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Abstract

We establish lower bounds on the complexity of finding e-stationary points of smooth,
non-convex high-dimensional functions using first-order methods. We prove that deter-
ministic first-order methods, even applied to arbitrarily smooth functions, cannot
achieve convergence rates in € better than €%/ which is within ¢~/ log é of
the best known rate for such methods. Moreover, for functions with Lipschitz first and
second derivatives, we prove that no deterministic first-order method can achieve con-
vergence rates better than € ~!2/7, while €2 is a lower bound for functions with only
Lipschitz gradient. For convex functions with Lipschitz gradient, accelerated gradient
descent achieves a better rate, showing that finding stationary points is easier given
convexity.
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1 Introduction

We study the oracle complexity of finding approximate stationary points of a smooth
function f : R? — IR, that is, a point x such that

IVl < e. (1

Part I of this series [10] establishes the complexity of finding an e-stationary point (1)
for algorithms that, at a query point x, have access to all derivatives of f. In contrast, this
paper focuses on first-order methods, which only query function values and gradients.
To keep our presentation concise this paper only touches briefly on the most relevant
research; see Part I [10] for a more detailed review of related work.

First-order methods are important in large-scale optimization for many reasons.
Perhaps the two most salient are that each iteration is often inexpensive, and that
on many problems, the number of iterations grows slowly (or not at all) with the
problem dimension d. From a theoretical perspective, the latter property is captured
by dimension-free convergence rates, where the worst case iteration count depends
polynomially on the desired accuracy and measures of function regularity but has
no explicit dependence on d. In non-convex optimization problems, regularity often
comes by assuming bounded function value at the initial point x@, ie. f(x©) —
infy f(x) < A for some A > 0, and that V f is L;-Lipschitz continuous. Under
these conditions, classical gradient descent finds an e-stationary point in 2L Ae 2
iterations [23], a dimension-free guarantee, and this is unimprovable for this class [10].

Developing first-order methods for finding stationary points of non-convex func-
tions with improved dimension-free rates of converence is an area of active
research [1,2,8,9]. Under the additional assumption of Lipschitz second derivatives,
we [9] and Agarwal et al. [1] propose randomized first-order methods with nearly
dimension free rate ¢ ~//*log ‘El (ignoring other problem-dependant constants). In a
later paper [8], we propose a deterministic accelerated gradient-based method with
complexity € ~"/41log é, and under the further assumption that f has Lipschitz third
derivatives, we show the same method attains rates of € /3 log % This raises the
main question we address in this paper: how much further can we improve this €
dependence, and what Lipschitz continuity assumptions are necessary?

1.1 Our contributions

In Table 1 we summarize our results, along with corresponding known upper bounds.
We establish lower bounds on the worst-case oracle complexity of finding e-stationary
points, where algorithms may access f only through queries to an information oracle
that returns the value and some number of (or potentially all) derivatives of f at the
queried point. A lower bound 7T, means that for every algorithm A, there exists a
function f in the allowed function class (e.g. functions with f(x @) —inf, f(x) < A
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Lower bounds for finding stationary points Il: first-order... 317

Table 1 The number of iterations required to find e-stationary points of high dimensional functions

Oracle f has Lipschitz Upper bound Lower bound Gap
General pth-order derivative 0 (e~ P+D/py (5] Qe=PtD/PyPart1  0(1)
First-order Gradient and Hessian 5(6_7/4) [8] 9(6_12/7) Theorem 2 5(6_1/28)
First-order gth derivative Vg < p, p >3 5(675/3) [8] 9(678/5) Theorem 2 5(671/15)
First-order Gradient + f convex 0 (671) Proposition 2 Q(eil) Theorem 1 0 [€))]

The bounds apply for functions f with f(x(o)) —infy f(x) < O(1). The first column indexes the type
of oracle access: general (all derivatives) or first-order (function value and gradient). In the first row,
deterministic pth-order methods achieve the upper bounds, and the lower bounds apply to all randomized
methods of arbitrary order. In the other rows, the lower bounds apply to all deterministic first-order methods,
and such methods achieve the upper bounds

and Li-Lipschitz gradient) for which A requires at least T, oracle queries before
returning an e-stationary point of f.

In Part I [10] of this series we prove that no algorithm, even one given all derivatives
of f at each iteration, can improve on the € 2 rate of gradient descent for the class
of functions with bounded initial value and Lipschitz continuous gradient. Therefore,
in distinction with the convex case, acceleration of gradient descent for non-convex
optimization [8] fundamentally depends on higher-order smoothness. We further show
that, for the class of functions with pth order Lipschitz derivatives, no method can
improve the rate e ~(?*1/P achieved by a pth-order method [5]. However, this does
not get at the crux of the issue we consider here—what is the best possible rate for
first-order methods, given that higher-order derivatives are Lipschitz?

In this paper we show that the e-dependencies we establish in our work [8] are
almost tight. More precisely, consider the function class with L ,-Lipschitz derivatives
forallg € {1, ..., p}, where p € N; for this class there does not exist a deterministic
first-order algorithm with iteration complexity better than € ~8/3_ If p = 2 this com-
plexity lower bound strengthens to € ~1%/7_ In the following diagram, we compare the
exponents of 1/€ in our lower bounds and known upper bounds (smaller is better).

cubic-regularized first-order first-order gradient
Newton’s method methods methods descent
p=2 pz3 p=2 p=1
+ f ol = 1 ®
= =] E =l hg
3 8 5 12 7 2
5 3 7 4

Thus, we establish two separations. First, no deterministic first-order method can
achieve the rate of convergence € ~3/2 of Newton’s method. Second, the rate ¢ /3 log %
we achieve [8] requires the assumption of Lipschitz third derivatives, as first-order
methods assuming only Lipschitz Hessian must compute at least € ~'?/7 function val-
ues and gradients to find an e-stationary point. We also show that the optimal rate
for finding e-stationary points of convex functions with bounded initial value (i.e.
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318 Y. Carmon et al.

f(x(o)) —infy f(x) < A) and Li-Lipschitz gradient is (f:)(«/LlAe’l).1 Finding sta-
tionary points is thus fundamentally easier for convex functions.

The starting point of our development is Nesterov’s [23, § 2.1.2] “worst function
in the world,”

d—1
1 1
Pesteror (X) 1= 5 (x1 = 2 + 5 > i = xip)?, 2)
i=1

which is instrumental in proving lower bounds for convex optimization [4,23,30] due
to its “chain-like” structure. We establish our € ~! lower bound for finding stationary
points of convex functions by making a minor modification to the construction (2). To
prove our larger lower bounds for non-convex functions, we augment fNesterov With
a non-convex separable function Zle Y (x;), with T : R — R carefully chosen to
render Nesterov’s “worst function” even worse.

By using this augmented chain function, we are able to prove lower bounds for
all deterministic first-order methods. This is in contrast to prior work proving lower
bounds for finding stationary points [11-14,18,29]. The papers [11-14] consider class
of algorithms that receive pth order information and minimize pth-order approxima-
tions. While this class encapsulates many of the algorithms proposed in the literature, it
misses cutting-plane and grid-search algorithms [17,29]. Vavasis’s lower bounds [29]
apply to 2-dimensional problems (in contrast to ours, which require higher dimen-
sionality), but are loose at least for high-dimensional problems.

Paper organization. Throughout, we use PLk to reference an item k of Part I of this
sequence [10], as we build off of many ideas there. In Sect. 2 we briefly summarize our
framework (Sects. P1.2 and P1.3). Sect. 3 begins the new analysis and contains lower
bounds for finding stationary points of convex functions. In Sect.4 we construct our
hard non-convex instance, while in Sect. 5 we use this function to establish our main
result: alower bound on the complexity of finding stationary points using deterministic
first-order methods. In Sects. 6 we discuss some difficulties in sharpening or extending
our lower bounds. Sect. 7 concludes by situating our work in the current literature and
reflecting on its implications for future research.

Notation. Before continuing, we provide the conventions we adopt throughout the
paper; our notation mirrors Part I [10], so we describe it only briefly. For a sequence of
vectors, subscripts denote coordinate index, while parenthesized superscripts denote
()
J

element index, i.e. x; ’ is the jth coordinate of the ith entry in the sequence {(xO}en.

For any p > 1 and p times continuously differentiable f : RY — R, we let V7 f(x)
denote the symmetric tensor of pth order partial derivatives of f at point x. We let
(-, -) be the Euclidean inner product on tensors, defined for order k tensors 7 and M
by (T, M) = > i Tk Miy,...i,- We use ® to denote the Kronecker product

. k
and ®*d denote d x - -+ x d, k times, so that 7 € R® 4 denotes an order k tensor.

For a vector v € R? we let lv]l := 4/(v, v) denote the Euclidean (£») norm of v.
For a tensor T € R®“, the £z-operator norm of 7' is [|T ||y, := sup,m) Ly {(vP ®
@R Ty D) < 1,i =1, ..., k}, where we recall [31] that if T is symmetric

I Given a bound ||x(0) —x*|| < D where x* € arg min f, as is standard for convex optimization, the
optimal rate is ®(y/L1 De1/2) [24]. The two rates are not directly comparable.

@ Springer



Lower bounds for finding stationary points Il: first-order... 319

then [T [lop = SUpjy =1 |(v®, T')| where v®* denotes the k-th Kronecker power of v.
For vectors the £, and ¢;-operator norms are identical.

For any n € N, we let [n] := {1, ..., n} denote the set of positive integers less
than or equal to n. We let C* denote the set of infinitely differentiable functions.
We denote the ith standard basis vector by e® and let I; € R4>%4 denote the d x d
identity matrix; we drop the subscript d when it is clear from context. For any set S and
functions g, & : S — [0, 00) we write g < h or g = O (h) if there exists a numerical
constant ¢ < 0o such that g(s) < ¢ - h(s) for every s € S. We write g = O (h) if
g < hlog(h + 2).

2 A framework for lower bounds

For ease of reference, this section provides a condensed version of Sections P1.2
and P1.3 of the first part of this series [10] that lays out the notation, concepts and
strategy we use to prove lower bounds. Here, we are deliberately brief; see [10] for
motivation, intuition and background for our definitions, as well as exposition of
randomized and higher-order methods.

2.1 Function classes

Typically, one designs optimization algorithms for certain classes of appropriately
regular functions [6,22,23]. We thus focus on two notions of regularity that have been
important for both convex and non-convex optimization: Lipschitzian properties of
derivatives and bounds on function value. A function f : R — R has L p-Lipschitz
pth order derivatives if it is p times continuously differentiable, and for every x € R?
and v € R?, ||v|| = 1, the directional projection t — fy ,(t) := f(x +1-v)of f
satisfies

£ @0 — 1R

<L,|t—1] fort,t' R,

where fx(f;) (+) is the pth derivative of ¢ — f , (). We occasionally refer to a function

with Lipschitz pth order derivatives as pth-order smooth.

Definition1 Let p > 1, A > 0 and L, > 0. Then the set
Fp(A, Lp)

denotes the union, overd € N, of the collection of C* functions f : R — R with L p-
Lipschitz pth derivative and f(0) — inf, f(x) < A. For positive Aand Ly, ..., L,
we define
Frp(A L, . L) =[] Fy(A, Ly).
q<p

The function classes 7, (A, L) include functions on R foralld € N, following the
established practice of studying “dimension free” problems [10,22,23].
We also require the following important invariance notion [22, Ch. 7.2].
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320 Y. Carmon et al.

Definition 2 (Orthogonal invariance) A class of functions F is orthogonally invariant
if for every f € F, f : R — R, and every matrix U € R *? such that U TU = I,
the function fy : R4 — R defined by fu(x) = f(U Tx) belongs to F.

Every function class we consider is orthogonally invariant.

2.2 Algorithm classes

For any dimensiond € N, an algorithm A (also referred to as a method) maps functions
f :RY — R to a sequence of iterates in R?; that is, A is defined separately for every
finite d. We let

ALf] = {x D)%,

denote the sequence x) € R of iterates that A generates when operating on f.
Throughout this paper, we focus on first-order deterministic algorithms. Such an algo-
rithm A is one that, operating on f : RY — R, produces iterates of the form

x@ = A® (f(x<1>), Vi), o Dy, Vf(x<i—1))) fori € N,

where A® : RIG=D+ 5 R4 js measurable (the dependence on dimension d is

implicit). We denote the collection of first-order deterministic algorithms by Aéle)t.
Key to our development are zero-respecting algorithms (see Sec. P1.2.2 for more

information). For v € R? we let supp {v} := {i € [d] | v; # 0} denote the support

(non-zero indices) of v. Then we say that the sequence xV, x®, .. is first-order

zero-respecting with respect to f if

supp {x(’)} - U supp {Vf(x(s))} foreacht € N. 3)

s<t

The definition (3) says that xl.(t) = 0 whenever the partial derivatives of f with respect

to coordinate x; are zero for all preceding iterations. Extending the definition (3) in
the obvious way, an algorithm A is first-order zero-respecting if for any f : R — R,

the iterate sequence A[ f] is zero-respecting with respect to f. The set AS) comprises
all such first-order algorithms.

2.3 Complexity measures

For a sequence {x(’)},eN we define the complexity of the sequence {(x®},cn on f by
Te( e, £) =inf {r e NI [V )] <},

the index of the first element in {x"},cy that is an e-stationary point of f. The
complexity of algorithm A on f is simply the complexity of the sequence A[ f] on f,
so we define

Te(A, f) == Te(ALf], £).
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We define the complexity of algorithm class A on function class F as

T(A, F) := inf Te(A, f). 4
(A7) = nf, sup Te(A. /) “

Table 1 provides upper and lower bounds on the quantity (4) for different choices of
A and F. For example, gradient descent guarantees 7¢ (Aéle)t N A§P L, Fi(A, Ll)) <
2ALje2.

2.4 How to prove a lower bound

The last step in our preliminaries is to give an overview of our proof strategy; this is
an abbreviated version of Section P1.3. There, we abstract classical techniques from
convex optimization [22,23], presenting a generic method for proving lower bounds on
deterministic methods (of any order) applied to functions in any orthogonally invariant
class.

Our starting point is what we call a zero-chain, which distills the “chain-like”
structure of Nesterov’s construction (2).

Definition 3 A function f : R¢ — R is a first-order zero-chain if for every x € R?,
supp {x} € {1,...,i — 1} implies supp{Vf(x)} C {1,...,i}.

In Definition P1.3 [10], we extend zero-chains to higher orders (unnecessary for this
paper); in our terminology Nesterov’s function (2) is a first-order zero-chain, but not
a second-order zero-chain. A first-order zero-chain limits the rate that zero-respecting
algorithms acquire information from derivatives, forcing them to “discover” coordi-
nates one by one, as the following observation makes clear.

Observation 1 Let f : RY — R be a first-order zero-chain and let xW=0,x@, ...
be a first-order zero-respecting sequence with respect to f. Then x =0 forj >t

J
andallt < d.

The important insight, essentially due to Nemirovski and Yudin [22] is that by
using a resisting oracle [22,23] that can adversarially rotate the function f, any lower
bound for zero-respecting algorithms implies an identical bound for all deterministic
algorithms:

Proposition 1 Let F be an orthogonally invariant function class, f € F with domain
of dimension d, and € > 0. If’];(AS), {f}) > T, then

7;(-/4(1) ]_—) > 7;(-/4(1)

o, WofulUeOd+T,d)) =T,

where fy = f(U'z) and O(d + T, d) is the set of (d + T) x d orthogonal matrices,
so that {fy | U € O(d + T, d)} contains only functions with domain of dimension
d+T.
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See Propositions PI.1 and P1.2 for more general versions of this result.

With this proposition, our strategy, inspired by Nesterov [23], becomes clear. To
prove a lower bound on first-order deterministic algorithms for a function class F, we
find f, : RT — R such that (i) fe is a first-order zero-chain, (ii) fe € F, and (iii)
IV f.(x)|l > € for every x such that x; = 0. Then for A € AY and {x©},cny = A[£],
Observation 1 shows that x(Tt) = 0 for t+ < T, and the large gradient property (iii)
guarantees the non-stationarity ||V fe (x(’))” > ¢ for all + < T. We immediately
obtain the complexity lower bound

T(AY, F) = inf supTe(A, f) > inf T.(A f)>T,
AEA(Z}) feF AGAS)

and the same lower bound holds for 7¢ (Aéle)t, F) by Proposition 1.

Hard instance dimensionality. To establish the lower bound ’Z;(Aéle)t, F) = T. we
require functions in F with domain of dimension 27¢; the first-order zero-chain has
domain of dimension d = 7T¢, and Proposition 1 doubles this dimension via orthog-
onal projections to R?*7e = R2%¢_ Thus, the dimensionality of our hard instances
grows inversely 1/e with precisely the same rate as the lower bounds themselves. In
Section P1.1.2 we explain why such high-dimensional constructions are unavoidable

for tight dimension-free lower bounds.

3 Lower bounds for finding stationary points of convex functions

While for convex optimization guarantees of small gradients are atypical topics of
study, we nonetheless begin by considering the complexity of finding stationary points
of smooth convex functions. This serves two purposes. First, it is a baseline for finding
stationary points in the non-convex setting; based on algorithmic upper bounds due to
Nesterov [24], we see that convexity makes this task fundamentally easier. Second, our
lower bound construction for convex problems underpins our construction and analysis
for general smooth (non-convex) functions in the sequel, allowing us to demonstrate
our techniques in a simpler setting. Of course, in convex optimization, it is typically
more useful to find points x with small optimality gap, f(x) < inf, f(z) 4+ €. Con-
vexity allows efficient algorithms for guaranteeing such optimality, and typically one
ignores the magnitude of the gradient in favor of small optimality or duality gaps [6].
Nonetheless, in some situations—such as certifying (near) dual feasibility or small
constraint residuals in primal-dual or operator splitting algorithms [e.g. 7]—achieving
small gradients is important.

We proceed as follows. In Sect. 3.1 we define the class of convex functions under
consideration and a quadratic subclass. In Sect.3.2, we construct a hard quadratic
instance, and verify its key properties. Finally, in Sect. 3.3, we state, discuss and prove
our lower bounds.
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3.1 Convex function classes

The collections of functions we consider are the following.

Definition4 Let L; > 0 and A > 0. The set
K1 (A, Ly)

denotes the union, over d € N, of the collections of C*° convex functions f : RY - R
with L1-Lipschitz gradient and f(0) — inf, f(x) < A. Additionally,

Q(A, L) CKi(A, L)

is the set of convex quadratic functions satisfying the above conditions.

Our results, following Nemirovski andYudin [22] and Nesterov [23], demonstrate
that for deterministic first-order methods, the class Q (A, L) is “hard enough,” in that
it provides nearly sharp lower bounds for first-order methods, which immediately apply
to Ky (A, L) and Fi(A, Ly). We also have Q (A, L) = Fi.p,(A, L1,0,...,0) or
any p > 2.

In addition to functions restricted by initial optimality gap, we consider the follow-
ing initial distance-based definition.

Definition5 Let D > 0 and L; > 0. The set
K™ (D, L1)

denotes the union, over d € N, of the collections of C*° convex functions f : RY > R
with Li-Lipschitz gradient satisfying [|x*|| < D for all x* € arg min, f(x). Addi-
tionally,

Qdist (D, Ll) C ]C(liiSt (D, Ll)

is the set of convex quadratic functions satisfying the above conditions.

Standard convergence results in (smooth) convex optimization [e.g.23] apply to
functions with bounded domain, i.e. f € lC‘lﬁst (D, L) rather than Ky (A, Ly). This
is for good reason: for any pair A, L1, any € < A, any first-order zero-respecting or
deterministic algorithm A, and any T € N, there exists a function f € Q (A, L) with
L1-Lipschitz gradient such for {xV},ery = A[ f] we have

tiglgit | FGO) < inf £(x) +e] > T.

(See Appendix A.2, Lemma 6 for a proof of this claim.) Since this holds for any
T € Nand ¢ < A, making even the slightest function value improvement to func-
tions in Q (A, L) may take arbitrarily long. Thus, when we consider the function
classes of Definition 4, we can only hope to give convergence guarantees in terms of
stationarity—as is common in the non-convex case.
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3.2 The worst function in the (convex) world

We now construct the functions that are difficult for any zero-respecting first-order
n}ethod. For parameters T € N and ¢ < 1 we define the (unscaled) hard function
fre:RT — Rby

. 1
Frat) =S =17+ 3 3 0u —xi)” 5)
i=1

Fora =1, fryl is Nesterov’s “worst function in the world” [23, § 2.1.2]. The parameter
« allows us to control f(0) and thus provides a degree of freedom in satisfying the
constraint f(0) —infy f(x) < A for our lower bounds. By inspection,

A 1
Jrax) = ExTLx —b'x+ %

where
l14a -1
-1 2 -1

is the unnormalized graph Laplacian of the simple path on T vertices (see [16]) plus
the term « in the position L1y, and b = ae,
Letus now verify that fr o meets the three requirements of our lower bound strategy.

Lemmal ForallT e Nanda <1, fr,a has the following properties.

i. Zero-chain fr o is a first-order zero-chain.
ii. Membership in function class

(a) fT,a has 4-Lipschitz continuous gradient.
(b) fr.a(0) —infcgr frox) =a/2
(¢) The unique minimizer of fr o(x) is x* =1, and || x*||

VT.

iii. Large gradient For every x € RT such that xp = 0, ||VfT,a(x)|| >
1\—3/2
(T -1+ E) .

Proof Part i is immediate from Definition 3, since for every i € [d], V; fT’a(x) =0
whenever x;_1 = x; = x;41 = 0. Part ii is also immediate, as fr,a(l) =
inf fT,a(x) =0, and ||L[l,, < 4 (apply the triangle inequity to || Lv]|). To establish
part iii, we calculate the minimum value of ||V fT,o[(x)H2 obtainable by any vector
x € RT with xy = 0. Letting M = L[I7—; Or_1]T € RT*T=D be the matrix L
of (6) with its last column removed and recalling b = ae(!, this becomes the least
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squares problem, whose solutions is the squared norm of the projection of b to the
(one-dimensional) nullspace of M :

N 2
inf HVfT,a(x)H = inf [Mv—b|?
xeRT x7=0 veRT-1
2
—pT (IT - M(MTM)—‘MT) b= (sz) .o

where z € R is the unique (up to sign) unit-norm solution to M " z = 0. A calculation

shows that
j-1+1

j = .
VI G- 1+ 1y

Substituting z and b into Eq. (7), we have that x7 = 0 implies

1 1
> 9
Tli—14+i2 " @141

[V frato| 2
>

giving the result. O

3.3 Scaling argument and final bound

With our hard instance in place, we provide our lower bounds for finding stationary
points of convex functions. We note that the lower bound for the class Qdist (D, Ly)
also follows from the standard lower bounds on finding e-suboptimal points, since for
every g € QUS' (D, L) an e-stationary point is also € D-suboptimal.

Theorem 1 Let €, A, D, and L be positive. Then

LA
T (AL K1 (A, L) = T(AY, Q(A, L)) = 41 e !, (8a)
and
. . L1D
Te(Agee K™ (D, L)) 2 T (AL, @™ (D, L)) = Y= 72 8b)

Let us discuss Theorem 1 briefly. Nesterov [24] shows that for any f €
IC(I1iSt (D, Ly), accelerated gradient descent applied to a regularized version of f yields
apoint x satisfying |V f (x) || < e afteratmost O (+/ L De~1/2 log %) iterations. For
f € K1 (A, Ly), a similar technique to Nesterov’s, which we provide for complete-
ness in Appendix A.1, yields an upper complexity bound of O (v/L1Ae~ ! log LG‘—ZA .
Thus, to within logarithmic factors both bounds of Theorem 1 are sharp. It is illustra-
tive to compare Theorem 1 to our results for non-convex but smooth functions, and

we do so in detail in Sect. 7.1. The comparison shows that finding stationary points of
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smooth convex functions with first-order methods is fundamentally easier than find-
ing stationary points of non-convex functions, even with higher-order smoothness and
using higher-order methods.

While we prove our lower bounds for the algorithm classes ‘A;le)t and A§P, similar
lower bounds apply to the collection A3ng of all randomized algorithms based on
arbitrarily high-order derivatives when applied to worst-case functions from function
class K1 (A, Li). While this is not our focus here, using the techniques of Wood-
worth and Srebro [30] and Section P15, it is possible to construct a distribution P
on K1 (A, L) such that for any A € Ajang, with high probability over f ~ P we
have T, (A, f ) = Ly Ae~L. That is, neither randomization nor higher-order deriva-
tive information can improve performance on C; (A, Ly). Such an extension fails for
Q (A, Ly), as Newton’s method finds the global minimizer of every f € Q (A, L)
in one step.

3.4 Proof of Theorem 1

As we outline in Sect. 2.4, we establish our lower bounds by constructing a zero-chain
f:RT — Rsuchthat f € Q(A, Ly) (or Q¥ (D, L)), and that ||V f (x)|| > € for
any x suchthatxy = 0. By Observation | we immediately have that forevery A € Agr ,
the iterates {x*};cn = A[ f] produced by A operating on f satisfy x(Tt ) = 0 for every
t < T and hence ||V f (V)| > €. Consequently, ianeAQ) Te(A, f) = 14 T, which
implies lower bounds on the required quantities by means of Q (A, L1) C K1 (A, Ly)
and Proposition 1. .

To define the difficult zero-chain f, we scale fr , using two scalar parameters
X, o > 0, which we determine later, defining

fx) =102 fr o (x/0).

We use the parameter A > 0 to control the first-order smoothness of f, as V2 f(x) =
AV2 fT’a(x /o), while the parameter o controls the lower bound on ||V f(x)| for
x7 = 0. We first show how to choose o, depending on T, €, o, and A. By Lemma 1.iii,
for every x with xr = 0 we have

1Vl =20 |V frato| > (T_f%)m

Setting

1 1 3/2
=—(T-1+4+— ,
o k( +a> €

guarantees ||V f (x)|| > € for any x such that x; = 0 and hence |V f(x")|| > € for
allr <T.
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All that remains is to choose A, T, and « to guarantee that f belongs to the appro-
priate quadratic class. By Lemma 1.ii, f has 4A Lipschitz gradient, so we take

A=L1/4

and guarantee that f has Li-Lipschitz gradient. To guarantee that f € Q (A, L),
Lemma 1.ii yields

. s 2a 1\’ ,
fO) —inf f(x) =Ac“a/2=— (T -1+ —] €,
X L1 o
where we have substituted our choice of o and A in the final equality. Defining

o« =1/T <1 weobtain f(0)—inf f(x) < 16T%¢*/L;,
X

so to guarantee f(0) — inf, f(x) < A, it suffices to choose

T:{‘/Ll_A —IJ.

4

This gives the first part (8a) of the theorem. For inequality (8b), we must have f €
Qdist (D, Ly). Let x* = o1 denote the minimizer of f, so that

. 4 1\2
[x ||=o\/_=—<T—1+;> VT,

Ly

where again we have substituted our choices of o and A in the final equality. Conse-
quently, to guarantee ||x*|| < D it suffices to take

LiD
a=1and T = LTle_l/2J,

giving the bound (8b).

4 Constructing the non-convex hard instance

We now relax the assumption of convexity, and design a first-order zero-chain that
provides bounds stronger than those of Theorem PI1.2, when we restrict the algorithm
class to first-order methods. The basis of our construction is the convex zero-chain (5),
which we augment with non-convexity to strengthen the gradient lower bound in
Lemma 1.iii, while ensuring that all derivatives remain Lipschitz continuous. With this
in mind, for each T € N, we define the unscaled hard instance fT, wor RT+! 5 Ras

7 (x)—*/—’j(x—l)%li(x- —x)?+ iwx-) ©)
T, 1,1 =7 1 2-_1 i+1 i M-_l r{Xi).
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> i :
N 0 0.5 1
1

P L |
-0.5 -0.1 0 0.1 09 1 15

Fig. 1 Hard instance for first-order methods. Left: the non-convexity Y (top) and its derivative (bottom),
for different values of r. Right: contour plot of a two-dimensional cross-section of the hard instance fr ,

where the non-convex function Y : R — R, parameterized by r > 1, is

X2 —1)
Y, (x) = 120/ (10

DT+t

We illustrate the construction fT,,“ in Fig.1; it is the sum of the convex hard
instance (5) (with &« = ,/i) and a separable non-convex function. In the following
lemma, which we prove in Appendix B.1, we list the important properties of Y.

Lemma 2 The function Y, satisfies the following.

i. We have Y, (0) = Y/ (1) =0.
il. Forallx <1, Y/(x) <0, andforallx > 1, Y, (x) > 0.
iii. Forall x € R we have Y, (x) > Y, (1) = 0, and for all r, Y, (0) < 10.
iv. Foreveryr > 1, T;(x) < —1 for every x € (—o0, —0.1]U [0.1, 0.9].
v. For everyr > 1 and every p > 1, the p-th order derivatives of Y, are r3’1’£p-
Lipschitz continuous, where £, < exp(% plog p + c¢p) for a numerical constant
¢ < o0.

Before formally stating the properties of f7 w,r» we provide a high-level explanation
of the choice of Y. First, a necessary and sufficient condition for fT, w,r to be a first-
order zero-chain is that Y/(0) = 0. Second, examining the proof Lemma 1.iii we
see that the gradient of the quadratic chain is smallest for vectors x with entries
X1, X2, ..., xr that slowly decrease from 1 to 0. We design Y, to “punish” such
slowly varying vectors, by demanding that Y/ (x) be large for any x far from both 0
and 1 (Lemma 2.iv); this is the key to improving Lemma 1.iii and the most important
property of Y,.. Third, for every finite r all the derivatives of Y, are Lipschitz, and
as r increases fr, w,r converges to a quartic polynomial; in the limit » = oo we have
Yoo (x) = 30x* — 40x3 + 10. This allows us to establish that Lipschitz continuity of
derivatives beyond the third does not alter the € dependence of our bounds. However,
we cannot simply use Yo, as its first three derivatives are unbounded. Lastly, we place
the minimum of Y, (x) at x = 1, so that the all-ones vector is the global minimizer of
f_T, w,r»and fr, . (1) = 0 this is simply convenient for our analysis.
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With our considerations explained, we verify the three components of our general
strategy: f is a first-order zero-chain, belongs to the relevant function classes, and
has large gradient whenever x7 = 0. We begin with the zero-chain property, which
follows trivially from Lemma 2.1.

Observation2 Forany T € N, and positive pand r, fT, w.r 18 a first-order zero-chain.

Crucially, fT, w,r 18 only afirst-order zero-chain (see Definition P1.3); were it a second-
order zero-chain, the resulting lower bounds would apply to second-order algorithms
as well, where Newton’s method achieves the rate ¢ ~3/2 [25], which is strictly better
than all of our lower bounds. We next show that any point x for which x7 = x741 =0
has large gradient. This is the core technical result of our analysis.

Lemma3 Letr > 1 and u < 1. For any x € RT+! such that xp = xp41 =0,

” Vf_T,/L,r(x) ” > M3/4/4.

We defer the full proof of this lemma to Appendix B.2 and sketch its main idea here.
We may view any vector meeting the conditions of the lemma as a sequence going
from xg := 1 to x7 = 0. Every such sequence must have a “transition region”, which
we define roughly as the subsequence starting after the last i such that x; > % and
ending at the first (subsequent) j suchthatx; < ﬁ) (seeFig.2).Lettingm € {1, ..., T}
denote the length of this subsequence and ignoring constant factors, we establish that

||VfT,,”(x)|| > max {(m + 1/ﬂ)—3/2’ M«/E} '

The m+1/ @_3/ 2 bound comes from the quadratic chainin fr. w,r» which has large
gradient for any sequence x with sharp transitions; this is essentially Lemma 1.iii with
T =mand o = ,/u. The w+/m bound is due to the non-convex Y, terms in_ fT, s
which by Lemma 2.iv contribute a term of magnitude w to every entry of V f7 ,, , in
the transition region. These two bounds intersect at m ~ 1/,/u, so the gradient has
norm at least ;3/# for every value of m.

L]
L1 F . L]
of ceeccceccscccscccsccns of ®*eecccces

> B — e
m m

0 stalu't (:‘I‘ld T ‘- 1 0 ste;rt ex;d T%‘» 1
7 T

Fig. 2 Illustration of the “transition region” concept used to prove Lemma 3. Each plot shows the entries

of a vector x € RTH! that satisfies x7 = xr41 = 0, with entries of x belonging to the transition region

marked in blue. Short transitions (left) incur large gradients due to the convex quadratic term in fr’ W

while long transitions (right) incur large gradients due to the non-convex Y, terms and Lemma 2.iv
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Finally, we list the boundedness properties of our construction.
Lemma 4 The function fr, w,r satisfies the following.

io frur©) —infy fro, (0 < ¥ 4 10uT ]
ii. For p < 1,r > 1 and every p > 1, the p-th order derivatives of fr , , are
3p
(1(,,:1)+r3_pu)ﬂp-Lipschitz continuous, where £, < e log PYCP for a numerical
constant ¢ < 00.

Proof The first part of the lemma follows from Lemma 2, which shows that
inf , fT,u,r(x) = fT,u,r(l) = 0, while fT,u,r(O) = \/l_'b/2 +TuY,(0) < ﬂ/Z +
10T The second part of the lemma follows directly from Lemma 2.v and that the
quadratic chain f(x) = ‘/Tﬁ(xl -+ % > (x; — xi+1)? has 4-Lipschitz gradient
and 0-Lipschitz higher order derivatives. O

5 Lower bounds for first-order methods

We now give our main result: lower bounds for the complexity of finding e-stationary
points using the class Aéle)t U Ag}) of first-order deterministic and/or zero-respecting

algorithms, applied to functions in the class

Frp(A,Li, o Lp) == [ Fy(A, Ly)
q=p

containing all functions f : R? — R, d € N, such that f(0) —inf, f(x) < A and
V4 f is Ly-Lipschitz continuous for 1 < g < p.

Theorem 2 There exist numerical constants ¢,C € Ry and £, < e%qlog‘“'c‘/ for
every q € N such that the following lower bound holds. Let p € N, and let
A, Ly, Ly, ..., Ly, € be positive. Assume additionally that € < (L?/Lq)l/(q_l) for
eachq € {2, ..., p}. Then for p > 3,

1 1
T(AD UAD, Fip(A L1, s L)) = ¢ A

L %*5<21) L <<21>

3 q— S(g—
- min (—1> (—q) e85,
q €{2,....p} 01 Ly

Moreover, for p =2,

3 2
Li\7 (Ly\7
1 1 1 2 _
Z(AggtuA;),ﬂ;Z(A,LI,L2>)zaA(E) (E) 127

We prove Theorem 2 in Sect. 5.2 to come, providing a brief overview of the argument

here, and then providing some discussion. In the proof, we construct the hard instance
f iR+ — Ras f(x) = o2 fr .- (x/0), where we must choose the parameters
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A,o > 0 as well as u,r, and T to guarantee that f is (a) hard to optimize, i.e.
Te (A, f ) > T for every A € .Ag), and (b) meets the smoothness and boundedness
requirements of the function class.

We begin by sketching the argument for p = 2. In this case, we may take r = 1,
A o Ly and u o« Lyo/X. This choice guarantees that f has Li-Lipschitz gradient
and Lj-Lipschitz Hessian when u < 1, which we later verify using the assumption
€ < L% /L>. We then use Observation 2, Lemma 3 and Observation 1 to show that

Te (A, f) > T + 1 forevery A € .Ag) whenever Aau3/4/4 > ¢, and conclude that o
may scale as A TeH7 (since o< Loo/A). By Lemma 4.i we have

f(0) —inf f(x) < A/mo?/2 4+ 10Auc?T,

so we can take T o« A/(Apuo?) o A/(Lro3) to guarantee f(0) —inf, f(x) < A,
where we assume without loss of generality that Xﬁoz < A (otherwise Theorem 1
dominates our bound). Substituting the expressions for o, i and X into the expression
for T gives the result for p = 2.

For p > 3 we require a more careful argument, as we must simultaneously handle
all orders of smoothness. To do so, we let & = /162 /A and r = r /o, and show how to
take 7 and [ independently of € (depending only on L1, ..., L,). This allows us to
obtain identical e-dependence for all p > 3.

To better understand the theorem, we give a few additional remarks.

Near-achievability of the lower bounds. In the paper [8], we propose the method
“convex until proven guilty,” which augments Nesterov’s accelerated gradient method
with implicit negative curvature descent. For the function classes Fi.2(A, Ly, L)

and F1.3(A, Ly, Lo, L3), it achieves rates of convergence 5(AL}/2L¥46’7/4) and

0 (ALi/ zLé/ 6¢=5/ 3), respectively. These results nearly match our lower bounds in

Theorem 2; in the case of p = 2, the gap (in terms of €) is of order e log %, while

for p > 3, the gap is of order T log é See further discussion in Sect. 7.1.

Choice of function class. The focus on the more restricted function classes
Fi.p(A, Ly, ..., Lp)—rather than the classes F,(A, L) we study in Part I [10]—
makes our lower bounds stronger. Moreover, it is necessary for non-trivial results,
since for any p > 2 and A, L, > 0, the class F,(A, L) contains functions impos-
sible for first-order methods. Indeed, the class Q (A, L) of A-bounded L-smooth
convex quadratics is a subset of 7, (A, L) forany Ly < oo and L, > 0. Therefore,
by Theorem 1,

Te(AQL U AR, Fu(A L) = sup To(AQ UAY, Q(A, L))
Li<oo
VLA
> sup € =0
Li<oo 4

We thus limit our scope to functions with smooth lower order derivatives.
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Conditions on the accuracy €. In Theorem 2 we require that €71 < L‘f /L4 for all
q € {2, ..., p}. For each g, we may rewrite this as L,l/qu’(”‘f)/q < LlAe’z. In
other words, these conditions ensure that gth order regularization-based methods have
stronger convergence guarantees than gradient descent [5,10].

The case p = 1. We state our bounds in Theorem 2 for p > 2. It is possible to use
the construction (9) to prove a lower bound of 0(AL1€_2) on the time necessary
for a deterministic first-order algorithm to find an e-stationary point for the class
F1(A, Ly). As Theorem P1.2 shows this lower bound holds for all randomized high-
order algorithms, we do not pursue this.

The case p = 3. We can slightly strengthen our lower bound in the case p = 3,
making it independent of L, for sufficiently small €. To achieve this we set r = 1 in
the definition of Y, take Ax o« L3o2, and argue that that the resulting construction
has O(o)-Lipschitz continuous Hessian, and o tends to zero as € — 0. For suffi-
ciently small €, we can then replace the minimum over g € {2, 3} in the first claim of
Theorem 2 with L%/SL;/SE_S/S.
Hard instance dimensionality. Let T, . be such that 7, (Afjle)tuAS) s Frp(A, Ly, ., L,,))
> Tp,e according to Theorem 2. We construct functions f € Fi.,(A, Ly, ..., Lp) that
witness this lower bound and have domain of dimension 27, .; see Sect. 2.4 and Sec-
tion PI.1.2 for more details.

The commentary on Theorem PI.1 in Section P1.4.2 is relevant also to Theorem 2.

E}[/q

In particular, there we discuss the polynomial scaling of ing.

5.1 Lower bounds based on distance to optimality

For convex optimization problems, typical convergence guarantees depend on the
distance of the initial point to the globally optimal set arg min, f (x); the dependence
on this distance may be polynomial for general convex optimization problems [22,23],
while for smooth strongly convex problems, the convergence guarantees depend only
logarithmically on it. In the non-convex case, we can provide lower bounds that depend
on the distance rather than the gap A := f(x©) —inf, f(x). To that end, we consider
the class ‘
FES(D, Ly, ... L)

functions with L ,-Lipschitz gth derivatives (foreachg € [p]) and all global minima x*
satisfying ||x*|| < D. We obtain the bound, analogously to our results in Section P1.6,
by “hiding” a sharp global minimum near the origin.

To state the theorem, we require an additional piece of notation. Let B¢ (A, Ly, ...,
L) be the lower bound Theorem 2 provides on 7¢ (Aget UAY, Fip(A, Ly, ..., Lp)),
SO

Te(Aget UAY, Fiop(A, Ly, ..y L)) = Be(A, Ly, ..., L),

where we take B = 1 if € > 0 is larger than the settings Theorem 2 requires. Then
by a reduction from our lower bounds on the complexity of Fi.,(A, L1, ..., Lp), we
obtain the following result.
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Theorem 3 There exists a numerical constant ¢ < oo such that the following lower
bound holds. Let p > 2, p € N, and let D, L1, Lo, ..., L, and € be positive. Then

i . L Ly L, L
T (AL UAD 7t p 11 L)) > B min | =L pettl =L =2 Zr
e( det Zr 1.p( 1 p)) — D¢ qeipl ZZ(I P ) 2

where fq < exp(cq logg + ¢).

We prove Theorem 3 in Appendix B.3. Theorem 3 shows that the lower bounds of
Theorem 2 apply almost identically (to constant factors), except that we replace the
function gap A in the lower bound with the quantity ming¢pp) Ly D91 As the depen-
dence of the lower bound on € does not change, distance-based assumptions seem
unlikely to help in the design of efficient optimization algorithms for non-convex
functions.

5.2 Proof of Theorem 2

We have five parameters with which to scale our hard function; the function fr. wr
requires definition of the dimension 7 € N, multiplier 4 < 1 on the Y, terms, and
scalar r > 1 that trades between higher order (r = o0o) smoothness and lower order
(r = 1) smoothness of Y,. We additionally scale the function with A > 0 and a
perspective term o > 0, defining

f) =102 fru, (x/0). (11)
We must choose these parameters to guarantee the membership
feFip(A, Ly, ..., Lp).

This containment requires both bounded function values and derivatives, for which

we can provide sufficient conditions. Recz_ill the definition £, < e%”l"g PFer from
Lemma 4 of the smoothness constant of fr , .. Then by Lemma 4.ii, to guarantee
that f has L,-Lipschitz gth order derivatives for every g € [p] it suffices to choose
A, 7,0, and u such that

(Lg=1) + 3796 ")t 0 < L, for every g € [p]. (12)
For the bounded values constraint f(0) — inf, f(x) < A, by Lemma 4.1 it suffices to

take ,
A— A 2
T = ﬂ (13)
10Au02

Thus, so long as we choose the constants w, o, A, r to satisfy inequality (12), the
preceding choice of T guarantees [ € F1.p(A, Ly, ..., Lp).
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With this membership guaranteed, we consider the choices for A, u, and o such
that after T iterations of a zero respecting first-order method, we have ||V f(x)|| > €.
Indeed, Observations 1 and 2 imply that if x(V = 0,x®, ... are the sequence of
iterates produced by applying any zero-respecting (first-order) method to f, then
x(Tt) = x(T[il =0 forall # < T.Lemma 3 implies that |V fr .- (x®/o)|| > u3/*/4
for any such iterate. Therefore, if we choose A > 0, u < 1, and o > 0 such that

Ao > 4de, (14)

then |[Vf (xD)|| = 2o ||V fr(xD/o)| > au’/*0/4 > € forall t < T. We thus
obtain the guarantee

. A —rJ/po?/2
(1 7 /£
Te(Ay, Fi:p(A, Ly, .., L)) = Ag‘fwTe(A, f)=T+1> oo (15)

The same bound for the class Aéle?t then follows from Proposition 1. Our strategy is now
the obvious one: we select A > 0,0 < u < 1,7 > 1,and o > 0 to satisfy the function
membership constraints (12) and the large gradient guarantee (14). Substituting our
choices into the boud (15) will then yield the lower bound in the theorem. We begin
with the general case p > 2 and later provide a tighter construction for p = 2.

General smoothness orders. To simplify the derivation, we define, for any g € [p]

2¢ g=1

Ly = Lqg/tq where £, := max {£,, 4971 267} ¢ > 1,

(16)

= 3 .
where we note that £, < e241084+¢q o1 some numerical constant ¢ < 00, as Ly <

3 . . . . .
27192944 for a (possibly different) numerical constant. In order to further simplify
our calculations, we then define

- Al _
A= Ly, ,u::—zandr:: or. a7
o
Substituting these definitions into the constraints (12), we see that our choice of l =
2¢1 implies that the constraint (12) holds whenever
P79 < L, forall g € [pl. (18)
We choose r and [ to guarantee that f is appropriately smooth; in the sequel, we
will choose o and A so that the gradient bound condition (14) holds. In this sense, we
may choose 7 and j& without consideration of €. Taking 7 = (L{/j1)'/? guarantees the
inequality (18) holds for g = 1. Substituting this choice into the identical inequality
forg € {2, ..., p} shows that we must have 2@~ D/2 < l_,ql_,gq_3)/2 for each such g.
Thus, the choice
_ = . == \2/(g—1
i=L min (L,/L)7""
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satisfies inequality (18), and consequently, the smoothness condition (12) as well. We
may therefore write i1 and 7 as

1 1

i =L (I:q*/l:l)q*%l and 7 = (l_q/l_lq*)q*i*l , where ¢* := ar{%min} (Zq/il)‘ffl .
qel2,...p

It remains to choose X, o, depending on €, to guarantee our gradient lower bound
condition (14) holds, i.e. 4e < Au’/4o = A1/413/465/2. We thus set

~ _ 3 2/5
o= |:4L11 (Lg/Ly) @D e:| .

We can now substitute back into our definitions r = 7 /o and u = jio?/A in Eq. (17)
and verify that r > 1 and u < 1. For r, we have

2/5 2 2/5
_ =4t /(g*—1) - 25 [ a /e
UL 02 S N S A S I S B
o = sz P P

where the last transition uses E_q* > 4‘1*’16_‘1’* by the definition (16), and we used the

. . */(g*—1 1/(qg*—
assumption in the theorem statement that € < Llli /a*=1) /L q< (a

choice of u satisfies

D . Similarly, our

4/5

4
_ *_17g*\ 3@ =D 1/(g*=1)
N fic? _ 44 _15111 (L) p )

Lo Ltf*/(q*—l) -

We now consider two cases; kﬁaz < A and Aﬁaz > A. In the first case
(which holds for sufficiently small €), we substitute our choices of o, A and u into the
time lower bound (15),

A = Jpo?/2 ©_ A A
10A o2 = 20auc? T 200t

3
5

AL;

T+1

v

— _ 1 |5
[(Lq*/u)"“'}
20 - 48/5 . €8/5
A
T 20-48/5

2

{( 7 )%*ﬁ( 7 )ﬁ 8/5
- min L/t =D (L, /L, )4~ }e_ ,
q €2} / a/ts

which is the desired bound, where in step (i) we made use of kﬁoz < A. When
r/Ho? > A, we show that the above bound is in fact smaller than the convex lower
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bound in Theorem 1. Indeed, substituting in our choices of A, u and o, we see that

kﬁoz > A implies
N H e B LA
A<L1/ (Lq*/Ll)qt1 [4L1_1 (Lq*/Ll) o e]
1 4 6
5.

= 45075 (Lge/L)) @D €

Taking a square root and substituting to our lower bound gives

2
-3 - . B
AL | (L /L) 7 | VAL
_ AL
<807}/ 1=l
€

20 - 48/5 . €8/5
and therefore (recalling that Q (A, Ly) C Fy.,(A, Ly, ..., L) and that 0 > 8), by

Theorem 1 we have
ALy

:

>

N

€
2
_3 _ P B
AL [(Lq*/m)‘f”}
>
- 20 - 48/5 . 8/5

3

completing the proof in the general case.
Functions with Lipschitz Hessian. For p = 2, we keep the definitions (16) but replace

the particular rescaling choices (17) with
_ Lyo

)»:Ll,,uzT and r = 1.

Using u < 1, the above parameter setting satisfies inequality (12); f has L -Lipschitz
gth-order derivatives for ¢ = 1, 2. To satisfy the gradient lower bound (14), i.e.

de < AM3/4J = L}/4Z;/407/4, we set
_ _ 4/7
o =[4L LT

We can substitute into the definition pu = L%" to verify that u < 1:

_ _ 4/7 4/7
Lro (42_1 (€1)2> <L26> / <1
2 —
Ll

M=)\= 0y
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by the definition (16) of £ p and the assumption € < L% /L>. As in the general case,
we first assume Aﬁaz < A, where substituting into (15) yields the desired lower
bound

3_2
- 2 177
paqs ATAVEOT2 A A ALL;
T 10Auc? T 20au0? T 201,03 20-412/7.¢12/7
If 1 /ito? < A does not hold, we have
127172 ,7—1/47-3/4 73 0--1__2 10
A< LPLY[ALTL | < 4R LT TR
Taking a square root and substituting to our lower bound gives
13
AL/ L - /AL
12 1/2y-1 1 )
204127 g < @047 —— <Te(Az'. Q(A, L))

< T.(AY, Fia(A, Ly, L)),

due to Theorem 1, establishing the case p = 2.

6 The challenge of strengthening Theorem 2

The lower bounds in Theorem 2 leave two avenues for improvement. The first is
tightening our € ~'%/7 and € ~8/3 lower bounds to match the known upper bounds of
e "% and €3, for p = 2 and p = 3, respectively. The second improvement is
to extend our lower bounds to randomized algorithms, as we did for the case of full
derivative information in Section P1.5. We discuss each of these in turn.

6.1 Tightness of lower bound construction

The core of our first-order lower bounds is Lemma 3, which establishes a lower bound
of the form ||fT,l”(x)|| > u3/*/4 for vectors x such that x; = xr4+1 = 0 (i.e. any
point that a first-order zero-respecting method can produce after T iterations), where
fT, w,r 18 our unscaled hard instance (see Definition (9)). Here we consider a slightly
more general form,

T T
Frap®) =a-A@ =D+ Ay —x)+p Y Tx), (19

i=1 i=1
where A :R — Rand T : R — R are C*°, and we assume T € N, a > 0, and

0 < p < 1. The chain fT,,” corresponds to the special case @ = /i, A(x) = x2/2
and Y (x) = T, (x) (defined in Eq. (10)).
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We claim that if we can show that the norm of V fr,m w(x) is not too large for
some x € RT*! with x; = x741 = 0, then our lower bound cannot be improved.
More concretely, suppose that for every T, u < 1 and o« < 1 we could find x €
RT+! guch that x7 = xr+1 = 0, and ||me”(x)|| < C,u3/4 for some constant C
independent of 7', r and w, matching Lemma 3 to a constant. We can then trace the
scaling arguments in the proof of Theorem 2 “in reverse,” showing that any choice
of T, A, u, o and r for which the function f(x) = Aozﬁya,u(x/a) satisfies both (i)
feFip(A, Ly, ..., Lp) and (i) ||V f(x)|l > € for all x such that x7 = x741 =0,
we have T < ¢ - ¢ 8/5 for p>3and T < c- e 12/7 for p = 2, where ¢ is some
problem-dependent constant independent of €.

The next lemma, whose proof we provide in Appendix B.4, shows such gradient
norm upper bound for constructions of the form (19).

Lemmaé LetTeNO<a<l1lpue [T72, 1] and fr,a,u be defined as in (19), with
A and Y satisfying

A (©)=Y'(0) =0 and A’ is I-Lipschitz continuous and rrha)ui] 1Y (2)] <G,
zel0,

for G > 0 independent of T, a and . Then there exists x € RTT! such that x =
x7+1 = 0and ~
HVfT,Ot,/L(x) ” < CM3/47

where C < 27 + V3G.

Let us discuss the lemma. The condition that A’(0) = 7’(0) = 0 is essential
for any zero-chain-based proof, as otherwise fT’a, u 1s not a first-order zero-chain
(if « = 1 then we may have A’(0) # 0; Lemma 5 holds in this case as well). The
requirement that the multiplier 4« > 1/7% on Y is also benign, as our proofs require
s =1/ VT > 1/T? (further decreasing . weakens the lower bound as it makes
JT,a,u too smooth; inspection of the scaling argument in the proof of Theorem 2
shows this rigorously). The function A must have Lipschitz derivatives with parameter
independent of u, T, as otherwise fT,a, « cannot be scaled to meet the smoothness
requirements. Finally, the requirement max,¢[o, 1] ﬁ/ (z)| < oo holds for every C*
function. Moreover, a calculation shows it holds with G = 4/10¢3 independent of r
for every Y, that satisfies Lemma 2.

Summarizing, tightening our lower bounds seems to require a construction that is
not of the form (19). This does not eliminate more general (non-convex) interactions,
e.g. of the form A (x;, x;41) rather than A (x; 1 —x;). The proof technique of Lemma 3
should provide useful “sanity checks” when considering alternative constructions.

6.2 A bound for randomized algorithms

In Section P1.5 we extend our lower bound for artbirary deterministic local algorithms
to the broader class of randomized algorithms 45,4 With access to all derivatives at
query point x. We do this by making our hard function insensitive: the individual “link-
ing” terms W (x;)® (x;+1) (analogues of the terms (x; — xi+1)2 in constructions (2)
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and (9)) are identically zero for x; near 0. A natural question is whether the same
methodology (originally proposed in [30]) can extend Theorem 2 to the class of ran-
domized first-order algorithms, A:alz] 4+ Direct application of that technique cannot
work in our case, for a simple reason: it applies to randomized algorithms of any
order. In other words, if we modify our hard instance construction (9) to be a robust
zero-chain (Definition P1.4), any lower bounds it implies hold for all algorithms in
Arand, Where e~ (PH+D/P rates are achievable, so we could not provide sharper lower
bounds than Theorem P1.2.

Nevertheless, the ideas introduced in Section PL.5 might still be of use. Specifically,
consider a modification of the construction (9) where Y, (x) is identically zero for
sufficiently small x, say |x| < 0.05, while still satisfying Lemma 2, thus making the
non-convex component of fr. .- insensitive. As explained above, also making the
convex quadratic component of fT, u,r insensitive (as Woodworth and Srebro [30] do)
is unworkable in our setting, as it results in a robust zero-chain equally hard for all
high-order algorithms. Instead, we may keep the quadratic component unchanged—
and hence sensitive—and try to carry out the proof of Lemma P1.4. Doing so, we see
that the inductive argument allows us to ignore the insensitive non-convex component
of fr, u,r»1eaving us to contend only with the (randomly rotated) quadratic chain. Thus,
the difficulty here appears closely related to proving a lower bound for minimizing
convex quadratic with randomized first-order methods.

In recent work, Simchowitz [27] proves such a lower bound. However, his proof
technique is quite different, relying on reductions to statistical estimation of a planted
vector in a deformed Wigner model rather than a random rotation of the quadratic
chain. Since the analysis of the non-convexity in our construction relies closely on
the chain argument’s fine-grained control over information flow, it is unclear how
to extend the reduction in [27] to finding stationary points of non-convex functions.
We believe that proving a lower bound for convex quadratic minimization using the
rotated-chain approach could lead to randomized lower bounds in our setting as well.

7 Concluding remarks

Here we discuss implications of our two-paper series and provide a few possible
extensions.

7.1 Commentary on our results

In conjunction with known upper bounds, our lower bounds characterize the optimal
rates for finding stationary points. Our lower bounds are sharp to within constant
factors for algorithms with full derivative information [10], and (perhaps) slightly
loose for first-order algorithms. These characterizations yield a few insights.

First-order methods vs. high-order methods. For the class F1(A, L1) of Li-smooth
functions, first-order methods—specifically gradient descent—attain the optimal rate
L1Ae™?%; no higher-order randomized method can attain improved performance over
the entire function class. The intuition here is that 7 (A, L) contains functions whose
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Hessian and higher order derivatives may vary arbitrarily sharply, providing no useful
information for optimization.

When higher-order derivatives are also Lipschitz continuous the picture changes
fundamentally: there is a strict separation between (deterministic) second-order and
first-order methods. In particular, cubic regularization of Newton’s method [25]
achieves € dependence € 3/2 for functions with Lipschitz Hessian, while no deter-
ministic first-order method can have better time complexity than €8/, regardless
of how many derivatives are Lipschitz. Note that when the Hessian is Lipschitz, our
definition of first-order algorithms allows for algorithms that rely on Hessian-vector
products, as they can be estimated to arbitrary accuracy in two gradient evalua-
tions.

The effect of high-order smoothness on first-order methods. For F1.2(A, L1, Ly), the
class of functions with Lipschitz gradient and Hessian, our lower bound scales as
e~ 12/7 while for the class Fi.3(A, Ly, Ly, L3) of functions with Lipschitz third order
derivative our “convex until proven guilty” method [8] achieves the rate € /3 log %

As % < 172, this proves a separation between the optimal rate for first-order methods
with second- and third-order smoothness.

In contrast, orders of smoothness beyond the third offer limited room for improve-
ment in € dependence; the lower bound €37 holds for all function classes
Fip(A, Ly, ..., Lp) with p > 3, while the method [8] does not enjoy improved
guarantees with Lipschitz fourth-order derivatives. The “robustness” of the lower
bound to higher-order smoothness stems from the fact that our hard instance fr_, ,
becomes a quartic polynomial in the limit » — oo, and we choose r inversely pro-
portional to €. As we discuss in [8, Lemma 4], our guarantee ¢ ~>/3 logé cannot
improve using fourth-order smoothness because of symmetries in the fourth-order
Taylor expansion. Quartic polynomials thus appear to play a central role in the com-
plexity of first-order methods for smooth optimization. Due to the gap between the
upper and lower bounds, it remains an open question whether smoothness beyond the
third order has any effect the complexity of finding stationary point with first-order
functions.

Convex vs. non-convex functions. Convexity makes finding stationary points
fundamentally—and significantly—easier. For first-order methods and functions with
bounded initial sub-optimality, the rate ¢ ! log é is achievable for first-order smooth
convex functions, while the lower bound €8/ holds for non-convex functions
with arbitrarily high-order smoothness. For methods using higher-order deriva-
tives, our lower bounds [10] for finding stationary points of non-convex functions
are e~ (PTD/P 5 ¢~1 a5 the order p of smoothness grows. However, similar to
Appendix A.1, the papers [4,21] show that for convex functions with Lipschitz Hes-
sian, a second-order method achieves the strictly better rate ¢ ~%/7 log %

Another striking difference between convex and non-convex functions is the effect
of replacing the bound on the initial function value (i.e. f (x@) —inf, f(x) < A)
with a bound on the initial distance to the global minimizer x* (i.e. [x©@ — x*| < D).
For non-convex function classes, we show lower bounds with the same € dependence
regardless of the type of bound. In contrast, for convex function the optimal rates
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scale as v/Ae ! and v/De /2, again a gap in € dependence. The rates are not directly
comparable; one can construct families of functions where D grows with the dimension
while A remains constant.

Returning to A-value-bounded function classes, we see one more large difference
between the convex and non-convex case; convex rates scale as \/Z while all the
non-convex rates scale linearly with A. This arises from fundamental differences in
the convergence “mechanism” for convex and non-convex optimization. The anal-
ysis of non-convex optimization schemes typically [8,11,23-25] revolves around a
progress argument, where one shows that, as long as |V f(x*))|| > e, the guaran-
tee f (x*Dy < f x®y — Pe holds for some quantity p. (e.g. for gradient descent
Pe = €2 /(2Ly)). The number of iterations to find an e-stationary point x; is therefore
at most [ f(x@) — f(x5)]/pe < A/pe, which scales linearly in A. By our lower
bounds, such progress arguments are, in a sense, optimal. Conversely, in convex opti-
mization we may control either the gap f(x")) — f(x*) or the distance [x® —x*|,
and this interplay (see Appendix A.1) allows stronger arguments than those based
purely on function progress.

7.2 Further research

Closing the gap in first-order bounds. There exists a gap in polynomial € dependence
between our lower bounds (Theorem 2) and the best known upper bounds [8] for first-
order methods with higher-order smoothness. We do not believe the upper bounds
of [8] are improvable by different analysis or by any algorithmic change that main-
tains the general structure of alternating between accelerated gradient descent and
negative curvature exploitation. In conjunction with our arguments in Sect. 6.1 about
the structure of our lower bounds, resolution of the optimal rate will likely provide
either a method with a substantially different approach to accelerating gradient descent
in the smooth non-convex setting or a new lower bound construction.

Finite sum and stochastic problems. Smooth, non-convex, finite-sum and stochastic
optimization problems are important, arising (for example) in the training of neural
networks. This motivates the design and analysis of efficient methods for finding sta-
tionary points in such problems, and researchers have successfully developed variance
reduction and acceleration techniques for these settings [2,3,20,26]. However, no cor-
responding lower bounds are available. Woodworth and Srebro [30], show how to
establish lower bounds for convex finite sum problems. Combined with the develop-
ments in our paper, we believe their techniques should extend to finding stationary
points of non-convex problems. An important conclusion of [30] is that randomized
selection of the component function is crucial to efficient convergence: in contrast to
our results, they show a separation between deterministic and randomized finite sum
complexity.

Second-order stationary points. Approximate stationary points are not always close
to local minima, and so it is interesting to consider stronger convergence guarantees.
Second-order stationarity (also known as the second-order necessary condition for
local optimality) is the most popular example; for a function f, a point x is (€1, €2)-
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second-order stationary if ||V f(x)| < €1 and V2 f(x) > —e 1. Efficient first-order
methods for finding second-order stationary points exist [1,9,19]. Moreover, it is pos-
sible to generically transform methods for finding e-stationary points into methods
that find (e, O(€*))-second-order stationary points, for some 0 < s < 1, without
changing the € dependence of the complexity [8, Appendix C], but such modifications
introduce dependence logarithmic in the problem dimension d.

Clearly, lower bounds for finding € -stationary points also apply to finding (e, €2)-
second-order stationary points. However, attaining second-order stationarity with
first-order methods is fundamentally more difficult than attaining only stationar-
ity. There are no dimension-free guarantees: the results of Simchowitz et al. [28]
imply 2 (logd) dimension dependence for all randomized first-order algorithms that
escape saddle points. Moreover, for deterministic first-order algorithms it is easy
to construct a resisting oracle that forces €2(d) dimension dependence (consider
f Tx) with fx) = —x12 and adversarially chosen rotation U), implying strong
separation between deterministic and randomized first-order methods for finding
second-order stationary points. It will be interesting to investigate such issues fur-
ther.

A Additional results for convex functions
A.1 An upper bound for finding stationary points of value-bounded functions

Here we give a first-order method that finds e-stationary points of a function f €
K1 (A, L) in O(/L1Ae "log L€1_2A) iterations. The method consists of Nesterov’s
accelerated gradient descent (AGD) applied on the sum of f and a standard quadratic
regularizer.

Our starting point is AGD for strongly convex functions; a function f is o -strongly
convex if

FO) = FO) + (V). y —x)+ % ly — xII?,

for every x, y in the domain of f. Let AGDy 1, € AP N .Afjle)t be the accelerated
gradient scheme developed in [23, §2.2.1] for o-strongly convex functions with L1-
Lipschitz gradient, initialized at x(1) = 0 (the exact step size scheme is not important).
For any L-smooth f with global minimizer x*f, €2/(2L)-suboptimality guarantees
€-stationarity, since ||Vf(x)||2 < 2L1(f(x) — f(x})) [6, Eq. (9.14)]. Therefore,
adapting [23, Thm. 2.2.2] to our notation gives

L Ly}
Te(AGDo,1, f) = 142/ —log, [ ——— ], (20)

with log, (x) := max{0, log x}.

Now suppose that f is convex with Li-Lipschitz gradient but not necessarily
strongly-convex. We can add strong convexity to f by means of a proximal term;
for any o > 0, the function
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folx) = f(x) + % Ix 12

is o -strongly-convex with (L1 + o)-Lipschitz gradient. With this in mind, we define
a proximal version of AGD as follows,

PAGD;1,[f] = AGDq, 1y tal fo] = AGDs,1 o [ £() + 3 I112].

€2

Proposition2 Let A, L and € be positive, and let 0 = IA Then, algorithm
PAGD; 1., € A((jle)t satisfies

T(AL K1 (A, L)) < sup  T.(PAGD, 1, f)

det’ feki(A,Ly)
VLA 2501 A
<145 ! log, ( 21 ) .
€ €

Proof Forany f € Ky (A, Ly),recall that f, (x) := f(x)+% x> andlet {x O}, ey =
PAGD;, 1, [f] = AGDy, 1+ fo] be the sequence of iterates PAGD,, 1, produces on
f. Then by guarantee (20), we have

[v1: ™) < e/6 @1

for some T such that

L 6(L1+o)lx} |l
T<1+2/1+—log, |——]. (22)
o €

For any point y such that f, (y) = f(y) + 5 IylI? < f»(0) = f(0), we have

2
Iyl* < <

o o

200 = fO)) _ 2(£(0) —infy f()) _ 24
. <

Clearly, fo (x} ) < fo(0) and [23, Thm. 2.2.2] also guarantees that f, (xMy < £,(0).

Consequently,
\ 2A
max { [T, Il 1} < /=, (23)

i) €
IVFGO)N =1V D) —o - xD) < VLD +oxT) < 6

(ii)
+v20A % €.

and so
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Ininequality (i) we substituted bounds (21) and (23), and in (ii) weusedo = €2/(3A).
We conclude that T¢ (PAGDg.z,, f) < T, and substituting (23) and the definition of
o into (22) we have

/ 3LA 2 6/6L1IA
T<142/14+— log+(6 §+\/_—2]>
€

2L1A
2

Without loss of generality, «(PAGDg. . f) =
1. We thus simplify the expression slightly to obtain the proposition. O

A.2 The impossibility of approximate optimality without a bounded domain
Lemmaé6 Let L1, A > 0 and € < A. For any first-order algorithm A € Agle)t U A(l)
andany T € N, there exists afunction f € Q (A, L1) such that the iterates {xV},en =
Al f] satisfy

inf {t | F(x®) < inf £(x) +e} > T.

teN X

Proof By Proposition 1 it suffices to consider A € .A(l) (see additional discussion of
the generality of Proposition 1 in Section P1.3.3). Consider the function f : R — R,

T-1
fx) =2 [(o —Bx) 4+ ) (xi — ﬂximz] : (24)

i=1

where 0 < < 1, and we take

L [ A
=——— and o0 =,/ —.
2(14+28+ 8% A

Since f (x) is of the form A || Ax — b||* where [|Allo, < 148, we have ||V2f(x)|}0p <

2\ ||A||op for every x € R” and therefore f has 2 (1 4+ 28 + %)-Lipschitz gradient.
Additionally, f satisfies infy f(x) = 0 and f(0) = Ac2, ans so the above choices
of A and o guarantee that f € Q (A, Lj). Moreover, f is a a first-order zero-chain
(Definition 3), and thus for any A € A(l) and {x(’)}teN = A[f], we have x(Tt) =0
for t < T (Observation 1). Therefore, it suffices to show that f(x) > infy f(y) + €
whenever x7 = 0.

We make the following inductive claim: if f(x) <infy f(y) + € =€, then

d _: |€ Bt e
5;’3 J\/;<1—ﬂ\/; @

for all i < T. Indeed, each term in the sum (24) defining f is non-negative, so for
the base case of the induction i = 1, we have A(c — Bx1)? < €, or |[x; —op™!| <

xi—op”!
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B~\\/e/x.Fori <T, assuming that x; satisfies the bound (25), we have that A(x; —
Bxi+1)? < e, which implies

Xit1 —0/3_([+1)‘ < ‘xz’+1 - ,B_lxi' +p7! ‘xi —0,3_[‘

i
_ € (i €
RN PRy
j=1
i+1 P
_ -ji 1€
>
j=1

which is the desired claim (25) for x; 1.
The bound (25) implies x; # O for all i < T whenever o > (1 — B)~'\/e/x.
Therefore, we choose B to satisfy o = (1 — ,3)_1«/6/)\, that is

€ €
S B L D
A Ao A

for which 0 < 8 < 1 since we assume € < A. Thus, we guarantee that when x7 = 0
we must have f(x) > infy f(y) + €, giving the result. O

B Technical results
B.1 Proof of Lemma 2

Lemma 2 The function Y, satisfies the following.

i. We have Y, (0) = Y/ (1) = 0.
il. Forallx <1, Y/ (x) <0, andforallx > 1, Y/(x) > 0.
iii. Forall x € R we have Y, (x) > Y, (1) = 0, and for all r, Y, (0) < 10.
iv. Foreveryr > 1, Y/ (x) < —1 for every x € (—oo, —0.1]1U [0.1, 0.9].
v. For everyr > 1 and every p > 1, the p-th order derivatives of Y, are r3_”£p-
Lipschitz continuous, where £, < exp(% plog p + cp) for a numerical constant
¢ < o0.

Proof Parts i and ii are evident from inspection, as

2x =1

To see the partiii, note that Y is non-increasing for every x < 1 and non-decreasing for
every x > 1 and therefore x = 1 is its global minimum. That Y, (1) = 0 is immediate

from its definition, and, for every r, Y, (0) = 120 f; l’fé/—r’))zdr < 120 ) 2(1 —

1)dt = 10. To see part iv, note that | Y, (x)| > [Y{(x)| for every r > 1, and a
calculation shows |T{ (x)| > 1 for x € (—oo0, —0.17U [0.1, 0.9] (see Fig. 1).
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To see the fifth part of the claim, note that

1 _ 2 _ _ 1
T, (x) =120r"(x — 1) (1 To iz n (x/r)2>

=120 [rz(x ) r3(p1(x/r) + r2§02(x/r)] )

where the functions ¢ and ¢ are ¢ (&) = £/(1 + £2) and 2 (£) = 1/(1 + £2). We
thus bound the derivatives of ¢ and ¢>. We begin with ¢,, which we can write as the
composition ¢z (x) = (ho g)(x) where h(x) = )lc and g(x) =1 +x2. Let Pk, denote
the collection of all partitions of {1, ..., k} where each element of the partition has
at most 2 indices. That is, if P € Pk 2, then P = (S1, ..., S;) for some [/ < k, the
S; are disjoint, 1 < [S;| < 2, and U; S; = [k]. The cardinality | P 2| is the number of
matchings in the complete graph on k vertices, or the kth telephone number, which
has bound [15, Lemma 2]

k
[Pr2| < exp <§ logk + klogZ) .

We may then apply Faa di Bruno’s formula for the chain rule to obtain

e ) = Y WPV [T eV x)

PePy SeP
(IP]— 1!
— Z (_1)‘P|(1+x2)|P|(2x)C1(P)2C2(P)’
PePro

where C; (P) denotes the number of sets in P with precisely i elements. Of course,
we have [x|“1”) /(1 + x2)!PI < 1, and thus

Wl < Y (PI= D2 < [Pral - (k — 112k < 3 logkt2klog2,
PePk,z

The proof of the upper bound on (pfk) (x) is similar 2¢;(x) = dd—x[(fz o g)(x)] with
h(x) = log x and g as defined above), so for every r > 1 and p > 1, the p + 1-th
derivative of Y, has the bound

1 — —
P01 <120 [ 1y + 3710 (/)] + 271687 (/)

3
< 12073 Perlogrter,

where ¢ < 0o is a numerical constant. |
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B.2 Proof of Lemma 3
Lemma3 Letr > 1 and u < 1. For any x € RTH! such that xp = xp41 =0,
|‘VfT,M,V(x) ” > M3/4/4'

Proof Throughout the proof, we fix x € R7+! guch that x; = xr+1 = 0; for
convenience in notation, we define xo := 1. Our strategy is to carefully pick two

indices i € {0,..., T — 1} and i € {i; + 1,..., T}, such that varw(x)n2 >

i = 2 T . .
Z;iil+1 \Vi fT,/”(x)| > (u3/4/4)2. We call the set of indices from i + 1 to i the
transition region, and construct it as follows.

Let i1 > O be the largest i such that x; > 0.9,

sothatx; < 0.9forevery j > i.Note thati; = Owhenx; < 0.9 foreveryi € [T +1].
This is a somewhat special case due to the coefficient ,/u < 1 of the first “link” in
the quadratic chain term in (9). To handle it cleanly we define

1 i1 >0
Joip=0.

Continuing with construction of the transition region, we make the following defini-
tion.

Let ié < T be the smallest j such that j > i; and x; < 0.1,

and let m" = i} — i1, so m’ > 1. Roughly, our transition region consists of the m’
indicesiy+1, ..., ié, but for technical reasons we attach to it the following decreasing
‘tail’.

0.2

Let i> be the smallest k such that k > i} and > -1
2 = A = T 1

(x>—0.1)-

With these definitions, ip is well-defined and 0 < i) < ip < T, since x741 —x7 = 0.
We denote the transition region and associated length by

Toeans . ={i1+1,...,i2} and m:=ip —i1 > 1. (26)

We illustrate our definition of the transition region in Fig. 3.

Let us describe the transition region. In the “head” of the region, we have 0.1 <
x;i < 0.9 for every i € {i1 +1,...,i5— 1}; a total of m’ — 1 indices. The “tail”
of the transition region is strictly decreasing, x;, < Xxj,—1 < -+ < X Moreover,
for any j € {i5 + 1,...ip — 1} such that x; > —0.1, the decrease is rapid; x; <
xj—1 —0.2/(m" — 1 4 1/a). This descriptions leads us to the following technical
properties.

Lemma 7 Let the transition region Lians be defined as above (26). Then
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Fig.3 The transition region (26) in the proof of Lemma 3. Each plot shows the entries of a vector x € RT+!
that satisfies x7 = x74] = 0. The entries of x belonging to the transition region Zirans are blue (color
figure online)

i x;;, >0.9>0.1>x;, and —x;, + (m -1+ a’l) (xi2+1 — x,-z) > —0.3.
il. Y/ (x;) < 0 foreveryi € Tyans, and Y, (x;) < —1 for at least (m - 05_1) /2
indices in Lians.

We defer the proof of the lemma to the end of this section, continuing the proof
assuming it.

We now lower bound ||V fr,u,r(x)ll. For notational convenience, define g; =
1Y, (x;), and recalling that x7 = x741 = 0, we see that the norm of the gradient of
f T, u,r is

T
| Fr e @ = (1 + Vixt = JE =52+ 1)+ Y @i = xio1 — x4t +80)°

i=1

2
= ((l +Ot).x,'1+1 — X — Xj142 +gi1+l)

i
+ Y @xi—xi - X+ 8)°, 27)
i=i1+2
where we made use of the notation ¢ := 1if iy > O and o := /uwif iy = 0.
We obtain a lower bound for the final sum of m squares (27) by fixing x;,, x;,, and
8ii+1 - - - » 8ip» then minimizing the quadratic form explicitly over the m — 1 variables
Xij4+1, - - - » Xiy—1. We obtain

IV fror (x)||2 > inf [ (14 @)v; —axiy —v2 + 8i1+1)2

veRm—1

m—2

2
+ ) (2v) —vjm1 = vt + 8i+))
=2

j
+ (2vm—1 — Up—2 — Xip + gi2—1)2 + (2xi2 — Uy — Xip1 + gi2)2 }

= inf JAv—b)? =57 <1 —a(aTa)” AT) b=(<b)".

v
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where the matrix A and vector b have definitions

I+a -1 X — &ij+1

-1 2 -1 —8i+2
A ERmX(m_l) and b = : ERm,

-1 2 -1 —8ir2
-1 2 Xiy = 8ir—1
-1 —2xiy + Xiy+1 — &ip

and z € R™ is a unit-norm solution to A"z = 0. The vector z € R™ with

j-1+1

Zj =
VI =1+ 5

is such a solution. Thus

19 Fr0r )|

>

2
(v = o =1+ 2) g+ (m =24 5) iy o+ (= 14 L) (=25, + xi40))

1

YL =1+ )2

1
=———\x; —xi, + m—1+& (xi2+l_xiz)

YL =1+ 5)?

m 1 2
S )
i=1 *

(28)

We now bring to bear the properties of the transition region Lemma 7 supplies. By

Lemma 7.1,

3
Xiy — i+ (m —14+a™ ") (xip41 —x1,) 20903 = =

and by Lemma 7.ii, using 1 <o~! < 1//z,

m
= G =1+a gy
j=1

\

v

v

(29)

(30)
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Substituting > "/, (i -1+ ot_l)2 < %m (m + 1/ﬂ) (m + Z/ﬁ) and the bounds
(29) and (30) into the gradient lower bound (28), we have that

IV fropwr ] = w¥* - ¢my/m) where ¢ (1)

_ 2 3 o
TNt + D@ +2) (5+8[ 1]+>'

A quick computation reveals that inf,~ ¢ £ () =~ 0.28 > 1/4, which gives the result. O

Proof oflemma 7 We have by definition that x;, > 0.9 and x;, < x;; < 0.1. To see
that

—Xi, + (m -1 +a71> (x,~2+1 —xiz) > —-0.3

holds, consider the two cases that x;, < —0.1 or x;, > —0.1. In the first case that
xi, < —0.1, by definition xj,41 > xj, 50 —x;, + (m — L+ a7") (xj11 —x;,) >
0.1 > —0.3. The second case that x;, > —0.1 is a bit more subtle. By definition of
the sequence x;,, ..., X, We have

o1 0.2 - 0.2 . Y
SRR S
m—m’
<01-02—F. 3D
m’ —1 =+ @
Combining this bound on x;, and the inequality x;,41 > X;, — % due to the
construction of iy, we obtain
/
-1 m —m
—xi, + (m -1+« ) (xi2+1 — x,-z) > —0.1 + 0.2—1
m/ —1 =+ @
m—1+1
—-0.2 ‘); —0.3.
m -1+ =

We note for the proof of property ii that the chain of inequalities (31) is possible only
form < 2m’ —1+1/a, which implies there are at most m’ — 1+ 1/« indices i € Zyrans
such that |x;| < 0.1.

The first part of property ii follows from Lemma 2.ii, since x; < 0.9 < 1 for
every i € Ziyans. To see that the second part of the property holds, let N be the
number of indices in i € Zyans for which Y, (x;) < —1. By Lemma 2.iv and the fact
that 0.1 < x; < 0.9 for every i € {il +1,...,0 — 1}, N > m’ — 1. Moreover,
since there can be at most m’ — 1 + 1/« indices i € Zyans for which |x;| < 0.1,
N > m— (m' — 1+ 1/a). Averaging the two lower bounds gives N > (m — 1/a) /2.

O
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B.3 Proof of Theorem 3

Theorem 3 There exists a numerical constant ¢ < oo such that the following lower
bound holds. Let p > 2, p € N, and let D, L1, L2, ..., L, and € be positive. Then

. ) L L1 L, L
T (AL UAY, 784D Ly, ..., L,)) = B | min { =L pettl =L =2 =P
6( det Z¥zr 1_p( 1 p)) Z De qe%p] 20, ) 2

where fq < exp(cq logg + ¢).

Proof The proof builds off of those of Theorems 2 and P1.3. We begin by recalling the
following bump function construction

) 51 4 o2 1
_ _25y 4o — poxn [ —
i (x) =W (1 : Hx e H ) where W(1) = e exp< o 1]2+>. 32)

Adding a scaled version of —A7 to our hard instance construction allows us to “plant”
a global minimum that is both close to the origin and essentially invisible to zero-
respecting method. For convenience, we restate Lemma PI1.10,

Lemma 8 The function hy satisfies the following.

i. Forall x € R" we have hy (x) € [0, 1], and h7(0.8¢7)) = 1.
ii. Onthe set{x e R¢ | xp < %} Ufx | llx]| = 1}, we have ht(x) = 0.
iii. Forevery p > 1, the pth order derivative of hr is £ p-Lipschitz continuous, where

£, <e? log p+¢ for a numerical constant ¢ < .

With this lemma in place, we follow the broad outline of the proof of Theorem 2,
with modifications to make sure the norm of the minimizers of f is small. Indeed,
letting A, o > 0, we define our scaled hard instance f : RT+2 L R by

Fx) =ro? frur (x1/0, ..., x141/0) — Mhirsa (x/D), (33)

that is, the hard instance we construct in Theorem 2 minus a scaled bump function (32).
For every p € N, we set the parameters X, o, 1 and r as in the proof of Theorem 2,
so that we satisfy inequality (12) except we replace L, with L, /2 for every g € [p]
(including in the definitions of A, o, i). Thus, as in inequality (12), for each g € N
the function fy(x) := Ao fr ., (x/o) has L,/2-Lipschitz gth order derivative and
satisfies ||V fo(x)|| > € for all x € RT*+! with x; = x741 = 0. By Lemma 8.iii,
setting

A = min LLqD‘H‘ (34)

qelpl 24,

guarantees that the function x — —X - hr42(x/D) also has L, /2-Lipschitz gth order
derivatives, so that overall, for each g € [p] the function f defined in Eq. (33) has
L,-Lipschitz gth order derivative.
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We note that by Lemma 8.ii, i1 (x) is identically 0 at a neighborhood of any x
withxr4o = O, which immediate implies that 477 and f are zero-chains. Therefore
for any A € A producing iterates x(V' = 0, x®, x®, ... when operating on f, we
have x(Tt) = x(Ttll = X(T[lz = 0 forany ¢ < T. Thus, by our choices of A, o, u and r,

[VFaD)| = |VAx®)| > € foreveryt < T, and so

Te(AY, FISU(D, Ly, .., L)) = inf Te(A, f) =T +1.
Ac AL

To establish that f € fff;‘(D, Ly, ..., Lp), it remains to show that every global
minimizer of f has norm at most D. Let x* denote a global minimizer of f, and
temporarily assume that

f (o.SD : e(T+2)) <0, (35)

Therefore, f(x*) < f(0.8D-eT™) < 0 and hr42(x*/D) # 0, as otherwise
we have the contradiction f(x*) = Ac? fr,,”(x*/a) > 0. By the definition (32),

hria(x*/D) # 0 implies that 1 — 2 |x*/D — 0.8¢7+2|*> > 0.5, and therefore
lx*|| < D. To verify the assumed inequality (35), we use Lemma 8.i to obtain

f (O'SD : e(T+2)) =202 frpur(0) —A-hrio (0.8 . e(T+2)>

A 2 -
_ */zﬁa +10h02uT — &
Therefore, if we set
A —A 22
T = ﬂ (36)
10A o2

then inequality (35) holds and ||x*]| < D, and so f € ]:f:i;t(D,Ll, e Lp).
Comparing the setting (36) of T above to the setting (13) of T in the proof of The-
orem 2, we see they are identical except that we replace the term A in (13) with
xo= = minge[p) (ZEq) 1L D41, Thus, mimicking the proof of Theorem 2 after the
step (13), mutatis mutandzs yields the result. O

B.4 Proof of Lemma 5

Lemma5 LetTeNO<a<1l,uelT™ -2 1land fr a,u be defined as in (19), with
A and Y satisfying

A(0) = T’(O) =0 and A'is I-Lipschitz continuous and II%(Z)D%] |7”(z)| <G,
z€[0,

for G > 0 independent of T, a and . Then there exists x € RTT! such that xp =
x7+1 = 0and ~
HVfT,ot,,u(x) ” < CM3/47
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where C < 27 + J3G.

Proof We construct x as follows. We let x; = 1, and for n > 1 let (with xo := 1),
Xp = Xp—1 — (Xp—2 — Xp—1) — &y 1—1_22817
i=1 j=1
where we take

| 1 n<m
h=——130 n=m+lorn>2m+1

m(m + 1
( ) -1 m+1<n<2m+1
for some m € N which we will later determine. The elements of Vfr)a, u are given by

Vo ST () = Nty — Xn—1) — N (Xng1 — %) + 1 (),

where forn = 1 we used x; = 1 and A’(0) = Oto write v - A'(xy — 1) = 0 =
A'(x1 — 1). Since A’ is 1-Lipschitz, we have

|A/(xn — Xp—1) — A/(xn+1 - xn)‘ < |(n — xp—1) — (kn1 — Xn)| = 185 .
Moreover, one can readily verify that x,, € [0, 1] for every n and that x,, = 0 for every

n > 2m + 1. Therefore, using using o (0) = 0 and max;¢(o,1 |T (z)] < G we have
that |T (x,,)} < G - 1(<2m+1), which gives the overall bound

~ ~ 1
Vo Fran )] < 18u] + 1 [T )| < (W + GM) Ln<om+1)s
and thus,

var,a,ﬂ(x)” <V2m+1 (m_2 + Gu) <3 (m_3/2 + ﬂGu) )

Taking m = ’7#;7—" we have

_ | 7732 R "
HVfT,O(,/L(x)” = \/g ([m—‘ +G lrm—‘ M) < (27 + \/§G) n

where we have used [1/(3\/ﬁ)—| < 1//wsi < C,u3/4
holds for C = 27+4++/3G.For T > 8, since 4 > T2, wehave2m+1 <2 [T/31+1 <
T and therefore x7 = x741 = Oholds asrequired (since x;, = O foreveryn > 2m+1).
In the edge case T < 8 we have u > T2 > 1 /64 and therefore x = 0 yields
IV Fran@)] =a <1 <27-(1/64)3* < Cu/*. O
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