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Abstract: Ultrasonic metal welding (UMW) is a solid-state joining technique with varied industrial
applications. Despite of its numerous advantages, UMW has a relative narrow operating window and
is sensitive to variations in process conditions. As such, it is imperative to quantitatively characterize
the influence of welding parameters on the resulting joint quality. The quantification model can be
subsequently used to optimize the parameters. Conventional response surface methodology (RSM)
usually employs linear or polynomial models, which may not be able to capture the intricate, nonlin-
ear input-output relationships in UMW. Furthermore, some UMW applications call for simultaneous
optimization of multiple quality indices such as peel strength, shear strength, electrical conductivity,
and thermal conductivity. To address these challenges, this paper develops a machine learning (ML)-
based RSM to model the input-output relationships in UMW and jointly optimize two quality indices,
namely, peel and shear strengths. The performance of various ML methods including spline regression,
Gaussian process regression (GPR), support vector regression (SVR), and conventional polynomial re-
gression models with different orders is compared. A case study using experimental data shows that
GPR with radial basis function (RBF) kernel and SVR with RBF kernel achieve the best prediction
accuracy. The obtained response surface models are then used to optimize a compound joint strength
indicator that is defined as the average of normalized shear and peel strengths. In addition, the case
study reveals different patterns in the response surfaces of shear and peel strengths, which has not been
systematically studied in the literature. While developed for the UMW application, the method can be
extended to other manufacturing processes.

Keywords: ultrasonic metal welding, mechanical strength, response surface methodology, process
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1. Introduction

UMW is a solid-state joining method with various industrial applications including lithium-ion bat-
tery assembly [1, 2, 3], automotive body construction [4, 5, 6], and electronic packaging [7, 8, 9].
Among the advantages of UMW over conventional fusion welding techniques are the ability to join
dissimilar metals, reduced energy consumption, and short welding cycles [1, 2, 10]. In addition, UMW
is more environmentally friendly and free of solidification defects. It is thus considered as a promising
joining technology contributing to the emerging trends in advanced manufacturing including elec-
trification and lightweighting. It is documented that UMW can accommodate junctions of various
combinations, including metal/metal, polymer/polymer, and metal/polymer [11, 12]. A typical UMW
system is comprised of generator, transducer, booster, horn, and anvil, as shown by Fig. 1. These com-
ponents convert high-frequency voltage to high-frequency mechanical vibration, which subsequently
joins workpieces together.

transducer booster horn

Ultrasonic metal welding machine

20 kHz vibration

Figure 1. Schematic of a UMW system.

Despite of its numerous advantages, UMW has a relative narrow operating window and is sen-
sitive to variations in process conditions. As such, quality control of UMW has received extensive
attention, especially in industrial applications. Existing research on predicting UMW quality usually
employs two types of approaches, namely, finite element simulations (e.g., [13, 14]) and data-driven
online process monitoring (e.g., [15, 16, 17, 18]). Xi et al. [13] developed finite element models to
predict the mechanical performance of UMW joints under lap shear tests based on measured effective
thickness and bonding length, which are obtained from microscopic analysis. Shen et al. [14] utilized
finite element methods to predict the temperature profile and microstructure evolution during ultrasonic
welding. Nonetheless, the finite element models are inherently computationally expensive, prohibiting
cost-effective process optimization in practice and they fail to establish an end-to-end connection be-
tween input parameters and the output quality. Online process monitoring methods use in-situ sensing
signals, e.g., power, vibration displacement, and audible signals, to infer on the joint quality. Key
steps in the development of these methods include [17] (i) sensor selection, (ii) signal preprocessing,
(ii1) feature extraction, (iv) feature selection, e.g., [15], and (iv) quality prediction using artificial in-
telligence approaches, e.g., [16]. However, such methods assume that process parameters have been
optimized offline and cannot account for the impact of process parameters on output quality.

The joint quality of UMW is influenced by a set of welding parameters including welding am-
plitude, welding time, clamping pressure, and welding pressure. Identifying the best combination of
parameters, namely, process optimization, is still an open yet challenging question. In some indus-
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tries, trial and error approaches are still commonly used. Such methods require a large number of
welding experiments, which is costly, time-consuming, and less accurate. Furthermore, it has been
established that UMW has strong process variability due to uncontrollable process conditions such as
surface contamination [3, 19] and tool wear [17, 20, 21, 22, 23, 24]. Although the adverse effects of
such conditions have been qualitatively characterized in the literature, the direct link between these
factors and joint quality is still missing. Therefore, a more effective and efficient approach for response
surface modeling and process optimization is critically needed.

RSM is a data-driven methodology that explores the relationships between process inputs and one or
multiple process outputs [25]. Statistical models such as linear and polynomial models are commonly
used in RSM to characterize the input-output relationships based on experimental data obtained from
a sequence of designed experiments. RSM is particularly useful when there is a lack of understanding
on the physical process. In manufacturing, RSM has been successfully applied to different processes
including machining [26, 27], friction spot welding [28], arc welding [29], resistance spot welding
[30], and UMW [1]. A third-order polynomial function (or cubic function) was developed in [1]
to characterize the influence of welding pressure and welding time on the resulting peel strength.
The process complexity in UMW may lead to strong nonlinearities in the input-output relationships
that cannot be adequately characterized by polynomial models. This motivates the application of ML
models for response surface modeling due to their superior modeling capabilities. Some recent studies
have explored using ML models for other manufacturing processes. For instance, an RBF was used
to model the relationships between process parameters and performance responses in an electrical
discharge machining process [31]. Yet, no studies exist on ML-based RSM for UMW.

The joint quality of UMW is often characterized by mechanical strength, which is commonly eval-
uated by peel and shear tests. While both testing methods are widely used in existing studies, the
differences in the response surfaces of peel and shear strengths are not well understood. Furthermore,
some applications call for the optimization of quality indices in addition to joint strength, such as elec-
trical conductivity in electric vehicle batteries [2] and thermal conductivity in heat exchangers [32].
Consequently, a multi-objective optimization approach is highly desirable.

In this paper, we employ different ML models including spline regression, GPR, and SVR to char-
acterize the influence of two welding parameters, namely, welding time and welding pressure, on the
shear and peel strengths. Different kernels are used in GPR and SVR. We also compare the model-
ing performance of ML methods and polynomial models with first, second, and third orders based
on a cross-validation procedure. Afterwards, the differences in response surfaces for shear and peel
strengths are analyzed and discussed. Finally, the shear and peel strengths are jointly optimized using
the best-performing response surface models.

This remainder of this paper is organized as follows. In Section 2, we introduce the response surface
modeling methods used in this research. Section 3 presents the details of the experimental design and
mechanical testing procedure. The main results are presented and discussed in Section 4. Section 5
concludes the paper and discusses possible future research.

2. Machine learning-based response surface methodology

In this section, we present a brief introduction to polynomial regression and ML models used,
including spline regression, GPR, and SVR.
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2.1. Polynomial regression

One important goal of RSM is to construct a function f(x) that can estimate the input-output re-
lation of a process. Polynomial regression has been popularly used in conventional RSM. Suppose
X1, X2, ..., X, 1 the training input, and yy, y, ..., ¥,, is the corresponding output. 7 is the number of train-
ing samples. The parameters in a polynomial model can be obtained by minimizing the prediction
error, which is given by the Eq. (2.1).

L= 0i=3)"= ) 0i— P, 2.1)
i=1 i=1

where P(x) is the polynomial function to be found [33].

Polynomial functions with lower orders may not be able to express the complex response surfaces.
On the other hand, a higher-order model generally has better modeling capability, but it may suffer
from an overfitting issue. The choice of orders can be made based on the practitioner’s experience or
using a more rigorous model selection method. Furthermore, polynomial regression can capture the
global tendency of the whole training dataset but may lose some delicate local topography.

2.2. Spline regression

Spline regression utilizes piecewise polynomial functions, called spline functions, to describe a
complex relationship or function. Spline regression has a certain order of smoothness, i.e., a spline
function f, defined on [xo, x;], that satisfies:

Po(x), x0 < x < x;

Pi(x),x1 £x<x

fx) = (2.2)

Pr1(X), X1 < x < X
and
fP(x) € Clxg, x0),p = 1,2,..m =1, (2.3)

where Py(x), P1(x), ..., Pr_1(x) are polynomials of order m. Cubic functions, i.e., m = 3, is a common
choice. The points xy, x1, ..., X; are called knots. In multiple input variable problems, the spline function
is constructed as the tensor product of each piecewise polynomial P;(X).

Spline regression models are capable of capturing the localized variations while ensuring high-level
smoothness. In our case, there are two input variables. Hence the 2D spline function is employed.
We use tensor product of each piecewise polynomial P;(x), displayed by Eq. (2.4). In this paper,
the piecewise cubic function and the tensor product are used for 2D spline to construct the 2D spline
function [34].

fCy) = Pi(x)Pij(y), X £ X < Xis1,Yj Y < Yjsl- (2.4)

2.3. GPR

A Gaussian process is a collection of random variables such that the joint distribution of every finite
subset of random variables is multivariate Gaussian. It can be considered as a Gaussian distribution
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over functions, i.e.,

f(x) ~ GP(u(x), K(x, X') + 6;;07), (2.5)

where m(x) and K(x, x’) are the mean and covariance functions. ¢;; is the Kronecker delta function. o?

is the variance of the noise. The prediction of GP is made by modeling the joint distribution based on
training dataset, also called observations. Specifically, the collection of training points and test points
are jointly multivariate Gaussian distributed [35]:

S p ] [ KXX)+02 KX X)
HRFa e | 20

J7
Then the prediction is given by:

1%y, X" ~ N(f*,Z5), (2.7)
Fr=u + KX KX, X) + 0117 (y — ), (2.8)
= KX XD+ KX, XK, X) + o217 K (X, X). (2.9)

The performance of GPR is largely determined by the kernel function. Common choices for kernel
functions include RBF and rational quadratic (RQ) function, which are shown by Eq. (2.10) and Eq.
(2.11), respectively. In this paper, RBF and RQ kernels are used.

IO i
K(x,y) = eXp( 202 ) (2.10)
K(x,y) = (1+lx=yP) " @.11)

2.4. SVR

The basic idea of SVR is to find a function f(x) that can estimate the targets y; given training data
x; and has at most € deviation while ensuring the flatness of f(x) [36]. The simplest form for f(x) is
the linear function, i.e.,

f(x) =< w,x > +b, (2.12)

where w is the weight, b represents bias, and < -, - > refers to the inner product. Then the problem can
be written as

o1 ) -
min = [w +CZ§i,

‘ (2.13)
subject to |lyi— < w,x; > =b|]| < e + &,

& >0,

where C is the trade-off between flatness of f and the deviation.
Similar to GPR, the concept of kernels is introduced in SVR to solve nonlinear problems. The most
commonly adopted kernels are:
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e polynomial kernel:

K(x,y) = (< x,y > +1)" (2.14)
e RBF kernel:;
2
K(x,y) :exp(—”x f” ) (2.15)
20'0

By solving the Lagrangian dual [36], the SVR for nonlinear problem can be described in the fol-
lowing optimization problem:

. 1 - * * - * - *
min —2 Z(oz,- —a))(@; — @)K (6, x)) - eZ(a/i +al)+ Zyi(ai —a))
i,j=1 ) i=1 i=1 (216)
subject to »"(e; — @) = 0 and e, @} € [0, C].

i=1

and f has the form of
F0 = ) (@ = a)K(x,x) +b. (2.17)
i=1

3. Joining configurations and mechanical testing

3.1. Experimental setup

0.254 mm thick 110-copper sheet is used for the welding experiments. The copper sheet is trimmed
into small pieces in the dimension of 76 mm X 51 mm. Before welding, cleaning wipes are used to
remove the pollutants on the copper specimen. The Branson Ultraweld L20 Spot Welder, shown in
Fig 1(b), is employed to perform UMW experiment. Time mode is selected in this experiment.

In UMW, welding amplitude, welding time, clamping pressure, and welding pressure are dominant
factors influencing the joint strength. Welding amplitude refers to the amplitude of the horn’s cyclic
movement. It does not only directly affects the material softening process but also influences the rate
of frictional heat generation. Welding time determines the duration of a welding process. It can change
the final joint quality through influencing the amount of frictional heat generated. Clamping pressure
(or trigger pressure) refers to the pre-load pressure that triggers ultrasonics. Welding pressure refers
to the pressure applied vertically to the workpieces during the welding process. In this study, welding
amplitude, ranging from 40 um to 55 um, and welding time, ranging from 0.40 s to 0.80 s, are selected
to be the process/independent variables (inputs), whereas clamping and welding pressure are fixed at
50 psi. The parameters and number of repeats for each testing configuration are shown in Table 1.

3.2. Mechanical testing

Two types of mechanical testing, i.e., peel and shear testing, are applied to measure the joint
strength. Fig. 2(a) and (b) shows the configurations of shear and peel tests, respectively. In a shear
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Table 1. Welding configurations and replicates

Welding Time (s) Welding Amplitude (um) Number of Repeats-Shear  Number of Repeats-Peel
0.40 40 10 4
0.45 40 10 4
0.50 40 11 4
0.55 40 10 4
0.60 40 10 4
0.65 40 5 4
0.70 40 5 4
0.75 40 5 4
0.80 40 5 4
0.40 45 10 4
0.45 45 10 4
0.50 45 10 4
0.55 45 9 4
0.60 45 10 4
0.65 45 5 4
0.70 45 5 4
0.75 45 5 4
0.80 45 5 4
0.40 50 9 4
0.45 50 10 4
0.50 50 13 4
0.55 50 9 4
0.60 50 10 4
0.65 50 5 4
0.70 50 5 4
0.75 50 5 4
0.80 50 5 4
0.40 55 10 4
0.45 55 10 4
0.50 55 10 4
0.55 55 10 4
0.60 55 10 4
0.70 55 5 4
0.80 55 5 4

test, the load is prescribed parallel to the bonding surface. Whereas in peel test, the load is applied
perpendicular to the joint surface. In both tests, the instantaneous load is recorded until the two layers
are completely separated. Fig. 2(c) shows a photo of the Instron universal testing machine used for
peel and shear testing. The configuration of the testing machine and data sampling frequency is shown

in Table 2.

Table 2. Testing protocol followed in our experiments

Test type Ramp slope Sampling Joint
(mm/s) frequency (ms) dimensions
Peel 1 10 8 mm diameter
Shear 0.3 10 8 mm diameter

Mathematical Biosciences and Engineering
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Figure 2. The configurations of peel and shear tests.

4. Results and discussion

In this section, results from the mechanical testing, including peel test and shear test, are presented,
where different failure modes are identified. Moreover, different ML models are used to obtain the
response surfaces, and their performance is compared with polynomial regression. Finally, the response
surface models are used to identify the optimal parameters for a compound joint strength indicator.

4.1. Mechanical strength

Maximal Load [N]

We observe three different failure modes in both peel and shear tests, which are closely related to
the weld types. The formation of those failure modes can be ascribed to the reduction of base material
strength and enhancement of joint strength. Due to the plastic deformation and longitudinal cyclic
motion of horn during welding, the base material is removed from the weld zone and flows to the
peripheral area. Such material loss rises as the welding progresses, resulting in a decrease in base
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Figure 3. Mechanical strengths vs. welding time under different welding amplitudes.
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material strength, meanwhile the ultrasonic bonding strength increases. Depending on the relative
strengths of base materials and joints, the weld types can be categorized in three types.

e Cold weld: The joint is not fully developed but the material base is hardly removed. In mechanical
testing, only the joint is separated.

e Good weld: The strength of joint and the base material are close or at the same level. In mechan-
ical testing, partial of joint and base materials are torn down.

e Over weld: The base material at junction is weaker than the joint. In mechanical testing, only
base material adjacent to weld region is separated.

It should be noted that it is possible that an over weld in shear test can also be good or cold weld in
peel test, since the relative strength of base material to joint may vary in different loading types.

In this study, we select the maximum load as the joint strength in both shear and peel tests. Other
indicators such as energy absorbed during mechanical testing may also be used [13]. The outliers, due
to wrong welding configuration or inappropriate clamping position in mechanical testing, are removed
using a 1-sigma criterion. Fig. 3 shows the relationship between shear/peel strengths and welding time
under different welding amplitude values.

The shear test result is shown in Fig. 3(a). For both 40 um and 45 um, the shear strength increases
as the welding time increases, while the slope of 40 um is larger than that of 45 um. The increasing
trend indicates that the joint forms progressively as the weld continues and the welding time increases.
Additionally, 45 um has a larger strength than 40 um, but they converge to the same level when welding
time reaches 0.65 s. On the other hand, the overall trends for 50 um and 55 um are similar, except that
for 55 um there is a drop in shear strength when welding time increases over 0.65. This indicates an
increased likelihood for over welds.

Table 3. Training and testing RMSEs of different methods. The last column refers to the
sum of prediction errors for shear and peel strengths. The models with best performance in
each category are highlighted in bold.

Shear Strength RMSE [N] | Peel Strength RMSE [N] | Total Testing
Training Testing Training Testing RMSE
Spline 22+1 52443 12+1 35+16 85
GPR-RBF | 29+ 1 26+14 20+ 8 24+ 11 50
GPR-RQ T+ 1 32+ 11 2+2 26+ 12 58
SVR-RBF | 30+1 25+ 13 20+ 1 25+ 15 50
SVR-quad | 30+ 1 30+ 9 21+ 1 25+ 13 55
Linear 53+1 37+13 41+1 34+15 73
Quadratic 27+1 2711 20+1 24+14 51
Cubic 26+1 28+12 19+1 26 +15 54

It is observed from Fig. 3(b) that when the welding amplitude is low, the weld strength maintains
at a relatively high value. The trend for welding amplitude of 40 um is most stable. This is because
the amplitude of 40 um is lower than the threshold to form a good weld. Even by increasing the
welding time, the central temperature and plastic deformation of weld region do not dramatically rise,
hence almost no improvement in strength is observed. The trends for welding amplitudes of 40 um
and 45 um both have a critical point, after which a significant drop in peel strength occurs, indicating
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the occurrence of over welds. The critical points are 0.75 s and 0.80 s for 45 um and for 50 um,
respectively. When the welding amplitude reaches 55 um, the weld strength is very low regardless of
welding time. This is attributed to the fact that all welds are over welds, which lead to much lower

strength.
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Figure 4. Response surfaces obtained by GPR-RBF.

4.2. Joint strength prediction

To illustrate the performance of different models, the obtained response surfaces are evaluated on
the dataset using leave-two-out cross-validation, which is selected because of the small dataset we
have. In each round of cross-validation, the full dataset is randomly partitioned into a training and
a test set, which include 32 and 2 configurations, respectively. Root-mean-square error (RMSE) is
selected as the modeling performance indicator, because it is smoothly differentiable and minimizing
such metric gives exactly the mean value [37]. RMSEs are averaged over all rounds to evaluate the

prediction performance.
Table 3 shows the prediction accuracy of spline regression, GPR with RBF and RQ kernels, SVR
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with RBF and quadratic kernels, and polynomial regression with different orders. SVR-RBF has the
smallest testing error on shear strength, while SVR-quad and the quadratic function perform the best
accuracy on peel strength. SVR-quad has smaller prediction uncertainty than the quadratic function.
Though spline regression and SVR-RQ have small training errors for both shear and peel strengths,

their testing errors are much larger, indicating an overfitting issue.
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Figure 5. Response surfaces obtained by SVR-RBF.

Fig. 4, 5, and 6 illustrate the response surfaces obtained by GPR-RBF, SVR-RBF, and quadratic
regression, respectively. The topography and optimal parameters indicated by response surfaces are
different for different models. It is estimated that in GPR-RBF (Fig. 4b) and quadratic regression
(Fig. 6b) the maximal shear strength occurs beyond the range of parameters selected in this study,
whereas the maximum locates inside the parameter range in SVR-RBF (Fig. 5b). In contrast, all the
maxima of peel strength are inside the parameter range (Fig. 4d, 5d and 6d). Interestingly, the response
surfaces for shear and peel strengths are intrinsically different. The response surfaces for shear strength
all have two local maxima and the strengths of two peaks are comparable, as depicted in Fig. 4b, 5b,
and 6b. Nevertheless, such phenomenon does not hold for the peel strength, for which there is only one
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Figure 6. Response surfaces obtained by quadratic regression.

peak (see Fig. 4d, 5d, and 6d). The peel strength decreases sharply when moving away from the global
maximum. One possible explanation is that the damaged edges of over-weld joints in peel testing
are easy to break due to the normal load exerted to the joint. Slight tearing of the joint surface will
significantly deteriorate the joint strength. In contrast, the load in shear testing is applied in parallel
with the joint surface, so the shear strength is less sensitive to the tearing of the joint surface.

To determine the optimal weld parameters for both shear and peel strengths, the criterion of nor-
malized sum is adopted, i.e., the goal is to maximize a compound strength indicator:

Fee > shear ”
1 (Epee6y) | Fipear(x,y) @.1)

2

F =

2 F peel,max F shear,max

where F .., and F g, represent peel and shear strengths, respectively.
The contour plot for F' is illustrated in Fig. 7. The region in red color can be considered as good

weld region. It is seen that the welding time needed to form a good weld decreases approximately lin-
early as the welding amplitude increases. When the welding amplitude exceeds the optimal value, the
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Figure 7. Contour plot of the sum of normalized maximal peel and shear load.

Table 4. Optimal parameters for the compound strength obtained by different methods.

Optimal Parameters

Weld Amplitude Weld Time Optimal Value

GPR
SVR
Quadratic
Ground Truth

43.0
43.5
44.0
50.0

0.80 0.996
0.64 0.975
0.64 0.972
0.60 0.983
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compound strength drops drastically no matter what the welding time is. This indicates the existence
of a threshold for welding amplitude, after which the over weld dominates. GPR-RBF, SVR-RBF, and
quadratic regression give different global maxima, as shown by Table 4. Fig. 7d shows the ground
truth of the compound strength calculated from the experiment results. Though being low resolution
because of the limited number of experiments, Fig. 7d shows a ringlike pattern, which agrees with
Fig. 7a-c, and the threshold for welding amplitude is also consistent with all regression models. Com-
pared with the ground truth (50 um, 0.60 s), the outcomes by SVR-RBF and quadratic regression are
more accurate than that of GPR-RBF.

5. Conclusion

In this paper, we developed an ML-based RSM for two performance indicators in UMW-shear
and peel strengths. The performance of spline regression, GPR, SVR, and polynomial regression was
compared using a dataset collected from UMW experiments where the values of welding amplitude
and welding time were varied. The trained response surface models were subsequently used to find the
optimal parameters for a compound strength indicator, which was defined as the average of normalized
shear and peel strengths. It was shown that ML methods hold good potential in modeling input-output
relationships in UMW.

The experimental results indicate the existence of a threshold for the welding amplitude threshold
at which point over welds start to occur and dominate afterwards. A clear trend of welding strength
transition in the peel strength is observed at 50 um, implying the weld quality undergoes the transition
from cold weld to good weld, and to over weld.

A comparison between the response surfaces of shear and peel strengths leads to some interesting
observations. First, the shear strength stays at a much higher level than the peel strength. Second, the
response surface of the shear strength presents two peaks with comparable strength values, but the peel
strength only has one global peak. Their distributions are also very different. The compound strength
indicator reaches its peak at modest values of both welding amplitude and welding time.

Future research can be conducted in the following directions. First, more welding parameters such
as clamping pressure and welding pressure will be introduced to create a larger dataset. It is expected
when more parameters are included, machine learning methods may gain a larger advantage due to
their advanced modeling capability. Second, process variability should be taken into account and
appropriately modeled, because repeatable, reliable performance is of utmost importance to manufac-
turers. Finally, other quality indices such as thermal and electrical conductivity should be considered,
leading to an increased number of objectives for optimization.
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