependence over the undirected spanner
algorithm presented because we must recurse on the balls we grew
instead of simply building a spanning tree on them. The precise con-
dition for recursion and corresponding calculation are performed
in the algorithms GoopCurT (Algorithm 4) and Lemma 4.2.

Further, our O(k logk) approximations of Section 5 are then
achieved by using the techniques of the algorithms in Section 3 to
better control the size of the outballs and inballs in an invocation
of the deterministic algorithm of Section 4.

2 PRELIMINARIES

For weighted directed graph G, we let V(G) and E(G) denote the
vertex and edge sets of G. We assume all edge lengths are nonneg-
ative. For a subgraph S € G (not necessarily vertex induced), let
V(S) denote the set of vertices of G, and let E(S) denote the set
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of edges. For a subset W C V(G), we define G[W] to be subgraph
induced by W. When the graph G is clear from context, we let n
and m denote |V (G)| and |E(G)| respectively.

For a weighted directed graph G with non-negative edge lengths,
we let dg (u, v) denote the (shortest path) distance from u to v in G.
When the graph G is clear from context, we simply denote this as
d(u,v). If there is no path from u to v, we let d(u, v) = co. When S is
a subgraph of G, we let ds(u, v) denote the (shortest path) distance
from u to v only using the edges in E(S). We denote the roundtrip
distance between u and v as dg(u S v) = dg(u,v) + dg(v,u) and
define a roundtrip spanner.

DEFINITION 2.1 (ROUNDTRIP SPANNER). We say that a subgraph
S € G is an a-roundtrip spanner ifds(u S v) < a-dg(u <= v) for
allu,v € V(G).

For weighted directed graph G we define the inball and outball
of radius r around a vertex v as

Bivn(r) =G{u:d(u,v) <r}]and B?)Ut(r) =G{u: d(v,u) <rj]

respectively. In other words, the inball of radius r around v is the
subgraph induced by vertices u with d(u,v) < r. The outball is
defined similarly. We define the ball of radius r around vertex v as

By (r) :=G[{u:d(u S v) < r}].

In other words, the ball of radius r around v is the subgraph induced
by vertices u within roundtrip distance r of v.

3 RANDOMIZED CONSTANT
APPROXIMATIONS

Here we provide algorithms for efficiently computing a
3-approximation to the girth Section 3.1. To simplify our algorithm
and analysis we assume that the maximum degree of G is bounded
by O(m/n), i.e. we assume it is only a constant larger than the
average degree, which is 2m/n. We justify this assumption by show-
ing that we can always reduce to this case as is formalized in the
following lemma.

LEMMA 3.1. Given a directed weighted graph G = (V,E) of n
vertices and m edges with non negative edge weights, one can construct
a graph H in O(m) time of O(n) vertices and O(m) edges with non
negative edge weights and of maximum degree O(m/n) such that

(1) All roundtrip distances (between pairs of vertices in G) in H

and in G are the same.

(2) Given a cycle in H, one can find in O(m) time a cycle in G of

the same length.

(3) Given a subgraph H' of H, one can find in O(m) time a sub-

graph G’ of G such that the number of edges in G’ is at most
the number of edges in H' and the roundtrip distances in H’
and G’ are the same.

3.1 An O(m+/n) Time 3-approximation to Girth

In this section we show a procedure that given a directed weighted
graph G and a girth estimate R, returns a cycle of length at most 3R if
the girth in G is at most R. The algorithm is given by GIRTHAPPROX
(See Algorithm 1) which in turn invokes the subroutine SIMILARSET
(See Algorithm 2).
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In order to approximate the girth of G we invoke this procedure
for every r = (1+¢€)’ for 1 < i < log;,.nW and stop once
the procedure returns a cycle. If g is the girth of G this incurs an
additional log; , . g factor to the running time (as for the first index
i such that (1 + €)? > g the algorithm will return a cycle w.h.p.)
and an additional (1 + ¢€) factor in the approximation ratio. The
additional (1 + €) factor in the approximation ratio can be avoided
if the weights are integers by simply using binary search on the
range between 1 and nW (where W is the maximum edge weight
in G) and finding two consecutive integers i and i + 1 such that the
procedure returned a cycle of length at most 3(i + 1) when invoked
on i + 1 but not a cycle when invoked on i. This incurs a log nW
factor in the running time that can be improved to O(log n) by the
same method as done in [16] of contracting small weight strongly
connected components and deleting large weight edges (see Section
5.1 in [16] for more details).

Let G = (V, E) be a directed graph with n vertices and m edges.
We assume the graph G is of average degree § = 2m/n and that
also the maximum degree in the graph is also O(6).

The subroutine SIMILARSET gets as an input the graph G and the
target distance R and either returns a cycle of length at most 3R or
returns a subset A, of vertices for every v € V. The subset A, for
a vertex v € V consists of vertices at distance at most R/2 from v
with the guarantee that A, contains all vertices that are

(1) At distance at most R/2 from v and
(2) On acycle of length R with v.

Procedure GIRTHAPPROX invokes the Procedure SIMILARSET twice,
once on G and once on the reversed graph of G (the graph obtained
by reversing every edge of G). If a cycle of length 3R is returned
in one of these calls then procedure GIRTHAPPROX returns such a
cycle. Otherwise, let {AR},, v be the sets returned from invoking
SIMILARSET on the graph G and {A%"}, ¢y on the reversed graph.
Next, the procedure for every v € V checks if there is a cycle
containing v of length at most R in the induced graph of Al U A%,
If such a cycle exists then the procedure returns such a cycle.

Procedure SIMILARSET works as follows. The algorithms starts by
sampling O(log n) independent subsets S; of expected size O(+/n)
each for 1 < i < M where M = 50logn. From every vertex w €
U1<i<am Si the algorithm runs Dijkstra from and to w in G. If a
cycle of length 3R is detected then the algorithm returns it.

Next for every vertex v € V and index 1 < i < M the algorithm
defines a set Tj(v) C S;. The sets T;(v) will be used to reduce the
number of potential vertices that can be on a cycle of length at most
R with v. First, the set Ty(v) consists of all vertices in Sy that are at
distance at most R/2 from v. Let Ro(v) be a sampled set of O(log n)
vertices from Ty(v). Now, the sets T;(v) and R;(v) are defined as
follows. The set T;(v) is the set of all vertices s € S; such that
d(v,s) < R/2and d(s,t) < 3R/2forall t € Jp<j<i—1 Rj(v). Again,
define R;(v) as a sampled set of O(log n) vertices from T; (v).

To gain intuition for the definition of T;(v) and R; (v), consider
the set G;(v) of all vertices s € V(G) such that d(v,s) < R/2
and d(s,t) < 3R/2forall t € Jp<j<i—1 Rj(v). We remark that our
algorithm does not compute G;(v), but its definition is essential for
the analysis. Intuitively, the set G;(v) consists of the vertices after i
rounds that the algorithm still believes could be in a cycle of length
R with v. If |G;(v)| = 100y/nlog n, then by the choice of S; as an
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independent random set of expected size O(+/n), we have that T;(v)
is a random sample of G;(v) of expected size at least 100log n. In
this way, R; (v) is just a random sample of G;(v) of size O(log n).

As we show in Lemma 3.4, if |Gy (v)| = 100+/nlog n, our algo-
rithm discovers w.h.p. a cycle of length at most 3R sometime during
the shortest path computations done at the beginning. On the other
hand, if |Gy (v)| < 100+/nlog n, then we can grow a shortest path
tree from v but only include vertices in Gy (v) to search for a cycle
of length R, only paying runtime |Gys(v)| = O(«/n) for that vertex
.

Formalizing this final step, the algorithm computes a short-
est path tree T(v) from v up to depth R/2, keeping only vertices
s € V such that d(v,s) < R/2 and d(s,t) < 3R/2forallt €
Uo<j<m Rj(v). The set Ay, is the set of vertices in T(v).

Algorithm 1 GIRTHAPPROX(G, R), takes a graph G and a parameter
R. If the girth of G is at most R this algorithm outputs w.h.p. a cycle
of length at most 3R

1: Invoke SIMILARSET(G, R) to either find a cycle of length at most
3R or set A% C V for each v € V(G).

2: Invoke SIMILARSET(G™V, R) where G™" is the graph where the
direction of every edge is reversed to either find a cycle of
length at most 3R or sets A C V for each v € V(G).

3: If a cycle of length at most 3R has yet to be found for each
v € V(G) perform Dijsktra from v in the graph induced by
A" U Al to find a cycle of length at most R through one of
the .

4: Return any cycle of length at most 3R found.

Next we prove the correctness of our girth computation algo-
rithm GIRTHAPPROX (Algorithm 1) and bound its running time.
First we prove the following lemma which provides a fairly straight-
forward argument that the algorithm always outputs the correct
result. The more challenging part of the analysis will be to bound
its running time.

LEMMA 3.2. If G contains a cycle of length at most R then
GIRTHAPPROX(G, R) (Algorithm 1) returns a cycle of length at most
3R.

Proor. Assume G contains a cycle C of length at most R. Let
v be a vertex in C. If the algorithm returns a cycle in line 3 of
SIMILARSET (Algorithm 2) then since this cycle has length at most
3R, the algorithm works as desired.

Consequently, we assume that this is not the case. Our goal is now
to show that A%"t contains all vertices ¢ € C such that d(v, c) < R/2
and that Ai{} contains all vertices ¢ € C such that d(c,v) < R/2.
Since for all ¢ € C either d(v,c) < R/2 or d(c,v) < R/2 this will
imply that C € A% U A" and therefore a cycle of length at most R
will be found in Line 3 of GIRTHAPPROX(G, R) (Algorithm 1) and
the algorithm works as desired. Further, note that it suffices to show
that A" contains all vertices ¢ € C such that d(v,c) < R/2 as this
will imply the desired claimed regarding Aizr,1 by symmetry.

Consider the execution of SIMILARSET (Algorithm 2) from Line 1
of GIRTHAPPROX(G, R) (Algorithm 1). Further, consider a vertex
t € Ti(v) for some 0 < i < M — 1. Recall that d(v,t) < R/2 (by
definition and construction of Tj(v)). Consider a vertex ¢ in C. As v
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Algorithm 2 SiMILARSET(G, R), takes a graph G and a parameter
R. This algorithm either computes a cycle of length 3R or a set
Ay C V(G) of “similar” vertices to v (with respect to balls of radius
R/2) for each v € V(G).

1: For M = 50logn, sample sets So, S1,- -+, Sy € V(G), each of

expected size O(n!/2) by sampling every vertex v € V indepen-
-1/2

dently with probability p = n
2: Run Dijkstra to/from each vertex v € S; for every 1 < i < M.
3. If there exists a vertex v € Uy <j<rS; such that v is on a cycle
of length 3R then return the shortest such cycle.

4: for every vertex v € V do

5 Set To(v) « {s € So | d(v,s) < R/2}.

6: fori=1,...,Mdo

7: if |T;—1(v)| > 100log n then

8: Let Rj_1(v) be 100logn vertices chosen indepen-
dently at random from T;_1 (v)

9: else

10: Let Ri—1(v) = Tj—1(v).

11: Ti(v) « {s € S; | d(v,s) < R/2andd(s,t) <

3R/2forall t € Up<j<i-1Rj(v)}

12: Compute a shortest path tree T(v) up to depth R/2 keep-
ing only vertices s such that d(s,t) < 3R/2forallt €
Uo<j<mRj(v)}.

13: Set Ay, to be the set of vertices in T(v).
return A, forallv e V

and c are on a cycle of length R we have d(c,v) < R and therefore
d(c,t) < d(c,v) +d(v,t) < 3R/2 by triangle inequality. It follows
by construction that each vertex ¢ € C with d(v,c) < R/2 will be
added to A,, as desired. m]

With the correctness of GIRTHAPPROX (Algorithm 1) established,
in the remainder of this section we focus on analyzing its running
time. To do this we will consider an invocation of SIMILARSET (Al-
gorithm 2) and both bound its running time and the size of the sets
Ay it computes.

Before setting up the proofs, for each vertex v € V we define

Go(v) = {s € V |d(v,s) < R/2} and
Gi(v) = {s € V |d(v,s) < R/2 and
d(s,t) < 3R/2forall t € Up<j<i-1Rj(v)} .

Notice that the distribution of T;(v) is the distribution on vertices
that results from taking each s € G;(v) and including it in T;(v)
with probability p = 1/+/n.

Loosely speaking, the analysis of the running time is roughly as
follows. The main non trivial part is to show that the expected size of
the sets Aizﬂl and A" is O(+/n). This, together with the assumption
that the maximum degree is O(m/n), will imply that the running
time of our algorithm is O(m+/n). We roughly speaking show the
following for the set A%t (similarly for the set Al ). We want to
claim that w.h.p. the sets G;(v) are decreasing by at least a constant
factor until there is a set G;(v) of O(v/n) size. As A%Ut is a subset
of Gpr(v) € Gj(v), the claim follows. Assume this is not case, i.e.,
there exists an index i such that |Gj+1(v)| > 0.8|G;(v)|. Note that by
construction for every vertex s in G;+1(v) all vertices in R; (v) are at
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distance at most 3R/2 from it. As R; (v) is a sampled set of G; (v), we
can show that w.h.p. most vertices in G; (v) (say 0.9 fraction of them)
are at distance at most 3R/2 from s. As |Gj+1(v)| > 0.8|G;(v)], this
means that this is also true for most vertices in G; (v). That is, most
vertices in G;(v) are at distance at most 3R/2 to most of the other
vertices in G;(v). We show by counting argument that in this case
there must be many pairs of vertices u and v such that u, v € G;(v)
and dg(u,v) < 3R/2 and dg(v,u) < 3R/2 (hence u and v are both
on a cycle of length at most 3R). That is, w.h.p. G; (v) contains many
vertices that are on cycles of length at most 3R. W.h.p. we can show
that such a vertex will belong to S;(v) and therefore the algorithm
will detect a cycle of length 3R and will not continue to computing
the sets A"

LEmMA 3.3. Consider a vertex v, indexi € [M] such that |G;(v)| >
200y/nlogn and a vertex u € V. If there are less than 0.9|G;(v)|
vertices s € G;(v) such that d(u,s) < 3R/2 then with probability at
least 1 —2/n'% u ¢ Giy1(v).

Proor. Note that the distribution of obtaining T;(v) is equiva-
lent to the distribution of picking every vertex in G;(v) with prob-
ability p for every 1 < j < M.

We first show that with high probability T;(v) contains at least
100 log n vertices (and therefore also R; (v)). As |G;(v)| > 200y/nlogn
then the expected size of |T;(v)| is at least 200 log n. Therefore, by
Chernoff Bound the probability that |T;(v)| < 100log n is at most

_1/2 100logn
( 19/2—11//22 ¢ 1/n10.

Assume this is indeed the case, that is, T;(v) contains at least
100 log n vertices. The set R; (v) is a sampled set of 100 log n vertices
from T;(v). As the distribution of obtaining the set T;(v) is equiva-
lent to distribution of picking every vertex in G; (v) with probability
p then the distribution of R;(v) is equivalent to picking 100 logn
vertices from G;(v) (every vertex in G;(v) has the same probability
appearing in R;(v)). Consider a uniformly random vertex s from
Gi(v). With probability at least 1/10 we have d(u,s) > 3R/2.In
other words with probability at most 9/10 we have d(u,s) < 3R/2.
Therefore, the probability that for every vertex s in Rj(v) we have
d(u,s) < 3R/2is at most (9/10)10010g " < 1/,10,

The lemma follows by union bound over the events that either
|T; (v)] is smaller than 100 log n or for all s € R;(v) we have d(u, s) <
3R/2. )

LEMMA 3.4. If there exists a vertex v and an index i such that
|Gi(v)| > 200y/nlogn and |Gi+1(v)| = 0.8|G;(v)| then with proba-
bility at least 1 — 1/n® there exists a vertex in T;(v) that is contained
in a cycle of length at most 3R.

Proor. Assume such a vertex v and index i exist.

We say that a vertex u is (v, i)-dense if there are at least 0.9|G; (v)|
vertices s € G;(v) such that d(u,s) < 3R/2.

By union bound on all vertices v € V on Lemma 3.3, with proba-
bility at least 1 — 2/n°, all vertices in G;41(v) are (v, i)-dense.

As Gij+1(v) € Gj(v) and |Gi+1(v)| = 0.8|G;(v)|, we also have
that with probability at least 1 — 2/n°, 0.8/G; (v)]| vertices in G; (v)
are (v, i)-dense. Assume this is indeed the case.

Imagine constructing the following directed graph H whose set
of vertices is G;(v) and set of edges is the following. For every
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vertex u in G;(v) add an outgoing edge for every vertex s such that
d(u,s) < 3R/2.Note that if there exists two edges in the graph (u, s)
and (s, u) then both u and s are on a cycle of length at most 3R. We
next show that by counting argument there are many vertices in
Gi(v) that are on a cycle of length at most 3R. Every (v, i)-dense
vertex u has 0.9|G;(v)| outgoing edges in H. There are at least
0.9|G;i(v)| (v, i)-dense vertices in H. We get that the number of
edges E(H) is at least 0.71|G;(v)|?, that is, |[E(H)| = 0.71|G;(v)2.
On the other hand let « be the fraction of vertices in G;(v) that
do appear on a cycle of length at most 3R. For every edge in H give
a credit of 1/2 for each of its endpoints vertices. Note that every
vertex x that do not belong to a cycle of length at most 3R can
get a credit of less than |G;(v)|/2. To see this, note that there is
no other vertex with both incoming and outgoing edge to x (as
otherwise x is on a cycle of length at most 3R) so the total number
of incoming and outgoing edges of x is at most |G;(v)| — 1 <
|Gi(v)|. Hence, the total credit of x is less than |G; (v)|/2. The total
credit of a vertex x that do participate in a cycle of length at most
3R is less than |G;(v)|. We get that the total credit of all vertices,
which is also equal to the total number of edges in H, is less than
a|Gi (0)]|Gi(v)]/2 + (1 — @)|G; (v)|2. It follows that 0.71|G; (v)|? <
a|G; (0)]|Gi(v)]/2 + (1 — )|G;(v)]2. Straight forward calculation
show that o < 0.58 and thus 1 — a > 0.42. In other words, at least
0.42|G; (v)| vertices in G;(v) belong to a cycle of length at most 3R.
Next, we claim that w.h.p. there is such a vertex in T;(v). Recall
that the distribution of T; (v) is equivalent to picking every vertex in
G;(v) with probability p. Consider one vertex that participates in a
cycle of length at most 3R the probability it does not belong to T;(v)
is 1—p. The probability that none of the 0.42|G;(v)| vertices belong
to Tj(v) is at most (1 —p)0'4Z|Gi(v)| <@ —p)841°g”/p < 1/n0.
The lemma follows (as 1/n!® + 2/n° < 1/n® for large enough
n). o

Finally, the following concludes the running time of our algo-
rithm.

Lemma 3.5. The expected running time of Algorithm 1 is
O(m+/nlogn + nynlog? n) = O(mv/n).

Proor. Consider one of the executions of SIMILARSET (Algo-
rithm 2) by GIRTHAPPROX (Algorithm 1). This algorithm computes
Dijkstra to/from each vertex w € S; forevery 1 < i < M in O(m +
nlog n) time. The expected size of each S; is O(n!/2). Thus, the ex-
pected time of this computation for S; is O(m+/n+n+/nlog n). There
are O(log n) sets S; and therefore there is at most O(m+/nlogn +
nynlog? n) expected time for the computation of all Dijkstra’s.
Next, for every vertex v the algorithm computes the sets T;(v) for
every i € [M]. The set Tp(v) can be computed easily in O(|Sp|) time
which is O(n!/2) in expectation. In order to compute T; (v) for i > 0,
the algorithm considers every vertex s € S; and it check if s is at
distance at most 3R/2 from every vertex in t € Ujeq, ... i-1]R;j(0).
There are O(log? n) vertices t in Ujelo,...,i-1]Rj(v). The distance
d(s,v) is already computed and thus can be retrieved in O(1) time.
Overall, computing the set T;(v) takes O(n'/2log? n) in expecta-
tion. Therefore, O(n!/2 log® n) for all indices i € [M]. Hence, for all
vertices v O(n3/2 log3 n) expected time for this part.

Next, we bound the cost of computing the balls, A,, and we
bound their size. By a slight abuse of notation we call a vertex s
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(v, M)-dense if it satisfies
d(v,s) < R/2and d(s,t) < 3R/2forallt € Uje[o, .. anRj(v).

The algorithm grows a ball from every vertex v € V by only keeping
vertices s that are (v, M)-dense to compute Ay,.

We first show that if there is no index i such that |G;(v)| >
200y/nlogn and |G4+1(v)| > 0.8|Gi(v)| then the expected time
to compute the ball of v is O(n!/2log> n + n*/2logn - §). We do
that by showing that the expected number of vertices in G (v) is
O(nl/2 log n). As the maximum degree in G is O(§) and checking
if a vertex s is (v, M)-dense takes O(log2 n) time, then the claim
follows.

As for every i such that
|Gi(v)| = O(v/nlog n) we have |Gj41(v)| < 0.8/G;(v)| then straight
forward calculation shows that there exists an index M” € [1..M]
such that |Gyp (v)| < O(y/nlog n). Note that the ball of v contains
only vertices from Gy (v) and thus the claim follows.

We now assume that there exists a vertex v and index i such
that |G;(v)| > O(v/nlogn) and |Gi1+1(v)| > 0.8|G;(v)|. By claim
3.4 in this case with probability at least 1 — 1/n® the algorithm
finds a cycle of length 3R and returns it in Line 3. Therefore, in
this case the algorithm does not compute the balls in Line 13. With
probability at most 1/n® the algorithm does not find a cycle in Line
3 and therefore continues to computing the balls in Line 13. The
computation of all balls in Line 13 is bounded by O(mn) in this case.
As this happens with very small probability this does not effect
the asymptotic bound of the expected running time. The lemma
follows. O

We conclude this section with the proof of Theorem 1.

Proor oF THEOREM 1. The algorithm calls Algorithm
GIRTHAPPROX using a binary search on the range [1, nW] to find a
parameter R such that Algorithm GIRTHAPPROX returns a cycle (of
length at most 3(R + 1)) when invoked on R + 1 but not on R. As
mentioned above the dependency on log nW can be improved to
log n using the method used in [16] (Section 5.1). Roughly speaking
this method constructs in O(mlog n) time a set of graphs such that
the number of vertices in all these graphs together is O(nlogn),
the number of edges is O(mlog n), the ratio between the maximum
edge weight and the minimum edge weight in all these graphs is
O(n) and the shortest cycle is contained in one of these graphs.
Instead of running binary search on G, we run it in each of these
graphs.

Now using Lemma 3.2 and Lemma 3.5 the theorem follows. O

We give our result on constant approximation roundtrip span-
ners in O(m+/n) time and show Theorem 2 in the full version.

4 DETERMINISTIC O(k loglogn)
APPROXIMATION ALGORITHMS

In this section we present our deterministic algorithms for com-
puting a O(k log log n) approximation to the girth and computing
O(k log log n) multiplicative roundtrip spanners. Our main result
will be showing how to compute improved roundtrip covers as
defined originally in [18]. Leveraging this result we will prove
Theorem 3 and Theorem 4.
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First, leveraging the definitions of balls in Section 2 we define
roundtrip covers. Intuitively, roundtrip covers are a union of balls
of radius kR such that if vertices u,v € V(G) satisty d(u = v) < R
then u, v are both in some ball in the cover.

DEFINITION 4.1 (ROUNDTRIP COVERS). A collection C of balls is a
(k, R) roundtrip cover of a weighted directed graph G if and only if
every ball in C has radius at most kR, and for any u,v € V(G) with
d(u = v) < R there is a ball B € C such that u,v € B.

Specifically, we show the following theorem.

THEOREM 7 (IMPROVED ROUNDTRIP COVERS). For an n-vertex m-
edge graph G, an execution of ROUNDTRIPCOVER(G, k, R) returns a
collection C of balls that forms a (O(k log log n), R) roundtrip cover of

a weighted directed graph G in time m+*O/K) \yhere Y gec [V(B)| =
p1+0(1/k)

To show Theorem 3 from Theorem 7, we can compute (k, 2})
roundtrip covers for all 0 < i < O(log n), and set our girth estimate
as the minimum radius of any ball in the cover that has a cycle. To
compute a roundtrip spanner, simply take the union of all the balls
in the (k, 2!) roundtrip covers for all i = O(log n).

The rest of the section is organized as follows. In Section 4.2 we
state our main algorithm. In Section 4.3 we analyze the algorithm
and prove Theorem 7. In Section 4.4 we use Theorem 7 to formally
prove Theorem 3 and Theorem 4.

4.1 Technical Overview

We focus on unweighted directed graphs G and for a parameter R,
construct a roundtrip spanner H so that if the roundtrip distance
between u and v is at most R in G, then their roundtrip distance is
at most O(Rk loglogn) in H.

Our approach is based on growing inballs and outballs in the
graph G. Fix a vertex v, and let Bil.n, B denote the inball and outball
of radius iR around v, and let |B§n|, |B‘l.’“t| denote the number of
vertices in the balls and fix d = O(k loglog n). We start by growing
and inball and outball around v. First, if |BE1 N Bg‘“l > %, then we
can build a roundtrip ball of radius 2dR + R and delete Bi; n Bgut
from our graph. This is safe essentially by our observation above.
Otherwise, we find an index i such that |Bil.’ill isn’t much larger
than IB?‘I, we recursively build a roundtrip cover on Bii‘il and then
delete Bil.“. This is safe to do by our observation above. Similarly,
i
we recursively build a roundtrip cover on B‘l?}:i and then delete

if there is an index i such that |B ;l isn’t much larger than |B§’“t|,
B‘i’“t. Through standard ball cutting inequalities we can show that
such an index i exists (Lemma 4.2). We would like to elaborate on
a few points. First, when we compare the sizes of IBii‘}rll and IBil.nl,
we compare both the number of vertices and edges, the former to
control the size of the roundtrip spanner constructed, and the latter
to control runtime. Second, we grow the inball and outball at the
same rate, i.e. we alternately add an edge at a time to the inball and
outball to maintain that the work spent on each is the same.

4.2 Main Algorithm

We first give a high-level description of our algorithm for computing
Roundtrip Covers, ROUNDTRIPCOVER, which is presented formally
as Algorithm 3.
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High-level Description of Algorithm. As discussed in Sections 1.3
and 4.1, our algorithm is based on ball growing along with the
following observation: if for a radius r’ we compute a roundtrip
cover of B (" + R) and add all the balls in the computed roundtrip
cover on Bg‘ (r’ + R) to our final cover, then we can safely delete
all vertices u € BI(r’) from our graph and recurse on the rest
of graph; the deleted vertices are already satisfied in the sense
that for every u’ € V(G) with d(u = u’) < R there is a ball
B in the cover such that u,u’ € B. Indeed, if u € B(r') and
d(u = u’) < Rthen u,u’ € B(r’ + R) and therefore we are
guaranteed that the roundtrip cover on Bi}(r” + R) contains a ball
B such that u,u’ € B. Using this observation, we grow inballs and
outballs around vertices in our graph G to “partition" our graph
into pieces that possibly overlap, where the overlap corresponds to
the boundary B (r” + R)\BI(r’) in our example.

We describe our algorithm in more detail now. Consider any
vertex v. We grow an inball and outball around v at the same
rate, spending the same time on the inball and outball. First, we
consider the case that [V(BI(r))], [V(BS"(r))| > 22 for some r =
O(Rkloglog n), as was done in Pachocki et al. [16]. Then we know
that IV(Bg1 (r)NV (B (r))| = % . By our observation above, we can
add the ball By, (2r+R) to our roundtrip cover, delete B (r) N\ B (r)
from G, and recurse on the remainder. Otherwise, if we find a radius
r’ such that say Bi(r’) and B%(r’ + R) satisfy the conditions of
GoopCut (Algorithm 4), then we recurse on Bg‘(r’ + R) and delete
B (r’) from our graph and recurse on the remaining graph. This is
safe to do by our observation above. We can also do an analogous
process on BO"(r”) and B3 (r’ + R). By a variant of the standard
ball-growing inequality (Lemma 4.2) we can show that a good cut
always exists.

We now will give some intuition about the condition in Goob-
CuT and the (somewhat strange) appearance of the O(loglogn) in
our algorithm. First, we remark that the condition in GoopCuT must
track both the number of vertices and edges in the ball: the former
to control recursion depth and roundtrip cover size, and the lat-
ter to control runtime. Now we give intuition for why we require
an O(k log log n) approximation factor in our algorithm. Consider
growing inballs Bi?(r) from v for various radii r, and recall that
we make a cut depending on the relative sizes of IV(Bg‘(r))I and
IV(Bgl(r + R))|. Now, note that if for example IV(Bgl(r))l = 0(1),
we can afford to have |V (B (r + R))| = O(nl/k), as we can sim-
ply run a naive algorithm on B (r + R) now. On the other hand,
if for example |V (B (r))| = Q(n), we can essentially only afford
to have |[V(BI(r + R))| < (1 + %) [V(B(r))|. To see the latter,
note that the recurrence T(m) = (l + %) (T(m/2) + T(m/2)) has

solution T(m) = m!*O(1/k) Now, interpolating between these two
extremes allows us to compute the optimal way to do ball cutting
(which is done in GoopCurt). This leads to a ball cutting proce-
dure with O(k loglog n) levels, and thus results in an O(k log log n)
approximation ratio.

Explanation of Algorithm 3: We now explain what each piece of
Algorithm 3 is doing. Here, ij, and ioyt track the radius of the inball
and outball that we are growing. We grow the balls at the same rate.
If we notice that at any point we are in position to make a good cut
(see lines 7, 9) then we do so. Otherwise, we know that both balls
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Algorithm 3 RounpTRIPCOVER(G, k, R), takes a graph G with
n vertices, m edges, and parameters k and R. Returns a
(O(kloglogn), R) roundtrip cover C = {B1,Bg, ..., }

: iin, iout «— 0.

: r < 5kRloglogn.

: Take any v € V(G).

: while true do \\some condition below in lines 5, 7, 9 will trigger

eventually

5. if min([V(BY ((im + DR))I, [VBI ((fout + DR)| = 32
then

6: return {B,(2r + R)}U ROUNDTRIPCOVER(G\(Bg‘((iirl +
DR) N B ((iout + DR)), R, k).

7. if GoopCUT(G, B (i R), B ((ii, + 1)R)) then

8: return ROUNDTRIPCOVER(Bg‘((iin +
1)R), R, k)UROUNDTRIPCOVER(G\Bivn(iinR), R, k).

9 if GoopCuT(G, B9 (ioutR), BO™ ((iout + 1)R)) then

10: return RoUNDTRIPCOVER(BI™ ((iout +

1)R), R, k)UROUNDTRIPCOVER(G\B™ (ioutR), R, k).

[N N

1 if |[E(BY(iinR))| < [E(BY™ (ioutR))| or [V(BY™ (ioutR))| >
%” then

12: lin < ijn +1

13: else

14: iout < fout +1

Algorithm 4 GoopCuT(G, B, B), takes a graph G with n vertices
and m edges, balls By C By, and determines whether recursing on
By and then deleting B; from our graph is good progress

k-
1 if [V(By)] < 2nand |V(By)| < [V(By)| F nk and
Je—
 |E(B2)| < max((1 + 1)IE(By)|. [E(B1)| ' mF) then
return true
else
return false

[S NN

will eventually contain many vertices (see line 5). In this case, we
add By, (2r +R) to our roundtrip cover, delete B (i, R) N B3 (ioutR)
from our graph, and recurse. To grow the inball and outball at the
same rate, we run Dijkstra to grow the inball and outball, alternately
processing an edge at a time from the inball and outball. We check
the condition of GoopCuT on a ball when we have certified that we
have processed all vertices up to distance ij R or ioyiR respectively.

4.3 Analysis of ROUNDTRIPCOVER and proof of
Theorem 7

In this section we prove Theorem 7, bounding the performance of

our roundtrip cover algorithm Algorithm 3. We start by showing

that 1 + max(ijn, iout) < 5k loglogn at all points in the algorithm,
hence some condition in lines 5, 7, 9 will trigger eventually.

LEMMA 4.2. At all points during Algorithm 3, we have that 1 +
max(lin, iout) < 5kloglogn.

Proor. We show 1+ij, < 5kloglogn, and the bound on 1+i;
is analogous. To prove this we assume that none of the conditions
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in the inner loop of the algorithm trigger, and compute the result-
ing vertex and edge sizes of B (i, R) and B3" (ioutR). To this end,
assume that |V (B (i, R))| < %" and |E(B2(iipR))| < m. By the
conditions of lines 5, 7, and 11 we know that each time we increment
ijn either
: - k=11
[V(By ((iin + 1)R))| > [V(By (iinR))| & n¥ (1)
or
. . k=1 1
|E(BE (i + DR)| = [EBRinR)| T m* and (@)
BB (G + DR] 2 (14 2 ) BB R ©

We first show that Eq. (1) can only hold for 2k log 4 log n values of ijy,.

To this end, define a sequence {x;}i>0 asxp = 1 and xj+1 = xl.k%1 nk.

By induction it follows that x; = nl_(%)l . In particular,
_(%)Zkloguogn 3

_ 1
X2klog4logn = 1 = Z’L

This shows that the condition in Eq. (1) can only hold at most
2k log 4log n times. Similarly, after Eq. (2) holds for 2k log4logn
different iy, we will have that |E(BI (ii,R))| > 3Tm. At this point,
Eq. (3) can hold at most k times. This gives us that in total

1+ iy, <1+ 2klog4logn + 2klog4logn + k < 5kloglogn

as desired. o
Now we proceed to proving Theorem 7.

PRrooF oF THEOREM 7. We first show that the algorithm indeed
returns a (O(k loglogn), R) roundtrip cover. Then we bound the
total size of balls in the roundtrip cover, as well as the runtime.

Returns a (O(kloglogn),R) roundtrip cover. We analyze lines
6, 8, and 10. In line 6, note that by Lemma 4.2, we know that
(iijn + DR, (iout + 1)R < r. Therefore, we know that Bg‘(iinR) al
B (ioutR) C By (2r). Additionally, it is clear that for any vertex
u € B (i;nR) N B (ioytR), if another vertex u’ satisfies d(u
u’) < Rthen u’ € By, (2r + R). Therefore, the ball B, (2r + R) con-
tains both u and u’, so we can safely delete Bg‘(iinR) N B (ioutR)
from G and recurse. This is exactly what is happening in line 6. In
line 8, note that for any vertex u € Bg‘(iinR), if another vertex u’
satisfies d(u < u’) < R then v’ € B ((ijy + 1)R). Therefore, if we
construct a roundtrip cover on Bi;}((im + 1)R), then we can safely
delete Biz?(iinR) from G and recurse. This is exactly what occurs in
line 8. The same argument now applies to line 10. Finally, note that
all balls we create are of radius 2r + R = O(Rk loglogn).

Total sizes of balls is n'*O(1/k)  We show by induction that the
total number of vertices among all balls in the rountrip cover com-
puted is at most 10n%7 for an input graph G with n vertices. We
show this by analyzing lines 6, 8, and 10. For line 6, note that
because min(IV(BiZ‘}((iin + 1)R)|, V(B2 ((igut + 1)R))|) = 31 we
know that |V (B ((ijn+1)R)) NV (B3 ((iout +1)R))| = % Therefore,
it suffices to verify

Kk
10n*-1

IA

n\ra
2n+10 (—) -
2
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which is clear. For line 8, for simplicity let s = IV(BiZf’(iinR))l. Then
by the condition of GoopCurT, it suffices to note that

ing . 2 £
10|V (Bg, ((iin + 1)R))| %=1 + 10(n — s) %1

k-1 1 _k_ _k_
10(s & nk)%1 + 10(n — s) k-1

IA

IA

1 1 k
10sn&-1 + 10(n — s)nk-1 = 10nk-1.
The same argument now applies to line 10.

Can be implemented to run in time m**©(1/%) We can implement
the algorithm to grow B (i;,R) and B (ioutR) at the same rate,
i.e., we process a single inedge and outedge at a time, and increment
ijn and iyt when we are sure that we’ve processed the whole inball
or outball. This can be done with Dijkstra’s algorithm. We stop
growing a ball once it contains at least 37" vertices. This way, any
time we recurse, the total amount of work we have done to this point
is at most twice the number of edges in the piece we are recursing
on in lines 6, 8, and 10. To bound the runtime, we imagine lines 8
and 10 as partitioning the graph into pieces of the form BiZ (i;, R) or
B9 (ioutR) and then recursing on B ((ii, +1)R) or BO™ ((iout +1)R).
This way, the depth of the recursion is at most O(log n) because we
know that |V (B ((ijn + 1)R))I, |V (B2 ((iout + 1)R))| < %" when
we recurse.

We will now show that the total number of edges in level ¢ of

the recursion is bounded by (l + %)8 meT , where the top level
is level 0. We proceed by induction on £. Say that the algorithm
partitions G into G = G;{UG,U- - UG, where each G; is either of the
form Bgl (iinR) or B3 (ioutR). For simplicity, let s; = |E(G;)| and let
ti = [E(B®((izn+1)R))| or t; = |[E(BZ™((iout +1)R))| corresponding
to what G; was. We know by the condition of GoopCur that t; <

k1
max((l + %) si»s;* m¥). By induction, we know that the total
number of edges processed in level £ is at most

onC-1 Kk
Z(1+E) 1

as ),; s; < m obviously.

Now, it is clear that the total work done on a graph G at some
node of the recursion tree is O(|E(G)|) as line 6 only occurs O(log n)
times. Now taking £ = O(log n) in the above claim completes the
proof. O

4.4 Proofs of Theorem 3 and Theorem 4
Both theorems follow easily from Theorem 7.
Proor oF THEOREM 3. We first show the result for unweighted
graphs. To show this, run
RouNDTRIPCOVER(G, O(k), 2%) for 0 < i < O(logn).

Now, set our estimate g’ of the girth to be the smallest radius of any
nontrivial ball that we had in a roundtrip cover. By the guarantees
of ROUNDTRIPCOVER, it is clear that g < g’ < O(kloglogn) - g
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as desired. It is clear that the algorithm runs in time é(mH%) by
Theorem 7. We can extend this to weighted graphs by instead taking
0 < i < O(lognW), where W is the maximum edge weight. This
can be improved to O(log n) by the same method as done in [16],
where they give a general reduction by contracting small weight
strongly connected components and deleting large weight edges
(see Section 5.1 in [16] for more details). o

Proor oF THEOREM 4. We first show the result for unweighted
graphs. It is easy to see that

O(log n)
RouNDTRIPCOVER(G, O(k), 2°)
i=0

is an O(k loglog n) spanner with O(n!*1/k)

edges by Theorem 7.
It is clear that the algorithm runs in time O(m”i ). The extension
to weighted graphs follows as in the above paragraph (proof of

Theorem 3). m

5 AN O(klog k) APPROXIMATION IN O(m!*1/k)
TIME

In this section we explain how to combine the ideas from Algo-
rithm 3 and Algorithm 1 to give an algorithm for (O(k logk), R)-
roundtrip covers with é(n1+1/k) edges in time é(m1+1/k). Then
Theorem 5 and Theorem 6 follow from this in the same way that
Theorem 3 and Theorem 4 followed from Theorem 7.

THEOREM 8 (IMPROVED RANDOMIZED ROUNDTRIP COVER). For an
n-vertex m-edge graph G, an execution of ROUNDTRIPCOVERZ(G, k, R)
returns a collection C of balls that form a (O(klogk), R) roundtrip
cover of a weighted directed graph G in time mitOU/K) \here
Spec V(B)| = nt+O0/0,

The remainder of the section is organized as follows. We first give
an overview for our approach, which combines the complementary
approaches of sections Section 4 and Section 3. We then state our
main algorithm, Algorithm 5. Afterwards, we analyze Algorithm 5
to prove Theorem 8 in Section 5.2. Finally, we apply Theorem 8 to
prove Theorem 5 and Theorem 6.

Overview of approach. Throughout this section, we assume that
we have applied Lemma 3.1 to make our graph G approximately
regular. Here we give a high level overview for the ideas behind the
algorithm. Let G be an n-vertex m-edge graph and let K := 10k log k
for integer k. We start by generalizing Algorithm 1 and Algorithm 2
slightly, where we consider the case where the sampled sets S;
have size O(n!/¥) instead of O(n!/?). To elaborate, we first view
Algorithm 1 and Algorithm 2 as algorithms with the following
guarantees. They add O(n3/2) edges towards a spanner, and then
for each vertex v which is not yet in a cycle of length 4R using the
current spanner edges builds a data structure D, (corresponding to
Algorithm 2) which certifies that for all but at most 0(n'/2) other
vertices u we have that d(v < u) > 4R. We can generalize this as
follows. There is a corresponding algorithm (Algorithm 6) which
has the following guarantees. It adds O(n'*!/ ky edges towards a
spanner, and then for each vertex v which is not yet in a cycle of
length 2KR using the current spanner edges builds a data structure
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Dy, which certifies that for all but at most O(n%) other vertices u
we have that d(v = u) > KR.

After running this generalized algorithm (Algorithm 6), for a
vertex v, we can define i-similar vertices to v, which are intuitively
the vertices that the data structure D, thinks could still possibly be
in a cycle of length kR with v and which are within distance iR of v.
Then we define a sequence ES, EL, - - - , EX of “balls" centered at v,
where E!, is the outball from v consisting of i-similar vertices. The
following important conditions hold: v € EY, and EL, C EL™! for all
0 < i < K. Finally, ifu € E, and d(u < u’) < R, then u’ € ELFL,
This allows us to apply the ball-growing procedure in Algorithm 3
but using the balls EX. Note that by our choice of K and a variant
of Lemma 4.2, there exists a good cut. This is because

nl_(%)K > nl_% = n%
Hence, we can make this good cut and then recurse. Here, our cut-
ting condition is simpler (only checks vertices, not edges) because
we have reduced to the case of regular graphs through Lemma 3.1.

Algorithm 5 RounDTRIPCOVER2(G, k, R). Takes in a n-vertex m-
edge graph G, parameter k, and distance R. Returns a (O(k log k), R)
roundtrip cover C = {B1,Ba,...,}

1: C« 0.

2. (G’,C’, D) « BumLpSIMILAR(G, k, R)
3: C « C,.

4 C « CUBALLGrROW(G',k,R, D).

5. return C.

5.1 Explanation of algorithms

Explanation of Algorithm 5, Algorithm 6, Algorithm 7, Algorithm 8,
Algorithm 9. Throughout, we let 7 be the number of vertices at the
top level of recursion in the algorithms and we let K := 10k log k
for integer k.

We start by explaining Algorithm 6 (BuiLDSIMILAR), which builds
a data structure which allows efficient similarity queries. It follows
the same blueprint as Algorithm 2. The algorithm first selects sets
Sifor1 < i < 100log A, where |S?| = 100n!/¥ log? 7 for all i. It then
computes shortest path trees to and from all vertices in all S*. The
algorithm then adds roundtrip balls of radius O(KR) centered at
each u € S’ to our roundtrip cover. The algorithm then marks all
vertices v from the graph that are within distance 2KR both to and
from some vertex u in some S’ as not turned on anymore. Then for
all vertices v € V(G) the algorithm builds sets T} and a uniform
sample S, of T} of size O(log #) that allow us to “test” whether
another vertex u is similar to v, i.e. could potentially be in a cycle of
length O(KR) with v. Eventually, | T} | gets small, and the algorithm
stops processing vertex v. Finally, it returns the graph G’ of all still
on vertices, the updated roundtrip cover, and the data structure D
for similarity testing consisting of all the S% for each vertex v and
shortest path trees from all u € S*.

Now we explain Algorithm 8 (SIMILAR), which uses the data
structure D computed by BUILDSIMILAR to decide whether vertex u
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Algorithm 6 BuiLpSImMILAR(G, k, R). Takes in a n-vertex m-edge
graph G, parameter k, and distance R. Returns a triple (G’, C, D),
where G’ C G is a subgraph which still needs to be processed, C
is a set of balls to include in the roundtrip cover, and D is a data
structure which supports similarity queries. 7 is the number of
vertices at the top level of recursion.

1: C«0.

2: K « 10k logk.

3: Select uniformly random subsets s1,s2 ... ,SlOOIOgﬁ C V(G)
where |S?| = IOOn% log2 f for all i.

4 For all vertices u € S? for some i, build a shortest path tree to
and fromu.

5. C e UIY8 ™, csi Bu((4K + 1)R).

6: for v € V(G) do

7: ifve (BL“(ZKR) N Bg“t(zKR)) for some u € S* for some i
then on[v] « false.

8: for v € V(G) do

9: fori=1toK do

10: T, = {u € S : dv,u) < KRandd(u,w) <
2KR forallw € S, forall 1 < j < i.}

11: if |T}| > 50log /i then

12: S! « uniform sample of T}, of size 50 log #.

13: else

14: Return to line 8.

15: Have D store all the S!, and shortest path trees from all vertices
u € S* for some i.
16: return (G [{v : on[v] = true}],C,D).

Algorithm 7 BALLGROW(G, k, R, D). Takes in a n-vertex m-edge
graph G, parameter k, distance R, and data structure D supporting
similarity queries. Returns a set C of balls to include in the roundtrip
cover.

1: C«0.

2: K « 10k logk.

3. on[v] « true for all v € V(G).

4. while there exists v with on[v] = true do

5 fori=0toK—-1do

6: El « {u € V(G) : on[u] and SIMILAR(G, u, v, D, i, R)

and u reachable from v through E.}.

> We elaborate on this definition Section 5.1.

7: EN « {u e V(G) : on[u]
and SIMILAR(G, u, v, D, i + 1,R)
and u reachable from v through Ei+1).

8: if GoopCuT2(G, EL,, EL+1) then

o: C«—CuU ROUNDTRIPCOVERZ(EL“, k,R).
10: on[v] « false for all v € EL,.

11: Break loop and return to line 4.

12: return C.

is i-similar to vertex v. It returns true if and only if
d(v,u) < iR and
d(u,w) < (i+K)Rforallw € S{, forall 1 <j < 100logn.

Intuitively, this contains a ball around v of distance iR that contains

Algorithm 8 SIMILAR(G, u, v, D, i, R), Takes in a n-vertex m-edge
graph G, vertices u,v € V(G), data structure D, parameter R, de-
cides whether u is i-similar to v

1: K « 10klogk.

2: if d(v,u) > iR then

3: return false

4: for1 < j < 100log7 do

5 for w € 5, do

6: if d(u, w) > (i + K)R then
7 return false

" return true

Algorithm 9 GoopCuT2(G, By, B), takes a graph G with n vertices
and m edges, balls B; C By, and determines whether recursing on
By and then deleting B; from our graph is good progress

1 if V(By) < n¥|V(B1)|'F then
2 return true
3: else

4 return false

all vertices which could potentially be in a cycle of length KR with
v, according to the algorithm.

Now we explain Algorithm 9 (GoopCuT2), which decides whether
cutting out ball B; and recursing on By constitutes good enough
progress. This simply takes as input two balls By and By and de-
cides whether recursing on By and then deleting By is good enough
progress in trying to achieve a O(n”o(kil)) total size of roundtrip
covers. Here, we check only the vertex condition instead of the edge
condition (different from Algorithm 4 GoopCuT) because we have
already reduced to the case where our graph G is approximately
regular (Lemma 3.1).

Now we explain Algorithm 7 (BALLGROW), which grows the balls
EL.on[v] = false if vertex v has been resolved, i.e. we can ensure
that for any u with d(v < u) < R, that v and u are in a roundtrip
ball of diameter O(KR). Otherwise, on[v] = true. We now grow
balls ES, EL, - - -, EX around v, up until line 8 is satisfied. Our main
claim is that when we recurse on EL“, then we can safely remove
all vertices in E.,. While the definition in line 6

E; «— {u € V(G) : on[u] and SiMILAR(G, u, v, D, i, R)
and u reachable from v through E.}

may seem recursive, all we mean is to say that we run a search
from v, only keeping vertices which are i-similar, i.e.
SiMILAR(G, u, v, D, i, R) is true.

Finally, our main algorithm Algorithm 5 (ROUNDTRIPCOVERZ)
first calls BUILDSIMILAR to build the similarity data structure needed
for BALLGRoOw. It also removes vertices from G that were already
resolved (i.e. in cycles of length 2KR) to get a graph G’. Then it
grows balls to partition G’ and recurse.

5.2 Analysis

In this section we analyze the above algorithms. We first show that
the number of similar vertices to any vertex v in G’ (line 4) is at

most n' % with high probability.
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LEmMMA 5.1. Consider an execution of ROUNDTRIPCOVER2(Gy, k, 1)
on an n-vertex vertex graph Gy. Consider a recursive execution of
RounDTRIPCOVERZ(G, k, r) on an n-vertex m-edge graph G. Consider
the resulting execution BALLGROW(G', k, R, D) (line 4). With proba-
bility at least 1 — i~ we have that for allv € V(G’) that the number
of vertices u € V(G’) satisfying

d(v,u) < KR and
d(u,w) < 2KR forallw € S{) forall1 <j <100logn

k-1
is at mostn 'k .

Proor. We follow the same approach as the proofs in Section 3.
Consider a vertex v € V(G). Define

H! := {u € V(G) :d(v,u) < KR and
d(u,w) < 2KRforallw e S{) forall1 <j<i},

ie. all vertices u € V(G) which would “pass" the i-th level similarity

. k-1
test for . Our main claim is that if |[H.| > n %, then we have that

i+1
lﬁ;’i Il < % with high probability. This implies the result, because
“ A k-1
if IHII,00 log "> n'% still, then we have that
R g \100log i
|H11,0010gn|ﬁ (_) n<i,
10
an obvious contradiction. . »
. -1 1
Now we show that if |H},| > n"¥ , then we have that lﬁ;’i || < %

with high probability. Note that by definition that T, = S* N H},.
It is direct to verify by a Chernoff bound that |T}}| > 50 log /A with

. Jo—
probability at least 1 — A7!% assuming that |HZ,| > n't. By the

definition of S, (a uniformly random subset of T}, of size 50 log /)
and symmetry we can think of S, simply as a uniformly random
subset of H, of size 50 log 7.
We now argue that for at least % fraction of vertices in w € H,
we have that
4
Pr [d(w,w’) < 2KR] < -,
w’'eH), 5
i.e. only % fraction of vertices w’ € H, satisfy d(w,w’) < 2KR.
Assume the contrary for contradiction. By the Pigeonhole principle,
there are at least
9 4 1 ; i
— .2 - |HL)? = 221H! |?
( 10 5 2 ) 1Ho| Ho |
(unordered) pairs of vertices w, w’ € H., such that both d(w, w’) <
2KR and d(w’, w) < 2KR. By the Pigeonhole principle again, there
must be a vertex w € H., for which at least .44|H} | vertices w’
satisfy both d(w,w’) < 2KR and d(w’,w) < 2KR, so d(w,w’) <
. Jo—
4KR. Now, note that .44|H.,| > 4dn'F by our condition. We argue
that this is impossible because v should have been marked as not
on with high probability in line 7. Indeed, the probability that v
failed to get marked as not on is at most

100log 72 |Sl|

44 % pIp

. n

(1— ) <1-4%
n

as desired.
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Now, consider the 5 fraction of vertices w € HY, with

4
Pr [d(w,w’) < 2KR] < 5

1
w'eHy,

For each of these vertices, the probability that d(w, w’) for all w’ €
i 4\50logh

Sy, is at most (g)

i+1 ;

that li}’;} ‘l < % by definition, as the % fraction of vertices in H},

discussed in this paragraph will with high probability not be in

HEML o

< 1 - 719, By definition then, we have

We next claim that the ball growing scheme of Algorithm 7
satisfies some important conditions, which intuitively make the EZ
look like balls of radius iR.

LEmMMA 5.2. Consider an execution of ROUNDTRIPCOVER2(Gy, k, R)
on n-vertex m-edge graph Go. Now, consider the resulting execution
of BALLGROW(G, k, R, D) on graph G. We have that in the execution
forallv € V(G) that

(1) v e ES.

(2) EL, CES foro<i<K-—-1.

(3) Foro < i < K—1,ifu € E}, andd(u = u’) < R, then

u’ e E5L

Proor. For the first claim, note that vertices w € S{, for all j
satisfy d(v,w) < KR by line 11 of BuiLDSIMILAR. Therefore, v
satisfies all conditions of being in EL on line 6 of BALLGROW.

The second claim is obvious from looking at the the definition
of EX, in line 6 of BALLGROW.

For the third claim, note that if u € EL andd(u S u’) <R
then d(v,u’) < d(v,u) + R = (i + 1)R. Also, for any w € SJ, for
1 < j < 100log 7i we have thatd(u’, w) < d(u,w)+R < (i+1+K)R.
Hence u’ € E5! as desired. i

We now show the analogue to Lemma 4.2, specifically that for
some iteration 0 < i < K — 1 in BALLGROW, we have that the
condition in line 8 triggers.

LEmMA 5.3. Consider an execution of ROUNDTRIPCOVER2(Gy, k, R)
on n-vertex m-edge graph Go. Now, consider the resulting execution of
BarLGrow(G, k, R, D) on graph G. For some 0 < i < K — 1 we have
that the condition in line 8 is true, i.e. we get a good cut.

Proor. The computation proceeds the same way as in Lemma 4.2.
Assume for contradiction that the condition in line 8 is never true,
S0

. . f—
VS| > nF [V(EL)F .
By Lemma 5.2, we know that [V (E2)| > 1, as v € EJ. Therefore,
one can check by induction that

v = (F)
For K = 10k log k we have that

_(k=1\K k=
WES) > (F) s 25

s

which contradicts Lemma 5.1. ]

We turn to proving Theorem 8.
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Proor. We break the analysis into pieces. We show that exe-
cuting ROUNDTRIPCOVER2(G, k, R) on a n-vertex m-edge graph G
returns a (O(k log k), R) roundtrip cover C with total size of all balls
1+0(%) in time m1+o(%)

at most n with high probability.

Returns a (O(klog k), R) roundtrip cover. We first argue that in
a call to BurLDSIMILAR(G, k, R) that for all vertices v where we
marked on[v] = false that v is properly resolved, i.e. for any vertex
u with d(v = u) < R that u and v are in a roundtrip ball of radius
at most (4K + 1)R. Indeed, note that if we mark on[v] = false, then
there must have been a vertex w for which w € $/ for some j, and
d(v = w) < 2KR + 2KR = 4KR. Then d(u = w) < (4K + 1)R. We
have added the ball B,, ((4K + 1)R) to our roundtrip cover C, as
desired (line 5).

The only other piece to verify is that when we mark on[v] =
false in an execution of BALLGROW(G, k, R, D) that v is properly
resolved, i.e. that in some recursive subproblem we have that for
all u with d(v <= u) < R that v and u are in a roundtrip ball of
radius at most O(KR). But this holds immediately by Lemma 5.2: if
v € EL, for some w, and d(v < u) < R, then u € EX1 as desired.

Total size of balls in C is n'O() with high probability. The
analysis here follows closely to the corresponding paragraph in
Section 4. We will show that the total size of all graphs processed in

K
a single level of recursion the algorithm is at most n%-1, where our
initial call was ROUNDTRIPCOVER2(G, k, R) for a n-vertex m-edge
graph G. Then, the total size of all graphs processed in the recursion

is O(nﬁ ), as the recursion depth is at most logarithmic. Then the
bound on total size of balls in C follows as for a graph G with n ver-
tices, the total size of balls added to C during BurLpSimiLar(G, k, R)

is at most
100log n

> 1= 007,
j=1
To show that the total size of all graphs processed at recur-
sion depth ¢ in the algorithm is at most n% we use induction.
Indeed, this holds at the bottom level of recursion. Consider an
execution of BALLGROW(G, k, R, D) on an n-vertex m-edge graph G.
Let Fll, le, cee ,F} be all the balls EL for which line 8 was satisfied
(and we know that line 8 is satisfied for some i by Section 5.2).
Let Flz, F22, e ,th be the corresponding balls EL!. We have that
Zf.zl |V(Fi1)| < n, as we marked all vertices in EL as not on any-
more if line 8 was satisfied for E, and EI*!. Additionally, by the

condition of GoopCuT2, we have that |V(Fl.z)| < n¥ [V(FDI . By
induction, the total sizes of all graphs processed at depth ¢ through

recursion on F1 ,FZZ, s ,FtZ is at most

k

Zt:W(FiZ)lk% Zt:(nk|VF)|k)7ngt: =a1% < nia.
im1 izl e

Can be implemented to run in time m'O(%) with high probability.
The analysis in the above section on the total size of balls, we know
that the total number of vertices in all graphs processed during the
algorithm RouNDTRIPCOVER2(G, k, R) is at most n1*0(x) | As we
have reduced to the case of regular graphs through Lemma 3.1, the
total number of edges in all graphs processed during
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RounDTRIPCOVER2(G, k, R) is at most
0n*0(%)y < O(m*O(%)) for § = O(m/n).

We now argue that the non-recursive runtime of
RouNDTRIPCOVER2(G, k, R) on a graph G with n vertices and m
edges is O(m!*1/¥). We start by analyzing Algorithm 6
(BUILDSIMILAR) We have in BUILDSIMILAR(G, k, R) that
ZIOO log IS'| < O(n'/*), where 7 is the number of vertices in the
graph at the top level of recursion. Therefore, building a shortest
path tree to and from all vertices in | J; S* takes O(m!*1/ky time
using Dijkstra’s algorithm. Computing all the sets T}, clearly takes
time

100log it
n- Z IS’ K = 0(m1+1/k).
i=1
We proceed to analyze Algorithm 8 (SIMILAR). This clearly takes
O(1) time per call, as we have precomputed all shortest path trees
and distances to and from all vertices u € S’ in Algorithm 6. Also,
Algorithm 9 (GoopCuTt2) also obviously takes O(1) time per call.

Now we analyze Algorithm 7 (BALLGROW). We can build the
sets EL, by running any search from v, only keeping vertices u
that satisfy SIMILAR(G, u, v, D, i, R). This takes time proportional to
(3(5|Ei)+1 ), where we have used that each call to SIMILAR takes O(1)
time. In accounting for this runtime, we can push the contribution
to the next recursion level (as we are recursing on EL'1). Therefore,
the total non-recursive runtime used is O(m'*1/¥) as claimed for
an input graph with m edges.

Now, as the total number of edges over all graphs is é(m”o(%)),

the total runtime would also be ON(mHO(%)) as desired. o

We now use Theorem 8 to get multiplicative girth approximation
and roundtrip spanners, proving Theorem 5 and Theorem 6.

Proor oF THEOREM 5. We first show the result for unweighted
graphs. To show this, run

RounDpTRIPCOVER2(G, O(k), 2 foro<i< O(logn).

Now, set our estimate g’ of the girth to be the smallest radius of any
nontrivial ball that we had in a roundtrip cover. By the guarantees
of ROUNDTRIPCOVER?Z, it is clear that g < g’ < O(klogk) - g as

desired. It is clear that the algorithm runs in time O(m”i) by
Theorem 8. We can extend this to weighted graphs by instead
taking 0 < i < O(log nW), where W is the maximum edge weight.
This can be improved to O(logn) by the same method as done
in [16], where they give a general reduction by contracting small
weight strongly connected components and deleting large weight
edges (see Section 5.1 in [16] for more details). O

Proor oF THEOREM 6. We first show the result for unweighted
graphs. It is easy to see that
O(log n)
U RounDTRIPCOVER2(G, O(k), 2")
i=0
%) edges by Theorem 8. It
is clear that the algorithm runs in time O(m“’% ). The extension

to weighted graphs follows as in the above paragraph (proof of
Theorem 5). O

is an O(klogk) spanner with o(n'*
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6 CONCLUSION AND OPEN PROBLEMS

In this paper we provided multiple results on computing round-
trip spanners and multiplicative approximations to the girth of an
arbitrary directed graph. Our results all either improve running
times, decrease the use of randomness, or improve the approxima-
tion quality of previous results. Ultimately, this work brings the
state-of-the art performance of roundtrip spanners algorithms on
directed graphs closer to matching that for undirected graphs.

An immediate open problem left open by our work is to fully
close the gap between algorithmic guarantees for spanners of undi-
rected graphs and roundtrip spanners of directed graphs and pro-
vide a deterministic algorithm which for all k in O(mn!/k) time
computes a O(k) roundtrip spanner with O(n'*1/k) edges. This
paper resolves this problem for k = Q(log n) and makes progress
on it for smaller values of k; it is still open to resolve it for all k.

Another key open problem is to further clarify the complexity
of approximating the girth of a directed graph. Currently the only
algorithms which provably outperform APSP for approximating
the girth of a graph are Pachocki et. al. [16] and this paper. Con-
sequently, all known girth approximation algorithms for directed
graphs leverage techniques immediately applicable for spanner
computation (with the sole possible exception of the algorithms of
Section 3). Therefore, beyond improving roundtrip spanner routines
to obtain an algorithm which can compute an O(k)-multiplicative
approximation to the girth in O(mn'/¥), this suggests the even
more challenging open problem of circumventing this “spanner bar-
rier” to obtaining even faster running times. For undirected graphs,
it possible to overcome this barrier in certain cases [9, 11, 13, 20].
However, some of the techniques used in these results are known
not to extend to directed graphs, see e.g. [16, 20]. Consequently,
further clarifying the complexity of girth approximation beyond the
spanner barrier with either improved algorithms or new conditional
lower bounds remains an difficult and interesting frontier.

One final open problem is to improve the parallel complexity
of these routines. Previous work on the efficient construction of
roundtrip spanners [16] provided such a result. Further, there have
been recent advances in the efficient parallel computation of reach-
ability in directed graphs [10, 12] and commute times of random
walks. The combination of the ideas from these works with the
results of this paper could be useful for obtaining further improve-
ments for the efficient parallel computation of girth and roundtrip
spanners [7].
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