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ABSTRACT

In this paper we provide an O(nd + d°) time randomized algorithm
for solving linear programs with d variables and n constraints with
high probability. To obtain this result we provide a robust, primal-
dual O(Vd)-iteration interior point method inspired by the methods
of Lee and Sidford (2014, 2019) and show how to efficiently imple-
ment this method using new data-structures based on heavy-hitters,
the Johnson-Lindenstrauss lemma, and inverse maintenance. In-
terestingly, we obtain this running time without using fast matrix
multiplication and consequently, barring a major advance in lin-
ear system solving, our running time is near optimal for solving
dense linear programs among algorithms that do not use fast matrix
multiplication.
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1 INTRODUCTION
Given A € R™4 p e R9 andc € R" solving a linear program (P)
and its dual (D):

(P) = min

x€RJ:ATx=b

c'xand(D)= max b'y. (1)

yeR4:Ay>c
is one of the most fundamental and well-studied problems in com-
puter science and optimization. Developing faster algorithms for
(1) has been the subject of decades of extensive research and the
pursuit of faster linear programming methods has lead to numerous
algorithmic advances and the advent of fundamental optimization
techniques, e.g. simplex methods [18], ellipsoid methods [30], and
interior-point methods (IPMs) [29].

The current fastest algorithms for solving (1) are the IPMs of
Lee and Sidford [34] and Cohen, Lee, and Song [12]. These results
build on a long line of work on IPMs [3, 29, 47, 52, 61, 63, 64], fast
matrix multiplication [14, 15, 21, 22, 58-60, 66], and linear system
solvers [9, 11, 39, 42, 44]. The first, [34] combined an O(Vd) iteration
IPM from [33, 35] with new techniques for inverse maintenance, i.e.
maintaining an approximate inverse of a slowly changing matrix,
to solve (1) in time O(nnz(A)Vd + d?-®) with high probability. For
sufficiently large values of nnz(A) or n, this is the fastest known
running time for solving linear programming up to polylogarithmic
factors.

The second, [12], developed a stable and robust version of the
IPM of [52] (using techniques from [33, 35]) and combined it with
novel randomization, data structure, and rectangular matrix multi-
plication [22] techniques to solve (1) in time O(max{n, d}*) with
high probability where w < 2.373 is the current best known matrix
multiplication constant [21, 66]. When n = O(d), this running time
matches that of the best known linear system solvers for solving
n X n linear systems and therefore is the best possible barring a
major linear system solving advance.

Though, these results constitute substantial advances in algo-
rithmic techniques for linear programming, the running times of
[34] and [12] are incomparable and neither yield a nearly linear
running time when n grows polynomially with d, i.e. when d = n®
for any § > 0 neither [34] or [12] yields a nearly linear running
time. Consequently, it has remained a fundamental open problem
to determine whether or not it is possible to solve high-dimensional
linear programs to high-precision in nearly linear time for any poly-
nomial ratio of n, d, and nnz(A). Though achieving such a nearly
linear runtime is known in the simpler setting of linear regression
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[9-11, 39, 42, 44], achieving analogous results for solving such tall
linear programs has been elusive.

In this paper we provide the first such nearly linear time algo-
rithm for linear programming. We provide an algorithm which
solves (1) with high probability in time 6(nd +d3). Whenever A is
dense, i.e. nnz(A) = Q(nd), and sufficiently tall, i.e. n = Q(d?), this
constitutes a nearly linear running time. In contrast to previous
state-of-the-art IPMs for linear programming [12, 34] our algorithm
doesn’t need to use fast matrix multiplication and thereby matches
the best known running time for regression on dense matrices
which does not use fast matrix multiplication.

To achieve this result, we introduce several techniques that we
believe are independent interest. First, we consider the IPM of [35]
and develop an efficiently implementable robust primal-dual variant
of it in the style of [5, 12, 37] which only requires solving O(Vd)
linear systems. Prior to [33, 35], obtaining such an efficient o(Vd)-
iteration IPM was a major open problem in the theory of IPMs. We
believe our primal dual method and its analysis is simpler than that
of [35]; by developing a primal-dual method we eliminate the need
for explicit £,-Lewis weight computation for p # 2 as in [35] and
instead work with the simpler £3-Lewis weights or leverage scores.
Further, we show that this primal dual method is highly stable and
can be implemented efficiently given only multiplicative estimates
of the variables, Hessians, and leverage scores.

With this IPM in hand, the problem of achieving our desired
running time reduces to implementing this IPM efficiently. This
problem is that of maintaining multiplicative approximations to
vectors (the current iterates), leverage scores (a measure of impor-
tance of the rows under local rescaling), and the inverse of matrix
(the system one needs to solve to take a step of the IPM) under
small perturbations. While variants of vector maintenance have
been considered recently [5, 12, 37] and inverse maintenance is
well-studied historically [5, 12, 29, 33-35, 37, 48, 49, 61], none of
these methods can be immediately applied in our setting where we
cannot afford to pay too much in terms of n each iteration.

Our second contribution is to show that these data-structure
problems can be solved efficiently. A key technique we use to over-
come these issues is heavy-hitters sketching. We show that it is
possible to apply a heavy hitters sketch (in particular [26, 50]) to
the iterates of the method such that we can efficiently find changes
in the coordinates. This involves carefully sketching groups of up-
dates and dynamically modifying the induced data-structure. These
sketches only work against non-adaptive adversaries, and therefore
care is need to ensure that the sketch is used only to save time and
not affect the progression of the overall IPM in a way that break
this non-adaptive assumption. To achieve this we use the sketches
to propose short-lists of possible changes which we then filter to
ensure that the output of the datastructure is deterministic (up
to a low probability failure event). Coupling this technique with
known Johnson-Lindestrauss sketches yields our leverage score
maintenance data structure and adapting and simplifying previous
inverse maintenance techniques yields our inverse maintenance
data structure. We believe this technique of sketching the central
path is powerful and may find further applications.
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1.1 Our Results

The main result of this paper is the following theorem for solving
(1). This algorithm’s running time is nearly linear whenever the
LP is sufficiently dense and tall, i.e. nnz(A) = Q(nd) and n = Q(d?).
This is the first polynomial time algorithm with a nearly linear
running time for high-dimensional instances (i.e. when d can grow
polynomially with n). This algorithm does not use fast matrix mul-
tiplication (FMM) and consequently its running time matches the
best known running time for checking whether there even exists x
such that ATx = b for dense A without using FMM.

THEOREM 1.1 (MAIN RESULT). There is an algorithm (Algorithm 2)
which given any linear program of the form (1) for non-degenerate'
A € R™4 gnd § € [0, 1] computes a point x € RZ | such that

T c'x+08-|c|l2- R and

c x < min
ATx=b,x>0

IATx = bl < 6 - (IIAllp - R+ [l

where R is the diameter of the polytope in €3 norm, i.e. ||x||2 < R for
all x € RY | with AT x = b. Further, the expected running time of the

method is O((nd + d*)1og®" nlog 2).

Remark. See [33, 52] on the discussion on converting such an
approximate solution to an exact solution. For integral A, b, c, it
suffices to pick § = 2790 to get an exact solution where L =
log(1 + dmax + |Iclloo + |b]lco) is the bit complexity and dmax is the
largest absolute value of the determinant of a square sub-matrix of
A. For many combinatorial problems L = O(log(n + ||be + [|¢|lo0))-

Beyond this result (Section 4) we believe our robust primal-
dual O(Vd)-iteration IPM and our data structures for maintaining
multiplicative approximations to vectors , leverage scores , and the
inverse of matrices are of independent interest.

1.2 Previous Work

Linear programming has been the subject of extensive research for
decades and it is impossible to completely cover to this impressive
line of work in this short introduction. Here we cover results par-
ticularly relevant to our approach. For more detailed coverage of
prior-work see, e.g. [47, 68].

IPMs: The first proof of a polynomial time IPM was due to
Karmarkar in [29]. After multiple running time improvements
[29, 48, 49, 61] the current fastest IPMs are the aforementioned
results of [35] and [12]. Beyond these results, excitingly the work of
[12] was recently extended to obtain comparable running time im-
provements for solving arbitrary empirical risk minimization prob-
lems (ERM) [37] and was recently simplified and de-randomized
by van den Brand [5]. These works consider variants of the vector
maintenance problem and our work is inspired in part by them.
Our IPM leverages the barrier from [35] in a new way, that enables
the application of robustness techniques from [5, 12, 35] and new
techniques for handling approximately feasible points.

Heavy Hitters and Sketching: Sketching is a well-studied
problem with a broad range of applications. Johnson-Lindenstrauss
!We assume throughout that A is non-degenerate meaning it has full-column rank and
no-zero rows. This assumption can be avoided by preprocessing A to check for zero

rows and adding a tiny amount of noise to the matrix to make it full-column rank.
There are other natural ways to remove this assumption, see e.g. [35].



Solving Tall Dense Linear Programs in Nearly Linear Time

sketches were used extensively in previous IPMs [35], but only for
the restricted application of computing leverage scores. Further
sketching techniques have been used for the purpose of dimen-
sion reduction and sampling in other optimization contexts, e.g.
solving linear systems [9-11, 39, 42, 44] and certain forms of Cp-
regression [13]. Our methods make use of {3-heavy hitters sketches
[8, 16, 17, 26, 31, 45, 50], in particular the £2-sketches of [26, 50],
to decrease iteration costs. We are unaware of these sketches be-
ing used previously to obtain provable improvements for solving
offline (as opposed to online, streaming, or dynamic optimization
problems) variants of linear programming previously. We believe
this is due in part to the difficulty of using these methods with non-
oblivious adversaries and consequently we hope the techniques we
use to overcome these issues may be of further use. Also, note that
the definition of £;-heavy hitters problem that we use is equivalent
to {eo /C2-sparse recovery problem. Though the 5 /{2-sparse recov-
ery [7, 19, 23, 25, 43, 51, 55] is a more standard task in compressed
sensing, we are unaware of how to efficiently use its guarantees for
our applications.

Leverage Scores and Lewis Weights: Leverage scores [11, 39,
40, 57] (and more broadly Lewis weights [4, 13, 35, 38]) are funda-
mental notions of importance of rows of a matrix with numerous
applications. In this paper we introduce a natural online problem
for maintaining multiplicative approximations to leverage scores
and we show how to solve this problem efficiently. Though we are
unaware of this problem being studied previously, we know that
in the special case of leverage scores induced by graph problems,
which are known as effective resistances, there are dynamic algo-
rithms for maintaining them, e.g [20]. However, these algorithms
seem tailored to graph structure and it is unclear how to apply them
in our setting. Further, there are streaming algorithms for variants
of this problem [2, 27, 28], however their running time is too large
for our purposes.

Inverse Maintenance: This problem has been studied exten-
sively and are a key component in obtaining efficient linear pro-
gramming running times with previous IPMs [5, 12, 29, 32-35, 37,
48, 49, 54, 55, 61] and other optimization methods [1, 36]. Outside
the area of optimization, this problem is also known as Dynamic
Matrix Inverse [6, 53]. Our method for solving inverse maintenance
is closely related to these results with modifications needed to fully
take advantage of our leverage score maintenance, obtain poly(d)
(as opposed to poly(n) runtimes), ensure that randomness used to
make the algorithm succeed doesn’t affect the input to the data
structure, and ultimately produce solvers that are correct in expec-
tation.

2 OVERVIEW OF APPROACH

The proof of Theorem 1.1 is split into two steps. In the full version
[65] we provide a new robust, primal-dual, 6(\/3) iteration IPM
inspired by the LS-barriers of [33, 35] and central path robustness
techniques of [5, 12, 33, 35, 37]. Then we develop new data struc-
tures based on heavy hitters, the Johnson-Lindenstrauss lemma,
and inverse maintenance. These data structure then allow us to
efficiently implement this new IPM.

Here we give an outline for the new IPM and how to implement
this IPM efficiently using the new data structures. Section 4 shows
how to use these result to obtain the fast linear program solver.
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2.1 A Robust Primal-Dual O(Vd) IPM

Here we provide an overview of our approach to deriving our
robust, primal-dual, 6(\/3) iteration JPM. We assume throughout
this section (and the bulk of the paper) that A is non-degenerate,
meaning it is full-column rank and no non-zero rows. By standard
techniques, in Section 4.5 we efficiently reduce solving (1) in general
to solving an instance of where this assumption holds.

We first give a quick introduction to primal-dual path IPMs,
review the central path from [35] and from it derive the central
path that our method is based on, and explain our new IPM.

Primal-Dual Path Following IPMs: Our algorithm for solving the
linear programs given by (1) is rooted in classic primal-dual path-
following IPMs. Primal-dual IPMs, maintain a primal feasible point,
x € RY; with ATx = b, a dual feasible point y € RY with s =
Ay — ¢ > 0, and attempt to decrease the duality gap

gap(x,y) ERE bTy=Ay+s) x—(ATx)Ty=s"x.

Note that gap(x, y) upper bounds the error of x and y, i.e. gap(x, y) <
€ implies that x and y are each optimal up to an additive € in objec-
tive function, and therefore to solve a linear program it suffices to
decrease the duality gap for primal and dual feasible points.

Primal-dual path-following IPMs carefully trade-off decreasing
the duality gap (which corresponds to objective function progress)
with staying away from the inequality constraints, i.e. x > 0 and
s > 0 (in order to ensure it is easier to make progress). Formally,
they consider a (weighted) central path defined as the unique set of
(s Yus sp) € RY ;X RY x RZ for i > 0 that satisfy

XuSuyl = p- Tweight(x/b Su), (2)
ATxﬂ = b,
Ay, +sy = ¢

where X, = Diag(x,), Sy, o Diag(sy), and ryeight : Ry XRY) —
R is a weight function. These methods maintain primal and dual
feasible points and take Newton steps on the above non-linear
inequalities to maintain feasible points that are more central, i.e.
have (2) closer to holding, for decreasing p. Since many properties
of the central path can be defined in terms of just x;, and s, we
often describe methods using only these quantities and we adopt
the following notation.

Definition 2.1 (Feasible Point). We say that (x,s) € RLj X RZ  is
a feasible point if there exists y € R? with ATx = b and Ay+s=c.

Now, perhaps the most widely-used and simple weight function

is Tyeight(%, 8) < Tsta(x, 5) o 1, i.e. the all-ones vector. Central path
points for this weight function are the solution to the following

X,y = argmin cTx - Z log(x;) and

XERSOIAT)C:b iE[n]
Wus) = argmax  bTy—p Y log(s),
(y,s)ERdX]R'Z’O:ATy+s:C i€[n]

i.e. optimization problems trading off the objective function with
logarithmic barriers on the inequality constraints. There are nu-
merous methods for following this central path [24, 41, 47, 52, 69].
By starting with nearly-central feasible points for large y and it-
eratively finding nearly-central feasible points for small y, they
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can compute e-approximate solutions to (1) in O(v/n)-iterations.
For these methods, each iteration (or Newton step) consists of
nearly-linear time computation and solving one linear system in
the matrix ATXS™!A € R¥9 for X = Diag(x) € R™" and
S = Diag(s) € R™",

The first such O(v/n)-iteration IPM with this iteration cost was es-
tablished by Renegar in 1988 [52] and no faster-converging method
with the same iteration cost was developed until the work of Lee
and Sidford in 2014 [33, 35]. It had been known since seminal work
of Nesterov and Nemirovski in 1994 [47] that there is a weight
function that yields a O(Vd)-iteration primal-dual path-following
IPM, however obtaining any O(Vd)-iteration IPM that can be im-
plemented with iterations nearly as efficient as those of [52] was a
long-standing open problem.

The Lewis Weight Barrier and Beyond The work of [33, 35] ad-
dressed this open problem in IPM theory and provided an efficient
O(Vd)-iteration IPM by providing new weight functions and new
tools for following the central path they induce. In particular, [35]
introduced the Lewis weight barrier which induces the central path
in which for some p > 0

def —
Tweight(%: 5) < T5(x,5) = o!P/(S7'A)

where for any B € R"™*¢ oP)(B) are the {p-Lewis weights of the
rows of B [38], a fundamental and natural measure of importance
of rows with respect to the £,-norm [4, 13, 35]. In the case of non-
degenerate B, they are defined recursively as the vector w € RZ |
which satisfies

w = diag(W/2-(/P)gBTW!I-@/P)g)-1gTw(1/2)-(1/p)y,
where W = Diag(w). In the special case when p = 2,
w=0o(B) £ diag(BB"B)'BT)

is known as the leverage scores of the rows of A and is a fundamental
object for dimension reduction and solving linear systems [11, 39,
40, 46, 56, 57, 67].

The work of [35] formally showed that there is an O(Vd)-iteration
primal-dual IPM which uses zyeight(%,s) < 7s(x,s) when p =
Q(log n). This choice of p is motivated by drew geometric con-
nections between Lewis weights and ellipsoidal approximations
of polytopes [35]. Further, [35] showed how to modify this IPM
to have iterations of comparable cost to the methods which use
Tstd (%, s). This was achieved by leveraging and modifying efficient
algorithms for approximately computing Lewis weights and lever-
age scores and developing techniques for dealing with the noise
such approximate computation induces.

To obtain the results of this paper we further simplify [35] and
provide more robust methods for following related central paths.
Our first observation is that the central path induced by 7j5 can be
re-written more concisely in terms of only leverage scores. Note
that (2) and the definition of Lewis weights imply that there is w,
with

XSyl =p-wyand wy = U(WE}/Z)_(I/P)SEA).
for W, o Diag(wy). Substituting the first equation into the sec-

ond, gives more compactly that for @ = 1/p

XSyl = - Diag(a(S,, /> *X}/* " A)).
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Consequently, rather than defining centrality in terms of Lewis
weights, we would get the same central path as the one induced

by 715(x, 5) by letting Tyeignt(x, s) G(SL/%‘XXI]/%“A), i.e. defin-
ing it in terms of leverage scores. In other words, the optimality
of the central path conditions forces XS, 1 to be a type of Lewis
weight if we carefully define centrality in terms of leverage scores.
Though Tyeight(x, s) « o(SY/2-ax1/2=a A) induces the same cen-
tral path as 7j5(x, s), these weight functions can be different outside
the central path and thereby lead to slightly different algorithms
if only approximate centrality is preserved. Further, with the cur-
rent state-of-the-art theory, leverage scores are simpler to compute
and approximate, as Lewis weight computation is often reduced to
leverage score computation [13, 35].

Formally, in this paper we consider the following regularized-
variant of this centrality measure:

Definition 2.2 (Weight Function). Throughout this paper we let
@ = 1/(4log(4n/d)) and for all x,s € R” | let

€] — - —_ d
Treg(x, 5) E p(sVzaxl/zmapy 4 ;1

where X = Diag(x) and S = Diag(s).

This centrality measure is the same as the Lewis weight barrier

except that we add a multiple of the all-ones vector, %1’ to simplify

our analysis. Further, this allows us to pick « o 1/(4log(4n/d))

as opposed to a = 1/Q(log n) due to the extra stability it provides.
Since we use this weight function throughout the paper we overload
notation and let z(x, s) o Treg(X, s) and 7(B) o o(B) + %1.

Our Robust Primal-Dual Method: We obtain our results by proving
that there is an efficient primal-dual path-following IPM based
on Treg(x, s). We believe that our analysis is slightly simpler than
[35] due to its specification in terms of leverage scores, rather
than the more general Lewis weights, but remark that the core
ingredients of its analysis are similar. Formally, we provide Newton-
method type steps that allow us to control centrality with respect to
this measure and increase y fast enough that this yields an O(Vd)-
iteration method.

Beyond providing a simplified O(Vd)-iteration IPM, we leverage
this analysis to provide a robust method. Critical to the development
of recent IPMs is that it is possible to design efficient primal-dual
O(+/n)-iteration IPMs that take steps using only crude, multiplica-
tive approximations to x and s [5, 12, 37]. These papers consider the
standard central path but measure centrality using potential func-
tions introduced in [33, 35]. This robustness allows these papers
to efficiently implement steps by only needing to change smaller
amounts of coordinates.

Similarly, we show how to apply these approximate centrality
measurement techniques to the central path induced by zyeg(x, s).
We show that it suffices to maintain multiplicative approximations
to the current iterate (x, s € RY), the regularized leverage scores
(a(s—l/z—axl/z—“A) + %l), and the inverse of the local Hessian
((ATS™IXA)™1) to maintain approximate centrality with respect
to Treg(x, s). Interestingly, to do this we slightly modify the type
of steps we take in our IPM. Rather than taking standard Newton
steps, we slightly change the steps sizes on x and s to account for
the effect of 7yeg(x, s). Further, approximation of the Hessian causes
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the x iterates to be infeasible, but in the full version we discuss how
to modify the steps to control this infeasibility and still prove the
desired theorem.

The main guarantees of this new IPM are given by Theorem 4.1
(Section 4.1) and are proven in the full version. This theorem for-
malizes the above discussion and quantifies how much the iterates,
leverage scores, and Hessian can change in each iteration. These
bounds are key to obtaining an efficient method that can maintain
multiplicative approximations to these quantities.

2.2 Heavy Hitters, Congestion Detection, and
Sketching the Central Path

It has long been known that the changes to the central path are
essentially sparse or low-rank on average. In Renegar’s IPM [52],
the multiplicative change in x and s per iteration are bounded
in {5. Consequently, the matrices for which linear systems are
solved in Renegar’s method do not change too quickly. In fact, this
phenomenon holds for IPMs more broadly, and from the earliest
work on polynomial time IPMs [29], to the most recent fastest
methods [5, 33-35, 37], and varied work in between [48, 49, 62] this
bounded change in IPM iterates has been leveraged to obtain faster
linear programming algorithms.

Our IPM also enjoys a variety of stability properties on its iterates.
We show that the multiplicative change in the iterates are bounded
in a norm induced by 7reg(x,s) and therefore are also bounded
in 5. This is known to imply that changes to ATS™!XA € RAxd
can be bounded over the course of the algorithm and we further
show that this implies that the changes in the weight function,
Treg(%, 5), can also be bounded. These facts, combined with the
robustness properties of our IPM imply that to obtain an efficient
linear programming algorithm it suffices to maintain multiplicative
approximations to the following three quantities (1) the vectors
x,s € RY, (2) the regularized leverage scores 7reg(x, s), and (3)
the Hessian inverse (ATS™!XA)™! € R¥*9 under bounds on how
quickly these quantities change.

We treat each of these problems as a self contained data-structure
problem, the first we call the vector maintenance problem, the second
we call the leverage score maintenance problem, and the third has
been previously studied (albeit different variants) and is called the
inverse maintenance problem. For each problem we build efficient
solutions by combining techniques form the sketching literature
(e.g. heavy hitters sketches and Johnson-Lindenstrauss sketches)
and careful potential functions and tools for dealing with sparse and
low rank approximations. (Further work is also needed to maintain
the gradient of a potential used to measure proximity to the central
path and this is discussed in the full version.)

In the remainder of this overview, we briefly survey how we solve
each of these problems. A common issue that needs to addressed in
solving each problem is that of hiding randomness and dealing with
adversarial input. Each data-structure uses sampling and sketching
techniques to improve running times. While these techniques are
powerful and succeed with high probability, they only work against
an oblivious adversary, i.e. one which provides input that does
not depend on the randomness of the data structure. However, the
output of our data-structures are used to take steps along the central
path and provide the next input, so care needs to be taken to argue

STOC 20, June 22-26, 2020, Chicago, IL, USA

that the output of the data structure, as used by the method, doesn’t
somehow leak information about the randomness of the sketches
and samples into the next input. A key contribution of our work is
showing how to overcome this issue in each case.

Vector Maintenance: In the vector maintenance problem, we
receive two online sequences of vectors h(l), h(z), ... € R9 and
g, ¢®, ... € R" and must maintain the sum y<t) E Yielt] GMARD
for a fixed matrix A € R"*?_ The naive way of solving this would
just compute G AK®) in iteration t and add it to the previous re-
sult. Unfortunately, this takes O(nnz(A)) time per iteration, which
is too slow for our purposes. Luckily we do not have to maintain
this sum exactly. Motivated by the robustness of our IPM, it is
enough to maintain a multiplicative approximation ?U) Re y([)
of the sum. An exact definition of this problem, together with our
upper bounds, can be found in Section 4.2 and the formal proof of
these results can be found in the full version.

We now outline how vector maintenance problem can be solved.
For simplicity assume we already have an accurate approximation
= Re/2 y(*=1)_ Then we only have to change the entries i

of§(t’1) where ygt) #el2 ygt_l), because for all other i we have
’}7(:_1) e ygt). This means we must detect the large entries of y(” -
y(t_l) = GWARY, which can be done via heavy hitter techniques.
From past research on heavy hitters, we know one can construct
a small, sparse, random matrix ® € RKXM with k < n, such that
known the much smaller vector x € R¥ with x = ®y allows for a
quick reconstruction of the large entries of y. Thus for our task,
we maintain the product ®G()A, which can be done quickly if
gm does not change in too many entries compared to g(t_l). Then
we can reconstruct the large entries of G)AR(*) by computing
(@G AR Note that this product can be computed much faster
than G(t)Ah(t), because ®GA is a k x d matrix and k < n.

One issue we must overcome, is that the output of our data-
structure must not leak any information about ®. This matrix is
randomly constructed and the large entries of y can only be re-
constructed from x = ®y, if the vector y is independent from the
randomness in ®. Thus if the output of the data-structure depends
on @ and the next future input A depends on the previous output,
then the required independence can no longer be guaranteed. We
overcome this problem by computing any entry ygt) exactly, when-
ever the heavy hitter techniques detect a large change in said entry.
As we now know the value of said entry exactly, we can compare
it to the previous result and verify, if the entry did indeed change
by some large amount. This allows us to define the output of our

data-structure in a deterministic way, e.g. maintain §(l.t) Re ygt)
by setting ?g.t) = ygt) whenever fl{it_l) #e ygt). (The exact deter-

ministic definition we use is slightly more complex, but this is the
high-level idea.)

So far we only explained how we can detect large changes in y(t)
that occur within a single iteration. However, it could be that some
entry changes slowly over several iterations. It is easy to extend
our heavy hitter technique to also detect these slower changes. The
idea is that we not just detect changes within one iteration (i.e.

-1
ygt) 155/2 yE't ))
yg-” Zel2 ygt_z Yori = 1, ...,log t). To make sure that this does not

but also changes within any power of two (i.e.
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become too slow, we only check every 2! iterations if there was a
large change within the past 2/ iterations. One can prove that this
is enough to also detect slowly changing entries.

Leverage Score Maintenance: In the leverage score maintenance
problem, we must maintain an approximation of the regularized
leverage scores of a matrix of the form G'/2A e R"™ fora slowly
changing diagonal matrix G € R™". That means we are inter-
ested in a data-structure that maintains a vector 7 € R" with
7 ~c 1 = (GY2A(ATGA)'ATG/2); ; + d/n. The high-level
idea for how to solve this task is identical to the previously out-
lined vector-maintenance: we try to detect for which i the value z;
changed significantly, and then update 7; so that the vector stays
a valid approximation. We show that detecting these indices i can
be reduced to the previous vector maintenance. Here we simply
outline this reduction, a formal description of our result can be
found in Section 4.3 and its proof and analysis is in the full version.

Consider the case where we change from G to some G’. We want

to detect indices i where the ith leverage score changed significantly.
def

Define M = (ATGA)—IAT(‘,l/Z_(ATG'A)—IATG/I/Z € RY%" and
note that

(G2A(ATGA)IATGY?); ; = |le] G/2A(ATGA)TATG?| 2,

so a large change in the ith leverage score, when changing G €
R™" to G’ € R™ ", results in a large norm of e;'—GI/ZAM, if Gj i
and G;,i are roughly the same. (As G is slowly changing there
are not too many i where G;,; and G;’ ; significantly. So we can
just compute the ith leverage score exactly for these entries to
check if the ith score changed significantly.) By multiplying this
term with a Johnson-Lindenstrauss matrix J the task of detecting a
large leverage score change, becomes the task of detecting rows of
G'/2AM]J for which the row-norm changed significantly. Given that
J only needs some O(log n) columns to yield a good approximation
of these norms, we know that any large change in the ith leverage
score, must result in some index j where |(G1/2AM_])i’j| must be
large. Detecting these large entries can be done in the same way as
in the vector-maintenance problem by considering each column of
M]J as a vector.

To make sure that no information about the random matrix J
is leaked, we use the same technique previously outlined in the
vector-maintenance paragraph. That is, after detecting a set I C
[n] of indices i for which the leverage score might have changed
significantly, we compute the ith leverage score to verify the large
change and set 7; to be this computed leverage score, if the change
was large enough. Unlike the vector case however, the ith leverage
score is not computed in a deterministic way (as this would be
prohibitively expensive). Instead we use another random Johanson-
Lindenstrauss matrix J’, so the output 7 is actually defined w.r.t
the input and this new matrix J’. By using a fresh independent
Johnson-Lindenstrauss J’ to verify changes to leverage scores, this
data structure works against an adaptive adversary.

Inverse Maintenance: In the inverse maintenance problem, we
maintain a spectral sparsifier of ATWA € R?*? and its inverse, for
a slowly changing diagonal matrix W € R™". Using the leverage
score data-structure, we can assume an approximation to the lever-
age scores of ATWA is given. Hence, we can sample O(d) many
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rows of A to form a spectral sparsifier. This allows us to get a spec-
tral sparsifier and its inverse in 0(d®). To speed up the runtime,
we follow the idea in [34], which resamples the row only if the
leverage score changed too much. This makes sure the sampled
matrix is slowly changing in £y sense and hence we can try to apply
the lazy low-rank update idea in [12] to update the inverse in 0@d?)
time. Unfortunately, this algorithm works only against oblivious
adversary and the sampled matrix is changing too fast in {5 sense,
which is required for the leverage score maintenance.

Fortunately, we note that we do not need a sparsifier that satisfies
both conditions at all time. Therefore, our final data structure has
two ways to output the inverse of the sparsifier. The sparsifier that
works only against oblivious adversary is used in implementing
the Newton steps and the sparsifier that is slowly changing is used
to compute the sketch MJ used in the leverage score maintenance
problem mentioned above.

For the Newton steps, we only need to make sure the sparsifier
does not leak the randomness since the input W depends on the
Newton step. Since we only need to solve linear systems of the
form ATWAx = b € R?, we can handle this problem by adding an
appropriate noise to the output x. This makes sure the randomness
we use in this data structure does not leak when the output x is
used. This idea is also used [34], but extra care is needed to remove
the nnz(A) per step cost in their algorithm.

For computing the sketch MJ, we do not need to worry about
leakage of randomness, but only need to make sure it is slowly
changing in {5 sense. Instead of using [12] as a black-box, we show
how to combing the idea of resampling in [34] and the low-rank
update in [12]. This gives us an alternate smoother scheme that
satisfies the requirement for slowly changing.

3 PRELIMINARIES

Here we discuss varied notation we use throughout the paper. We
adopt similar notation to [33] and some of the explanations here
are copied directly form this work.

Matrices: We call a matrix A non-degenerate if it has full column-
rank and no zero rows. We call symmetric matrix B € R™ " positive
semidefinite (PSD) if x T Bx > 0 for all x € R™ and positive definite
(PD) if x "Bx > 0 for all x € R™.

Matrix Operations: For symmetric matrices A,B € we
write A < B to indicate that xT Ax < x"Bx for all x € R™ and

define <, <, and > analogously. For A,B € R™™ we let AoB

denote the Schur product, i.e. [A o B]; j « A;j-Bjjforallic[n]

and j € [m]. We use nnz(A) to denote the number of nonzero entries
in A.

Diagonals: For A € R™ " we define diag(A) € R" with diag(A);
= A;; for all i € [n] and for x € R" we define Diag(x) € R™*" as
the diagonal matrix with diag(Diag(x)(x)) = x. We often use upper
case to denote a vectors associated diagonal matrix and in particu-
lar let X & Diag(x), S o Diag(s), W o Diag(w), T o Diag(7),
X ¥ Diagx), S £ Diag(s), W & Diag(w), X; & Diag(x;),
S; = Diag(s;), W; = Diag(w;), and T o Diag(z;).

Fundamental Matrices: For any non-degenerate matrix A €
def

R™4 we let P(A) = A(ATA)'AT denote the orthogonal projec-
tion matrix onto A’s image. Further, we let o(A) o diag(P(A))

Ran
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denote A’s leverage scores and we let 7(A) o o(A) + %1 denote its

regularized leverage scores. Further, we define X(A) o Diag(c(A)),

T(A) o Diag(z(A)), P@(A) o P(A) o P(A) (where o denotes entry-
wise product), and A(A) o (A) - PA(A).
Approximations: We use x =, y to denote that exp(—¢€)y <
x < exp(e)y and A =, B to denote that exp(—€)B < A < exp(€)B.
Norms: For PD A € R™" we let || - ||a denote the norm where

||x||i © xT Ax for all x € R™. For positive w € RZ | we let || - [l
def

denote the norm where ||x||2, = Yieln] wl-xl.2 for all x € R". For
any norm || - || and matrix M, its induced operator norm of M is
defined by ||M|| = SUP || ||=1 [|Mx]|.

Time and Probability: We use O(-) to hide factors polylog-
arithmic in n and d. We say an algorithm has a property “with
high probability (w.h.p.) in n” if it holds with probability at least
1 —1/0(poly(n)) for any polynomial by choice of the constants in
the runtime of the algorithm.

Misc: We let [z] o {1,2,..,z}. We let 1,,,0, € R" denote the
all-one and all-zero vectors, 05,1, € R™" denote the all zero and
identity matrices, and drop subscripts when the dimensions are
clear. We let 1; denote the indicator vector for coordinate i, i.e. the
i-th basis vector.

4 LINEAR PROGRAMMING ALGORITHM

Here we prove the main result of this paper that there is a O(nd+d?)
time algorithm for solving linear programs. This theorem is restated
below for convenience:

THEOREM 1.1 (MAIN RESULT). There is an algorithm (Algorithm 2)
which given any linear program of the form (1) for non-degenerate
A € R™4 qnd § € [0, 1] computes a point x € RZ ) such that

Tx < min

ATx=b,x>0

IATx = bl < 6 - (IAllF - R+ 1]z

c¢"x+6-cllz - R and

where R is the diameter of the polytope in {3 norm, i.e. ||x||2 < R for
all x € RY, with ATx = b. Further, the expected running time of the

method is O((nd + d*)1og®® nlog ).

The proof for Theorem 1.1 uses four intermediate results, which
we formally state in the next Sections 4.1, to 4.4. Each of these inter-
mediate results is self-contained and analyzed in the full version. In
this section we show how these results can be combined to obtain
Theorem 1.1. The first result is a new, improved IPM as outlined
in Section 2.1. The exact statement is given in Section 4.1.Here we
give a rough summary to motivate the other three results used by
our linear programming algorithm.

Our IPM is robust in the sense, that it makes progress, even if
we maintain the primal dual solution pair (x, s) only approximately.
Additionally, the linear system that is solved in each iteration, al-
lows for spectral approximations. More accurately, it is enough to
maintain a spectral approximation of an inverse of a matrix of the
form AT WA for some diagonal matrix W. For this robust [IPM we

2We assume throughout that A is non-degenerate meaning it has full-column rank and
no-zero rows. This assumption can be avoided by preprocessing A to check for zero
rows and adding a tiny amount of noise to the matrix to make it full-column rank.
There are other natural ways to remove this assumption, see e.g. [35].
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also require to compute approximate leverage scores, which allows
the IPM to converge in just O(Vd) iterations. These properties of
our IPM motivate three new data-structures, all of which are proven
and analyzed in the full version:

(i) In Section 4.2, we present a data-structure that can maintain
an approximation of the primal dual solution pair (x, s) efficiently.
More formally, this data-structure maintains an approximation of
the sum Yz c[4] WH ARK) for diagonal matrices W) € R™" and
vectors h(K) € RY.

(ii) In Section 4.3 we present a data-structure that can main
approximate leverage scores, required by the IPM.

(iii) The last requirement of the IPM is for us to maintain a spec-
tral approximation of (AT WA)~! for some diagonal matrix W. We
present a data-structure that can maintain this inverse approxi-
mately in 6((1’“’_% + d?) amortized time per step, when the matrix
W changes slowly w.r.t {3-norm and if we have estimates of the
leverage scores of W1/2A. The exact result is stated in Section 4.4.

With this we have all tools available for proving the main result
Theorem 1.1. In Section 4.5 we show how to combine all these tools
to obtain the fast linear programming algorithm.

4.1 Interior Point Method

In the full version we derive and analyze the core subroutine of
our primal-dual robust O(Vd)-iteration IPM (Algorithm 1). This
subroutine takes an approximate central point for parameter it
and in O(Vd log(p2reet) /4, (Y)) jterations outputs an approximate
central path point for any given parameter ;128 Here we simply
state the routine (Algorithm 1) and the main theorem regarding
its performance (Theorem 4.1). We defer the full motivation of the
method and its analysis (i.e. the proof of Theorem 4.1) to the full
version. In the remainder of this section we argue how with the
appropriate data-structures, this theorem implies our main result.

THEOREM 4.1. There exists a constant { > 0 such that, given
x(init) (i) ¢ g (i) > o y(tareet) > o, and e € (0, a/16000)
with x(init)s(init) ~oe y(init) . T(x(init)’ s(init)) and

2 {€?

1 -
Axm0 _ p I <=
” ||(ATX(1nll)s(mlt)71A)*l 10g6 n

y(init)

Algorithm 1 outputs (xfinah)_ s(final)y ocp thay

x(ﬁnal)s(ﬁnal) ~c u(target) X T(x(ﬁnal)’ s(ﬁnal)) and

2
(final) _ p)12 L
llAx Dl (e gnan-1 )1 < Vdlog® n

1 u(target) 1 ) .
Vdlog(n) - (a .log( /G *3 iterations.

ﬂ(target)

inO

Furthermore, throughout Algorithm 1, we have

® xs ~y¢ f1 - T(x,s) for some u where (x, s) is immediate points
in the algorithms

b ||X_15x||r+oo < %: ||S_15s||r+oo < %’ ”diag(f)_lé'r”'rJroo <
2¢ where dx, 8s and O; is the change of x, s and T in one

. . def def
iteration and ||x||z+co = Ixlleo + Cnorm x|z for Cnorm = %.

Remark. We will take € = 1/poly log(n).
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Algorithm 1: Path Following (Theorem 4.1)

1 procedure CENTERING(xM) € R’;O,s(mit) eRZ, pinit)
0, ptarget) 5 0 ¢ > 0)
2 | @ 1/(logn/d)), A — 2 log(2nYd),
y < min($, %)
3 o p(init)) x — x(init)) s — s(init)
4 while true do
5 Pick any X,5 € Rlo such that x ~¢ x,5 =¢ s
6 Find v such that ||v — v||e < y where
v=upu-1(x,5)/w
7 Let ®(0) £ 37 exp(A(v; — 1)) + exp(—A(v; — 1))
for allv € R" .
1
8 if p = pltareet) gnd () < %ﬁ then break;
9 h= yV@(B)b(?) for 7 =¢ 7(x,s)
10 Pick any H € RA*d with

P
H %0 /(a4 10g ) ATS XA and

E[H] = ATS XA for small constant ¢ > 0.

u LetQ =5 /*X"*An- IATXI/Z“”Z W=X5
12 x<—x+(1+2a)XW ( Q)W 2,
13 se—s+(1- 20!)SW QWI/Z
14 Pick any x(new), (neW) Z(new) o R" with
W) x g x, 5OV o 5, W) o r(x s)
15 5y «— MAINTAINFEASIBILITY(x, s, T(l’lew))
16 X — x + X(new) ( (new)) _IA(SA
17 if p > Il(target) then
t t
K= max{y( arget), (1- 215\/7)/1}
18 else if y < y(tafget) then
. target
p— min{p(1278e, (1 + ZISW)”}

19 return (x, s)

Note that the complexity of Theorem 4.1 depends on the cost of
implementing Lines 5, 6, 12, and 13 of Algorithm 1, as well as the
cost of the function MAINTAINFEASIBILITY. Here Lines 5, 12 and 13
ask us to maintain an approximation of the primal dual solution
pair (x,s). A data-structure for this task is presented in Section
4.2. Additionally, to compute Lines 12 and 13, we must have access

to an approximate inverse of ATS XA (see Line 10). The task of
maintaining this inverse will be performed by the data-structure
presented in Section 4.4. At last, consider Line 6. To implement
this line, we must have an approximation of the leverage scores
7(x, s). In Section 4.3, we present a data-structure that can efficiently
maintain such an approximation.

To help us analyze the cost of function MAINTAINFEASIBILITY
we prove the following in the full version.

THEOREM 4.2 (MAINTAIN FEASIBILITY). The additional amortized
cost of calling MAINTAINFEASIBILITY in Line 15 of Algorithm 1 is
O(nd®5 + d%5/€2) per call, plus the cost of querying O(n/Nd +
d'->/€?) entries of x and s (assuming x, s are given implicitly, e.g. via
some data structure).
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4.2 Vector Data Structure

Consider an online sequence of nxn diagonal matrices GV, ..., G(T)
€ R™" and vectors h(D, ..., h(T) e R4, s, .. §(T) ¢ R" and de-
fine y(!*1) .= th<=1 GR)ARK) 4 5(K) In this subsection we describe
a data-structure that can efficiently maintain an approximation
g“) S y(t), when the relative changes (YN -1GHR) ARK) ||, and
I(Y®N)~15(0)||, are small. This is motivated by the following re-
quirement of our IPM: we must maintain a multiplicative approx-
imation of a sequence of vectors x(t), s ¢ rn (see Line 5 of
Algorithm 1), where x(K+1) = x(k) 4 5;](), stkr1) = (k) 5§k) and
the terms 5,((k) and 5£k)are roughly of the form (see Lines 12 and 13
of Algorithm 1):

o = 12X (W) 1= 0 (W) ot

— S -1/2 S 1/2
9 = (1 2™ (W) g0 () 70

To maintain an approximation of x(*), we can then use the data-
structure for maintaining an approximation of y(t ) by choosing

~1/2
6" = (1 4+ 20X (W ( (k))

h) = _g®) (W(k>)1/ 2ok k) _ (WW)” 2 ).

s

Likewise, we can maintain an approximation of s(t) by a slightly
different choice of parameters. The exact resultis the following
Theorem 4.3:

THEOREM 4.3 (VECTOR MAINTENANCE). There exists a Monte-
Carlo data-structure, that works against an adaptive adversary, with
the following procedures:

o INITIALIZE(A, g, x(O), €): Given matrix A € R”Xd, scaling g €
R™, initial vector x(O), and target accuracy € € (0,1/10), the
data-structure preprocesses in O(nnz(A) log® n) time.

e Scare(i,u): Giveni € [n] andu € R sets g; = u in O(d log® n)
amortized time.

o Query(h®),8(1)): Let g'*) € R" be the scale vector g € R"
during t-th call to QUERY and let At e R4, 5() € R™ be the
vectors given during that query. Define

0 = 0 4 Z GRapk) 4 Z 5k
kelt] ke(t]
Then, w.h.p. in n the data-structure outputs a vectory € R"
such that y = x). Furthermore, the total cost over T steps is
O(T(nlogn+ (||(x<’<))—1c<’<>Ah<’<>||§
ke[T]
HIKE)TI5F2) -2 - dlog® n).
e ComPUTEExAcT(i): Output xgt)
time O(d log n).

€ R exactly in amortized

4.3 Leverage Score Maintenance

The IPM of Theorem 4.1, requires approximate leverage scores of
some matrix of the form GA, where G is a diagonal matrix (see
Line 6 of Algorithm 1, where G = (X/ S)1/2) . Here the matrix G
changes slowly from one iteration of the IPM to the next one, which
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allows us to create a data-structure that can maintain the scores
more efficiently than recomputing them from scratch every time G
changes.

THEOREM 4.4 (LEVERAGE SCORE MAINTENANCE). There exists a
Monte-Carlo data-structure, that works against an adaptive adversary,
with the following procedures:

o INITIALIZE(A, ¢, €): Given matrix A € R™4 scaling g € R"
and target accuracy € > 0, the data-structure preprocesses in
O(nde™2 log4 n) time.

o Scare(i,u): Giveni € [n] andu € R sets g; = u in time
O(de~21og® n).

o QuEry(¥), \P((st:fe)): Let g) be the vector g during t-th call to
QUERY and define H®) = AT(GM)2A. Given random input-
matrices V() € R4 and \P((s?fe) € R4 sych that

y(® Re/(241og n) (H(t))_I,W((ggfe) Re/(24log n) HD)™L,

and any randomness used to generate \F((st:fe) is independent

of the randomness used to generate g(t), w.h.p. in n the data-
structure outputs a vector T € R" independent of ¥, ..., ¥(*)
such that7; ~¢ t;(GMA) foralli € [n].

The total cost of T calls to QUERY is

O((Zepr)IGPAFIATGH — GU-DARI-DATGU )| )2
€74 log” n+ T(Ty + e 2d? log3 n))

where Ty is the time required to multiply a vector with ¥ (ie. in
case it is given implicitly via a data structure).

4.4 Inverse Maintenance

For the IPM we must approximately maintain the inverse (AT WA) ™!
where A € R™9 undergoes changes to the diagonal matrix W (see
Line 10 of Algorithm 1 where W = §_1§). By using estimates of the
leverage scores of W'/2A (as maintained by Theorem 4.4, Section
4.3), we are able to maintain the inverse in amortized 6((1’”7% +d?)
time per step, even for n > d. The exact result is stated as Theorem
4.5.

THEOREM 4.5 (INVERSE MAINTENANCE). Given a full rank matrix
A € R™4 with n > d and error tolerance € € (0,1/10), there is a
data structure that approximately solves a sequence of linear systems
ATWAy = b € R? for positive diagonal matrices W € R™™ through
the following operation:
o INITIALIZE(A, W, T, €): Given matrix A € R"™¥4, scaling w €
RZO, shifted leverage score estimatesT € R;’O, and accuracy
€ € (0,1/10), the data-structure preprocesses in O(d) time.
o UppATE(W, 7): Output a matrix ¥ € R4 and vector wlale)
where 1 is close to ATWA € R4 and w(@18) is close to w.
o Sorve(b,w,8): Input w ~1 w and § > 0, output y = ¥b € R?
for some random matrix ¥~ € RA* that is close to ATWA €
Rdxd.
Let (w) = 7(WA). Suppose that all estimate shifted leverage scores
7€ (1% m)r(w)i fori € [n]® and that there is a sequence

3Recall that 7(w); = (VWAATWA)'ATVW), ; + £, Vi € [n]
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w® @ o WE) e R? such that the w®) satisfy

1 _
e_ZH(W(k)) I(W(k+1) _ W(k))”i(w(k))

TN D) eIy < )
fork =0,1,--- ,K—-1withK = nOOW Further assume that the update
sequence w0 @ o HE) e re satisfies wk) Xe/(16log d) w(k)
for all k and the W) are independent to the output of UPDATE and
SOLVE. (The input bk can depend on the previous output of the data
structure.) Then, we have the following:

e The amortized time per call of UPDATE is O(e ™2 - (d“’_% +d?)-
log*/(n)).

e The time per call of SOLVE is O(67% - d - log®(n/5)).

e UppATE outputs some ¥, W18 where ¥~1 = ATW@IBA ~,
ATWA with probability 1 — 1/poly(n) and w®8) ~, .

e SOLVE outputs some y = ¥b where V™! ~5 ATWA with
probability 1 — 1/poly(n) and E[¥b] = (ATWA)™1b.

In general, Theorem 4.5 does not work against adaptive adver-
saries, i.e. the input w and 7 to the UPDATE procedure is not allowed
to depend on previous outputs. In the full version we show, that this
algorithm can be improved such that the input w and 7 is allowed
to depend on the output of SoLve. However, the input is still not
allowed to depend on the output of UPDATE.

LEMMA 4.6. Theorem 4.5 holds even if the input w and T of the
algorithm depends on the output of SOLVE. Furthermore, we have

E[ Z H W) (k+1) A pk+1) A T\ (alg)(k+1)

ke[K-1]

_«/vv<a1g><k>Aw<k>ATvﬁ/(algxmH ] < 16K log®/2 n
F

where ¥(5) € Rdxd 5 @&)K) i the output of the k-th step of UpDATE(
wik) 7(k)),

4.5 Linear Programming Algorithm

Here we show how to combine the tools from Section 4.1 to 4.4 to
obtain a linear program solver that runs in O(nd + d*) time. First,
we give a brief summary of our linear programming algorithm,
Algorithm 2. The algorithm consists of two phases. In the first phase
we construct a good initial feasible solution, and in the second we
move along the central path towards the optimal solution.

The construction of the initial point works as follows: via a
simple transformation (stated below as Theorem 4.7), we obtain a
feasible solution pair (x, s) where both x and s are close to the all 1
vector and hence good enough as a point close to the central path of
the standard log barrier function. However, we need to find a point
such that xs ~¢ p - (o(S™Y2axl/2-ap) + %1). By picking x = 1
and p = 1, the initial slack s needs to satisfy s ~¢ O'(S_%_aA) + %1,
which (up to the additive %l) is exactly the condition for £, Lewis
weight with p = ﬁ. Cohen and Peng showed that such a vector s
can be found efficiently as long as p € (0, 4) [13]. We note that such
s might not satisfy Ay+s = c. That is why we define () .= Ayt
for y = 0, so that (x, s) is a feasible solution pair for the cost vector
(tmP) I the first phase of Algorithm 2, we move the point (x, s)
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along the central path of the temporary cost vector c(tmp) and bring
the points to a location where we can switch the cost c(™P) to ¢
without violating the centrality conditions. This is how we obtain
our feasible starting point for the cost vector c. In the subsequent
second phase, we move along the path for the cost c until it is close
to the optimal solution.

Moving along these two paths of the first and second phase is
performed via the IPM of Algorithm 1 (Section 4.1, Theorem 4.1).
Note that Algorithm 1 does not specify in Line 5 how to obtain the
approximate solution pair (x, s), so we must implement this step
on our own. Likewise, we must specify how to efficiently compute
the steps in Lines 12 and 13. These implementations can be found
in the second part of Algorithm 2. The high-level idea is to use the
data-structures presented in Section 4.2 to 4.4.

To illustrate, consider Line 13 of Algorithm 1, which computes

se—s+(1- ZQ)W_I/ZQWI/ZPI

for W = XSand Q = SR AHIATR ST for H ~e

ATS 'XA. We split this task into three parts: (i) compute r :=
ATil/zg_l/ZWI/zh, (ii) compute v := H™lr, and (iii) compute
- Za)ﬁ_l/zg_l/z)_(l/zAv = (1 — 2a)Av. Part (i), the vector
r, can be maintained efficiently, because we maintain the approxi-
mate solutions x, s (thus also w) and vector A, (via an Algorithm in
the full version) in such a way, that per iteration only few entries
change on average. Part (ii) is solved by the inverse maintenance
data-structure of Section 4.4 (Theorem 4.5). The last part (iii) is
solved implicitly by the data-structure of Section 4.2 (Theorem 4.3),
which is also used to obtain the approximate solutions X, s in Line
5 of Algorithm 1. We additionally run the data-structure of Section
4.3 (Theorem 4.4) in parallel, to maintain an approximation of the
leverage scores, which allows us to find the approximation v re-
quired in Line 6. These modifications to Algorithm 1 are given in
the second part of Algorithm 2.

The following theorem shows how to reduce solving any bounded
linear program to solving a linear program with a non-degenerate
constrain matrix and an explicit initial primal and dual interior
point.

THEOREM 4.7 (INITIAL POINT). Consider some linear program
MinT,—p x>0 C' % with n variables and d constraints. Assume that
1. Diameter of the polytope: ||x||2 < R forallx > 0 withATx = b
2. Lipschitz constant of the linear program: ||c||2 < L.

3. The constraint matrix A is non-degenerate.
For any 6 € (0, 1], the modified linear program minKTY
with

T—
- _ c X
=b,x>0

A 1n|lAllp
A= 0 1|Allp c R(n+2)><(d+1)’
1
xbT-1,A 0
)
1y ¢
= R eR¥landz=|"0 | eRr"?
(n-+ DIAIlF X
satisfies the following:
1n ,+9¢
— _ 04 - .
Lx=|1|y= [_1] ands = 1 are feasible.
1 1

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song

Algorithm 2: LP Algorithm (based on Algorithm 1)

1 global variables
2 | AeR™d >0

3 DL // Theorem 4.5
4 | DY, D), // Theorem 4.3
5 Drgveraces // Theorem 4.4
6 DGrapienT ; // See appendix of full version
7 | TERW /1 Ty~ (o(STV2ax 2map) 1 dy)
/* Same parameters as in Theorem 4.1 */
def def
8 a = 1/(4log(4n/d)), € = 1z555
def 16 def .
o | AY 2log(2nVd) & rnin(e/a, 2)

10 procedure SOLVE(A € R™4 p e R" c e RY, 8 > 0)
1 Modify the LP and obtain an initial x, y and s by
Lemma 4.7 to accuracy &/ 8n?
/* For notational simplicity, we use A,b,c,n,d
for the modified LP induced by Lemma 4.7

in the remainder of the code. */
12 Find s with s ~¢ o(S71/27%A) + %l via Theorem 4.8
13 TS, u<«1// Since x =1 (Lemma 4.7),xs =¢ ut

14 D LINtTIALIZE(A, S™172%x172¢ 7y /51210g n)

15 Dreverace-INITIALIZE(A, S™172¢ x172¢ 1y /)

16 D) InrTIaLIZE(A, S~ 1x, x, /8)

17 D) INTTIALIZE(A, 1, 5, v/8)

18 DGrapient INITIALIZE(A, ut/(XS), T, X, ¥)

/7 ¢ = Ay +5 for y=0
20 X, , T, jt < CENTERING(X, S, T, [, @(nz\/g/(yaz))

21 sew) g4 ¢ ((tmp)

22 D) INITIALIZE(A, 1, s(new) v/8)

23 X,$,T, i « CENTERING(X, s, T, 1, 62 /(83n*d))

24 Reduce Il‘l||AT to some small O(5/n?)

19 c(tmp) s;

_ B2
X b”(Asz—lA)—l
25 Return an approximate solution of the original linear
program according to Lemma 4.7

Let (X,,s) be primal dual vectors of the modified LP and @y, =

- then ||X||o < (1+ O(®p)) - O(n).

== N

Pz
JATX=bE

A x ||<ATXS 1
3. Let (x, Y, s) be primal dual vectors of the modified LP withx -5 ~¢ 5
u - 1(%,35) for u < 82/(8d) and small enough p := i . ||KT§ -

EH{quf = O(1) (i.e. X does not have to be feasible). The vector
@A'Xs Ay
X Y R-X1.n whereXyy is the first n coordinates of X is an approximate

solution to the original linear program in the following sense

¢"x + O(nLR) - (\/(I)_b + 6),

c'x < min
ATx=b,x>0

ATX = bll2 < O(n) - (IAllER + |Ibll2) - (V@ + 5)),
x=0.
As outlined before, the initial points given in Theorem 4.7 do
not satisfy xs ~¢ p - (o(S™V/2-axl/2=a A) 4 (d/n)1). To satisfy this
condition we pick x = 1 and p = 1, and pick the initial slack vector

1
s a to satisfy s ¢ o(S727%A) + %l, which is exactly the condition
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Algorithm 3: LP Algorithm (based on Algorithm 1), Con-
tinuation of Algorithm 2.

init n init init
26 procgdure CENTERING(x{it) ¢ R>0,s( ) e RZ . 7(init) 5
0, ’u(lmt) > O’p(target) > 0)

27 = ‘u(init)’ 7 e z.(init), T(tmp) - T(init)’ 7 e x(init),
x(tmp) - x(init), 5 S(init)’ S(tmp) P s(init)
28 while TruUE do
29 Xi = (tmp) for all i such that X; #, /3 x(t mp)
30 5i = (tmp) for all i such that s; %y /8 s( mp)
31 Ti = l.(tmp) for all i such that 7; %y /8 r( mp)
32 W X5,0 ue W T
33 if p = pltareet) gnd (o) < %ﬁ then break;
34 DGrapient-UPDATE(L, U;, T, X;) for i where v;, T; or
x; changed
35 h,r < DGrapient-QUERY()
36 gla) g D‘l.UPDATE(g_l_zaEI_Z“,?)
37 Dy everace-UPDATE(], 4/g) for i where g; changed
58 ‘P((S”;fe)(b) “ D1 Sowve(b, S 2xl2 sy
39 Yisafe)(b) & DL Sowve(b, 5™ %, (ce)/(d!/* log® n))
40 D) ScaLe(x/s) // Only scale coordinates
where x or s changed.
" x(tmP) — D) QUERY((1 + 200)¥(safe)T- (1 + 20)Xh)
12 s(tmp) D(S).QpERY((l = 20)¥safe)7> On)
43 7(tmp) DLEVERAGE-QEJERY(\II(O[) \Il((sife))
44 5, «— MaiNTaNFEasiBILITY(D™), D), 1)
15 x(1P) D) QuEery(S;, 0)
46 if g > (gt then
o max(uTEY, (1 - EEyp;
47 elseif p < p(tareet) then
e min(uED, (14 Ko );
a8 x « D) CompuTeExACT(1, ..., n)
49 s — D(s).COMPUTEEXACT(l, )
50 return (x, s, r(tmp), 1)

for £, Lewis weight with p = = The following theorem shows
that such a vector s can be found efficiently as long as p € (0, 4).
This vector s might not be a valid slack vector, so as outlined before,
the algorithm runs in two phases: first using a cost vector ctmp) for
which the initial s is feasible, and then switching to the correct c.

THEOREM 4.8 ([13]). Givenp € (0,4), n > 0 and non-degenerate
A € R™ whp inn, we can compute w € RZ,

G(WZ™7 A) + 11 in O((nnz(A) + d°)poly(1/e)) time.

with w =~

PRrOOF. Our proof is similar to [13], which proved a variant when
def

n = 0 Consider the map T(w) =
Further, fix any positive vectors v, w € R" such that v =, w. We

W7 (oW 7 A) + )P,
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_1 _2
have that ATV 7 A ~1-2 | ATW'™7 A and hence
)
_2 _2
o ATV P A e~z a] (ATW P A T (8)
P
Note that

1-2 2
v, PaT(ATV P A)1a; +
T(’U)?/P _ i i itn

2 21
= a;r(ATV1 PA) la; + nof
Using (4), we have
—2la T ATwl=5 A1 e
»a; (AW PA) a; + o]

_2 _2 21
<ell Pla(a;r(ATWI PA) g +pw! )

T(U)?/p < el

2
— ell_P ‘aT(W)?/P .

,ll,l

Similarly, we have T(U)?/p >e " P |‘XT(W)?/‘D. Taking p/2 power

of both sides, we have
12119 () < T(); < el 81T (),

Hence, T(v) % |p/2-1]a T(W).

Consequently, let wyp = 571 and consider the algorithm wy,; =
T(wg). Since > 0 we have that wop = won /24?2 < T(wp)
and T(wo) < wop P72 (1 + ,7)P/2 < wo exp(py~1/2) . Consequently,
T(wo) Rpp-1/2 WO and after k steps we have that

T(wie) Rexp(p/2-11py~t /2) Wk-
Since for p € (0,4), we have that [p/2 — 1| < 1 we see that after
O(log(n~1/€)) steps we have wy ~ T(wy). Further, since wy > 51
implies that T(wy) > n1 we have that wi € RZ as desired. To
implement the steps, one can check, by the same proof, that it
suffices to get a ~ () multiplicative approximation to T(w) in each
step, which can be done in O((nnz(A)+d®)/€?) per step by standard
leverage score estimation techniques. O

Now, we first prove the correctness of the Algorithm 2.

LEmMMA 4.9. Algorithm 2 outputs x such that w.h.p. inn

c'x < min  c¢'x+LR-§,

ATx=b,x>0
IATx = bll2 < & - (IAllg - R+ [1B]1).
x > 0.

Proor. We define the primal dual point (x, s) via the formula
of lines 12 and 13. We start by showing that our implementation
of Algorithm 1 in Algorithm 2 satisfies all required conditions, i.e.
that we can apply Theorem 4.1. Throughout this proof, states hold
only w.h.p. and therefore the restatement of this is often omitted

for brevity.

¥ < - -1/2-agl/2-
Invariant: X =y /4 X,5 ~yj4 S, T ~y)4 o [2-aZ1/ aA) .

%1 and ¥(sate) e (ATgiliA)_l: We first show that throughout
CENTERING, we have the invariant above, assuming the input pa-
rameter r(mlt) satisfied r(lmt) Xy /4 o(S71/2-axl/2-ap) 4 %1. Theo-

rem 4.3 shows that x(tmp) ~y /g x and s(tmp) ~y/g s (Line 41 and 42).
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Then, by the update rule (Line 29 and 30), we have that x(t™P) ~y 8 X

and s(tmp) ~y /s S. Hence, we have the desired approximation for x
and 5. Next, Theorem 4.5 shows that

o p(@) Xy /(51210 n) (ATS™12ax1-2¢ A)=1 (Line 14) and

. \II((SD;)fe) Xy /(51210g n) (AT5717201X1720(A)—1 (Line 38).
Hence, we can apply Theorem 4.4 and get

——l/Z—ail/Z—a

d
(tmp) S A)+ =1
T v/8 U( )+ n

(Line 15 and Line 43). Again, by update rule (Line 31), we have the
desired approximation for 7.

Finally, ¥afe) ~e (A-'—§_1§A)’1 follows from Theorem 4.5
(Line 39). These invariants also imply ||[v — v]ls < y and that
DGradient maintains V&(@")*@) for some ||7" - vl < y (see full
version). Thus, in summary, CENTERING of Algorithm 2 behaves
like CENTERING of Theorem 4.1.

Invariant: xs ~ p - 7(x, s): Initially, x = 1 due to the reduction
(Lemma 4.7), p = 1 and s ~¢ o(STV/2 2 A) + %1 (Line 12). Hence,
XS Re fL- (o(S~V/2-axl/2-ap) 4 %1) initially.

We change x, s, g in Line 20 by calling CENTERING. By Theo-
rem 4.1 we then have xs =~ ur after this call to CENTERING. Next,
consider the step where we switch the cost vector on Line 21. Let
s(MeW) be the vector s after Line 21 and s is before Line 21. Since
Ay+s = c("P) we have that Ay +s0eW) = ((tmp) _ g (ew) — ¢ j e
s is a valid slack vector for cost c. Further, we have that, by design

S(new) -5

¢ — c(tmp)

s s
First, we bound the denominator. We have that sx ~;, yr, so for
all i € [n] we have

Si = Li > K
2xin — Q(n?)

where we used ||x||c < O(n) by Lemma 4.7 as we ensure x is
sufficiently close to feasible for the modified linear program by
Theorem 4.1. For the numerator, we note that ||c||c < 1 for the
modified linear program and lctmP)| o = sl < 3 for the s
computed by Theorem 4.8 in Line 12.again by the definition of s
(Line 12) and the modified A and y. Hence, we have that

<

| Rt

for any constant ¢ by choosing the constant in the O(-) in Line 20 ap-

snew) _ g H 16n? ya?
—_— S —_—
oo

N

propriately. Thus xs ~2¢ p-7(x,s)and7 ~ )4 o(S~V2maxl/2-ap)y
%1, so when we call CENTERING in Line 23, we again obtain xs ~¢
1 t(x, ).

Conclusion: Before the algorithm ends, we have xs ~q/4 pz. In

Line 24, we reduce ®;, := ||[ATx to some small

= blI?\ Tyt A

(ATXS 1A)
enough ®;, = O(5/n?). As argued in the full version, this does not
move the vector x too much, i.e. we still have x - s x4/ pi - 7(x, 5).
Hence, by the choice of the new y in Line 23, Lemma 4.7 shows

that we can output a point X with the desired properties. O
Finally, we analyze the cost of the Algorithm 2.

LeEMMA 4.10. Algorithm 2 takes O((nd + d®)1og®M nlog(n/5))
time with high probability in n.
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ProoF. For simplicity, we use O(-) to suppress all terms that

are logo(l)

o(1)

n. We first note that all parameters «, €, A, y are either
log”*" n or l/logo<1) n. The cost of Algorithm 2 is dominated by
the repeated calls to CENTERING.

Number of iterations: By Theorem 4.1 the calls to CENTERING in
Lines 20 and 23 perform o(Vd log(1/8)) many iterations in total.

Cost of D™: Note that ||7718; ||lz+00 = 26, IS 8s]lr40 < €/2,
and ||X 18x|lz+0 < €/2 by Theorem 4.1. Hence, the weight of
the vector w = S™1729x172@ gatisfies |[W16,,|l; = O(e). Note
however, that we need D~1.UPDATE to compute the inverse with
accuracy O(y/log n) and hence Theorem 4.5 requires the relative
movement of w to be less than y /log n. This can be fixed by splitting
the step into O(1) pieces. Now, Theorem 4.5 shows that the total
cost is O(d® + Vd log(1/8)(d”™% + d?)) = O((d® + d-%) log(1/5))
where the term d is the initial cost and d~ +d? is the amortized
cost per step. Note that the solver runs with accuracy O(d~1%) so
the total time for all calls to D™!.SoLvE will be 6(d3).

Cost of Drgyprace: By Lemma 4.6, the total movement of the
projection matrix is

) WE+D Apk+D AT (k+1)
ke[K-1]

- w<k)A\If(’<)AWW<k)“F - O(K)

where K is the number of steps and w = ST172@x1~2@ Then, The-
orem 4.4 shows that the total cost is O(%K2 -d) = O(nK?) =
O(ndlog?(1/6)).

Cost of D¥) and D©): By Theorem 4.3, the total cost for D) is
bounded by O(K? max ||X~ 168, ||§ -d + Kn) where max ||X’15x||§ is
the maximum movement in one step in {-norm. Note that 7 > %
and hence ||X_1§x||§ < §||X_15x||% = 6(%) Hence, we have that
the cost is O(d log®(1/8) - % - d) = O(nd). The bound for D) is the
same.

Cost of maintaining ATXh (Dgradient): The cost of maintain-
ing ATXh is exactly equals to d times the number of coordinates
changes in X, 5, 7. Note that we change the exact x, s, 7 by at most
around (1 * y/8) multiplicative factor in every step. So, the total
number of entry changes performed to %, 3, 7 is bounded by

0 (K2 (max X8|I + max [|S ™28 |2 + max ||f—157||§)),

where max refers to the maximum movement in any step in {2-
norm. As we showed before, all the movement terms are bounded by
6(%) (see the paragraphs regarding D™, D) and D). So in total
there are O(n log?(1/8)) many entry changes we perform to X, 5, 7.
Hence, the total cost of maintenance is again O(nd log?(1/9)).
Cost of implementing MAINTAINFEASIBILITY: By Theorem 4.2 we
pay O(nd®-5+d?%) amortized time per call to MAINTAINFEASIBILITY.
Additionally, we must compute 6(n /Vd + d'-9) entries of x in each
iteration (i.e. call D(x).COMPUTEEXACT(i)), which costs O(d) per
call, so we have total cost of O(nd + d3) after O(Vd) iterations.
Removing the extra log(1/5) term: We note that all the extra
log(1/6) terms are due to running the data structures for Vd log(1/6)
steps. However, we can we reinitialize the data structures every Vd
iterations. This decreases the K dependence from K2 to KVd.
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Independence and Adaptive Adversaries: Randomized data struc-
tures often can not handle inputs that depend on outputs of the
previous iteration. For example Theorem 4.5 is such a case, where
the input to UPDATE is not allowed to depend on the output of
any previous calls to UPDATE. In our Algorithm 2 the input to the
data-structures inherently depends on their previous output, so
here we want to verify that this does not cause any issues.

The data-structures D) and D) are given by Theorem 4.3,
which explicitly states that the data-structure works against adap-
tive adversaries. This means, that the input is allowed to depend
on the output of previous iterations. Likewise, Dy gygrace WOrks

against adaptive adversaries by Theorem 4.4 (provided the input
\I/(a)
(safe)

chosen for W@ which is the case by Lemma 4.6). The only issue is
with D™! (given by Theorem 4.5), where the input w, 7 to UPDATE
is not allowed to depend on the output of previous calls to UPDATE
(however, w and 7 are allowed to depend on the output of SOLVE
by Lemma 4.6). Also note, that the inputs w, b, § to SOLVE are al-
lowed to depend on any previous output of UPDATE and SOLVE, as
Theorem 4.5 only has issues with the inputs w and 7 to UPDATE. So
to show that our algorithm works, we are only left with verifying
that the input w, 7 to UPDATE does not depend on previous results
of UPDATE. Let us prove this by induction.

. _ ——1-2a_{_9q —
The result of UppATE is ¥(®) « D=1 UppaTe(S - x172%,7),
and when executing this line for the very first time, it can obviously

are chosen by randomness independent of the randomness

not depend on a previous output yet. The matrix w(@) s only used

as input to Dy gyer AGE.Q}ERY(‘P(“) s ‘{'((:;)fe)), but by Theorem 4.4 the

output of this procedure does not depend on ¥(%). Hence (@) does
not affect anything else, which also means the input § IR
and T to the next call of D~!.UpDATE do not depend on previous

pla), |

5 OPEN PROBLEMS

Our main result is a linear program solver that runs in expected
O(nd + d3) time. For dense constraint matrices A € R™*9 this is
optimal among algorithms that do not use fast matrix multiplica-
tion, barring a major improvement in solving linear systems. The
fastest linear system solvers run in O(nnz(A) + d®) time, where
nnz(A) is the number of nonzero entries in A and w is the matrix
exponent. This leads to two open questions: (i) Can the nd term
in our complexity be improved to nnz(A)? (i) Can the d* term be
improved to d“ by exploiting fast matrix multiplication?

A major bottleneck for question (i) is how to detect large entries
of the product Ah for A € R"Xd, h € RY, Currently the com-
plexity of our data structure for that problem (see full version) is
O(||GAR||? - £2 - d), which can be interpreted as “d times the num-
ber of entries larger than ¢”. Note that verifying the answer (that is,
for a list of indices I C [n], check that (Ah); is indeed larger than
¢) requires the same complexity for dense matrices A. However, for
matrices with z < d entries per row, the verification complexity is
just z - |I|. This suggests that it might be possible to improve the
data structure to run in O(||GAA||? - £72 - z) for matrices A with z
nonzero entries per row. If such a data structure could be found, it
would result in a faster linear programming algorithm.
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So far question (ii) has only been answered for the case d = Q(n)
[5, 12] and no progress has been made for the more general case
d = o(n), even when allowing for a worse dependency on n than our
O(nd +d*) bound. So far the best dependency on d is d?-> > d[33,
34], so a first step could be to improve our complexity to O(nd+d?-5)
time. Currently the d* bottleneck comes from maintaining the
feasibility of the primal solution x (Theorem 4.2) so a first step
would be to improve the complexity of maintaining the feasibility.
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