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ABSTRACT
In this paper we provide an Õ(nd + d3) time randomized algorithm

for solving linear programs with d variables and n constraints with

high probability. To obtain this result we provide a robust, primal-

dual Õ(
√
d)-iteration interior point method inspired by the methods

of Lee and Sidford (2014, 2019) and show how to efficiently imple-

ment this method using new data-structures based on heavy-hitters,

the Johnson–Lindenstrauss lemma, and inverse maintenance. In-

terestingly, we obtain this running time without using fast matrix

multiplication and consequently, barring a major advance in lin-

ear system solving, our running time is near optimal for solving

dense linear programs among algorithms that do not use fast matrix

multiplication.
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1 INTRODUCTION
Given A ∈ Rn×d , b ∈ Rd , and c ∈ Rn solving a linear program (P)
and its dual (D):

(P) = min

x ∈Rn
≥0
:A⊤x=b

c⊤x and (D) = max

y∈Rd :Ay≥c
b⊤y . (1)

is one of the most fundamental and well-studied problems in com-

puter science and optimization. Developing faster algorithms for

(1) has been the subject of decades of extensive research and the

pursuit of faster linear programming methods has lead to numerous

algorithmic advances and the advent of fundamental optimization

techniques, e.g. simplex methods [18], ellipsoid methods [30], and

interior-point methods (IPMs) [29].

The current fastest algorithms for solving (1) are the IPMs of

Lee and Sidford [34] and Cohen, Lee, and Song [12]. These results

build on a long line of work on IPMs [3, 29, 47, 52, 61, 63, 64], fast

matrix multiplication [14, 15, 21, 22, 58–60, 66], and linear system

solvers [9, 11, 39, 42, 44]. The first, [34] combined an Õ(
√
d) iteration

IPM from [33, 35] with new techniques for inverse maintenance, i.e.

maintaining an approximate inverse of a slowly changing matrix,

to solve (1) in time Õ(nnz(A)
√
d + d2.5) with high probability. For

sufficiently large values of nnz(A) or n, this is the fastest known
running time for solving linear programming up to polylogarithmic

factors.

The second, [12], developed a stable and robust version of the

IPM of [52] (using techniques from [33, 35]) and combined it with

novel randomization, data structure, and rectangular matrix multi-

plication [22] techniques to solve (1) in time Õ(max{n,d}ω ) with
high probability where ω < 2.373 is the current best known matrix

multiplication constant [21, 66]. When n = Θ̃(d), this running time

matches that of the best known linear system solvers for solving

n × n linear systems and therefore is the best possible barring a

major linear system solving advance.

Though, these results constitute substantial advances in algo-

rithmic techniques for linear programming, the running times of

[34] and [12] are incomparable and neither yield a nearly linear

running time when n grows polynomially with d , i.e. when d = nδ

for any δ > 0 neither [34] or [12] yields a nearly linear running

time. Consequently, it has remained a fundamental open problem

to determine whether or not it is possible to solve high-dimensional

linear programs to high-precision in nearly linear time for any poly-

nomial ratio of n,d , and nnz(A). Though achieving such a nearly

linear runtime is known in the simpler setting of linear regression

https://doi.org/10.1145/3357713.3384309
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[9–11, 39, 42, 44], achieving analogous results for solving such tall

linear programs has been elusive.

In this paper we provide the first such nearly linear time algo-

rithm for linear programming. We provide an algorithm which

solves (1) with high probability in time Õ(nd + d3). Whenever A is

dense, i.e. nnz(A) = Ω(nd), and sufficiently tall, i.e. n = Ω(d2), this
constitutes a nearly linear running time. In contrast to previous

state-of-the-art IPMs for linear programming [12, 34] our algorithm

doesn’t need to use fast matrix multiplication and thereby matches

the best known running time for regression on dense matrices

which does not use fast matrix multiplication.

To achieve this result, we introduce several techniques that we

believe are independent interest. First, we consider the IPM of [35]

and develop an efficiently implementable robust primal-dual variant

of it in the style of [5, 12, 37] which only requires solving Õ(
√
d)

linear systems. Prior to [33, 35], obtaining such an efficient Õ(
√
d)-

iteration IPM was a major open problem in the theory of IPMs. We

believe our primal dual method and its analysis is simpler than that

of [35]; by developing a primal-dual method we eliminate the need

for explicit ℓp -Lewis weight computation for p , 2 as in [35] and

instead work with the simpler ℓ2-Lewis weights or leverage scores.

Further, we show that this primal dual method is highly stable and

can be implemented efficiently given only multiplicative estimates

of the variables, Hessians, and leverage scores.

With this IPM in hand, the problem of achieving our desired

running time reduces to implementing this IPM efficiently. This

problem is that of maintaining multiplicative approximations to

vectors (the current iterates), leverage scores (a measure of impor-

tance of the rows under local rescaling), and the inverse of matrix

(the system one needs to solve to take a step of the IPM) under

small perturbations. While variants of vector maintenance have

been considered recently [5, 12, 37] and inverse maintenance is

well-studied historically [5, 12, 29, 33–35, 37, 48, 49, 61], none of

these methods can be immediately applied in our setting where we

cannot afford to pay too much in terms of n each iteration.

Our second contribution is to show that these data-structure

problems can be solved efficiently. A key technique we use to over-

come these issues is heavy-hitters sketching. We show that it is

possible to apply a heavy hitters sketch (in particular [26, 50]) to

the iterates of the method such that we can efficiently find changes

in the coordinates. This involves carefully sketching groups of up-

dates and dynamically modifying the induced data-structure. These

sketches only work against non-adaptive adversaries, and therefore

care is need to ensure that the sketch is used only to save time and

not affect the progression of the overall IPM in a way that break

this non-adaptive assumption. To achieve this we use the sketches

to propose short-lists of possible changes which we then filter to

ensure that the output of the datastructure is deterministic (up

to a low probability failure event). Coupling this technique with

known Johnson-Lindestrauss sketches yields our leverage score

maintenance data structure and adapting and simplifying previous

inverse maintenance techniques yields our inverse maintenance

data structure. We believe this technique of sketching the central

path is powerful and may find further applications.

1.1 Our Results
The main result of this paper is the following theorem for solving

(1). This algorithm’s running time is nearly linear whenever the

LP is sufficiently dense and tall, i.e. nnz(A) = Ω̃(nd) and n = Ω̃(d2).
This is the first polynomial time algorithm with a nearly linear

running time for high-dimensional instances (i.e. when d can grow

polynomially with n). This algorithm does not use fast matrix mul-

tiplication (FMM) and consequently its running time matches the

best known running time for checking whether there even exists x
such that A⊤x = b for dense A without using FMM.

Theorem 1.1 (Main Result). There is an algorithm (Algorithm 2)

which given any linear program of the form (1) for non-degenerate
1

A ∈ Rn×d and δ ∈ [0, 1] computes a point x ∈ Rn
≥0

such that

c⊤x ≤ min

A⊤x=b ,x ≥0
c⊤x + δ · ∥c ∥2 · R and

∥A⊤x − b∥2 ≤ δ ·
(
∥A∥F · R + ∥b∥2

)
where R is the diameter of the polytope in ℓ2 norm, i.e. ∥x ∥2 ≤ R for

all x ∈ Rn
≥0

with A⊤x = b. Further, the expected running time of the

method is O((nd + d3) logO (1) n log n
δ ).

Remark. See [33, 52] on the discussion on converting such an

approximate solution to an exact solution. For integral A,b, c , it
suffices to pick δ = 2

−O (L)
to get an exact solution where L =

log(1 + dmax + ∥c ∥∞ + ∥b∥∞) is the bit complexity and dmax is the

largest absolute value of the determinant of a square sub-matrix of

A. For many combinatorial problems L = O(log(n + ∥b∥∞ + ∥c∥∞)).

Beyond this result (Section 4) we believe our robust primal-

dual Õ(
√
d)-iteration IPM and our data structures for maintaining

multiplicative approximations to vectors , leverage scores , and the

inverse of matrices are of independent interest.

1.2 Previous Work
Linear programming has been the subject of extensive research for

decades and it is impossible to completely cover to this impressive

line of work in this short introduction. Here we cover results par-

ticularly relevant to our approach. For more detailed coverage of

prior-work see, e.g. [47, 68].

IPMs: The first proof of a polynomial time IPM was due to

Karmarkar in [29]. After multiple running time improvements

[29, 48, 49, 61] the current fastest IPMs are the aforementioned

results of [35] and [12]. Beyond these results, excitingly the work of

[12] was recently extended to obtain comparable running time im-

provements for solving arbitrary empirical risk minimization prob-

lems (ERM) [37] and was recently simplified and de-randomized

by van den Brand [5]. These works consider variants of the vector

maintenance problem and our work is inspired in part by them.

Our IPM leverages the barrier from [35] in a new way, that enables

the application of robustness techniques from [5, 12, 35] and new

techniques for handling approximately feasible points.

Heavy Hitters and Sketching: Sketching is a well-studied

problem with a broad range of applications. Johnson-Lindenstrauss

1
We assume throughout that A is non-degenerate meaning it has full-column rank and

no-zero rows. This assumption can be avoided by preprocessing A to check for zero

rows and adding a tiny amount of noise to the matrix to make it full-column rank.

There are other natural ways to remove this assumption, see e.g. [35].
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sketches were used extensively in previous IPMs [35], but only for

the restricted application of computing leverage scores. Further

sketching techniques have been used for the purpose of dimen-

sion reduction and sampling in other optimization contexts, e.g.

solving linear systems [9–11, 39, 42, 44] and certain forms of ℓp -

regression [13]. Our methods make use of ℓ2-heavy hitters sketches

[8, 16, 17, 26, 31, 45, 50], in particular the ℓ2-sketches of [26, 50],

to decrease iteration costs. We are unaware of these sketches be-

ing used previously to obtain provable improvements for solving

offline (as opposed to online, streaming, or dynamic optimization

problems) variants of linear programming previously. We believe

this is due in part to the difficulty of using these methods with non-

oblivious adversaries and consequently we hope the techniques we

use to overcome these issues may be of further use. Also, note that

the definition of ℓ2-heavy hitters problem that we use is equivalent

to ℓ∞/ℓ2-sparse recovery problem. Though the ℓ2/ℓ2-sparse recov-

ery [7, 19, 23, 25, 43, 51, 55] is a more standard task in compressed

sensing, we are unaware of how to efficiently use its guarantees for

our applications.

Leverage Scores and Lewis Weights: Leverage scores [11, 39,
40, 57] (and more broadly Lewis weights [4, 13, 35, 38]) are funda-

mental notions of importance of rows of a matrix with numerous

applications. In this paper we introduce a natural online problem

for maintaining multiplicative approximations to leverage scores

and we show how to solve this problem efficiently. Though we are

unaware of this problem being studied previously, we know that

in the special case of leverage scores induced by graph problems,

which are known as effective resistances, there are dynamic algo-

rithms for maintaining them, e.g [20]. However, these algorithms

seem tailored to graph structure and it is unclear how to apply them

in our setting. Further, there are streaming algorithms for variants

of this problem [2, 27, 28], however their running time is too large

for our purposes.

Inverse Maintenance: This problem has been studied exten-

sively and are a key component in obtaining efficient linear pro-

gramming running times with previous IPMs [5, 12, 29, 32–35, 37,

48, 49, 54, 55, 61] and other optimization methods [1, 36]. Outside

the area of optimization, this problem is also known as Dynamic

Matrix Inverse [6, 53]. Our method for solving inverse maintenance

is closely related to these results with modifications needed to fully

take advantage of our leverage score maintenance, obtain poly(d)
(as opposed to poly(n) runtimes), ensure that randomness used to

make the algorithm succeed doesn’t affect the input to the data

structure, and ultimately produce solvers that are correct in expec-

tation.

2 OVERVIEW OF APPROACH
The proof of Theorem 1.1 is split into two steps. In the full version

[65] we provide a new robust, primal-dual, Õ(
√
d) iteration IPM

inspired by the LS-barriers of [33, 35] and central path robustness

techniques of [5, 12, 33, 35, 37]. Then we develop new data struc-

tures based on heavy hitters, the Johnson-Lindenstrauss lemma,

and inverse maintenance. These data structure then allow us to

efficiently implement this new IPM.

Here we give an outline for the new IPM and how to implement

this IPM efficiently using the new data structures. Section 4 shows

how to use these result to obtain the fast linear program solver.

2.1 A Robust Primal-Dual Õ(
√
d) IPM

Here we provide an overview of our approach to deriving our

robust, primal-dual, Õ(
√
d) iteration IPM. We assume throughout

this section (and the bulk of the paper) that A is non-degenerate,

meaning it is full-column rank and no non-zero rows. By standard

techniques, in Section 4.5 we efficiently reduce solving (1) in general

to solving an instance of where this assumption holds.

We first give a quick introduction to primal-dual path IPMs,

review the central path from [35] and from it derive the central

path that our method is based on, and explain our new IPM.

Primal-Dual Path Following IPMs: Our algorithm for solving the

linear programs given by (1) is rooted in classic primal-dual path-

following IPMs. Primal-dual IPMs, maintain a primal feasible point,

x ∈ Rn
≥0

with A⊤x = b, a dual feasible point y ∈ Rd with s =
Ay − c ≥ 0, and attempt to decrease the duality gap

gap(x,y)
def

= c⊤x − b⊤y = (Ay + s)⊤x − (A⊤x)⊤y = s⊤x .

Note that gap(x,y) upper bounds the error ofx andy, i.e. gap(x,y) ≤
ϵ implies that x and y are each optimal up to an additive ϵ in objec-

tive function, and therefore to solve a linear program it suffices to

decrease the duality gap for primal and dual feasible points.

Primal-dual path-following IPMs carefully trade-off decreasing

the duality gap (which corresponds to objective function progress)

with staying away from the inequality constraints, i.e. x ≥ 0 and

s ≥ 0 (in order to ensure it is easier to make progress). Formally,

they consider a (weighted) central path defined as the unique set of

(xµ ,yµ , sµ ) ∈ R
n
≥0
× Rd × Rn

≥0
for µ > 0 that satisfy

XµSµ1 = µ · τ
weight

(xµ , sµ ), (2)

A⊤xµ = b,

Ayµ + sµ = c,

where Xµ
def

= Diag(xµ ), Sµ
def

= Diag(sµ ), and τweight : Rn≥0 ×R
n
≥0
→

R is a weight function. These methods maintain primal and dual

feasible points and take Newton steps on the above non-linear

inequalities to maintain feasible points that are more central, i.e.

have (2) closer to holding, for decreasing µ. Since many properties

of the central path can be defined in terms of just xµ and sµ we

often describe methods using only these quantities and we adopt

the following notation.

Definition 2.1 (Feasible Point). We say that (x, s) ∈ Rn
≥0
× Rn
≥0

is

a feasible point if there exists y ∈ Rd with A⊤x = b and Ay + s = c .

Now, perhaps the most widely-used and simple weight function

is τ
weight

(x, s) ← τ
std
(x, s)

def

= 1, i.e. the all-ones vector. Central path

points for this weight function are the solution to the following

xµ = argmin

x ∈Rn
≥0
:A⊤x=b

c⊤x − µ
∑
i ∈[n]

log(xi ) and

(yµ , sµ ) = argmax

(y,s)∈Rd×Rn
≥0
:A⊤y+s=c

b⊤y − µ
∑
i ∈[n]

log(si ) ,

i.e. optimization problems trading off the objective function with

logarithmic barriers on the inequality constraints. There are nu-

merous methods for following this central path [24, 41, 47, 52, 69].

By starting with nearly-central feasible points for large µ and it-

eratively finding nearly-central feasible points for small µ, they
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can compute ϵ-approximate solutions to (1) in Õ(
√
n)-iterations.

For these methods, each iteration (or Newton step) consists of

nearly-linear time computation and solving one linear system in

the matrix A⊤XS−1A ∈ Rd×d for X = Diag(x) ∈ Rn×n and

S = Diag(s) ∈ Rn×n .
The first such Õ(

√
n)-iteration IPMwith this iteration cost was es-

tablished by Renegar in 1988 [52] and no faster-converging method

with the same iteration cost was developed until the work of Lee

and Sidford in 2014 [33, 35]. It had been known since seminal work

of Nesterov and Nemirovski in 1994 [47] that there is a weight

function that yields a Õ(
√
d)-iteration primal-dual path-following

IPM, however obtaining any Õ(
√
d)-iteration IPM that can be im-

plemented with iterations nearly as efficient as those of [52] was a

long-standing open problem.

The Lewis Weight Barrier and Beyond The work of [33, 35] ad-

dressed this open problem in IPM theory and provided an efficient

Õ(
√
d)-iteration IPM by providing new weight functions and new

tools for following the central path they induce. In particular, [35]

introduced the Lewis weight barrier which induces the central path

in which for some p > 0

τ
weight

(x, s) ← τ
ls
(x, s)

def

= σ (p)(S−1A)

where for any B ∈ Rn×d , σ (p)(B) are the ℓp -Lewis weights of the
rows of B [38], a fundamental and natural measure of importance

of rows with respect to the ℓp -norm [4, 13, 35]. In the case of non-

degenerate B, they are defined recursively as the vectorw ∈ Rn>0
which satisfies

w = diag(W(1/2)−(1/p)B(B⊤W1−(2/p)B)−1B⊤W(1/2)−(1/p)),

whereW = Diag(w). In the special case when p = 2,

w = σ (B) def= diag(B(B⊤B)†B⊤)

is known as the leverage scores of the rows ofA and is a fundamental

object for dimension reduction and solving linear systems [11, 39,

40, 46, 56, 57, 67].

Thework of [35] formally showed that there is an Õ(
√
d)-iteration

primal-dual IPM which uses τ
weight

(x, s) ← τ
ls
(x, s) when p =

Ω(logn). This choice of p is motivated by drew geometric con-

nections between Lewis weights and ellipsoidal approximations

of polytopes [35]. Further, [35] showed how to modify this IPM

to have iterations of comparable cost to the methods which use

τ
std
(x, s). This was achieved by leveraging and modifying efficient

algorithms for approximately computing Lewis weights and lever-

age scores and developing techniques for dealing with the noise

such approximate computation induces.

To obtain the results of this paper we further simplify [35] and

provide more robust methods for following related central paths.

Our first observation is that the central path induced by τ
ls
can be

re-written more concisely in terms of only leverage scores. Note

that (2) and the definition of Lewis weights imply that there iswµ
with

XµSµ1 = µ ·wµ andwµ = σ (W(1/2)−(1/p)µ S−1µ A) .

for Wµ
def

= Diag(wµ ). Substituting the first equation into the sec-

ond, gives more compactly that for α = 1/p

XµSµ1 = µ · Diag(σ (S−1/2−αµ X1/2−α
µ A)) .

Consequently, rather than defining centrality in terms of Lewis

weights, we would get the same central path as the one induced

by τ
ls
(x, s) by letting τ

weight
(x, s) ← σ (S1/2−αµ X1/2−α

µ A), i.e. defin-
ing it in terms of leverage scores. In other words, the optimality

of the central path conditions forces XµSµ1 to be a type of Lewis

weight if we carefully define centrality in terms of leverage scores.

Though τ
weight

(x, s) ← σ (S1/2−αX1/2−αA) induces the same cen-

tral path as τ
ls
(x, s), these weight functions can be different outside

the central path and thereby lead to slightly different algorithms

if only approximate centrality is preserved. Further, with the cur-

rent state-of-the-art theory, leverage scores are simpler to compute

and approximate, as Lewis weight computation is often reduced to

leverage score computation [13, 35].

Formally, in this paper we consider the following regularized-

variant of this centrality measure:

Definition 2.2 (Weight Function). Throughout this paper we let

α
def

= 1/(4 log(4n/d)) and for all x, s ∈ Rn>0 let

τreg(x, s)
def

= σ (S−1/2−αX1/2−αA) +
d

n
1

where X = Diag(x) and S = Diag(s).

This centrality measure is the same as the Lewis weight barrier

except that we add a multiple of the all-ones vector,
d
n 1, to simplify

our analysis. Further, this allows us to pick α
def

= 1/(4 log(4n/d))
as opposed to α = 1/Ω(logn) due to the extra stability it provides.

Since we use this weight function throughout the paper we overload

notation and let τ (x, s)
def

= τreg(x, s) and τ (B)
def

= σ (B) + d
n 1.

Our Robust Primal-Dual Method:We obtain our results by proving

that there is an efficient primal-dual path-following IPM based

on τreg(x, s). We believe that our analysis is slightly simpler than

[35] due to its specification in terms of leverage scores, rather

than the more general Lewis weights, but remark that the core

ingredients of its analysis are similar. Formally, we provide Newton-

method type steps that allow us to control centrality with respect to

this measure and increase µ fast enough that this yields an Õ(
√
d)-

iteration method.

Beyond providing a simplified Õ(
√
d)-iteration IPM, we leverage

this analysis to provide a robust method. Critical to the development

of recent IPMs is that it is possible to design efficient primal-dual

Õ(
√
n)-iteration IPMs that take steps using only crude, multiplica-

tive approximations to x and s [5, 12, 37]. These papers consider the
standard central path but measure centrality using potential func-

tions introduced in [33, 35]. This robustness allows these papers

to efficiently implement steps by only needing to change smaller

amounts of coordinates.

Similarly, we show how to apply these approximate centrality

measurement techniques to the central path induced by τreg(x, s).
We show that it suffices to maintain multiplicative approximations

to the current iterate (x, s ∈ Rn
≥0
), the regularized leverage scores

(σ (S−1/2−αX1/2−αA) + d
n 1), and the inverse of the local Hessian

((A⊤S−1XA)−1) to maintain approximate centrality with respect

to τreg(x, s). Interestingly, to do this we slightly modify the type

of steps we take in our IPM. Rather than taking standard Newton

steps, we slightly change the steps sizes on x and s to account for

the effect of τreg(x, s). Further, approximation of the Hessian causes
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the x iterates to be infeasible, but in the full version we discuss how

to modify the steps to control this infeasibility and still prove the

desired theorem.

The main guarantees of this new IPM are given by Theorem 4.1

(Section 4.1) and are proven in the full version. This theorem for-

malizes the above discussion and quantifies how much the iterates,

leverage scores, and Hessian can change in each iteration. These

bounds are key to obtaining an efficient method that can maintain

multiplicative approximations to these quantities.

2.2 Heavy Hitters, Congestion Detection, and
Sketching the Central Path

It has long been known that the changes to the central path are

essentially sparse or low-rank on average. In Renegar’s IPM [52],

the multiplicative change in x and s per iteration are bounded

in ℓ2. Consequently, the matrices for which linear systems are

solved in Renegar’s method do not change too quickly. In fact, this

phenomenon holds for IPMs more broadly, and from the earliest

work on polynomial time IPMs [29], to the most recent fastest

methods [5, 33–35, 37], and varied work in between [48, 49, 62] this

bounded change in IPM iterates has been leveraged to obtain faster

linear programming algorithms.

Our IPM also enjoys a variety of stability properties on its iterates.

We show that the multiplicative change in the iterates are bounded

in a norm induced by τreg(x, s) and therefore are also bounded

in ℓ2. This is known to imply that changes to A⊤S−1XA ∈ Rd×d

can be bounded over the course of the algorithm and we further

show that this implies that the changes in the weight function,

τreg(x, s), can also be bounded. These facts, combined with the

robustness properties of our IPM imply that to obtain an efficient

linear programming algorithm it suffices to maintain multiplicative

approximations to the following three quantities (1) the vectors

x, s ∈ Rn
≥0
, (2) the regularized leverage scores τreg(x, s), and (3)

the Hessian inverse (A⊤S−1XA)−1 ∈ Rd×d under bounds on how

quickly these quantities change.

We treat each of these problems as a self contained data-structure

problem, the first we call the vector maintenance problem, the second

we call the leverage score maintenance problem, and the third has

been previously studied (albeit different variants) and is called the

inverse maintenance problem. For each problem we build efficient

solutions by combining techniques form the sketching literature

(e.g. heavy hitters sketches and Johnson-Lindenstrauss sketches)

and careful potential functions and tools for dealing with sparse and

low rank approximations. (Further work is also needed to maintain

the gradient of a potential used to measure proximity to the central

path and this is discussed in the full version.)

In the remainder of this overview, we briefly survey howwe solve

each of these problems. A common issue that needs to addressed in

solving each problem is that of hiding randomness and dealing with

adversarial input. Each data-structure uses sampling and sketching

techniques to improve running times. While these techniques are

powerful and succeed with high probability, they only work against

an oblivious adversary, i.e. one which provides input that does

not depend on the randomness of the data structure. However, the

output of our data-structures are used to take steps along the central

path and provide the next input, so care needs to be taken to argue

that the output of the data structure, as used by the method, doesn’t

somehow leak information about the randomness of the sketches

and samples into the next input. A key contribution of our work is

showing how to overcome this issue in each case.

Vector Maintenance: In the vector maintenance problem, we

receive two online sequences of vectors h(1),h(2), ... ∈ Rd and

д(1),д(2), ... ∈Rn andmustmaintain the sumy(t )
def

=
∑
i ∈[t ] G(i)Ah(i)

for a fixed matrix A ∈ Rn×d . The naive way of solving this would

just compute G(t )Ah(t ) in iteration t and add it to the previous re-

sult. Unfortunately, this takes O(nnz(A)) time per iteration, which

is too slow for our purposes. Luckily we do not have to maintain

this sum exactly. Motivated by the robustness of our IPM, it is

enough to maintain a multiplicative approximation ỹ
(t ) ≈ϵ y(t )

of the sum. An exact definition of this problem, together with our

upper bounds, can be found in Section 4.2 and the formal proof of

these results can be found in the full version.

We now outline how vector maintenance problem can be solved.

For simplicity assume we already have an accurate approximation

ỹ
(t−1) ≈ϵ/2 y(t−1). Then we only have to change the entries i

of ỹ
(t−1)

where y
(t )
i 0ϵ/2 y

(t−1)
i , because for all other i we have

ỹ
(t−1)
i ≈ϵ y

(t )
i . This means we must detect the large entries ofy(t )−

y(t−1) = G(t )Ah(t ), which can be done via heavy hitter techniques.

From past research on heavy hitters, we know one can construct

a small, sparse, random matrix Φ ∈ Rk×n with k ≪ n, such that

known the much smaller vector x ∈ Rk with x = Φy allows for a

quick reconstruction of the large entries of y. Thus for our task,

we maintain the product ΦG(t )A, which can be done quickly if

д(t ) does not change in too many entries compared to д(t−1). Then

we can reconstruct the large entries of G(t )Ah(t ) by computing

(ΦG(t )A)h(t ). Note that this product can be computed much faster

than G(t )Ah(t ), because ΦG(t )A is a k × d matrix and k ≪ n.
One issue we must overcome, is that the output of our data-

structure must not leak any information about Φ. This matrix is

randomly constructed and the large entries of y can only be re-

constructed from x = Φy, if the vector y is independent from the

randomness in Φ. Thus if the output of the data-structure depends

on Φ and the next future input h(t ) depends on the previous output,

then the required independence can no longer be guaranteed. We

overcome this problem by computing any entry y
(t )
i exactly, when-

ever the heavy hitter techniques detect a large change in said entry.

As we now know the value of said entry exactly, we can compare

it to the previous result and verify, if the entry did indeed change

by some large amount. This allows us to define the output of our

data-structure in a deterministic way, e.g. maintain ỹ
(t )
i ≈ϵ y

(t )
i

by setting ỹ
(t )
i = y

(t )
i whenever ỹ

(t−1)
i 0ϵ y

(t )
i . (The exact deter-

ministic definition we use is slightly more complex, but this is the

high-level idea.)

So far we only explained how we can detect large changes iny(t )

that occur within a single iteration. However, it could be that some

entry changes slowly over several iterations. It is easy to extend

our heavy hitter technique to also detect these slower changes. The

idea is that we not just detect changes within one iteration (i.e.

y
(t )
i 0ϵ/2 y

(t−1)
i ) but also changes within any power of two (i.e.

y
(t )
i 0ϵ/2 y

(t−2i )
i for i = 1, ..., log t ). To make sure that this does not
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become too slow, we only check every 2
i
iterations if there was a

large change within the past 2
i
iterations. One can prove that this

is enough to also detect slowly changing entries.

Leverage Score Maintenance: In the leverage score maintenance

problem, we must maintain an approximation of the regularized

leverage scores of a matrix of the form G1/2A ∈ Rn×d , for a slowly
changing diagonal matrix G ∈ Rn×n . That means we are inter-

ested in a data-structure that maintains a vector τ̃ ∈ Rn with

τ̃i ≈ϵ τi := (G1/2A(A⊤GA)−1A⊤G1/2)i ,i + d/n. The high-level

idea for how to solve this task is identical to the previously out-

lined vector-maintenance: we try to detect for which i the value τi
changed significantly, and then update τ̃i so that the vector stays

a valid approximation. We show that detecting these indices i can
be reduced to the previous vector maintenance. Here we simply

outline this reduction, a formal description of our result can be

found in Section 4.3 and its proof and analysis is in the full version.

Consider the case where we change fromG to someG′. We want

to detect indices i where the ith leverage score changed significantly.

DefineM def

= (A⊤GA)−1A⊤G1/2−(A⊤G′A)−1A⊤G′1/2 ∈ Rd×n and

note that

(G1/2A(A⊤GA)−1A⊤G1/2)i ,i = ∥e
⊤
i G

1/2A(A⊤GA)−1A⊤G1/2∥2
2
,

so a large change in the ith leverage score, when changing G ∈
Rn×n to G′ ∈ Rn×n , results in a large norm of e⊤i G

1/2AM, if Gi ,i
and G′i ,i are roughly the same. (As G is slowly changing there

are not too many i where Gi ,i and G′i ,i significantly. So we can

just compute the ith leverage score exactly for these entries to

check if the ith score changed significantly.) By multiplying this

term with a Johnson-Lindenstrauss matrix J the task of detecting a

large leverage score change, becomes the task of detecting rows of

G1/2AMJ for which the row-norm changed significantly. Given that

J only needs some O(logn) columns to yield a good approximation

of these norms, we know that any large change in the ith leverage

score, must result in some index j where |(G1/2AMJ)i , j | must be

large. Detecting these large entries can be done in the same way as

in the vector-maintenance problem by considering each column of

MJ as a vector.
To make sure that no information about the random matrix J

is leaked, we use the same technique previously outlined in the

vector-maintenance paragraph. That is, after detecting a set I ⊂
[n] of indices i for which the leverage score might have changed

significantly, we compute the ith leverage score to verify the large

change and set τ̃i to be this computed leverage score, if the change

was large enough. Unlike the vector case however, the ith leverage

score is not computed in a deterministic way (as this would be

prohibitively expensive). Instead we use another random Johanson-

Lindenstrauss matrix J′, so the output τ̃ is actually defined w.r.t

the input and this new matrix J′. By using a fresh independent

Johnson-Lindenstrauss J′ to verify changes to leverage scores, this

data structure works against an adaptive adversary.

Inverse Maintenance: In the inverse maintenance problem, we

maintain a spectral sparsifier of A⊤WA ∈ Rd×d and its inverse, for

a slowly changing diagonal matrixW ∈ Rn×n . Using the leverage
score data-structure, we can assume an approximation to the lever-

age scores of A⊤WA is given. Hence, we can sample Õ(d) many

rows of A to form a spectral sparsifier. This allows us to get a spec-

tral sparsifier and its inverse in Õ(dω ). To speed up the runtime,

we follow the idea in [34], which resamples the row only if the

leverage score changed too much. This makes sure the sampled

matrix is slowly changing in ℓ0 sense and hence we can try to apply

the lazy low-rank update idea in [12] to update the inverse in Õ(d2)
time. Unfortunately, this algorithm works only against oblivious

adversary and the sampled matrix is changing too fast in ℓ2 sense,

which is required for the leverage score maintenance.

Fortunately, we note that we do not need a sparsifier that satisfies

both conditions at all time. Therefore, our final data structure has

two ways to output the inverse of the sparsifier. The sparsifier that

works only against oblivious adversary is used in implementing

the Newton steps and the sparsifier that is slowly changing is used

to compute the sketchMJ used in the leverage score maintenance

problem mentioned above.

For the Newton steps, we only need to make sure the sparsifier

does not leak the randomness since the input W depends on the

Newton step. Since we only need to solve linear systems of the

form A⊤WAx = b ∈ Rd , we can handle this problem by adding an

appropriate noise to the output x . This makes sure the randomness

we use in this data structure does not leak when the output x is

used. This idea is also used [34], but extra care is needed to remove

the nnz(A) per step cost in their algorithm.

For computing the sketch MJ, we do not need to worry about

leakage of randomness, but only need to make sure it is slowly

changing in ℓ2 sense. Instead of using [12] as a black-box, we show

how to combing the idea of resampling in [34] and the low-rank

update in [12]. This gives us an alternate smoother scheme that

satisfies the requirement for slowly changing.

3 PRELIMINARIES
Here we discuss varied notation we use throughout the paper. We

adopt similar notation to [33] and some of the explanations here

are copied directly form this work.

Matrices: We call a matrixA non-degenerate if it has full column-

rank and no zero rows.We call symmetric matrix B ∈ Rn×n positive

semidefinite (PSD) if x⊤Bx ≥ 0 for all x ∈ Rn and positive definite

(PD) if x⊤Bx > 0 for all x ∈ Rn .
Matrix Operations: For symmetric matrices A,B ∈ Rn×n we

write A ⪯ B to indicate that x⊤Ax ≤ x⊤Bx for all x ∈ Rn and

define ≺, ⪯, and ⪰ analogously. For A,B ∈ Rn×m , we let A ◦ B
denote the Schur product, i.e. [A ◦ B]i , j

def

= Ai , j · Bi , j for all i ∈ [n]
and j ∈ [m]. We use nnz(A) to denote the number of nonzero entries

in A.
Diagonals: ForA ∈ Rn×n we define diag(A) ∈ Rn with diag(A)i

= Aii for all i ∈ [n] and for x ∈ Rn we define Diag(x) ∈ Rn×n as

the diagonal matrix with diag(Diag(x)(x)) = x . We often use upper

case to denote a vectors associated diagonal matrix and in particu-

lar let X def

= Diag(x), S def

= Diag(s), W def

= Diag(w), T def

= Diag(τ ),
X def

= Diag(x), S def

= Diag(s), W def

= Diag(w), Xt
def

= Diag(xt ),
St = Diag(st ),Wt = Diag(wt ), and Tt

def

= Diag(τt ).
Fundamental Matrices: For any non-degenerate matrix A ∈

Rn×d we let P(A) def= A(A⊤A)−1A⊤ denote the orthogonal projec-

tion matrix onto A’s image. Further, we let σ (A) def

= diag(P(A))
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denote A’s leverage scores and we let τ (A) def= σ (A) + d
n 1 denote its

regularized leverage scores. Further, we define Σ(A) def= Diag(σ (A)),
T(A) def= Diag(τ (A)), P(2)(A) def= P(A) ◦ P(A) (where ◦ denotes entry-
wise product), and Λ(A) def= Σ(A) − P(2)(A).

Approximations: We use x ≈ϵ y to denote that exp(−ϵ)y ≤
x ≤ exp(ϵ)y and A ≈ϵ B to denote that exp(−ϵ)B ⪯ A ⪯ exp(ϵ)B.

Norms: For PD A ∈ Rn×n we let ∥ · ∥A denote the norm where

∥x ∥2A
def

= x⊤Ax for all x ∈ Rn . For positive w ∈ Rn>0 we let ∥ · ∥w

denote the norm where ∥x ∥2w
def

=
∑
i ∈[n]wix

2

i for all x ∈ Rn . For
any norm ∥ · ∥ and matrix M, its induced operator norm of M is

defined by ∥M∥ = sup∥x ∥=1 ∥Mx ∥.

Time and Probability: We use Õ(·) to hide factors polylog-

arithmic in n and d . We say an algorithm has a property “with

high probability (w.h.p.) in n” if it holds with probability at least

1 − 1/O(poly(n)) for any polynomial by choice of the constants in

the runtime of the algorithm.

Misc: We let [z]
def

= {1, 2, .., z}. We let 1n, 0n ∈ R
n
denote the

all-one and all-zero vectors, 0n, In ∈ Rn×n denote the all zero and

identity matrices, and drop subscripts when the dimensions are

clear. We let 1i denote the indicator vector for coordinate i , i.e. the
i-th basis vector.

4 LINEAR PROGRAMMING ALGORITHM
Here we prove the main result of this paper that there is a Õ(nd+d3)
time algorithm for solving linear programs. This theorem is restated

below for convenience:

Theorem 1.1 (Main Result). There is an algorithm (Algorithm 2)

which given any linear program of the form (1) for non-degenerate
2

A ∈ Rn×d and δ ∈ [0, 1] computes a point x ∈ Rn
≥0

such that

c⊤x ≤ min

A⊤x=b ,x ≥0
c⊤x + δ · ∥c ∥2 · R and

∥A⊤x − b∥2 ≤ δ ·
(
∥A∥F · R + ∥b∥2

)
where R is the diameter of the polytope in ℓ2 norm, i.e. ∥x ∥2 ≤ R for

all x ∈ Rn
≥0

with A⊤x = b. Further, the expected running time of the

method is O((nd + d3) logO (1) n log n
δ ).

The proof for Theorem 1.1 uses four intermediate results, which

we formally state in the next Sections 4.1, to 4.4. Each of these inter-

mediate results is self-contained and analyzed in the full version. In

this section we show how these results can be combined to obtain

Theorem 1.1. The first result is a new, improved IPM as outlined

in Section 2.1. The exact statement is given in Section 4.1.Here we

give a rough summary to motivate the other three results used by

our linear programming algorithm.

Our IPM is robust in the sense, that it makes progress, even if

we maintain the primal dual solution pair (x, s) only approximately.

Additionally, the linear system that is solved in each iteration, al-

lows for spectral approximations. More accurately, it is enough to

maintain a spectral approximation of an inverse of a matrix of the

form A⊤WA for some diagonal matrixW. For this robust IPM we

2
We assume throughout that A is non-degenerate meaning it has full-column rank and

no-zero rows. This assumption can be avoided by preprocessing A to check for zero

rows and adding a tiny amount of noise to the matrix to make it full-column rank.

There are other natural ways to remove this assumption, see e.g. [35].

also require to compute approximate leverage scores, which allows

the IPM to converge in just Õ(
√
d) iterations. These properties of

our IPMmotivate three new data-structures, all of which are proven

and analyzed in the full version:

(i) In Section 4.2, we present a data-structure that can maintain

an approximation of the primal dual solution pair (x, s) efficiently.

More formally, this data-structure maintains an approximation of

the sum

∑
k ∈[t ]W(k )Ah(k ) for diagonal matricesW(k ) ∈ Rn×n and

vectors h(k ) ∈ Rd .
(ii) In Section 4.3 we present a data-structure that can main

approximate leverage scores, required by the IPM.

(iii) The last requirement of the IPM is for us to maintain a spec-

tral approximation of (A⊤WA)−1 for some diagonal matrix W. We

present a data-structure that can maintain this inverse approxi-

mately in Õ(dω−
1

2 + d2) amortized time per step, when the matrix

W changes slowly w.r.t ℓ2-norm and if we have estimates of the

leverage scores ofW1/2A. The exact result is stated in Section 4.4.

With this we have all tools available for proving the main result

Theorem 1.1. In Section 4.5 we show how to combine all these tools

to obtain the fast linear programming algorithm.

4.1 Interior Point Method
In the full version we derive and analyze the core subroutine of

our primal-dual robust Õ(
√
d)-iteration IPM (Algorithm 1). This

subroutine takes an approximate central point for parameter µ(init)

and in Õ(
√
d log(µ(target)/µ(init))) iterations outputs an approximate

central path point for any given parameter µ(target). Here we simply

state the routine (Algorithm 1) and the main theorem regarding

its performance (Theorem 4.1). We defer the full motivation of the

method and its analysis (i.e. the proof of Theorem 4.1) to the full

version. In the remainder of this section we argue how with the

appropriate data-structures, this theorem implies our main result.

Theorem 4.1. There exists a constant ζ > 0 such that, given

x (init), s(init) ∈ Rn>0, µ
(init) > 0, µ(target) > 0, and ϵ ∈ (0,α/16000)

with x (init)s(init) ≈2ϵ µ(init) · τ (x (init), s(init)) and

1

µ(init)
∥Ax (init) − b∥2

(A⊤X(init)S(init)−1A)−1 ≤
ζ ϵ2

log
6 n

Algorithm 1 outputs (x (final), s(final)) such that

x (final)s(final) ≈ϵ µ(target) · τ (x (final), s(final)) and

1

µ(target)
∥Ax (final) − b∥2

(A⊤X(final)S(final)−1A)−1 ≤
ζ ϵ2

√
d log6 n

in O

(
√
d log(n) ·

(
1

ϵα
· log

(
µ(target)

µ(init)

)
+

1

α3

))
iterations.

Furthermore, throughout Algorithm 1, we have

• xs ≈4ϵ µ · τ (x, s) for some µ where (x, s) is immediate points

in the algorithms

• ∥X−1δx ∥τ+∞ ≤ ϵ
2
, ∥S−1δs ∥τ+∞ ≤ ϵ

2
, ∥diag(τ )−1δτ ∥τ+∞ ≤

2ϵ where δx , δs and δτ is the change of x , s and τ in one

iteration and ∥x ∥τ+∞
def

= ∥x ∥∞ +Cnorm∥x ∥τ forCnorm

def

= 10

α .

Remark. We will take ϵ = 1/poly log(n).
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Algorithm 1: Path Following (Theorem 4.1)

1 procedure Centering(x (init) ∈ Rn>0, s
(init) ∈ Rn>0, µ

(init) >

0, µ(target) > 0, ϵ > 0)

2 α ← 1/(4 log(4n/d)), λ← 2

ϵ log( 2
16n
√
d

α 2
),

γ ← min( ϵ
4
, α
50λ )

3 µ ← µ(init), x ← x (init), s ← s(init)

4 while true do
5 Pick any x, s ∈ Rn>0 such that x ≈ϵ x , s ≈ϵ s

6 Find v such that ∥v −v ∥∞ ≤ γ where

v = µ · τ (x, s)/w

7 Let Φ(v)
def

=
∑n
i=1 exp(λ(vi − 1)) + exp(−λ(vi − 1))

for all v ∈ Rn

8 if µ = µ(target) and Φ(v) ≤ 2
16n
√
d

α 2
then break;

9 h = γ∇Φ(v)♭(τ ) for τ ≈ϵ τ (x, s)

10 Pick any H ∈ Rd×d with

H ≈
(cϵ )/(d1/4

log
3 n) A

⊤S
−1
XA and

E[H] = A⊤S
−1
XA for small constant c > 0.

11 Let Q = S
−1/2

X
1/2

AH−1A⊤X
1/2

S
−1/2

,W = XS

12 x ← x + (1 + 2α)XW
−1/2
(I − Q)W

1/2
h

13 s ← s + (1 − 2α)SW
−1/2

QW
1/2

h

14 Pick any x (new), s(new), τ (new) ∈ Rn>0 with

x (new) ≈ϵ x , s(new) ≈ϵ s , τ (new) ≈1 τ (x, s)

15 δλ ← MaintainFeasibility(x, s, τ (new))

16 x ← x + X
(new)

(
S
(new)

)
−1Aδλ

17 if µ > µ(target) then
µ ← max{µ(target), (1 −

γ α
2
15

√
d
)µ};

18 else if µ < µ(target) then
µ ← min{µ(target), (1 +

γ α
2
15

√
d
)µ};

19 return (x, s)

Note that the complexity of Theorem 4.1 depends on the cost of

implementing Lines 5, 6, 12, and 13 of Algorithm 1, as well as the

cost of the function MaintainFeasibility. Here Lines 5, 12 and 13

ask us to maintain an approximation of the primal dual solution

pair (x, s). A data-structure for this task is presented in Section

4.2. Additionally, to compute Lines 12 and 13, we must have access

to an approximate inverse of A⊤S
−1
XA (see Line 10). The task of

maintaining this inverse will be performed by the data-structure

presented in Section 4.4. At last, consider Line 6. To implement

this line, we must have an approximation of the leverage scores

τ (x, s). In Section 4.3, we present a data-structure that can efficiently

maintain such an approximation.

To help us analyze the cost of function MaintainFeasibility

we prove the following in the full version.

Theorem 4.2 (Maintain Feasibility). The additional amortized

cost of calling MaintainFeasibility in Line 15 of Algorithm 1 is

Õ(nd0.5 + d2.5/ϵ2) per call, plus the cost of querying Õ(n/
√
d +

d1.5/ϵ2) entries of x and s (assuming x , s are given implicitly, e.g. via

some data structure).

4.2 Vector Data Structure
Consider an online sequence ofn×n diagonal matricesG(1), ...,G(T )

∈ Rn×n and vectors h(1), ...,h(T ) ∈ Rd , δ (1), ..., δ (T ) ∈ Rn and de-

finey(t+1) :=
∑t
k=1 G

(k )Ah(k )+δ (k ). In this subsection we describe

a data-structure that can efficiently maintain an approximation

ȳ(t ) ≈ε y
(t )
, when the relative changes ∥(Y(k ))−1G(k )Ah(k )∥2 and

∥(Y(k ))−1δ (k )∥2 are small. This is motivated by the following re-

quirement of our IPM: we must maintain a multiplicative approx-

imation of a sequence of vectors x (t ), s(t ) ∈ Rn (see Line 5 of

Algorithm 1), where x (k+1) = x (k ) + δ
(k)
x , s(k+1) = s(k ) + δ

(k )
s and

the terms δ
(k )
x and δ

(k )
s are roughly of the form (see Lines 12 and 13

of Algorithm 1):

δ
(k )
x = (1 + 2α)X

(k) (
W
(k))−1/2

(I − Q(k ))
(
W
(k))1/2

v(k ),

δ
(k )
s = (1 − 2α)S

(k ) (
W
(k ))−1/2

Q(k )
(
W
(k ))1/2

v(k ).

To maintain an approximation of x (t ), we can then use the data-

structure for maintaining an approximation of y(t ) by choosing

G(k) = (1 + 2α)X
(k ) (

W
(k ))−1/2

,

h(k) = −Q(k )
(
W
(k ))1/2

v(k ), δ (k ) =
(
W
(k ))1/2

v(k ).

Likewise, we can maintain an approximation of s(t ) by a slightly

different choice of parameters. The exact resultis the following

Theorem 4.3:

Theorem 4.3 (Vector Maintenance). There exists a Monte-

Carlo data-structure, that works against an adaptive adversary, with

the following procedures:

• Initialize(A,д, x (0), ϵ): Given matrix A ∈ Rn×d , scaling д ∈
Rn , initial vector x (0), and target accuracy ϵ ∈ (0, 1/10), the
data-structure preprocesses in O(nnz(A) log5 n) time.

• Scale(i,u): Given i ∈ [n] and u ∈ R sets дi = u inO(d log5 n)
amortized time.

• Query(h(t ), δ (t )): Let д(t ) ∈ Rn be the scale vector д ∈ Rn

during t-th call to Query and let h(t ) ∈ Rd , δ (t ) ∈ Rn be the

vectors given during that query. Define

x (t ) = x (0) +
∑
k ∈[t ]

G(k )Ah(k ) +
∑
k ∈[t ]

δ (k ).

Then, w.h.p. in n the data-structure outputs a vector y ∈ Rn

such that y ≈ϵ x (t ). Furthermore, the total cost over T steps is

O(T (n logn +
∑
k ∈[T ]

(
∥(X(k))−1G(k )Ah(k)∥2

2

+∥(X(k ))−1δ (k )∥2
2

)
· ε−2 · d log6 n)).

• ComputeExact(i): Output x
(t )
i ∈ Rn exactly in amortized

time O(d logn).

4.3 Leverage Score Maintenance
The IPM of Theorem 4.1, requires approximate leverage scores of

some matrix of the form GA, where G is a diagonal matrix (see

Line 6 of Algorithm 1, where G = (X/S)1/2) . Here the matrix G
changes slowly from one iteration of the IPM to the next one, which
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allows us to create a data-structure that can maintain the scores

more efficiently than recomputing them from scratch every time G
changes.

Theorem 4.4 (Leverage Score Maintenance). There exists a

Monte-Carlo data-structure, that works against an adaptive adversary,

with the following procedures:

• Initialize(A,д, ϵ): Given matrix A ∈ Rn×d , scaling д ∈ Rn

and target accuracy ϵ > 0, the data-structure preprocesses in

O(ndϵ−2 log4 n) time.

• Scale(i,u): Given i ∈ [n] and u ∈ R sets дi = u in time

O(dϵ−2 log5 n).

• Query(Ψ(t ),Ψ
(t )
(safe)

): Let д(t ) be the vector д during t-th call to

Query and define H(t ) = A⊤(G(t ))2A. Given random input-

matrices Ψ(t ) ∈ Rd×d and Ψ
(t )
(safe)

∈ Rd×d such that

Ψ(t ) ≈ϵ/(24 logn) (H
(t ))−1,Ψ

(t )
(safe)

≈ϵ/(24 logn) (H
(t ))−1.

and any randomness used to generate Ψ
(t )
(safe)

is independent

of the randomness used to generate Ψ(t ), w.h.p. in n the data-

structure outputs a vector τ̃ ∈ Rn independent of Ψ(1), ...,Ψ(t )

such that τ̃i ≈ϵ τi (G(t )A) for all i ∈ [n].
The total cost of T calls to Query is

O((Σt ∈[T ]∥G
(t )AΨ(t )A⊤G(t ) − G(t−1)AΨ(t−1)A⊤G(t−1)∥F )2

·ϵ−4n log7 n +T (TΨ + ϵ
−2d2 log3 n))

where TΨ is the time required to multiply a vector with Ψ(t ) (i.e. in
case it is given implicitly via a data structure).

4.4 Inverse Maintenance
For the IPMwemust approximatelymaintain the inverse (A⊤WA)−1

where A ∈ Rn×d undergoes changes to the diagonal matrixW (see

Line 10 of Algorithm 1 whereW = S
−1
X). By using estimates of the

leverage scores ofW1/2A (as maintained by Theorem 4.4, Section

4.3), we are able to maintain the inverse in amortized Õ(dω−
1

2 +d2)
time per step, even for n ≫ d . The exact result is stated as Theorem
4.5.

Theorem 4.5 (Inverse Maintenance). Given a full rank matrix

A ∈ Rn×d with n ≥ d and error tolerance ϵ ∈ (0, 1/10), there is a
data structure that approximately solves a sequence of linear systems

A⊤W̃Ay = b ∈ Rd for positive diagonal matrices W̃ ∈ Rn×n through

the following operation:

• Initialize(A, w̃, τ̃ , ϵ): Given matrix A ∈ Rn×d , scaling w̃ ∈
Rn>0, shifted leverage score estimates τ̃ ∈ Rn>0, and accuracy
ϵ ∈ (0, 1/10), the data-structure preprocesses in O(dω ) time.

• Update(w̃, τ̃ ): Output a matrix Ψ ∈ Rd×d and vector w̃(alg)

where Ψ−1 is close to A⊤W̃A ∈ Rd×d and w̃(alg) is close to w̃ .

• Solve(b,w, δ ): Inputw ≈1 w̃ and δ > 0, output y = Ψb ∈ Rd

for some randommatrix Ψ−1 ∈ Rd×d that is close toA⊤WA ∈
Rd×d .

Let τ (w)
def

= τ (WA). Suppose that all estimate shifted leverage scores

τ̃i ∈ (1 ±
1

16 ⌈logd ⌉ )τ (w)i for i ∈ [n]
3
and that there is a sequence

3
Recall that τ (w )i = (

√
WA(A⊤WA)−1A⊤

√
W)i ,i + d

n , ∀i ∈ [n]

w(0),w(1), · · · ,w(K ) ∈ Rn such that thew(k) satisfy

1

ϵ2
∥(W(k ))−1(w(k+1) −w(k ))∥2τ (w (k ))

+ ∥(T(w(k)))−1(τ (w(k+1)) − τ (w(k)))∥2τ (w (k )) ≤
1

80

(3)

fork = 0, 1, · · · ,K−1withK = nO (1). Further assume that the update

sequence w̃(0), w̃(1), · · · , w̃(K ) ∈ Rn satisfies w̃(k) ≈ϵ/(16 logd ) w
(k )

for all k and the w̃(k ) are independent to the output of Update and

Solve. (The input b(k ) can depend on the previous output of the data

structure.) Then, we have the following:

• The amortized time per call of Update isO(ϵ−2 · (dω−
1

2 +d2) ·

log
3/2(n)).

• The time per call of Solve is O(δ−2 · d2 · log2(n/δ )).

• Update outputs some Ψ, w̃(alg) where Ψ−1 = A⊤W̃(alg)A ≈ϵ
A⊤W̃A with probability 1 − 1/poly(n) and w̃(alg) ≈ϵ w̃ .

• Solve outputs some y = Ψb where Ψ−1 ≈δ A⊤WA with

probability 1 − 1/poly(n) and E[Ψb] = (A⊤WA)−1b.

In general, Theorem 4.5 does not work against adaptive adver-

saries, i.e. the inputw and τ̃ to the Update procedure is not allowed

to depend on previous outputs. In the full version we show, that this

algorithm can be improved such that the inputw and τ̃ is allowed

to depend on the output of Solve. However, the input is still not

allowed to depend on the output of Update.

Lemma 4.6. Theorem 4.5 holds even if the input w and τ̃ of the

algorithm depends on the output of Solve. Furthermore, we have

E
[ ∑
k ∈[K−1]




√W̃(alg)(k+1)AΨ(k+1)A⊤
√
W̃(alg)(k+1)

−

√
W̃(alg)(k)AΨ(k )A⊤

√
W̃(alg)(k )





F

]
≤ 16K log

5/2 n

where Ψ(k ) ∈ Rd×d , w̃(alg)(k ) is the output of the k-th step of Update(

w̃(k), τ̃ (k)).

4.5 Linear Programming Algorithm
Here we show how to combine the tools from Section 4.1 to 4.4 to

obtain a linear program solver that runs in Õ(nd + d3) time. First,

we give a brief summary of our linear programming algorithm,

Algorithm 2. The algorithm consists of two phases. In the first phase

we construct a good initial feasible solution, and in the second we

move along the central path towards the optimal solution.

The construction of the initial point works as follows: via a

simple transformation (stated below as Theorem 4.7), we obtain a

feasible solution pair (x, s) where both x and s are close to the all 1

vector and hence good enough as a point close to the central path of

the standard log barrier function. However, we need to find a point

such that xs ≈ϵ µ · (σ (S−1/2−αX1/2−αA) + d
n 1). By picking x = 1

and µ = 1, the initial slack s needs to satisfy s ≈ϵ σ (S−
1

2
−αA)+ d

n 1,

which (up to the additive
d
n 1) is exactly the condition for ℓp Lewis

weight with p = 1

1+α . Cohen and Peng showed that such a vector s
can be found efficiently as long as p ∈ (0, 4) [13]. We note that such

s might not satisfyAy+s = c . That is why we define c(tmp)
:= Ay+s

for y = 0, so that (x, s) is a feasible solution pair for the cost vector

c(tmp)
. In the first phase of Algorithm 2, we move the point (x, s)



STOC ’20, June 22–26, 2020, Chicago, IL, USA Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song

along the central path of the temporary cost vector c(tmp)
and bring

the points to a location where we can switch the cost c(tmp)
to c

without violating the centrality conditions. This is how we obtain

our feasible starting point for the cost vector c . In the subsequent

second phase, we move along the path for the cost c until it is close
to the optimal solution.

Moving along these two paths of the first and second phase is

performed via the IPM of Algorithm 1 (Section 4.1, Theorem 4.1).

Note that Algorithm 1 does not specify in Line 5 how to obtain the

approximate solution pair (x, s), so we must implement this step

on our own. Likewise, we must specify how to efficiently compute

the steps in Lines 12 and 13. These implementations can be found

in the second part of Algorithm 2. The high-level idea is to use the

data-structures presented in Section 4.2 to 4.4.

To illustrate, consider Line 13 of Algorithm 1, which computes

s ← s + (1 − 2α)SW
−1/2

QW
1/2

h

for W = XS and Q = S
−1/2

X
1/2

AH−1A⊤X
1/2

S
−1/2

for H ≈ϵ
A⊤S

−1
XA. We split this task into three parts: (i) compute r :=

A⊤X
1/2

S
−1/2

W
1/2

h, (ii) compute v := H−1r , and (iii) compute

(1 − 2α)SW
−1/2

S
−1/2

X
1/2

Av = (1 − 2α)Av . Part (i), the vector

r , can be maintained efficiently, because we maintain the approxi-

mate solutions x , s (thus alsow) and vector h, (via an Algorithm in

the full version) in such a way, that per iteration only few entries

change on average. Part (ii) is solved by the inverse maintenance

data-structure of Section 4.4 (Theorem 4.5). The last part (iii) is

solved implicitly by the data-structure of Section 4.2 (Theorem 4.3),

which is also used to obtain the approximate solutions x, s in Line

5 of Algorithm 1. We additionally run the data-structure of Section

4.3 (Theorem 4.4) in parallel, to maintain an approximation of the

leverage scores, which allows us to find the approximation v re-

quired in Line 6. These modifications to Algorithm 1 are given in

the second part of Algorithm 2.

The following theorem shows how to reduce solving any bounded

linear program to solving a linear program with a non-degenerate

constrain matrix and an explicit initial primal and dual interior

point.

Theorem 4.7 (Initial Point). Consider some linear program

minA⊤x=b ,x ≥0 c
⊤x with n variables and d constraints. Assume that

1. Diameter of the polytope: ∥x ∥2 ≤ R for all x ≥ 0 with A⊤x = b
2. Lipschitz constant of the linear program: ∥c ∥2 ≤ L.
3. The constraint matrix A is non-degenerate.

For any δ ∈ (0, 1], the modified linear program min
A
⊤
x=b ,x ≥0

c⊤x

with

A =


A 1n ∥A∥F
0 1∥A∥F

1

Rb
⊤ − 1⊤nA 0

 ∈ R(n+2)×(d+1),
b =

[
1

Rb
(n + 1)∥A∥F

]
∈ Rd+1 and c =


δ
L · c
0

1

 ∈ Rn+2
satisfies the following:

1. x =


1n
1

1

 , y =
[
0d
−1

]
and s =


1n +

δ
L · c
1

1

 are feasible.

Algorithm 2: LP Algorithm (based on Algorithm 1)

1 global variables
2 A ∈ Rn×d , µ > 0

3 D−1; // Theorem 4.5

4 D(x ),D(s); // Theorem 4.3

5 DLeverage; // Theorem 4.4

6 DGradient ; // See appendix of full version

7 τ ∈ Rn ; // τγ /8 ≈ (σ (S−1/2−αX1/2−αA) + d
n 1)

/* Same parameters as in Theorem 4.1 */

8 α
def

= 1/(4 log(4n/d)), ϵ
def

= α
16000

9 λ
def

= 2

ϵ log( 2
16n
√
d

α 2
),γ

def

= min(ϵ/4, α
50λ )

10 procedure Solve(A ∈ Rn×d ,b ∈ Rn, c ∈ Rd , δ > 0)

11 Modify the LP and obtain an initial x , y and s by

Lemma 4.7 to accuracy δ/8n2

/* For notational simplicity, we use A,b, c,n,d
for the modified LP induced by Lemma 4.7
in the remainder of the code. */

12 Find s with s ≈ϵ σ (S−1/2−αA) + d
n 1 via Theorem 4.8

13 τ ← s, µ ← 1 // Since x = 1 (Lemma 4.7),xs ≈ϵ µτ

14 D−1.Initialize(A, S−1−2αx1−2α , τ ,γ/512 logn)
15 DLeverage.Initialize(A, S−1−2αx1−2α ,γ/8)
16 D(x ).Initialize(A, S−1x, x,γ/8)
17 D(s).Initialize(A, 1, s,γ/8)
18 DGradient.Initialize(A, µτ/(xs), τ , x,γ )
19 c(tmp) ← s; // c(tmp) = Ay + s for y = 0

20 x, s, τ , µ ← Centering(x, s, τ , µ,Θ(n2
√
d/(γα2))

21 s(new) ← s + c − c(tmp)

22 D(s).Initialize(A, 1, s(new),γ/8)
23 x, s, τ , µ ← Centering(x, s, τ , µ, δ2/(83n4d))

24 Reduce
1

µ ∥A
⊤x − b∥2

(A⊤XS−1A)−1 to some small O(δ/n2)

25 Return an approximate solution of the original linear

program according to Lemma 4.7

2. Let (x,y, s) be primal dual vectors of the modified LP and Φb
def

=
1

µ · ∥A
⊤
x − b∥2

(A
⊤
XS
−1
A)−1

, then ∥x ∥∞ ≤ (1 +O(Φb )) ·O(n).

3. Let (x,y, s) be primal dual vectors of the modified LP with x · s ≈0.5

µ · τ (x, s) for µ < δ2/(8d) and small enough Φb := 1

µ · ∥A
⊤
x −

b∥2
(A
⊤
XS
−1
A)−1
= O(1) (i.e. x does not have to be feasible). The vector

x̂
def

= R ·x1:n where x1:n is the firstn coordinates of x is an approximate

solution to the original linear program in the following sense

c⊤x̂ ≤ min

A⊤x=b ,x ≥0
c⊤x +O(nLR) · (

√
Φb + δ ),

∥A⊤x̂ − b∥2 ≤ O(n2) · (∥A∥FR + ∥b∥2) · (
√
Φb + δ )

)
,

x̂ ≥ 0.

As outlined before, the initial points given in Theorem 4.7 do

not satisfy xs ≈ϵ µ · (σ (S−1/2−αX1/2−αA)+ (d/n)1). To satisfy this

condition we pick x = 1 and µ = 1, and pick the initial slack vector

s a to satisfy s ≈ϵ σ (S−
1

2
−αA) + d

n 1, which is exactly the condition
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Algorithm 3: LP Algorithm (based on Algorithm 1), Con-

tinuation of Algorithm 2.

26 procedure Centering(x (init) ∈ Rn>0, s
(init) ∈ Rn>0, τ

(init) >

0, µ(init) > 0, µ(target) > 0)

27 µ ← µ(init), τ̄ ← τ (init), τ (tmp) ← τ (init), x̄ ← x (init),

x (tmp) ← x (init), s̄ ← s(init), s(tmp) ← s(init)

28 while True do
29 x i = x

(tmp)

i for all i such that x i 0γ /8 x
(tmp)

i

30 si = s
(tmp)

i for all i such that si 0γ /8 s
(tmp)

i

31 τ i = τ
(tmp)

i for all i such that τ i 0γ /8 τ
(tmp)

i

32 w ← Xs , v ← µ ·W
−1
τ

33 if µ = µ(target) and Φ(v) ≤ 2
16n
√
d

α 2
then break;

34 DGradient.Update(i,vi , τ i , x i ) for i where vi , τ i or
x i changed

35 h, r ← DGradient.Query()

36 Ψ(α ),д← D−1.Update(S
−1−2α

x1−2α , τ )

37 DLeverage.Update(i,
√
д) for i where дi changed

38 Ψ
(α )
(safe)
(b)

def

= D−1.Solve(b, S
−1−2α

x1−2α ,
γ

512 logn )

39 Ψ(safe)(b)
def

= D−1.Solve(b, S
−1
x, (cϵ)/(d1/4 log3 n))

40 D(x ).Scale(x/s) // Only scale coordinates

where x or s changed.

41 x (tmp) ← D(x ).Query((1 + 2α)Ψ(safe)r , (1 + 2α)Xh)
42 s(tmp) ← D(s).Query((1 − 2α)Ψ(safe)r , 0n )

43 τ (tmp) ← DLeverage.Query(Ψ(α ),Ψ
(α )
(safe)
)

44 δλ ← MaintainFeasibility(D(x ),D(s), µ)

45 x (tmp) ← D(x ).Query(δλ, 0)

46 if µ > µ(target) then
µ ← max(µ(target), (1 −

γ α
2
15

√
d
)µ);

47 else if µ < µ(target) then
µ ← min(µ(target), (1 +

γ α
2
15

√
d
)µ);

48 x ← D(x ).ComputeExact(1, ...,n)

49 s ← D(s).ComputeExact(1, ...,n)

50 return (x, s, τ (tmp), µ)

for ℓp Lewis weight with p = 1

1+α . The following theorem shows

that such a vector s can be found efficiently as long as p ∈ (0, 4).
This vector s might not be a valid slack vector, so as outlined before,

the algorithm runs in two phases: first using a cost vector c(tmp)
for

which the initial s is feasible, and then switching to the correct c .

Theorem 4.8 ([13]). Given p ∈ (0, 4), η > 0 and non-degenerate

A ∈ Rn×d w.h.p. in n, we can compute w ∈ Rn>0 with w ≈ϵ

σ (W
1

2
− 1

p A) + η1 in Õ((nnz(A) + dω )poly(1/ϵ)) time.

Proof. Our proof is similar to [13], which proved a variant when

η = 0 Consider the map T (w)
def

= (W
2

p −1(σ (W
1

2
− 1

p A) + η1))p/2.
Further, fix any positive vectors v,w ∈ Rn such that v ≈α w . We

have that A⊤V1− 1

p A ≈ |1− 2

p |α
A⊤W1− 2

p A and hence

a⊤i (A
⊤V1− 2

p A)−1ai ≈ |1− 2

p |α
a⊤i (A

⊤W1− 2

p A)−1ai . (4)

Note that

T (v)
2/p
i =

v
1− 2

p
i a⊤i (A

⊤V1− 2

p A)−1ai + η

v
1− 2

p
i

= a⊤i (A
⊤V1− 2

p A)−1ai + ηv
2

p −1

i .

Using (4), we have

T (v)
2/p
i ≤ e

|1− 2

p |αa⊤i (A
⊤W1− 2

p A)−1ai + ηv
2

p −1

i

≤ e
|1− 2

p |α (a⊤i (A
⊤W1− 2

p A)−1ai + ηw
2

p −1

i )

= e
|1− 2

p |αT (w)
2/p
i .

Similarly, we have T (v)
2/p
i ≥ e

−|1− 2

p |αT (w)
2/p
i . Taking p/2 power

of both sides, we have

e−|
p
2
−1 |αT (w)i ≤ T (v)i ≤ e |

p
2
−1 |αT (w)i .

Hence, T (v) ≈ |p/2−1 |α T (w).
Consequently, let w0 = η1 and consider the algorithm wk+1 =

T (wk ). Since η > 0 we have that w0 = w0η
−p/2ηp/2 ≤ T (w0)

and T (w0) ≤ w0η
−p/2 (1 + η)p/2 ≤ w0 exp(pη

−1/2) . Consequently,

T (w0) ≈pη−1/2 w0 and after k steps we have that

T (wk ) ≈exp( |p/2−1 |kpη−1/2) wk .

Since for p ∈ (0, 4), we have that |p/2 − 1| < 1 we see that after

O(log(η−1/ϵ)) steps we havewk ≈ϵ T (wk ). Further, sincewk ≥ η1
implies that T (wk ) ≥ η1 we have that wk ∈ R

n
>0 as desired. To

implement the steps, one can check, by the same proof, that it

suffices to get a ≈O (ϵ ) multiplicative approximation toT (w) in each

step, which can be done in Õ((nnz(A)+dω )/ϵ2) per step by standard
leverage score estimation techniques. □

Now, we first prove the correctness of the Algorithm 2.

Lemma 4.9. Algorithm 2 outputs x such that w.h.p. in n

c⊤x ≤ min

A⊤x=b ,x ≥0
c⊤x + LR · δ ,

∥A⊤x − b∥2 ≤ δ ·
(
∥A∥F · R + ∥b∥2

)
,

x ≥ 0.

Proof. We define the primal dual point (x, s) via the formula

of lines 12 and 13. We start by showing that our implementation

of Algorithm 1 in Algorithm 2 satisfies all required conditions, i.e.

that we can apply Theorem 4.1. Throughout this proof, states hold

only w.h.p. and therefore the restatement of this is often omitted

for brevity.

Invariant: x ≈γ /4 x , s ≈γ /4 s , τ ≈γ /4 σ (S
−1/2−α

X
1/2−α

A) +
d
n 1 and Ψ(safe) ≈ϵ (A⊤S

−1
XA)−1: We first show that throughout

Centering, we have the invariant above, assuming the input pa-

rameter τ
(init)

i satisfied τ
(init)

i ≈γ /4 σ (S−1/2−αX1/2−αA)+ d
n 1. Theo-

rem 4.3 shows that x (tmp) ≈γ /8 x and s(tmp) ≈γ /8 s (Line 41 and 42).
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Then, by the update rule (Line 29 and 30), we have thatx (tmp) ≈γ /8 x

and s(tmp) ≈γ /8 s . Hence, we have the desired approximation for x
and s . Next, Theorem 4.5 shows that

• Ψ(α ) ≈γ /(512 logn) (A⊤S−1−2αX1−2αA)−1 (Line 14) and

• Ψ
(α )
(safe)

≈γ /(512 logn) (A⊤S−1−2αX1−2αA)−1 (Line 38).

Hence, we can apply Theorem 4.4 and get

τ (tmp) ≈γ /8 σ (S
−1/2−α

X
1/2−α

A) +
d

n
1

(Line 15 and Line 43). Again, by update rule (Line 31), we have the

desired approximation for τ .

Finally, Ψ(safe) ≈ϵ (A⊤S
−1
XA)−1 follows from Theorem 4.5

(Line 39). These invariants also imply ∥v − v ∥∞ ≤ γ and that

D
Gradient

maintains ∇Φ(v ′)♭(τ ) for some ∥v ′ − v ∥∞ ≤ γ (see full

version). Thus, in summary, Centering of Algorithm 2 behaves

like Centering of Theorem 4.1.

Invariant: xs ≈ µ · τ (x, s): Initially, x = 1 due to the reduction

(Lemma 4.7), µ = 1 and s ≈ϵ σ (S−1/2−αA) + d
n 1 (Line 12). Hence,

xs ≈ϵ µ · (σ (S−1/2−αX1/2−αA) + d
n 1) initially.

We change x, s, µ in Line 20 by calling Centering. By Theo-

rem 4.1 we then have xs ≈ϵ µτ after this call to Centering. Next,

consider the step where we switch the cost vector on Line 21. Let

s(new) be the vector s after Line 21 and s is before Line 21. Since
Ay+s = c(tmp)

we have that Ay+s(new) = c(tmp)−s+s(new) = c , i.e.
s is a valid slack vector for cost c . Further, we have that, by design

s(new) − s

s
=

c − c(tmp)

s
.

First, we bound the denominator. We have that sx ≈
1/2 µτ , so for

all i ∈ [n] we have

si ≥
µ

2xi

d

n
≥

µ

Ω(n2)

where we used ∥x ∥∞ ≤ O(n) by Lemma 4.7 as we ensure x is

sufficiently close to feasible for the modified linear program by

Theorem 4.1. For the numerator, we note that ∥c∥∞ ≤ 1 for the

modified linear program and ∥c(tmp)∥∞ = ∥s∥∞ ≤ 3 for the s
computed by Theorem 4.8 in Line 12.again by the definition of s
(Line 12) and the modified A and y. Hence, we have that


s(new) − s

s





∞
≤

16n2

µ
≤

γα2

c ·
√
d
.

for any constant c by choosing the constant in theO(·) in Line 20 ap-

propriately. Thusxs ≈2ϵ µ·τ (x, s) andτ ≈γ /4 σ (S−1/2−αX1/2−αA)+
d
n 1, so when we call Centering in Line 23, we again obtain xs ≈ϵ
µ · τ (x, s).

Conclusion: Before the algorithm ends, we have xs ≈
1/4 µτ . In

Line 24, we reduce Φb := ∥A⊤x − b∥2
(A⊤XS−1A)−1 to some small

enough Φb = O(δ/n
2). As argued in the full version, this does not

move the vector x too much, i.e. we still have x · s ≈
1/2 µ · τ (x, s).

Hence, by the choice of the new µ in Line 23, Lemma 4.7 shows

that we can output a point x̂ with the desired properties. □

Finally, we analyze the cost of the Algorithm 2.

Lemma 4.10. Algorithm 2 takes O((nd + d3) logO (1) n log(n/δ ))
time with high probability in n.

Proof. For simplicity, we use Õ(·) to suppress all terms that

are log
O (1) n. We first note that all parameters α, ϵ, λ,γ are either

log
O (1) n or 1/logO (1) n. The cost of Algorithm 2 is dominated by

the repeated calls to Centering.

Number of iterations: By Theorem 4.1 the calls to Centering in

Lines 20 and 23 perform Õ(
√
d log(1/δ )) many iterations in total.

Cost of D−1: Note that ∥τ−1δτ ∥τ+∞ = 2ϵ , ∥S−1δs ∥τ+∞ ≤ ϵ/2,
and ∥X−1δx ∥τ+∞ ≤ ϵ/2 by Theorem 4.1. Hence, the weight of

the vector w = S−1−2αx1−2α satisfies ∥W−1δw ∥τ = O(ϵ). Note
however, that we need D−1.Update to compute the inverse with

accuracy O(γ/logn) and hence Theorem 4.5 requires the relative

movement ofw to be less thanγ/logn. This can be fixed by splitting

the step into Õ(1) pieces. Now, Theorem 4.5 shows that the total

cost is Õ(dω +
√
d log(1/δ )(dω−

1

2 + d2)) = Õ((dω + d2.5) log(1/δ ))

where the term dω is the initial cost and dω−
1

2 +d2 is the amortized

cost per step. Note that the solver runs with accuracy Õ(d−1/4) so

the total time for all calls to D−1.Solve will be Õ(d3).
Cost of DLeverage: By Lemma 4.6, the total movement of the

projection matrix is∑
k ∈[K−1]




√W(k+1)AΨ(k+1)A⊤
√
W(k+1)

−

√
W(k )AΨ(k )A⊤

√
W(k )





F
= Õ(K)

where K is the number of steps andw = S−1−2αx1−2α . Then, The-
orem 4.4 shows that the total cost is O(nd K

2 · d) = O(nK2) =

O(nd log2(1/δ )).

Cost of D(x ) and D(s): By Theorem 4.3, the total cost for D(x ) is

bounded by Õ(K2
max ∥X−1δx ∥2

2
·d +Kn) where max ∥X−1δx ∥2

2
is

the maximum movement in one step in ℓ2-norm. Note that τ ≥ d
n

and hence ∥X−1δx ∥2
2
≤ n

d ∥X
−1δx ∥

2

τ = Õ(nd ). Hence, we have that

the cost is Õ(d log2(1/δ ) · nd · d) = Õ(nd). The bound for D(s) is the
same.

Cost of maintaining A⊤Xh (D
Gradient

): The cost of maintain-

ing A⊤Xh is exactly equals to d times the number of coordinates

changes in x, s, τ . Note that we change the exact x, s, τ by at most

around (1 ± γ/8) multiplicative factor in every step. So, the total

number of entry changes performed to x̄, s̄, τ̄ is bounded by

Õ

(
K2

(
max ∥X−1δx ∥22 +max ∥S−1δs ∥22 +max ∥τ−1δτ ∥

2

2

))
,

where max refers to the maximum movement in any step in ℓ2-

norm. As we showed before, all the movement terms are bounded by

Õ(nd ) (see the paragraphs regardingD
(x )

,D(s), andD−1). So in total

there are Õ(n log2(1/δ )) many entry changes we perform to x, s, τ .

Hence, the total cost of maintenance is again Õ(nd log2(1/δ )).
Cost of implementing MaintainFeasibility: By Theorem 4.2 we

pay Õ(nd0.5+d2.5) amortized time per call toMaintainFeasibility.

Additionally, we must compute Õ(n/
√
d +d1.5) entries of x in each

iteration (i.e. call D(x ).ComputeExact(i)), which costs Õ(d) per

call, so we have total cost of Õ(nd + d3) after Õ(
√
d) iterations.

Removing the extra log(1/δ ) term: We note that all the extra

log(1/δ ) terms are due to running the data structures for

√
d log(1/δ )

steps. However, we can we reinitialize the data structures every

√
d

iterations. This decreases the K dependence from K2
to K
√
d .
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Independence and Adaptive Adversaries: Randomized data struc-

tures often can not handle inputs that depend on outputs of the

previous iteration. For example Theorem 4.5 is such a case, where

the input to Update is not allowed to depend on the output of

any previous calls to Update. In our Algorithm 2 the input to the

data-structures inherently depends on their previous output, so

here we want to verify that this does not cause any issues.

The data-structures D(x ) and D(s) are given by Theorem 4.3,

which explicitly states that the data-structure works against adap-

tive adversaries. This means, that the input is allowed to depend

on the output of previous iterations. Likewise, DLeverage works

against adaptive adversaries by Theorem 4.4 (provided the input

Ψ
(α )
(safe)

are chosen by randomness independent of the randomness

chosen for Ψ(α ) which is the case by Lemma 4.6). The only issue is

with D−1 (given by Theorem 4.5), where the inputw, τ̃ to Update

is not allowed to depend on the output of previous calls to Update

(however, w and τ̃ are allowed to depend on the output of Solve

by Lemma 4.6). Also note, that the inputs w̄,b, δ to Solve are al-

lowed to depend on any previous output of Update and Solve, as

Theorem 4.5 only has issues with the inputsw and τ̃ to Update. So

to show that our algorithm works, we are only left with verifying

that the inputw, τ̃ to Update does not depend on previous results

of Update. Let us prove this by induction.

The result of Update is Ψ(α ) ← D−1.Update(S
−1−2α

x1−2α , τ ),
and when executing this line for the very first time, it can obviously

not depend on a previous output yet. The matrix Ψ(α ) is only used

as input to DLeverage.Query(Ψ(α ),Ψ
(α )
(safe)
), but by Theorem 4.4 the

output of this procedure does not depend on Ψ(α ). Hence Ψ(α ) does

not affect anything else, which also means the input S
−1−2α

x1−2α

and τ to the next call of D−1.Update do not depend on previous

Ψ(α ). □

5 OPEN PROBLEMS
Our main result is a linear program solver that runs in expected

Õ(nd + d3) time. For dense constraint matrices A ∈ Rn×d this is

optimal among algorithms that do not use fast matrix multiplica-

tion, barring a major improvement in solving linear systems. The

fastest linear system solvers run in Õ(nnz(A) + dω ) time, where

nnz(A) is the number of nonzero entries in A and ω is the matrix

exponent. This leads to two open questions: (i) Can the nd term

in our complexity be improved to nnz(A)? (ii) Can the d3 term be

improved to dω by exploiting fast matrix multiplication?

A major bottleneck for question (i) is how to detect large entries

of the product Ah for A ∈ Rn×d , h ∈ Rd . Currently the com-

plexity of our data structure for that problem (see full version) is

Õ(∥GAh∥2 · ε−2 · d), which can be interpreted as “d times the num-

ber of entries larger than ε”. Note that verifying the answer (that is,
for a list of indices I ⊂ [n], check that (Ah)i is indeed larger than

ε) requires the same complexity for dense matrices A. However, for
matrices with z ≤ d entries per row, the verification complexity is

just z · |I |. This suggests that it might be possible to improve the

data structure to run in Õ(∥GAh∥2 · ε−2 · z) for matrices A with z
nonzero entries per row. If such a data structure could be found, it

would result in a faster linear programming algorithm.

So far question (ii) has only been answered for the case d = Ω(n)
[5, 12] and no progress has been made for the more general case

d = o(n), even when allowing for a worse dependency on n than our

Õ(nd +d3) bound. So far the best dependency on d is d2.5 ≫ dω [33,

34], so a first step could be to improve our complexity to Õ(nd+d2.5)
time. Currently the d3 bottleneck comes from maintaining the

feasibility of the primal solution x (Theorem 4.2) so a first step

would be to improve the complexity of maintaining the feasibility.
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