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Abstract
We establish lower bounds on the complexity of finding ε-stationary points of smooth,
non-convexhigh-dimensional functions usingfirst-ordermethods.Weprove that deter-
ministic first-order methods, even applied to arbitrarily smooth functions, cannot
achieve convergence rates in ε better than ε−8/5, which is within ε−1/15 log 1

ε
of

the best known rate for such methods. Moreover, for functions with Lipschitz first and
second derivatives, we prove that no deterministic first-order method can achieve con-
vergence rates better than ε−12/7, while ε−2 is a lower bound for functions with only
Lipschitz gradient. For convex functions with Lipschitz gradient, accelerated gradient
descent achieves a better rate, showing that finding stationary points is easier given
convexity.

Keywords Non-convex optimization · Information-based complexity ·
Dimension-free rates · Gradient methods · Accelerated gradient descent

OH was supported by the PACCAR INC fellowship. YC and JCD were partially supported by the
SAIL-Toyota Center for AI Research, NSF-CAREER Award 1553086, and a Sloan Foundation Fellowship
in Mathematics. YC was partially supported by the Stanford Graduate Fellowship and the Numerical
Technologies Fellowship. AS was supported by the National Science Foundation (CCF-1844855).

B Yair Carmon
yairc@stanford.edu

John C. Duchi
jduchi@stanford.edu

Oliver Hinder
ohinder@stanford.edu

Aaron Sidford
sidford@stanford.edu

1 Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

2 Departments of Statistics and Electrical Engineering, Stanford University, Stanford, CA 94305,
USA

3 Department of Management Science and Engineering, Stanford University, Stanford, CA 94305, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-019-01431-x&domain=pdf
http://orcid.org/0000-0001-5731-8640


316 Y. Carmon et al.

Mathematics Subject Classification 90C06 · 90C26 · 90C30 · 90C60 · 68Q25

1 Introduction

We study the oracle complexity of finding approximate stationary points of a smooth
function f : Rd → R, that is, a point x such that

‖∇ f (x)‖ ≤ ε. (1)

Part I of this series [10] establishes the complexity of finding an ε-stationary point (1)
for algorithms that, at a querypoint x , have access to all derivatives of f . In contrast, this
paper focuses on first-order methods, which only query function values and gradients.
To keep our presentation concise this paper only touches briefly on the most relevant
research; see Part I [10] for a more detailed review of related work.

First-order methods are important in large-scale optimization for many reasons.
Perhaps the two most salient are that each iteration is often inexpensive, and that
on many problems, the number of iterations grows slowly (or not at all) with the
problem dimension d. From a theoretical perspective, the latter property is captured
by dimension-free convergence rates, where the worst case iteration count depends
polynomially on the desired accuracy and measures of function regularity but has
no explicit dependence on d. In non-convex optimization problems, regularity often
comes by assuming bounded function value at the initial point x (0), i.e. f (x (0)) −
infx f (x) ≤ � for some � > 0, and that ∇ f is L1-Lipschitz continuous. Under
these conditions, classical gradient descent finds an ε-stationary point in 2L1�ε−2

iterations [23], a dimension-free guarantee, and this is unimprovable for this class [10].
Developing first-order methods for finding stationary points of non-convex func-

tions with improved dimension-free rates of converence is an area of active
research [1,2,8,9]. Under the additional assumption of Lipschitz second derivatives,
we [9] and Agarwal et al. [1] propose randomized first-order methods with nearly
dimension free rate ε−7/4 log d

ε
(ignoring other problem-dependant constants). In a

later paper [8], we propose a deterministic accelerated gradient-based method with
complexity ε−7/4 log 1

ε
, and under the further assumption that f has Lipschitz third

derivatives, we show the same method attains rates of ε−5/3 log 1
ε
. This raises the

main question we address in this paper: how much further can we improve this ε

dependence, and what Lipschitz continuity assumptions are necessary?

1.1 Our contributions

In Table 1 we summarize our results, along with corresponding known upper bounds.
We establish lower bounds on theworst-case oracle complexity of finding ε-stationary
points, where algorithms may access f only through queries to an information oracle
that returns the value and some number of (or potentially all) derivatives of f at the
queried point. A lower bound Tε means that for every algorithm A, there exists a
function f in the allowed function class (e.g. functions with f (x (0))− infx f (x) ≤ �
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Lower bounds for finding stationary points II: first-order… 317

Table 1 The number of iterations required to find ε-stationary points of high dimensional functions

Oracle f has Lipschitz Upper bound Lower bound Gap

General pth-order derivative O(ε−(p+1)/p) [5] �(ε−(p+1)/p) Part I O(1)

First-order Gradient and Hessian ˜O(ε−7/4) [8] �(ε−12/7) Theorem 2 ˜O(ε−1/28)

First-order qth derivative ∀q ≤ p, p ≥ 3 ˜O(ε−5/3) [8] �(ε−8/5) Theorem 2 ˜O(ε−1/15)

First-order Gradient + f convex ˜O(ε−1) Proposition 2 �(ε−1) Theorem 1 ˜O(1)

The bounds apply for functions f with f (x(0)) − infx f (x) ≤ O(1). The first column indexes the type
of oracle access: general (all derivatives) or first-order (function value and gradient). In the first row,
deterministic pth-order methods achieve the upper bounds, and the lower bounds apply to all randomized
methods of arbitrary order. In the other rows, the lower bounds apply to all deterministic first-order methods,
and such methods achieve the upper bounds

and L1-Lipschitz gradient) for which A requires at least Tε oracle queries before
returning an ε-stationary point of f .

In Part I [10] of this series we prove that no algorithm, even one given all derivatives
of f at each iteration, can improve on the ε−2 rate of gradient descent for the class
of functions with bounded initial value and Lipschitz continuous gradient. Therefore,
in distinction with the convex case, acceleration of gradient descent for non-convex
optimization [8] fundamentally depends on higher-order smoothness.We further show
that, for the class of functions with pth order Lipschitz derivatives, no method can
improve the rate ε−(p+1)/p achieved by a pth-order method [5]. However, this does
not get at the crux of the issue we consider here—what is the best possible rate for
first-order methods, given that higher-order derivatives are Lipschitz?

In this paper we show that the ε-dependencies we establish in our work [8] are
almost tight. More precisely, consider the function class with L p-Lipschitz derivatives
for all q ∈ {1, . . . , p}, where p ∈ N; for this class there does not exist a deterministic
first-order algorithm with iteration complexity better than ε−8/5. If p = 2 this com-
plexity lower bound strengthens to ε−12/7. In the following diagram, we compare the
exponents of 1/ε in our lower bounds and known upper bounds (smaller is better).

3

2

cubic-regularized
Newton’s method

p = 2

8

5

first-order
methods
p ≥ 3

5

3

12

7

first-order
methods
p = 2

7

4

2

gradient
descent
p = 1

Thus, we establish two separations. First, no deterministic first-order method can
achieve the rate of convergence ε−3/2 ofNewton’smethod. Second, the rate ε−5/3 log 1

ε
we achieve [8] requires the assumption of Lipschitz third derivatives, as first-order
methods assuming only Lipschitz Hessian must compute at least ε−12/7 function val-
ues and gradients to find an ε-stationary point. We also show that the optimal rate
for finding ε-stationary points of convex functions with bounded initial value (i.e.
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f (x (0)) − infx f (x) ≤ �) and L1-Lipschitz gradient is ˜�(
√
L1�ε−1).1 Finding sta-

tionary points is thus fundamentally easier for convex functions.
The starting point of our development is Nesterov’s [23, § 2.1.2] “worst function

in the world,”

fNesterov(x) := 1

2
(x1 − 1)2 + 1

2

d−1
∑

i=1

(xi − xi+1)
2, (2)

which is instrumental in proving lower bounds for convex optimization [4,23,30] due
to its “chain-like” structure. We establish our ε−1 lower bound for finding stationary
points of convex functions by making a minor modification to the construction (2). To
prove our larger lower bounds for non-convex functions, we augment fNesterov with
a non-convex separable function

∑d
i=1 ϒ(xi ), with ϒ : R → R carefully chosen to

render Nesterov’s “worst function” even worse.
By using this augmented chain function, we are able to prove lower bounds for

all deterministic first-order methods. This is in contrast to prior work proving lower
bounds for finding stationary points [11–14,18,29]. The papers [11–14] consider class
of algorithms that receive pth order information and minimize pth-order approxima-
tions.While this class encapsulatesmany of the algorithms proposed in the literature, it
misses cutting-plane and grid-search algorithms [17,29]. Vavasis’s lower bounds [29]
apply to 2-dimensional problems (in contrast to ours, which require higher dimen-
sionality), but are loose at least for high-dimensional problems.

Paper organization.Throughout, we use Pi.k to reference an item k of Part I of this
sequence [10], as we build off of many ideas there. In Sect. 2 we briefly summarize our
framework (Sects. Pi.2 and Pi.3). Sect. 3 begins the new analysis and contains lower
bounds for finding stationary points of convex functions. In Sect. 4 we construct our
hard non-convex instance, while in Sect. 5 we use this function to establish our main
result: a lower bound on the complexity of finding stationary points using deterministic
first-order methods. In Sects. 6 we discuss some difficulties in sharpening or extending
our lower bounds. Sect. 7 concludes by situating our work in the current literature and
reflecting on its implications for future research.

Notation.Before continuing, we provide the conventions we adopt throughout the
paper; our notation mirrors Part I [10], so we describe it only briefly. For a sequence of
vectors, subscripts denote coordinate index, while parenthesized superscripts denote
element index, i.e. x (i)

j is the j th coordinate of the i th entry in the sequence {x (t)}t∈N.
For any p ≥ 1 and p times continuously differentiable f : Rd → R, we let ∇ p f (x)
denote the symmetric tensor of pth order partial derivatives of f at point x . We let
〈·, ·〉 be the Euclidean inner product on tensors, defined for order k tensors T and M
by 〈T , M〉 = ∑

i1,...,ik Ti1,...,ik Mi1,...,ik . We use ⊗ to denote the Kronecker product

and ⊗kd denote d × · · · × d, k times, so that T ∈ R
⊗kd denotes an order k tensor.

For a vector v ∈ R
d we let ‖v‖ := √〈v, v〉 denote the Euclidean (�2) norm of v.

For a tensor T ∈ R
⊗kd , the �2-operator norm of T is ‖T ‖op := supv(1),...,v(k){〈v(1) ⊗

· · · ⊗ v(k), T 〉 | ‖v(i)‖ ≤ 1, i = 1, . . . , k}, where we recall [31] that if T is symmetric

1 Given a bound ‖x(0) − x�‖ ≤ D where x� ∈ arg min f , as is standard for convex optimization, the
optimal rate is ˜�(

√
L1Dε−1/2) [24]. The two rates are not directly comparable.
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Lower bounds for finding stationary points II: first-order… 319

then ‖T ‖op = sup‖v‖=1 |〈v⊗k, T 〉| where v⊗k denotes the k-th Kronecker power of v.
For vectors the �2 and �2-operator norms are identical.

For any n ∈ N, we let [n] := {1, . . . , n} denote the set of positive integers less
than or equal to n. We let C∞ denote the set of infinitely differentiable functions.
We denote the i th standard basis vector by e(i), and let Id ∈ R

d×d denote the d × d
identity matrix; we drop the subscript d when it is clear from context. For any setS and
functions g, h : S → [0,∞) we write g � h or g = O(h) if there exists a numerical
constant c < ∞ such that g(s) ≤ c · h(s) for every s ∈ S. We write g = ˜O (h) if
g � h log(h + 2).

2 A framework for lower bounds

For ease of reference, this section provides a condensed version of Sections Pi.2
and Pi.3 of the first part of this series [10] that lays out the notation, concepts and
strategy we use to prove lower bounds. Here, we are deliberately brief; see [10] for
motivation, intuition and background for our definitions, as well as exposition of
randomized and higher-order methods.

2.1 Function classes

Typically, one designs optimization algorithms for certain classes of appropriately
regular functions [6,22,23]. We thus focus on two notions of regularity that have been
important for both convex and non-convex optimization: Lipschitzian properties of
derivatives and bounds on function value. A function f : Rd → R has L p-Lipschitz
pth order derivatives if it is p times continuously differentiable, and for every x ∈ R

d

and v ∈ R
d , ‖v‖ = 1, the directional projection t �→ fx,v(t) := f (x + t · v) of f

satisfies ∣

∣

∣ f
(p)
x,v (t) − f (p)

x,v (t ′)
∣

∣

∣ ≤ L p
∣

∣t − t ′
∣

∣ for t, t ′ ∈ R,

where f (p)
x,v (·) is the pth derivative of t �→ fx,v(t). We occasionally refer to a function

with Lipschitz pth order derivatives as pth-order smooth.

Definition 1 Let p ≥ 1, � > 0 and L p > 0. Then the set

Fp(�, L p)

denotes the union, over d ∈ N, of the collection of C∞ functions f : Rd → Rwith L p-
Lipschitz pth derivative and f (0) − infx f (x) ≤ �. For positive � and L1, . . . , L p

we define
F1:p(�, L1, ..., L p) :=

⋂

q≤p

Fq(�, Lq).

The function classes Fp(�, L p) include functions on Rd for all d ∈ N, following the
established practice of studying “dimension free” problems [10,22,23].

We also require the following important invariance notion [22, Ch. 7.2].
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Definition 2 (Orthogonal invariance) A class of functionsF is orthogonally invariant
if for every f ∈ F , f : Rd → R, and every matrix U ∈ R

d ′×d such that U�U = Id ,
the function fU : Rd ′ → R defined by fU (x) = f (U�x) belongs to F .

Every function class we consider is orthogonally invariant.

2.2 Algorithm classes

For any dimension d ∈ N, an algorithmA (also referred to as amethod)maps functions
f : Rd → R to a sequence of iterates in Rd ; that is, A is defined separately for every
finite d. We let

A[ f ] = {x (t)}∞t=1

denote the sequence x (t) ∈ R
d of iterates that A generates when operating on f .

Throughout this paper, we focus on first-order deterministic algorithms. Such an algo-
rithm A is one that, operating on f : Rd → R, produces iterates of the form

x (i) = A(i)
(

f (x (1)),∇ f (x (1)), . . . , f (x (i−1)),∇ f (x (i−1))
)

for i ∈ N,

where A(i) : R
d(i−1)+i → R

d is measurable (the dependence on dimension d is
implicit). We denote the collection of first-order deterministic algorithms by A(1)

det.
Key to our development are zero-respecting algorithms (see Sec. Pi.2.2 for more

information). For v ∈ R
d we let supp {v} := {i ∈ [d] | vi �= 0} denote the support

(non-zero indices) of v. Then we say that the sequence x (1), x (2), . . . is first-order
zero-respecting with respect to f if

supp
{

x (t)
}

⊆
⋃

s<t

supp
{

∇ f (x (s))
}

for each t ∈ N. (3)

The definition (3) says that x (t)
i = 0 whenever the partial derivatives of f with respect

to coordinate xi are zero for all preceding iterations. Extending the definition (3) in
the obvious way, an algorithm A is first-order zero-respecting if for any f : Rd → R,
the iterate sequence A[ f ] is zero-respecting with respect to f . The setA(1)

zr comprises
all such first-order algorithms.

2.3 Complexity measures

For a sequence {x (t)}t∈N we define the complexity of the sequence {x (t)}t∈N on f by

Tε

({x (t)}t∈N, f
) := inf

{

t ∈ N | ∥∥∇ f (x (t))
∥

∥ ≤ ε
}

,

the index of the first element in {x (t)}t∈N that is an ε-stationary point of f . The
complexity of algorithm A on f is simply the complexity of the sequence A[ f ] on f ,
so we define

Tε

(

A, f
) := Tε

(

A[ f ], f
)

.
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We define the complexity of algorithm class A on function class F as

Tε

(

A,F
) := inf

A∈A
sup
f ∈F

Tε

(

A, f
)

. (4)

Table 1 provides upper and lower bounds on the quantity (4) for different choices of
A and F . For example, gradient descent guarantees Tε

(

A(1)
det ∩ A(1)

zr ,F1(�, L1)
) ≤

2�L1ε
−2.

2.4 How to prove a lower bound

The last step in our preliminaries is to give an overview of our proof strategy; this is
an abbreviated version of Section Pi.3. There, we abstract classical techniques from
convex optimization [22,23], presenting a genericmethod for proving lower bounds on
deterministic methods (of any order) applied to functions in any orthogonally invariant
class.

Our starting point is what we call a zero-chain, which distills the “chain-like”
structure of Nesterov’s construction (2).

Definition 3 A function f : Rd → R is a first-order zero-chain if for every x ∈ R
d ,

supp {x} ⊆ {1, . . . , i − 1} implies supp {∇ f (x)} ⊂ {1, . . . , i}.

In Definition Pi.3 [10], we extend zero-chains to higher orders (unnecessary for this
paper); in our terminology Nesterov’s function (2) is a first-order zero-chain, but not
a second-order zero-chain. A first-order zero-chain limits the rate that zero-respecting
algorithms acquire information from derivatives, forcing them to “discover” coordi-
nates one by one, as the following observation makes clear.

Observation 1 Let f : Rd → R be a first-order zero-chain and let x (1) = 0, x (2), . . .

be a first-order zero-respecting sequence with respect to f . Then x (t)
j = 0 for j ≥ t

and all t ≤ d.

The important insight, essentially due to Nemirovski and Yudin [22] is that by
using a resisting oracle [22,23] that can adversarially rotate the function f , any lower
bound for zero-respecting algorithms implies an identical bound for all deterministic
algorithms:

Proposition 1 Let F be an orthogonally invariant function class, f ∈ F with domain
of dimension d, and ε > 0. If Tε

(

A(1)
zr , { f }) ≥ T , then

Tε

(

A(1)
det,F

) ≥ Tε

(

A(1)
det, { fU | U ∈ O(d + T , d)}) ≥ T ,

where fU := f (U�z) and O(d+ T , d) is the set of (d+ T )× d orthogonal matrices,
so that { fU | U ∈ O(d + T , d)} contains only functions with domain of dimension
d + T .
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See Propositions Pi.1 and Pi.2 for more general versions of this result.
With this proposition, our strategy, inspired by Nesterov [23], becomes clear. To

prove a lower bound on first-order deterministic algorithms for a function classF , we
find fε : RT → R such that (i) fε is a first-order zero-chain, (ii) fε ∈ F , and (iii)
‖∇ fε(x)‖ > ε for every x such that xT = 0. Then for A ∈ A(1)

zr and {x (t)}t∈N = A[ f ],
Observation 1 shows that x (t)

T = 0 for t ≤ T , and the large gradient property (iii)
guarantees the non-stationarity

∥

∥∇ fε(x (t))
∥

∥ > ε for all t ≤ T . We immediately
obtain the complexity lower bound

Tε

(

A(1)
zr ,F

) = inf
A∈A(1)

zr

sup
f ∈F

Tε

(

A, f
) ≥ inf

A∈A(1)
zr

Tε

(

A, fε
)

> T ,

and the same lower bound holds for Tε

(

A(1)
det,F

)

by Proposition 1.

Hard instance dimensionality. To establish the lower bound Tε

(

A(1)
det,F

) ≥ Tε we
require functions in F with domain of dimension 2Tε ; the first-order zero-chain has
domain of dimension d = Tε , and Proposition 1 doubles this dimension via orthog-
onal projections to R

d+Tε = R
2Tε . Thus, the dimensionality of our hard instances

grows inversely 1/ε with precisely the same rate as the lower bounds themselves. In
Section Pi.1.2 we explain why such high-dimensional constructions are unavoidable
for tight dimension-free lower bounds.

3 Lower bounds for finding stationary points of convex functions

While for convex optimization guarantees of small gradients are atypical topics of
study, we nonetheless begin by considering the complexity of finding stationary points
of smooth convex functions. This serves two purposes. First, it is a baseline for finding
stationary points in the non-convex setting; based on algorithmic upper bounds due to
Nesterov [24], we see that convexitymakes this task fundamentally easier. Second, our
lower bound construction for convex problems underpins our construction and analysis
for general smooth (non-convex) functions in the sequel, allowing us to demonstrate
our techniques in a simpler setting. Of course, in convex optimization, it is typically
more useful to find points x with small optimality gap, f (x) ≤ inf z f (z) + ε. Con-
vexity allows efficient algorithms for guaranteeing such optimality, and typically one
ignores the magnitude of the gradient in favor of small optimality or duality gaps [6].
Nonetheless, in some situations—such as certifying (near) dual feasibility or small
constraint residuals in primal-dual or operator splitting algorithms [e.g. 7]—achieving
small gradients is important.

We proceed as follows. In Sect. 3.1 we define the class of convex functions under
consideration and a quadratic subclass. In Sect. 3.2, we construct a hard quadratic
instance, and verify its key properties. Finally, in Sect. 3.3, we state, discuss and prove
our lower bounds.
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3.1 Convex function classes

The collections of functions we consider are the following.

Definition 4 Let L1 > 0 and � > 0. The set

K1 (�, L1)

denotes the union, over d ∈ N, of the collections of C∞ convex functions f : Rd → R

with L1-Lipschitz gradient and f (0) − inf x f (x) ≤ �. Additionally,

Q (�, L1) ⊂ K1 (�, L1)

is the set of convex quadratic functions satisfying the above conditions.

Our results, following Nemirovski andYudin [22] and Nesterov [23], demonstrate
that for deterministic first-order methods, the classQ (�, L1) is “hard enough,” in that
it provides nearly sharp lower bounds for first-ordermethods,which immediately apply
to K1 (�, L1) and F1(�, L1). We also have Q (�, L1) = F1:p(�, L1, 0, . . . , 0) or
any p ≥ 2.

In addition to functions restricted by initial optimality gap, we consider the follow-
ing initial distance-based definition.

Definition 5 Let D > 0 and L1 > 0. The set

Kdist
1 (D, L1)

denotes the union, over d ∈ N, of the collections of C∞ convex functions f : Rd → R

with L1-Lipschitz gradient satisfying ‖x�‖ ≤ D for all x� ∈ arg minx f (x). Addi-
tionally,

Qdist (D, L1) ⊂ Kdist
1 (D, L1)

is the set of convex quadratic functions satisfying the above conditions.

Standard convergence results in (smooth) convex optimization [e.g.23] apply to
functions with bounded domain, i.e. f ∈ Kdist

1 (D, L1) rather than K1 (�, L1). This
is for good reason: for any pair �, L1, any ε < �, any first-order zero-respecting or
deterministic algorithm A, and any T ∈ N, there exists a function f ∈ Q (�, L1)with
L1-Lipschitz gradient such for {x (t)}t∈N = A[ f ] we have

inf
t∈N

{

t | f (x (t)) ≤ inf
x

f (x) + ε
}

> T .

(See Appendix A.2, Lemma 6 for a proof of this claim.) Since this holds for any
T ∈ N and ε < �, making even the slightest function value improvement to func-
tions in Q (�, L1) may take arbitrarily long. Thus, when we consider the function
classes of Definition 4, we can only hope to give convergence guarantees in terms of
stationarity—as is common in the non-convex case.
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3.2 The worst function in the (convex) world

We now construct the functions that are difficult for any zero-respecting first-order
method. For parameters T ∈ N and α ≤ 1 we define the (unscaled) hard function
f̂T ,α : RT → R by

f̂T ,α(x) = α

2
(x1 − 1)2 + 1

2

T−1
∑

i=1

(xi − xi+1)
2. (5)

Forα = 1, f̂T ,1 isNesterov’s “worst function in theworld” [23, § 2.1.2]. The parameter
α allows us to control f (0) and thus provides a degree of freedom in satisfying the
constraint f (0) − inf x f (x) ≤ � for our lower bounds. By inspection,

f̂T ,α(x) = 1

2
x�Lx − b�x + α

2

where

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1+ α −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
T×T (6)

is the unnormalized graph Laplacian of the simple path on T vertices (see [16]) plus
the term α in the position L11, and b = αe(1).

Let us nowverify that f̂T ,α meets the three requirements of our lower bound strategy.

Lemma 1 For all T ∈ N and α ≤ 1, f̂T ,α has the following properties.

i. Zero-chain f̂T ,α is a first-order zero-chain.
ii. Membership in function class

(a) f̂T ,α has 4-Lipschitz continuous gradient.
(b) f̂T ,α(0) − inf x∈RT f̂T ,α(x) = α/2.
(c) The unique minimizer of f̂T ,α(x) is x� = 1, and ‖x�‖ = √

T .

iii. Large gradient For every x ∈ R
T such that xT = 0, ‖∇ f̂T ,α(x)‖ >

(

T − 1+ 1
α

)−3/2
.

Proof Part i is immediate from Definition 3, since for every i ∈ [d], ∇i f̂T ,α(x) = 0
whenever xi−1 = xi = xi+1 = 0. Part ii is also immediate, as f̂T ,α(1) =
infx f̂T ,α(x) = 0, and ‖L‖op ≤ 4 (apply the triangle inequity to ‖Lv‖). To establish

part iii, we calculate the minimum value of ‖∇ f̂T ,α(x)‖2 obtainable by any vector
x ∈ R

T with xT = 0. Letting M = L[IT−1 0T−1]� ∈ R
T×(T−1) be the matrix L

of (6) with its last column removed and recalling b = αe(1), this becomes the least
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squares problem, whose solutions is the squared norm of the projection of b to the
(one-dimensional) nullspace of M�:

inf
x∈RT ,xT=0

∥

∥

∥∇ f̂T ,α(x)
∥

∥

∥

2 = inf
v∈RT−1

‖Mv − b‖2

= b�
(

IT − M(M�M)−1M�) b =
(

z�b
)2

, (7)

where z ∈ R
T is the unique (up to sign) unit-norm solution to M�z = 0. A calculation

shows that

z j = j − 1+ 1
α

√

∑T
i=1(i − 1+ 1

α
)2

.

Substituting z and b into Eq. (7), we have that xT = 0 implies

∥

∥

∥∇ f̂T ,α(x)
∥

∥

∥

2 ≥ 1
∑T

i=1(i − 1+ 1
α
)2

>
1

(T − 1+ 1
α
)3

,

giving the result. ��

3.3 Scaling argument and final bound

With our hard instance in place, we provide our lower bounds for finding stationary
points of convex functions. We note that the lower bound for the class Qdist (D, L1)

also follows from the standard lower bounds on finding ε-suboptimal points, since for
every q ∈ Qdist (D, L1) an ε-stationary point is also εD-suboptimal.

Theorem 1 Let ε,�, D, and L1 be positive. Then

Tε

(

A(1)
det,K1 (�, L1)

) ≥ Tε

(

A(1)
zr ,Q (�, L1)

) ≥
√
L1�

4
ε−1, (8a)

and

Tε

(

A(1)
det,K

dist
1 (D, L1)

) ≥ Tε

(

A(1)
zr ,Qdist (D, L1)

) ≥
√
L1D

2
ε−1/2. (8b)

Let us discuss Theorem 1 briefly. Nesterov [24] shows that for any f ∈
Kdist

1 (D, L1), accelerated gradient descent applied to a regularized version of f yields
a point x satisfying‖∇ f (x)‖ ≤ ε after atmostO(

√
L1Dε−1/2 log L1D

ε
) iterations. For

f ∈ K1 (�, L1), a similar technique to Nesterov’s, which we provide for complete-
ness in Appendix A.1, yields an upper complexity bound of O(

√
L1�ε−1 log L1�

ε2
).

Thus, to within logarithmic factors both bounds of Theorem 1 are sharp. It is illustra-
tive to compare Theorem 1 to our results for non-convex but smooth functions, and
we do so in detail in Sect. 7.1. The comparison shows that finding stationary points of
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smooth convex functions with first-order methods is fundamentally easier than find-
ing stationary points of non-convex functions, even with higher-order smoothness and
using higher-order methods.

While we prove our lower bounds for the algorithm classes A(1)
det and A

(1)
zr , similar

lower bounds apply to the collection Arand of all randomized algorithms based on
arbitrarily high-order derivatives when applied to worst-case functions from function
class K1 (�, L1). While this is not our focus here, using the techniques of Wood-
worth and Srebro [30] and Section Pi.5, it is possible to construct a distribution P

on K1 (�, L1) such that for any A ∈ Arand, with high probability over f ∼ P we
have Tε

(

A, f
)

�
√
L1�ε−1. That is, neither randomization nor higher-order deriva-

tive information can improve performance onK1 (�, L1). Such an extension fails for
Q (�, L1), as Newton’s method finds the global minimizer of every f ∈ Q (�, L1)

in one step.

3.4 Proof of Theorem 1

As we outline in Sect. 2.4, we establish our lower bounds by constructing a zero-chain
f : RT → R such that f ∈ Q (�, L1) (or Qdist (D, L1)), and that ‖∇ f (x)‖ > ε for
any x such that xT = 0.ByObservation 1we immediately have that for everyA ∈ A(1)

zr ,
the iterates {x (t)}t∈N = A[ f ] produced by A operating on f satisfy x (t)

T = 0 for every
t ≤ T and hence ‖∇ f (x (t))‖ > ε. Consequently, infA∈A(1)

zr
Tε

(

A, f
) ≥ 1+ T , which

implies lower bounds on the required quantities bymeans ofQ (�, L1) ⊂ K1 (�, L1)

and Proposition 1.
To define the difficult zero-chain f , we scale f̂T ,α using two scalar parameters

λ, σ > 0, which we determine later, defining

f (x) := λσ 2 f̂T ,α(x/σ).

We use the parameter λ > 0 to control the first-order smoothness of f , as ∇2 f (x) =
λ∇2 f̂T ,α(x/σ), while the parameter σ controls the lower bound on ‖∇ f (x)‖ for
xT = 0. We first show how to choose σ , depending on T , ε, α, and λ. By Lemma 1.iii,
for every x with xT = 0 we have

‖∇ f (x)‖ = λσ

∥

∥

∥∇ f̂T ,α(x)
∥

∥

∥ >
λσ

(T − 1+ 1
α
)3/2

.

Setting

σ = 1

λ

(

T − 1+ 1

α

)3/2

ε,

guarantees ‖∇ f (x)‖ > ε for any x such that xT = 0 and hence ‖∇ f (x (t))‖ > ε for
all t ≤ T .
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All that remains is to choose λ, T , and α to guarantee that f belongs to the appro-
priate quadratic class. By Lemma 1.ii, f has 4λ Lipschitz gradient, so we take

λ = L1/4

and guarantee that f has L1-Lipschitz gradient. To guarantee that f ∈ Q (�, L1),
Lemma 1.ii yields

f (0) − inf
x

f (x) = λσ 2α/2 = 2α

L1

(

T − 1+ 1

α

)3

ε2,

where we have substituted our choice of σ and λ in the final equality. Defining

α = 1/T ≤ 1 we obtain f (0) − inf
x

f (x) ≤ 16T 2ε2/L1,

so to guarantee f (0) − infx f (x) ≤ �, it suffices to choose

T =
⌊√

L1�

4
ε−1

⌋

.

This gives the first part (8a) of the theorem. For inequality (8b), we must have f ∈
Qdist (D, L1). Let x� = σ1 denote the minimizer of f , so that

∥

∥x�
∥

∥ = σ
√
T = 4

L1

(

T − 1+ 1

α

)3/2

ε
√
T ,

where again we have substituted our choices of σ and λ in the final equality. Conse-
quently, to guarantee ‖x�‖ ≤ D it suffices to take

α = 1 and T =
⌊√

L1D

2
ε−1/2

⌋

,

giving the bound (8b).

4 Constructing the non-convex hard instance

We now relax the assumption of convexity, and design a first-order zero-chain that
provides bounds stronger than those of Theorem Pi.2, when we restrict the algorithm
class to first-order methods. The basis of our construction is the convex zero-chain (5),
which we augment with non-convexity to strengthen the gradient lower bound in
Lemma 1.iii, while ensuring that all derivatives remain Lipschitz continuous.With this
in mind, for each T ∈ N, we define the unscaled hard instance f̄T ,μ,r : RT+1 → R as

f̄T ,μ,r (x) =
√

μ

2
(x1 − 1)2 + 1

2

T
∑

i=1

(xi+1 − xi )
2 + μ

T
∑

i=1

ϒr (xi ). (9)
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Fig. 1 Hard instance for first-order methods. Left: the non-convexity ϒr (top) and its derivative (bottom),
for different values of r . Right: contour plot of a two-dimensional cross-section of the hard instance f̄T ,μ,r

where the non-convex function ϒr : R → R, parameterized by r ≥ 1, is

ϒr (x) = 120
∫ x

1

t2(t − 1)

1+ (t/r)2
dt . (10)

We illustrate the construction f̄T ,μ,r in Fig. 1; it is the sum of the convex hard
instance (5) (with α = √

μ) and a separable non-convex function. In the following
lemma, which we prove in Appendix B.1, we list the important properties of ϒr .

Lemma 2 The function ϒr satisfies the following.

i. We have ϒ ′
r (0) = ϒ ′

r (1) = 0.
ii. For all x ≤ 1, ϒ ′

r (x) ≤ 0, and for all x ≥ 1, ϒ ′
r (x) ≥ 0.

iii. For all x ∈ R we have ϒr (x) ≥ ϒr (1) = 0, and for all r , ϒr (0) ≤ 10.
iv. For every r ≥ 1, ϒ ′

r (x) < −1 for every x ∈ (−∞,−0.1] ∪ [0.1, 0.9].
v. For every r ≥ 1 and every p ≥ 1, the p-th order derivatives of ϒr are r3−p�p-

Lipschitz continuous, where �p ≤ exp( 32 p log p + cp) for a numerical constant
c < ∞.

Before formally stating the properties of f̄T ,μ,r , we provide a high-level explanation
of the choice of ϒr . First, a necessary and sufficient condition for f̄T ,μ,r to be a first-
order zero-chain is that ϒ ′

r (0) = 0. Second, examining the proof Lemma 1.iii we
see that the gradient of the quadratic chain is smallest for vectors x with entries
x1, x2, . . . , xT that slowly decrease from 1 to 0. We design ϒr to “punish” such
slowly varying vectors, by demanding that ϒ ′

r (x) be large for any x far from both 0
and 1 (Lemma 2.iv); this is the key to improving Lemma 1.iii and the most important
property of ϒr . Third, for every finite r all the derivatives of ϒr are Lipschitz, and
as r increases f̄T ,μ,r converges to a quartic polynomial; in the limit r = ∞ we have
ϒ∞(x) = 30x4 − 40x3 + 10. This allows us to establish that Lipschitz continuity of
derivatives beyond the third does not alter the ε dependence of our bounds. However,
we cannot simply useϒ∞, as its first three derivatives are unbounded. Lastly, we place
the minimum of ϒr (x) at x = 1, so that the all-ones vector is the global minimizer of
f̄T ,μ,r , and f̄T ,μ,r (1) = 0; this is simply convenient for our analysis.
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With our considerations explained, we verify the three components of our general
strategy: f is a first-order zero-chain, belongs to the relevant function classes, and
has large gradient whenever xT = 0. We begin with the zero-chain property, which
follows trivially from Lemma 2.i.

Observation 2 For any T ∈ N, and positiveμ and r, f̄T ,μ,r is a first-order zero-chain.

Crucially, f̄T ,μ,r is only a first-order zero-chain (see Definition Pi.3); were it a second-
order zero-chain, the resulting lower bounds would apply to second-order algorithms
as well, where Newton’s method achieves the rate ε−3/2 [25], which is strictly better
than all of our lower bounds. We next show that any point x for which xT = xT+1 = 0
has large gradient. This is the core technical result of our analysis.

Lemma 3 Let r ≥ 1 and μ ≤ 1. For any x ∈ R
T+1 such that xT = xT+1 = 0,

∥

∥∇ f̄T ,μ,r (x)
∥

∥ > μ3/4/4.

We defer the full proof of this lemma to Appendix B.2 and sketch its main idea here.
We may view any vector meeting the conditions of the lemma as a sequence going
from x0 := 1 to xT = 0. Every such sequence must have a “transition region”, which
we define roughly as the subsequence starting after the last i such that xi > 9

10 and
ending at the first (subsequent) j such that x j < 1

10 (see Fig. 2). Lettingm ∈ {1, . . . , T }
denote the length of this subsequence and ignoring constant factors, we establish that

∥

∥∇ f̄T ,μ,r (x)
∥

∥ ≥ max
{

(

m + 1/
√

μ
)−3/2

, μ
√
m
}

.

The (m+1/
√

μ)−3/2 bound comes from the quadratic chain in f̄T ,μ,r , which has large
gradient for any sequence x with sharp transitions; this is essentially Lemma 1.iii with
T = m and α = √

μ. The μ
√
m bound is due to the non-convex ϒr terms in f̄T ,μ,r ,

which by Lemma 2.iv contribute a term of magnitude μ to every entry of ∇ f̄T ,μ,r in
the transition region. These two bounds intersect at m ≈ 1/

√
μ, so the gradient has

norm at least μ3/4 for every value of m.

Fig. 2 Illustration of the “transition region” concept used to prove Lemma 3. Each plot shows the entries
of a vector x ∈ R

T+1 that satisfies xT = xT+1 = 0, with entries of x belonging to the transition region
marked in blue. Short transitions (left) incur large gradients due to the convex quadratic term in f̄T ,μ,r ,
while long transitions (right) incur large gradients due to the non-convex ϒr terms and Lemma 2.iv
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Finally, we list the boundedness properties of our construction.

Lemma 4 The function f̄T ,μ,r satisfies the following.

i. f̄T ,μ,r (0) − infx f̄T ,μ,r (x) ≤
√

μ

2 + 10μT
ii. For μ ≤ 1, r ≥ 1 and every p ≥ 1, the p-th order derivatives of f̄T ,μ,r are

(1(p=1)+r3−pμ)�p-Lipschitz continuous, where �p ≤ e
3p
2 log p+cp for a numerical

constant c < ∞.

Proof The first part of the lemma follows from Lemma 2, which shows that
infx f̄T ,μ,r (x) = f̄T ,μ,r (1) = 0, while f̄T ,μ,r (0) = √

μ/2 + Tμϒr (0) ≤ √
μ/2 +

10μT . The second part of the lemma follows directly from Lemma 2.v and that the

quadratic chain f (x) =
√

μ

2 (x1 − 1)2 + 1
2

∑

i (xi − xi+1)
2 has 4-Lipschitz gradient

and 0-Lipschitz higher order derivatives. ��

5 Lower bounds for first-order methods

We now give our main result: lower bounds for the complexity of finding ε-stationary
points using the class A(1)

det ∪ A(1)
zr of first-order deterministic and/or zero-respecting

algorithms, applied to functions in the class

F1:p(�, L1, ..., L p) :=
⋂

q≤p

Fq(�, Lq)

containing all functions f : Rd → R, d ∈ N, such that f (0) − infx f (x) ≤ � and
∇q f is Lq -Lipschitz continuous for 1 ≤ q ≤ p.

Theorem 2 There exist numerical constants c,C ∈ R+ and �q ≤ e
3q
2 log q+Cq for

every q ∈ N such that the following lower bound holds. Let p ∈ N, and let
�, L1, L2, . . . , L p, ε be positive. Assume additionally that ε ≤ (Lq

1/Lq)
1/(q−1) for

each q ∈ {2, . . . , p}. Then for p ≥ 3,

Tε

(

A(1)
det ∪A(1)

zr ,F1:p(�, L1, ..., L p)
) ≥ c · �

· min
q ∈{2,...,p}

{

(

L1

�1

) 3
5− 2

5(q−1)
(

Lq

�q

) 2
5(q−1)

}

ε−8/5.

Moreover, for p = 2,

Tε

(

A(1)
det ∪A(1)

zr ,F1:2(�, L1, L2)
) ≥ c · �

(

L1

�1

) 3
7
(

L2

�2

) 2
7

ε−12/7.

WeproveTheorem2 inSect. 5.2 to come, providing a brief overviewof the argument
here, and then providing some discussion. In the proof, we construct the hard instance
f : RT+1 → R as f (x) = λσ 2 f̄T ,μ,r (x/σ), where we must choose the parameters
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λ, σ > 0 as well as μ, r , and T to guarantee that f is (a) hard to optimize, i.e.
Tε

(

A, f
)

> T for every A ∈ A(1)
zr , and (b) meets the smoothness and boundedness

requirements of the function class.
We begin by sketching the argument for p = 2. In this case, we may take r = 1,

λ ∝ L1 and μ ∝ L2σ/λ. This choice guarantees that f has L1-Lipschitz gradient
and L2-Lipschitz Hessian when μ ≤ 1, which we later verify using the assumption
ε ≤ L2

1/L2. We then use Observation 2, Lemma 3 and Observation 1 to show that

Tε

(

A, f
) ≥ T + 1 for every A ∈ A(1)

zr whenever λσμ3/4/4 ≥ ε, and conclude that σ
may scale as λ1/7ε4/7 (since μ ∝ L2σ/λ). By Lemma 4.i we have

f (0) − inf
x

f (x) ≤ λ
√

μσ 2/2+ 10λμσ 2T ,

so we can take T ∝ �/(λμσ 2) ∝ �/(L2σ
3) to guarantee f (0) − inf x f (x) ≤ �,

where we assume without loss of generality that λ
√

μσ 2 ≤ � (otherwise Theorem 1
dominates our bound). Substituting the expressions for σ,μ and λ into the expression
for T gives the result for p = 2.

For p ≥ 3 we require a more careful argument, as we must simultaneously handle
all orders of smoothness. To do so, we let μ = μ̄σ 2/λ and r = r̄/σ , and show how to
take r̄ and μ̄ independently of ε (depending only on L1, . . . , L p). This allows us to
obtain identical ε-dependence for all p ≥ 3.

To better understand the theorem, we give a few additional remarks.

Near-achievability of the lower bounds. In the paper [8], we propose the method
“convex until proven guilty,” which augments Nesterov’s accelerated gradient method
with implicit negative curvature descent. For the function classes F1:2(�, L1, L2)

and F1:3(�, L1, L2, L3), it achieves rates of convergence ˜O(�L1/2
1 L1/4

2 ε−7/4) and
˜O(�L1/2

1 L1/6
3 ε−5/3), respectively. These results nearly match our lower bounds in

Theorem 2; in the case of p = 2, the gap (in terms of ε) is of order ε− 1
28 log 1

ε
, while

for p ≥ 3, the gap is of order ε− 1
15 log 1

ε
. See further discussion in Sect. 7.1.

Choice of function class. The focus on the more restricted function classes
F1:p(�, L1, ..., L p)—rather than the classes Fp(�, L p) we study in Part I [10]—
makes our lower bounds stronger. Moreover, it is necessary for non-trivial results,
since for any p ≥ 2 and �, L p > 0, the class Fp(�, L p) contains functions impos-
sible for first-order methods. Indeed, the class Q (�, L1) of �-bounded L1-smooth
convex quadratics is a subset of Fp(�, L p) for any L1 < ∞ and L p > 0. Therefore,
by Theorem 1,

Tε

(

A(1)
det ∪A(1)

zr ,Fp(�, L p)
) ≥ sup

L1<∞
Tε

(

A(1)
det ∪A(1)

zr ,Q (�, L1)
)

≥ sup
L1<∞

√
L1�

4
ε−1 = ∞.

We thus limit our scope to functions with smooth lower order derivatives.
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Conditions on the accuracy ε. In Theorem 2 we require that εq−1 ≤ Lq
1/Lq for all

q ∈ {2, . . . , p}. For each q, we may rewrite this as L1/q
q �ε−(1+q)/q ≤ L1�ε−2. In

other words, these conditions ensure that qth order regularization-based methods have
stronger convergence guarantees than gradient descent [5,10].

The case p = 1. We state our bounds in Theorem 2 for p ≥ 2. It is possible to use
the construction (9) to prove a lower bound of O(�L1ε

−2) on the time necessary
for a deterministic first-order algorithm to find an ε-stationary point for the class
F1(�, L1). As Theorem Pi.2 shows this lower bound holds for all randomized high-
order algorithms, we do not pursue this.

The case p = 3. We can slightly strengthen our lower bound in the case p = 3,
making it independent of L2 for sufficiently small ε. To achieve this we set r = 1 in
the definition of ϒr , take λμ ∝ L3σ

2, and argue that that the resulting construction
has O(σ )-Lipschitz continuous Hessian, and σ tends to zero as ε → 0. For suffi-
ciently small ε, we can then replace the minimum over q ∈ {2, 3} in the first claim of
Theorem 2 with L2/5

1 L1/5
3 ε−8/5.

Hard instancedimensionality.LetTp,ε be such thatTε

(

A(1)
det∪A(1)

zr ,F1:p(�, L1, ..., L p)
)

≥ Tp,ε according to Theorem 2. We construct functions f ∈ F1:p(�, L1, ..., L p) that
witness this lower bound and have domain of dimension 2Tp,ε ; see Sect. 2.4 and Sec-
tion Pi.1.2 for more details.

The commentary on Theorem Pi.1 in Section Pi.4.2 is relevant also to Theorem 2.
In particular, there we discuss the polynomial scaling of �

1/q
q in q.

5.1 Lower bounds based on distance to optimality

For convex optimization problems, typical convergence guarantees depend on the
distance of the initial point to the globally optimal set arg minx f (x); the dependence
on this distance may be polynomial for general convex optimization problems [22,23],
while for smooth strongly convex problems, the convergence guarantees depend only
logarithmically on it. In the non-convex case, we can provide lower bounds that depend
on the distance rather than the gap� := f (x (0))− inf x f (x). To that end, we consider
the class

Fdist
1:p (D, L1, ..., L p)

functionswith Lq -Lipschitzqth derivatives (for eachq ∈ [p]) and all globalminima x�

satisfying ‖x�‖ ≤ D. We obtain the bound, analogously to our results in Section Pi.6,
by “hiding” a sharp global minimum near the origin.

To state the theorem, we require an additional piece of notation. Let Bε(�, L1, . . . ,

L p) be the lower bound Theorem 2 provides on Tε

(

Adet∪A(1)
zr ,F1:p(�, L1, ..., L p)

)

,
so

Tε

(

Adet ∪A(1)
zr ,F1:p(�, L1, ..., L p)

) ≥ Bε(�, L1, . . . , L p),

where we take Bε = 1 if ε > 0 is larger than the settings Theorem 2 requires. Then
by a reduction from our lower bounds on the complexity of F1:p(�, L1, ..., L p), we
obtain the following result.
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Theorem 3 There exists a numerical constant c < ∞ such that the following lower
bound holds. Let p ≥ 2, p ∈ N, and let D, L1, L2, . . . , L p, and ε be positive. Then

Tε

(

A(1)
det∪A(1)

zr ,Fdist
1:p (D, L1, ..., L p)

) ≥ Bε

(

min
q∈[p]

{

Lq

2�̃q
Dq+1

}

,
L1

2
,
L2

2
, . . . ,

L p

2

)

,

where �̃q ≤ exp(cq log q + c).

We prove Theorem 3 in Appendix B.3. Theorem 3 shows that the lower bounds of
Theorem 2 apply almost identically (to constant factors), except that we replace the
function gap � in the lower bound with the quantity minq∈[p] Lq Dq+1. As the depen-
dence of the lower bound on ε does not change, distance-based assumptions seem
unlikely to help in the design of efficient optimization algorithms for non-convex
functions.

5.2 Proof of Theorem 2

We have five parameters with which to scale our hard function; the function f̄T ,μ,r

requires definition of the dimension T ∈ N, multiplier μ ≤ 1 on the ϒr terms, and
scalar r ≥ 1 that trades between higher order (r = ∞) smoothness and lower order
(r = 1) smoothness of ϒr . We additionally scale the function with λ > 0 and a
perspective term σ > 0, defining

f (x) := λσ 2 f̄T ,μ,r (x/σ) . (11)

We must choose these parameters to guarantee the membership

f ∈ F1:p(�, L1, ..., L p).

This containment requires both bounded function values and derivatives, for which

we can provide sufficient conditions. Recall the definition �p ≤ e
3
2 p log p+cp from

Lemma 4 of the smoothness constant of f̄T ,μ,r . Then by Lemma 4.ii, to guarantee
that f has Lq -Lipschitz qth order derivatives for every q ∈ [p] it suffices to choose
λ, r , σ , and μ such that

(1(q=1) + r3−qσ 1−qμ)�qλ ≤ Lq for every q ∈ [p]. (12)

For the bounded values constraint f (0)− infx f (x) ≤ �, by Lemma 4.i it suffices to
take

T =
⌊

� − λ
√

μσ 2/2

10λμσ 2

⌋

(13)

Thus, so long as we choose the constants μ, σ, λ, r to satisfy inequality (12), the
preceding choice of T guarantees f ∈ F1:p(�, L1, ..., L p).
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With this membership guaranteed, we consider the choices for λ,μ, and σ such
that after T iterations of a zero respecting first-order method, we have ‖∇ f (x)‖ ≥ ε.
Indeed, Observations 1 and 2 imply that if x (1) = 0, x (2), . . . are the sequence of
iterates produced by applying any zero-respecting (first-order) method to f , then
x (t)
T = x (t)

T+1 = 0 for all t ≤ T . Lemma 3 implies that ‖∇ f̄T ,μ,r
(

x (t)/σ
)‖ > μ3/4/4

for any such iterate. Therefore, if we choose λ > 0, μ ≤ 1, and σ > 0 such that

λμ3/4σ ≥ 4ε, (14)

then ‖∇ f
(

x (t)
)‖ = λσ‖∇ f̄T (x (t)/σ )‖ > λμ3/4σ/4 ≥ ε for all t ≤ T . We thus

obtain the guarantee

Tε

(

A(1)
zr ,F1:p(�, L1, ..., L p)

) ≥ inf
A∈A(1)

zr

Tε

(

A, f
) ≥ T+1 ≥ � − λ

√
μσ 2/2

10λμσ 2 . (15)

The same bound for the classA(1)
det then follows fromProposition 1.Our strategy is now

the obvious one: we select λ > 0, 0 < μ ≤ 1, r ≥ 1, and σ > 0 to satisfy the function
membership constraints (12) and the large gradient guarantee (14). Substituting our
choices into the boud (15) will then yield the lower bound in the theorem. We begin
with the general case p ≥ 2 and later provide a tighter construction for p = 2.

General smoothness orders. To simplify the derivation, we define, for any q ∈ [p]

L̄q := Lq/�̄q where �̄q :=
{

2�1 q = 1

max
{

�q , 4q−1 (2�1)q
}

q > 1,
(16)

where we note that �̄q ≤ e
3
2 q log q+cq for some numerical constant c < ∞, as �q ≤

e
3
2 q log q+cq for a (possibly different) numerical constant. In order to further simplify

our calculations, we then define

λ = L̄1, μ̄ := λμ

σ 2 and r̄ := σr . (17)

Substituting these definitions into the constraints (12), we see that our choice of �̄1 =
2�1 implies that the constraint (12) holds whenever

r̄3−q μ̄ ≤ L̄q for all q ∈ [p]. (18)

We choose r̄ and μ̄ to guarantee that f is appropriately smooth; in the sequel, we
will choose σ and λ so that the gradient bound condition (14) holds. In this sense, we
may choose r̄ and μ̄without consideration of ε. Taking r̄ = (L̄1/μ̄)1/2 guarantees the
inequality (18) holds for q = 1. Substituting this choice into the identical inequality
for q ∈ {2, . . . , p} shows that we must have μ̄(q−1)/2 ≤ L̄q L̄

(q−3)/2
1 for each such q.

Thus, the choice
μ̄ = L̄1 min

q∈{2,...,p}
(

L̄q/L̄1
)2/(q−1)
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satisfies inequality (18), and consequently, the smoothness condition (12) as well. We
may therefore write μ̄ and r̄ as

μ̄ = L̄1
(

L̄q�/L̄1
)

2
q�−1 and r̄ = (

L̄1/L̄q�

)
1

q�−1 , where q� := arg min
q∈{2,...,p}

(

L̄q/L̄1
)

1
q−1 .

It remains to choose λ, σ , depending on ε, to guarantee our gradient lower bound
condition (14) holds, i.e. 4ε ≤ λμ3/4σ = λ1/4μ̄3/4σ 5/2. We thus set

σ =
[

4L̄−1
1

(

L̄q�/L̄1
)− 3

2(q�−1) ε

]2/5

.

We can now substitute back into our definitions r = r̄/σ and μ = μ̄σ 2/λ in Eq. (17)
and verify that r ≥ 1 and μ ≤ 1. For r , we have

r = r̄

σ
=
⎛

⎝

L̄q�/(q�−1)
1

4L̄1/(q�−1)
q� ε

⎞

⎠

2/5

=
(

�̄q�

4q�−1�̄
q�

1

) 2
5(q�−1)

⎛

⎝

Lq�/(q�−1)
1

L1/(q�−1)
q� ε

⎞

⎠

2/5

≥ 1,

where the last transition uses �̄q� ≥ 4q
�−1�̄

q�

1 by the definition (16), and we used the

assumption in the theorem statement that ε ≤ L
q�/(q�−1)
1 /L

1/(q�−1)
q� . Similarly, our

choice of μ satisfies

μ = μ̄σ 2

λ
=
(

4q
�−1�̄

q�

1

�̄q�

)
4

5(q�−1)
⎛

⎝

L1/(q�−1)
q� ε

Lq�/(q�−1)
1

⎞

⎠

4/5

≤ 1.

We now consider two cases; λ
√

μσ 2 ≤ � and λ
√

μσ 2 > �. In the first case
(which holds for sufficiently small ε), we substitute our choices of σ, λ and μ into the
time lower bound (15),

T + 1 ≥ � − λ
√

μσ 2/2

10λμσ 2

(i)≥ �

20λμσ 2 = �

20μ̄σ 4

=
�L̄

3
5
1

[

(

L̄q�/L̄1
)

1
q�−1

] 2
5

20 · 48/5 · ε8/5
= �

20 · 48/5
· min
q ∈{2,...,p}

{

(

L1/�̄1
)
3
5− 2

5(q−1)
(

Lq/�̄q
)

2
5(q−1)

}

ε−8/5,

which is the desired bound, where in step (i) we made use of λ
√

μσ 2 ≤ �. When
λ
√

μσ 2 > �, we show that the above bound is in fact smaller than the convex lower
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bound in Theorem 1. Indeed, substituting in our choices of λ,μ and σ , we see that
λ
√

μσ 2 > � implies

� < L̄3/2
1

(

L̄q�/L̄1
)

1
q�−1

[

4L̄−1
1

(

L̄q�/L̄1
)− 3

2(q�−1) ε

]6/5

= 4
6
5 L̄

− 1
5

1

(

L̄q�/L̄1
)− 4

5(q�−1) ε
6
5 .

Taking a square root and substituting to our lower bound gives

�L̄
3
5
1

[

(

L̄q�/L̄1
)

1
q�−1

] 2
5

20 · 48/5 · ε8/5 < (80 · �̄1/21 )−1
√

�L1

ε
,

and therefore (recalling that Q (�, L1) ⊂ F1:p(�, L1, ..., L p) and that �̄1 ≥ 8), by
Theorem 1 we have

Tε

(

A(1)
zr ,F1:p(�, L1, ..., L p)

) ≥ Tε

(

A(1)
zr ,Q (�, L1)

)

≥
√

�L1

4ε

≥
�L̄

3
5
1

[

(

L̄q�/L̄1
)

1
q�−1

] 2
5

20 · 48/5 · ε8/5 ,

completing the proof in the general case.

Functions with Lipschitz Hessian. For p = 2, we keep the definitions (16) but replace
the particular rescaling choices (17) with

λ = L̄1 , μ = L̄2σ

λ
and r = 1.

Usingμ ≤ 1, the above parameter setting satisfies inequality (12); f has Lq -Lipschitz
qth-order derivatives for q = 1, 2. To satisfy the gradient lower bound (14), i.e.
4ε ≤ λμ3/4σ = L̄1/4

1 L̄3/4
2 σ 7/4, we set

σ =
[

4L̄−1/4
1 L̄−3/4

2 ε
]4/7

.

We can substitute into the definition μ = L̄2σ
λ

to verify that μ ≤ 1:

μ = L̄2σ

λ
=
(

42−1
(

�̄1
)2

�2

)4/7 (
L2ε

L2
1

)4/7

≤ 1
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by the definition (16) of �̄p and the assumption ε ≤ L2
1/L2. As in the general case,

we first assume λ
√

μσ 2 ≤ �, where substituting into (15) yields the desired lower
bound

T + 1 ≥ � − λ
√

μσ 2/2

10λμσ 2 ≥ �

20λμσ 2 = �

20L̄2σ 3
= �L̄

3
7
1 L̄

2
7
2

20 · 412/7 · ε12/7 .

If λ
√

μσ 2 ≤ � does not hold, we have

� < L̄1/2
1 L̄1/2

2

[

4L̄−1/4
1 L̄−3/4

2 ε
] 4
7 · 52

< 4
10
7 L̄

− 1
7

1 L̄
− 2

7
2 ε

10
7 .

Taking a square root and substituting to our lower bound gives

�L̄
3
7
1 L̄

2
7
2

20 · 412/7 · ε12/7 < (20 · �̄1/21 )−1
√

�L1

ε
< Tε

(

A(1)
zr ,Q (�, L1)

)

≤ Tε

(

A(1)
zr ,F1:2(�, L1, L2)

)

,

due to Theorem 1, establishing the case p = 2.

6 The challenge of strengthening Theorem 2

The lower bounds in Theorem 2 leave two avenues for improvement. The first is
tightening our ε−12/7 and ε−8/5 lower bounds to match the known upper bounds of
ε−7/4 and ε−5/3, for p = 2 and p = 3, respectively. The second improvement is
to extend our lower bounds to randomized algorithms, as we did for the case of full
derivative information in Section Pi.5. We discuss each of these in turn.

6.1 Tightness of lower bound construction

The core of our first-order lower bounds is Lemma 3, which establishes a lower bound
of the form ‖ f̄T ,μ,r (x)‖ > μ3/4/4 for vectors x such that xT = xT+1 = 0 (i.e. any
point that a first-order zero-respecting method can produce after T iterations), where
f̄T ,μ,r is our unscaled hard instance (see Definition (9)). Here we consider a slightly
more general form,

˜fT ,α,μ(x) := α · �(x1 − 1) +
T
∑

i=1

�(xi+1 − xi ) + μ

T
∑

i=1

˜ϒ(xi ), (19)

where � : R → R and ˜ϒ : R → R are C∞, and we assume T ∈ N, α > 0, and
0 < μ ≤ 1. The chain f̄T ,μ,r corresponds to the special case α = √

μ, �(x) = x2/2
and ˜ϒ(x) = ϒr (x) (defined in Eq. (10)).
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We claim that if we can show that the norm of ∇ ˜fT ,α,μ(x) is not too large for
some x ∈ R

T+1 with xT = xT+1 = 0, then our lower bound cannot be improved.
More concretely, suppose that for every T , μ ≤ 1 and α ≤ 1 we could find x ∈
R
T+1 such that xT = xT+1 = 0, and ‖∇ f̄T ,μ,r (x)‖ ≤ Cμ3/4 for some constant C

independent of T , r and μ, matching Lemma 3 to a constant. We can then trace the
scaling arguments in the proof of Theorem 2 “in reverse,” showing that any choice
of T , λ, μ, σ and r for which the function f (x) = λσ 2

˜fT ,α,μ(x/σ) satisfies both (i)
f ∈ F1:p(�, L1, ..., L p) and (ii) ‖∇ f (x)‖ > ε for all x such that xT = xT+1 = 0,
we have T ≤ c · ε−8/5 for p ≥ 3 and T ≤ c · ε−12/7 for p = 2, where c is some
problem-dependent constant independent of ε.

The next lemma, whose proof we provide in Appendix B.4, shows such gradient
norm upper bound for constructions of the form (19).

Lemma 5 Let T ∈ N, 0 < α ≤ 1, μ ∈ [T−2, 1] and ˜fT ,α,μ be defined as in (19), with
� and ˜ϒ satisfying

�′(0) = ˜ϒ ′(0) = 0 and �′ is 1-Lipschitz continuous and max
z∈[0,1] |˜ϒ

′(z)| ≤ G,

for G > 0 independent of T , α and μ. Then there exists x ∈ R
T+1 such that xT =

xT+1 = 0 and
∥

∥∇ ˜fT ,α,μ(x)
∥

∥ < Cμ3/4,

where C ≤ 27+√
3G.

Let us discuss the lemma. The condition that �′(0) = ˜ϒ ′(0) = 0 is essential
for any zero-chain-based proof, as otherwise ˜fT ,α,μ is not a first-order zero-chain
(if α = 1 then we may have �′(0) �= 0; Lemma 5 holds in this case as well). The
requirement that the multiplier μ ≥ 1/T 2 on ˜ϒ is also benign, as our proofs require
μ � 1/

√
T � 1/T 2 (further decreasing μ weakens the lower bound as it makes

˜fT ,α,μ too smooth; inspection of the scaling argument in the proof of Theorem 2
shows this rigorously). The function�must have Lipschitz derivatives with parameter
independent of μ, T , as otherwise ˜fT ,α,μ cannot be scaled to meet the smoothness
requirements. Finally, the requirement maxz∈[0,1] |˜ϒ ′(z)| < ∞ holds for every C∞
function. Moreover, a calculation shows it holds with G = √

10�3 independent of r
for every ϒr that satisfies Lemma 2.

Summarizing, tightening our lower bounds seems to require a construction that is
not of the form (19). This does not eliminate more general (non-convex) interactions,
e.g. of the form�(xi , xi+1) rather than�(xi+1−xi ). The proof technique of Lemma 3
should provide useful “sanity checks” when considering alternative constructions.

6.2 A bound for randomized algorithms

In Section Pi.5 we extend our lower bound for artbirary deterministic local algorithms
to the broader class of randomized algorithms Arand with access to all derivatives at
query point x .We do this bymaking our hard function insensitive: the individual “link-
ing” terms 
(xi )�(xi+1) (analogues of the terms (xi − xi+1)

2 in constructions (2)
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and (9)) are identically zero for xi near 0. A natural question is whether the same
methodology (originally proposed in [30]) can extend Theorem 2 to the class of ran-
domized first-order algorithms, A(1)

rand. Direct application of that technique cannot
work in our case, for a simple reason: it applies to randomized algorithms of any
order. In other words, if we modify our hard instance construction (9) to be a robust
zero-chain (Definition Pi.4), any lower bounds it implies hold for all algorithms in
Arand, where ε−(p+1)/p rates are achievable, so we could not provide sharper lower
bounds than Theorem Pi.2.

Nevertheless, the ideas introduced in Section Pi.5 might still be of use. Specifically,
consider a modification of the construction (9) where ϒr (x) is identically zero for
sufficiently small x , say |x | < 0.05, while still satisfying Lemma 2, thus making the
non-convex component of f̄T ,μ,r insensitive. As explained above, also making the
convex quadratic component of f̄T ,μ,r insensitive (as Woodworth and Srebro [30] do)
is unworkable in our setting, as it results in a robust zero-chain equally hard for all
high-order algorithms. Instead, we may keep the quadratic component unchanged—
and hence sensitive—and try to carry out the proof of Lemma Pi.4. Doing so, we see
that the inductive argument allows us to ignore the insensitive non-convex component
of f̄T ,μ,r , leaving us to contend onlywith the (randomly rotated) quadratic chain. Thus,
the difficulty here appears closely related to proving a lower bound for minimizing
convex quadratic with randomized first-order methods.

In recent work, Simchowitz [27] proves such a lower bound. However, his proof
technique is quite different, relying on reductions to statistical estimation of a planted
vector in a deformed Wigner model rather than a random rotation of the quadratic
chain. Since the analysis of the non-convexity in our construction relies closely on
the chain argument’s fine-grained control over information flow, it is unclear how
to extend the reduction in [27] to finding stationary points of non-convex functions.
We believe that proving a lower bound for convex quadratic minimization using the
rotated-chain approach could lead to randomized lower bounds in our setting as well.

7 Concluding remarks

Here we discuss implications of our two-paper series and provide a few possible
extensions.

7.1 Commentary on our results

In conjunction with known upper bounds, our lower bounds characterize the optimal
rates for finding stationary points. Our lower bounds are sharp to within constant
factors for algorithms with full derivative information [10], and (perhaps) slightly
loose for first-order algorithms. These characterizations yield a few insights.

First-order methods vs. high-order methods. For the class F1(�, L1) of L1-smooth
functions, first-order methods—specifically gradient descent—attain the optimal rate
L1�ε−2; no higher-order randomized method can attain improved performance over
the entire function class. The intuition here is thatF1(�, L1) contains functionswhose
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Hessian and higher order derivatives may vary arbitrarily sharply, providing no useful
information for optimization.

When higher-order derivatives are also Lipschitz continuous the picture changes
fundamentally: there is a strict separation between (deterministic) second-order and
first-order methods. In particular, cubic regularization of Newton’s method [25]
achieves ε dependence ε−3/2 for functions with Lipschitz Hessian, while no deter-
ministic first-order method can have better time complexity than ε−8/5, regardless
of how many derivatives are Lipschitz. Note that when the Hessian is Lipschitz, our
definition of first-order algorithms allows for algorithms that rely on Hessian-vector
products, as they can be estimated to arbitrary accuracy in two gradient evalua-
tions.

The effect of high-order smoothness on first-order methods. For F1:2(�, L1, L2), the
class of functions with Lipschitz gradient and Hessian, our lower bound scales as
ε−12/7, while for the classF1:3(�, L1, L2, L3) of functions with Lipschitz third order
derivative our “convex until proven guilty” method [8] achieves the rate ε−5/3 log 1

ε
.

As 5
3 < 12

7 , this proves a separation between the optimal rate for first-order methods
with second- and third-order smoothness.

In contrast, orders of smoothness beyond the third offer limited room for improve-
ment in ε dependence; the lower bound ε−8/5 holds for all function classes
F1:p(�, L1, ..., L p) with p ≥ 3, while the method [8] does not enjoy improved
guarantees with Lipschitz fourth-order derivatives. The “robustness” of the lower
bound to higher-order smoothness stems from the fact that our hard instance f̄T ,μ,r

becomes a quartic polynomial in the limit r → ∞, and we choose r inversely pro-
portional to ε. As we discuss in [8, Lemma 4], our guarantee ε−5/3 log 1

ε
cannot

improve using fourth-order smoothness because of symmetries in the fourth-order
Taylor expansion. Quartic polynomials thus appear to play a central role in the com-
plexity of first-order methods for smooth optimization. Due to the gap between the
upper and lower bounds, it remains an open question whether smoothness beyond the
third order has any effect the complexity of finding stationary point with first-order
functions.

Convex vs. non-convex functions. Convexity makes finding stationary points
fundamentally—and significantly—easier. For first-order methods and functions with
bounded initial sub-optimality, the rate ε−1 log 1

ε
is achievable for first-order smooth

convex functions, while the lower bound ε−8/5 holds for non-convex functions
with arbitrarily high-order smoothness. For methods using higher-order deriva-
tives, our lower bounds [10] for finding stationary points of non-convex functions
are ε−(p+1)/p → ε−1 as the order p of smoothness grows. However, similar to
Appendix A.1, the papers [4,21] show that for convex functions with Lipschitz Hes-
sian, a second-order method achieves the strictly better rate ε−6/7 log 1

ε
.

Another striking difference between convex and non-convex functions is the effect
of replacing the bound on the initial function value (i.e. f (x (0)) − infx f (x) ≤ �)
with a bound on the initial distance to the global minimizer x� (i.e.

∥

∥x (0) − x�
∥

∥ ≤ D).
For non-convex function classes, we show lower bounds with the same ε dependence
regardless of the type of bound. In contrast, for convex function the optimal rates
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scale as
√

�ε−1 and
√
Dε−1/2, again a gap in ε dependence. The rates are not directly

comparable; one can construct families of functionswhere D growswith the dimension
while � remains constant.

Returning to �-value-bounded function classes, we see one more large difference
between the convex and non-convex case; convex rates scale as

√
� while all the

non-convex rates scale linearly with �. This arises from fundamental differences in
the convergence “mechanism” for convex and non-convex optimization. The anal-
ysis of non-convex optimization schemes typically [8,11,23–25] revolves around a
progress argument, where one shows that, as long as ‖∇ f (x (t))‖ > ε, the guaran-
tee f (x (t+1)) ≤ f (x (t)) − pε holds for some quantity pε (e.g. for gradient descent
pε = ε2/(2L1)). The number of iterations to find an ε-stationary point xs is therefore
at most [ f (x (0)) − f (xs)]/pε ≤ �/pε , which scales linearly in �. By our lower
bounds, such progress arguments are, in a sense, optimal. Conversely, in convex opti-
mization we may control either the gap f (x (t)) − f (x�) or the distance

∥

∥x (t) − x�
∥

∥,
and this interplay (see Appendix A.1) allows stronger arguments than those based
purely on function progress.

7.2 Further research

Closing the gap in first-order bounds. There exists a gap in polynomial ε dependence
between our lower bounds (Theorem 2) and the best known upper bounds [8] for first-
order methods with higher-order smoothness. We do not believe the upper bounds
of [8] are improvable by different analysis or by any algorithmic change that main-
tains the general structure of alternating between accelerated gradient descent and
negative curvature exploitation. In conjunction with our arguments in Sect. 6.1 about
the structure of our lower bounds, resolution of the optimal rate will likely provide
either amethodwith a substantially different approach to accelerating gradient descent
in the smooth non-convex setting or a new lower bound construction.

Finite sum and stochastic problems. Smooth, non-convex, finite-sum and stochastic
optimization problems are important, arising (for example) in the training of neural
networks. This motivates the design and analysis of efficient methods for finding sta-
tionary points in such problems, and researchers have successfully developed variance
reduction and acceleration techniques for these settings [2,3,20,26]. However, no cor-
responding lower bounds are available. Woodworth and Srebro [30], show how to
establish lower bounds for convex finite sum problems. Combined with the develop-
ments in our paper, we believe their techniques should extend to finding stationary
points of non-convex problems. An important conclusion of [30] is that randomized
selection of the component function is crucial to efficient convergence: in contrast to
our results, they show a separation between deterministic and randomized finite sum
complexity.

Second-order stationary points. Approximate stationary points are not always close
to local minima, and so it is interesting to consider stronger convergence guarantees.
Second-order stationarity (also known as the second-order necessary condition for
local optimality) is the most popular example; for a function f , a point x is (ε1, ε2)-
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second-order stationary if ‖∇ f (x)‖ ≤ ε1 and ∇2 f (x) � −ε2 I . Efficient first-order
methods for finding second-order stationary points exist [1,9,19]. Moreover, it is pos-
sible to generically transform methods for finding ε-stationary points into methods
that find (ε, O(εs))-second-order stationary points, for some 0 < s < 1, without
changing the ε dependence of the complexity [8, Appendix C], but such modifications
introduce dependence logarithmic in the problem dimension d.

Clearly, lower bounds for finding ε1-stationary points also apply to finding (ε1, ε2)-
second-order stationary points. However, attaining second-order stationarity with
first-order methods is fundamentally more difficult than attaining only stationar-
ity. There are no dimension-free guarantees: the results of Simchowitz et al. [28]
imply �(log d) dimension dependence for all randomized first-order algorithms that
escape saddle points. Moreover, for deterministic first-order algorithms it is easy
to construct a resisting oracle that forces �(d) dimension dependence (consider
f (U�x) with f (x) = −x21 and adversarially chosen rotation U ), implying strong
separation between deterministic and randomized first-order methods for finding
second-order stationary points. It will be interesting to investigate such issues fur-
ther.

A Additional results for convex functions

A.1 An upper bound for finding stationary points of value-bounded functions

Here we give a first-order method that finds ε-stationary points of a function f ∈
K1 (�, L1) in O(

√
L1�ε−1 log L1�

ε2
) iterations. The method consists of Nesterov’s

accelerated gradient descent (AGD) applied on the sum of f and a standard quadratic
regularizer.

Our starting point is AGD for strongly convex functions; a function f is σ -strongly
convex if

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + σ

2
‖y − x‖2 ,

for every x, y in the domain of f . Let AGDσ,L1 ∈ A(1)
zr ∩ A(1)

det be the accelerated
gradient scheme developed in [23, §2.2.1] for σ -strongly convex functions with L1-
Lipschitz gradient, initialized at x (1) = 0 (the exact step size scheme is not important).
For any L1-smooth f with global minimizer x�

f , ε
2/(2L1)-suboptimality guarantees

ε-stationarity, since ‖∇ f (x)‖2 ≤ 2L1( f (x) − f (x�
f )) [6, Eq. (9.14)]. Therefore,

adapting [23, Thm. 2.2.2] to our notation gives

Tε

(

AGDσ,L1 , f
) ≤ 1+ 2

√

L1

σ
log+

(

L1‖x�
f ‖

ε

)

, (20)

with log+(x) := max{0, log x}.
Now suppose that f is convex with L1-Lipschitz gradient but not necessarily

strongly-convex. We can add strong convexity to f by means of a proximal term;
for any σ > 0, the function
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fσ (x) := f (x) + σ

2
‖x‖2

is σ -strongly-convex with (L1 + σ)-Lipschitz gradient. With this in mind, we define
a proximal version of AGD as follows,

PAGDσ,L1 [ f ] := AGDσ,L1+σ [ fσ ] = AGDσ,L1+σ

[

f (·) + σ

2
‖·‖2

]

.

Proposition 2 Let �, L1 and ε be positive, and let σ = ε2

3� . Then, algorithm

PAGDσ,L1 ∈ A(1)
det satisfies

Tε

(

A(1)
det,K1 (�, L1)

) ≤ sup
f ∈K1(�,L1)

Tε

(

PAGDσ,L1 , f
)

≤ 1+ 5

√
L1�

ε
log+

(

25L1�

ε2

)

.

Proof For any f ∈ K1 (�, L1), recall that fσ (x) := f (x)+ σ
2 ‖x‖2 and let {x (t)}t∈N =

PAGDσ,L1 [ f ] = AGDσ,L1+σ [ fσ ] be the sequence of iterates PAGDσ,L1 produces on
f . Then by guarantee (20), we have

∥

∥

∥∇ fσ (x (T ))

∥

∥

∥ ≤ ε/6 (21)

for some T such that

T ≤ 1+ 2

√

1+ L1

σ
log+

(

6(L1 + σ)‖x�
fσ
‖

ε

)

. (22)

For any point y such that fσ (y) = f (y) + σ
2 ‖y‖2 ≤ fσ (0) = f (0), we have

‖y‖2 ≤ 2( f (0) − f (y))

σ
≤ 2( f (0) − inf x f (x))

σ
≤ 2�

σ
.

Clearly, fσ (x�
fσ

) ≤ fσ (0) and [23, Thm. 2.2.2] also guarantees that fσ (x (T )) ≤ fσ (0).
Consequently,

max
{

‖x (T )‖, ‖x�
fσ ‖
}

≤
√

2�

σ
, (23)

and so

‖∇ f (x (T ))‖ = ‖∇ fσ (x (T )) − σ · x (T )‖ ≤ ‖∇ fσ (x (T ))‖ + σ‖x (T )‖ (i)≤ ε

6

+√
2σ�

(i i)≤ ε.
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In inequality (i)we substituted bounds (21) and (23), and in (i i)weusedσ = ε2/(3�).
We conclude that Tε

(

PAGDσ,L1 , f
) ≤ T , and substituting (23) and the definition of

σ into (22) we have

T ≤ 1+ 2

√

1+ 3L1�

ε2
log+

(

6

√

2

3
+ 6

√
6L1�

ε2

)

.

Without loss of generality,wemayassume 2L1�

ε2
≥ 1, as otherwiseTε

(

PAGDσ,L1 , f
) =

1. We thus simplify the expression slightly to obtain the proposition. ��

A.2 The impossibility of approximate optimality without a bounded domain

Lemma 6 Let L1,� > 0 and ε < �. For any first-order algorithm A ∈ A(1)
det ∪A(1)

zr

andany T ∈ N, there exists a function f ∈ Q (�, L1) such that the iterates {x (t)}t∈N =
A[ f ] satisfy

inf
t∈N

{

t | f (x (t)) ≤ inf
x

f (x) + ε
}

> T .

Proof By Proposition 1 it suffices to consider A ∈ A(1)
zr (see additional discussion of

the generality of Proposition 1 in Section Pi.3.3). Consider the function f : RT → R,

f (x) = λ

[

(σ − βx1)
2 +

T−1
∑

i=1

(xi − βxi+1)
2

]

, (24)

where 0 < β < 1, and we take

λ := L1

2(1+ 2β + β2)
and σ :=

√

�

λ
.

Since f (x) is of the form λ ‖Ax − b‖2 where ‖A‖op ≤ 1+β, we have
∥

∥∇2 f (x)
∥

∥

op ≤
2λ ‖A‖2op for every x ∈ R

T and therefore f has 2λ(1+ 2β + β2)-Lipschitz gradient.

Additionally, f satisfies inf x f (x) = 0 and f (0) = λσ 2, ans so the above choices
of λ and σ guarantee that f ∈ Q (�, L1). Moreover, f is a a first-order zero-chain
(Definition 3), and thus for any A ∈ A(1)

zr and {x (t)}t∈N = A[ f ], we have x (t)
T = 0

for t ≤ T (Observation 1). Therefore, it suffices to show that f (x) > inf y f (y) + ε

whenever xT = 0.
We make the following inductive claim: if f (x) ≤ inf y f (y) + ε = ε, then

∣

∣

∣xi − σβ−i
∣

∣

∣ ≤
i
∑

j=1

β− j

√

ε

λ
<

β−i

1− β

√

ε

λ
(25)

for all i ≤ T . Indeed, each term in the sum (24) defining f is non-negative, so for
the base case of the induction i = 1, we have λ(σ − βx1)2 ≤ ε, or

∣

∣x1 − σβ−1
∣

∣ ≤
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β−1√ε/λ. For i < T , assuming that xi satisfies the bound (25), we have that λ(xi −
βxi+1)

2 ≤ ε, which implies

∣

∣

∣xi+1 − σβ−(i+1)
∣

∣

∣ ≤
∣

∣

∣xi+1 − β−1xi
∣

∣

∣+ β−1
∣

∣

∣xi − σβ−i
∣

∣

∣

≤ β−1
√

ε

λ
+

i
∑

j=1

β−( j+1)
√

ε

λ

=
i+1
∑

j=1

β− j

√

ε

λ
,

which is the desired claim (25) for xi+1.
The bound (25) implies xi �= 0 for all i ≤ T whenever σ ≥ (1 − β)−1√ε/λ.

Therefore, we choose β to satisfy σ = (1− β)−1√ε/λ, that is

β := 1−
√

ε

λσ 2 = 1−
√

ε

�
,

for which 0 < β < 1 since we assume ε < �. Thus, we guarantee that when xT = 0
we must have f (x) > inf y f (y) + ε, giving the result. ��

B Technical results

B.1 Proof of Lemma 2

Lemma 2 The function ϒr satisfies the following.

i. We have ϒ ′
r (0) = ϒ ′

r (1) = 0.
ii. For all x ≤ 1, ϒ ′

r (x) ≤ 0, and for all x ≥ 1, ϒ ′
r (x) ≥ 0.

iii. For all x ∈ R we have ϒr (x) ≥ ϒr (1) = 0, and for all r , ϒr (0) ≤ 10.
iv. For every r ≥ 1, ϒ ′

r (x) < −1 for every x ∈ (−∞,−0.1] ∪ [0.1, 0.9].
v. For every r ≥ 1 and every p ≥ 1, the p-th order derivatives of ϒr are r3−p�p-

Lipschitz continuous, where �p ≤ exp( 32 p log p + cp) for a numerical constant
c < ∞.

Proof Parts i and ii are evident from inspection, as

ϒ ′
r (x) = 120

x2(x − 1)

1+ (x/r)2
.

To see the part iii, note thatϒr is non-increasing for every x < 1 and non-decreasing for
every x > 1 and therefore x = 1 is its global minimum. That ϒr (1) = 0 is immediate

from its definition, and, for every r , ϒr (0) = 120
∫ 1
0

t2(1−t)
1+(t/r)2

dt ≤ 120
∫ 1
0 t2(1 −

t)dt = 10. To see part iv, note that |ϒ ′
r (x)| ≥ |ϒ ′

1(x)| for every r ≥ 1, and a
calculation shows |ϒ ′

1(x)| > 1 for x ∈ (−∞,−0.1] ∪ [0.1, 0.9] (see Fig. 1).
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To see the fifth part of the claim, note that

ϒ ′
r (x) = 120r2(x − 1)

(

1− 1

1+ (x/r)2

)

= 120
[

r2(x − 1) − r3ϕ1(x/r) + r2ϕ2(x/r)
]

,

where the functions ϕ1 and ϕ2 are ϕ1(ξ) = ξ/(1+ ξ2) and ϕ2(ξ) = 1/(1+ ξ2). We
thus bound the derivatives of ϕ1 and ϕ2. We begin with ϕ2, which we can write as the
composition ϕ2(x) = (h ◦ g)(x) where h(x) = 1

x and g(x) = 1+ x2. Let Pk,2 denote
the collection of all partitions of {1, . . . , k} where each element of the partition has
at most 2 indices. That is, if P ∈ Pk,2, then P = (S1, . . . , Sl) for some l ≤ k, the
Si are disjoint, 1 ≤ |Si | ≤ 2, and ∪i Si = [k]. The cardinality |Pk,2| is the number of
matchings in the complete graph on k vertices, or the kth telephone number, which
has bound [15, Lemma 2]

|Pk,2| ≤ exp

(

k

2
log k + k log 2

)

.

We may then apply Faà di Bruno’s formula for the chain rule to obtain

ϕ
(k)
2 (x) =

∑

P∈Pk

h(|P|)(g(x))
∏

S∈P
g(|S|)(x)

=
∑

P∈Pk,2

(−1)|P| (|P| − 1)!
(1+ x2)|P| (2x)

C1(P)2C2(P),

where Ci (P) denotes the number of sets in P with precisely i elements. Of course,
we have |x |C1(P)/(1+ x2)|P| ≤ 1, and thus

|ϕ(k)
2 (x)| ≤

∑

P∈Pk,2

(|P| − 1)!2|P| ≤ |Pk,2| · (k − 1)! · 2k ≤ e
3k
2 log k+2k log 2.

The proof of the upper bound on ϕ
(k)
1 (x) is similar (2ϕ1(x) = d

dx [(ĥ ◦ g)(x)] with
ĥ(x) = log x and g as defined above), so for every r ≥ 1 and p ≥ 1, the p + 1-th
derivative of ϒr has the bound

|ϒ(p+1)
r (x)| ≤ 120

[

r21(p=1) + r3−p|ϕ(p)
1 (x/r)| + r2−p|ϕ(p)

2 (x/r)|
]

≤ 120r3−pe
3
2 log p+cp,

where c < ∞ is a numerical constant. ��
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B.2 Proof of Lemma 3

Lemma 3 Let r ≥ 1 and μ ≤ 1. For any x ∈ R
T+1 such that xT = xT+1 = 0,

∥

∥∇ f̄T ,μ,r (x)
∥

∥ > μ3/4/4.

Proof Throughout the proof, we fix x ∈ R
T+1 such that xT = xT+1 = 0; for

convenience in notation, we define x0 := 1. Our strategy is to carefully pick two

indices i1 ∈ {0, . . . , T − 1} and i2 ∈ {i1 + 1, . . . , T }, such that
∥

∥∇ f̄T ,μ,r (x)
∥

∥

2 ≥
∑i2

i=i1+1

∣

∣∇i f̄T ,μ,r (x)
∣

∣

2
> (μ3/4/4)2. We call the set of indices from i1 + 1 to i2 the

transition region, and construct it as follows.

Let i1 ≥ 0 be the largest i such that xi > 0.9,

so that x j ≤ 0.9 for every j > i . Note that i1 = 0 when xi ≤ 0.9 for every i ∈ [T +1].
This is a somewhat special case due to the coefficient

√
μ ≤ 1 of the first “link” in

the quadratic chain term in (9). To handle it cleanly we define

α :=
{

1 i1 > 0√
μ i1 = 0.

Continuing with construction of the transition region, we make the following defini-
tion.

Let i ′2 ≤ T be the smallest j such that j > i1 and x j < 0.1,

and let m′ = i ′2 − i1, so m′ ≥ 1. Roughly, our transition region consists of the m′
indices i1+1, . . . , i ′2, but for technical reasons we attach to it the following decreasing
‘tail’.

Let i2 be the smallest k such that k ≥ i ′2 and xk+1 ≥ xk − 0.2

m′ − 1+ 1/α
1(xk>−0.1).

With these definitions, i2 is well-defined and 0 ≤ i1 < i2 ≤ T , since xT+1 − xT = 0.
We denote the transition region and associated length by

Itrans := {i1 + 1, . . . , i2} and m := i2 − i1 ≥ 1. (26)

We illustrate our definition of the transition region in Fig. 3.
Let us describe the transition region. In the “head” of the region, we have 0.1 ≤

xi ≤ 0.9 for every i ∈ {

i1 + 1, . . . , i ′2 − 1
}

; a total of m′ − 1 indices. The “tail”
of the transition region is strictly decreasing, xi2 < xi2−1 < · · · < xi ′2 . Moreover,
for any j ∈ {i ′2 + 1, . . . i2 − 1} such that x j > −0.1, the decrease is rapid; x j <

x j−1 − 0.2/(m′ − 1 + 1/α). This descriptions leads us to the following technical
properties.

Lemma 7 Let the transition region Itrans be defined as above (26). Then
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Fig. 3 The transition region (26) in the proof of Lemma 3. Each plot shows the entries of a vector x ∈ R
T+1

that satisfies xT = xT+1 = 0. The entries of x belonging to the transition region Itrans are blue (color
figure online)

i. xi1 > 0.9 > 0.1 > xi2 and −xi2 +
(

m − 1+ α−1
) (

xi2+1 − xi2
)

> −0.3.
ii. ϒ ′

r (xi ) ≤ 0 for every i ∈ Itrans, and ϒ ′
r (xi ) < −1 for at least

(

m − α−1
)

/2
indices in Itrans.

We defer the proof of the lemma to the end of this section, continuing the proof
assuming it.

We now lower bound ‖∇ f̄T ,μ,r (x)‖. For notational convenience, define gi =
μϒ ′

r (xi ), and recalling that xT = xT+1 = 0, we see that the norm of the gradient of
f̄T ,μ,r is

∥

∥∇ f̄T ,μ,r (x)
∥

∥

2 = (

(1+√
μ)x1 −√

μ − x2 + g1
)2 +

T
∑

i=1

(2xi − xi−1 − xi+1 + gi )
2

≥ (

(1+ α)xi1+1 − αxi1 − xi1+2 + gi1+1
)2

+
i2
∑

i=i1+2

(2xi − xi−1 − xi+1 + gi )
2 , (27)

where we made use of the notation α := 1 if i1 > 0 and α := √
μ if i1 = 0.

We obtain a lower bound for the final sum of m squares (27) by fixing xi1 , xi2 , and
gi1+1, . . . , gi2 , then minimizing the quadratic form explicitly over them−1 variables
xi1+1, . . . , xi2−1. We obtain

∥

∥∇ f̄T ,μ,r (x)
∥

∥

2 ≥ inf
v∈Rm−1

{

(

(1+ α)v1 − αxi1 − v2 + gi1+1
)2

+
m−2
∑

j=2

(

2v j − v j−1 − v j+1 + gi1+ j
)2

+ (

2vm−1 − vm−2 − xi2 + gi2−1
)2 + (

2xi2 − vm − xi2+1 + gi2
)2
}

= inf
v∈Rm−1

‖Av − b‖2 = b�
(

I − A
(

A�A
)−1

A�
)

b =
(

z�b
)2

,
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where the matrix A and vector b have definitions

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1+ α −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
m×(m−1) and b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

αxi1 − gi1+1
−gi1+2

...

−gi2−2
xi2 − gi2−1

−2xi2 + xi2+1 − gi2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
m ,

and z ∈ R
m is a unit-norm solution to A�z = 0. The vector z ∈ R

m with

z j = j − 1+ 1
α

√

∑m
i=1(i − 1+ 1

α
)2

is such a solution. Thus

∥

∥∇ f̄T ,μ,r (x)
∥

∥

2

≥
(

xi1 −∑m
j=1

(

j − 1+ 1
α

) · gi1+ j +
(

m − 2+ 1
α

) · xi2 + (

m − 1+ 1
α

)

(−2xi2 + xi2+1)
)2

∑m
i=1(i − 1+ 1

α
)2

= 1
∑m

i=1(i − 1+ 1
α
)2

(

xi1 − xi2 +
(

m − 1+ 1

α

)

(

xi2+1 − xi2
)

−
m
∑

j=1

(

j − 1+ 1

α

)

· gi1+ j

)2

. (28)

We now bring to bear the properties of the transition region Lemma 7 supplies. By
Lemma 7.i,

xi1 − xi2 + (m − 1+ α−1)
(

xi2+1 − xi2
) ≥ 0.9− 0.3 = 3

5
, (29)

and by Lemma 7.ii, using 1 ≤ α−1 ≤ 1/
√

μ,

−
m
∑

j=1

( j − 1+ α−1)gi1+ j ≥ μ

(

m−α−1
)

/2
∑

j=1

( j − 1+ α−1)

≥ μ

8

[

m2 − 1

α2

]

+

≥ 1

8

[

μm2 − 1
]

+ . (30)
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Substituting
∑m

i=1

(

i − 1+ α−1
)2 ≤ 1

2m
(

m + 1/
√

μ
) (

m + 2/
√

μ
)

and the bounds
(29) and (30) into the gradient lower bound (28), we have that

∥

∥∇ f̄T ,μ,r (x)
∥

∥ ≥ μ3/4 · ζ(m
√

μ) where ζ(t)

:=
√

2

t(t + 1)(t + 2)

(

3

5
+ 1

8

[

t2 − 1
]

+

)

.

A quick computation reveals that inf t>0 ζ(t) ≈ 0.28 > 1/4, which gives the result. ��

Proof of lemma 7 We have by definition that xi1 > 0.9 and xi2 ≤ xi ′2 < 0.1. To see
that

−xi2 +
(

m − 1+ α−1
)

(

xi2+1 − xi2
) ≥ −0.3

holds, consider the two cases that xi2 ≤ −0.1 or xi2 > −0.1. In the first case that
xi2 ≤ −0.1, by definition xi2+1 ≥ xi2 so −xi2 + (

m − 1+ α−1
) (

xi2+1 − xi2
)

>

0.1 > −0.3. The second case that xi2 > −0.1 is a bit more subtle. By definition of
the sequence xi2 , . . . , xi ′2 , we have

− 0.1 < xi2 < xi2−1 − 0.2

m′ − 1+ 1
α

< · · · ≤ xi ′2 −
0.2

m′ − 1+ 1
α

(i2 − i ′2)

< 0.1− 0.2
m − m′

m′ − 1+ 1
α

. (31)

Combining this bound on xi2 and the inequality xi2+1 ≥ xi2 − 0.2
m′−1+1/α due to the

construction of i2, we obtain

−xi2 +
(

m − 1+ α−1
)

(

xi2+1 − xi2
)

> −0.1+ 0.2
m − m′

m′ − 1+ 1
α

−0.2
m − 1+ 1

α

m′ − 1+ 1
α

= −0.3.

We note for the proof of property ii that the chain of inequalities (31) is possible only
form ≤ 2m′ −1+1/α, which implies there are at mostm′ −1+1/α indices i ∈ Itrans
such that |xi | < 0.1.

The first part of property ii follows from Lemma 2.ii, since xi ≤ 0.9 ≤ 1 for
every i ∈ Itrans. To see that the second part of the property holds, let N be the
number of indices in i ∈ Itrans for which ϒ ′

r (xi ) < −1. By Lemma 2.iv and the fact
that 0.1 ≤ xi ≤ 0.9 for every i ∈ {

i1 + 1, . . . , i ′2 − 1
}

, N ≥ m′ − 1. Moreover,
since there can be at most m′ − 1 + 1/α indices i ∈ Itrans for which |xi | < 0.1,
N ≥ m− (m′ − 1+ 1/α). Averaging the two lower bounds gives N ≥ (m − 1/α) /2.

��
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B.3 Proof of Theorem 3

Theorem 3 There exists a numerical constant c < ∞ such that the following lower
bound holds. Let p ≥ 2, p ∈ N, and let D, L1, L2, . . . , L p, and ε be positive. Then

Tε

(

A(1)
det∪A(1)

zr ,Fdist
1:p (D, L1, ..., L p)

) ≥ Bε

(

min
q∈[p]

{

Lq

2�̃q
Dq+1

}

,
L1

2
,
L2

2
, . . . ,

L p

2

)

,

where �̃q ≤ exp(cq log q + c).

Proof The proof builds off of those of Theorems 2 and Pi.3. We begin by recalling the
following bump function construction

h̄T (x) := 


(

1− 25

2

∥

∥

∥x − 4

5
e(T )

∥

∥

∥

2
)

where 
(t) := e ·exp
(

− 1

[2t − 1]2+

)

. (32)

Adding a scaled version of−h̄T to our hard instance construction allows us to “plant”
a global minimum that is both close to the origin and essentially invisible to zero-
respecting method. For convenience, we restate Lemma Pi.10,

Lemma 8 The function h̄T satisfies the following.

i. For all x ∈ R
T we have h̄T (x) ∈ [0, 1], and h̄T (0.8e(T )) = 1.

ii. On the set {x ∈ R
d | xT ≤ 3

5 } ∪ {x | ‖x‖ ≥ 1}, we have h̄T (x) = 0.
iii. For every p ≥ 1, the pth order derivative of h̄T is �̃p-Lipschitz continuous, where

�̃p ≤ ecp log p+c for a numerical constant c < ∞.

With this lemma in place, we follow the broad outline of the proof of Theorem 2,
with modifications to make sure the norm of the minimizers of f is small. Indeed,
letting λ, σ > 0, we define our scaled hard instance f : RT+2 → R by

f (x) = λσ 2 f̄T ,μ,r (x1/σ, . . . , xT+1/σ) − λ̃h̄T+2 (x/D) , (33)

that is, the hard instancewe construct in Theorem 2minus a scaled bump function (32).
For every p ∈ N, we set the parameters λ, σ, μ and r as in the proof of Theorem 2,
so that we satisfy inequality (12) except we replace Lq with Lq/2 for every q ∈ [p]
(including in the definitions of λ, σ, μ). Thus, as in inequality (12), for each q ∈ N

the function f0(x) := λσ 2 f̄T ,μ,r (x/σ) has Lq/2-Lipschitz qth order derivative and
satisfies ‖∇ f0(x)‖ > ε for all x ∈ R

T+1 with xT = xT+1 = 0. By Lemma 8.iii,
setting

λ̃ = min
q∈[p]

1

2�̃q
Lq D

q+1 (34)

guarantees that the function x �→ −λ̃ · h̄T+2(x/D) also has Lq/2-Lipschitz qth order
derivatives, so that overall, for each q ∈ [p] the function f defined in Eq. (33) has
Lq -Lipschitz qth order derivative.
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We note that by Lemma 8.ii, h̄T+2(x) is identically 0 at a neighborhood of any x
with xT+2 = 0, which immediate implies that h̄T+2 and f are zero-chains. Therefore
for any A ∈ A(1)

zr producing iterates x (1) = 0, x (2), x (3), . . . when operating on f , we
have x (t)

T = x (t)
T+1 = x (t)

T+2 = 0 for any t ≤ T . Thus, by our choices of λ, σ, μ and r ,
∥

∥∇ f (x (t))
∥

∥ = ∥

∥∇ f0(x (t))
∥

∥ > ε for every t ≤ T , and so

Tε

(

A(1)
zr ,Fdist

1:p (D, L1, ..., L p)
) ≥ inf

A∈A(1)
zr

Tε

(

A, f
) ≥ T + 1.

To establish that f ∈ Fdist
1:p (D, L1, ..., L p), it remains to show that every global

minimizer of f has norm at most D. Let x� denote a global minimizer of f , and
temporarily assume that

f
(

0.8D · e(T+2)
)

< 0, (35)

Therefore, f (x�) < f
(

0.8D · e(T+2)
)

< 0 and h̄T+2(x�/D) �= 0, as otherwise
we have the contradiction f (x�) = λσ 2 f̄T ,μ,r (x�/σ ) ≥ 0. By the definition (32),

h̄T+2(x�/D) �= 0 implies that 1 − 25
2

∥

∥x�/D − 0.8e(T+2)
∥

∥

2 ≥ 0.5, and therefore
‖x�‖ ≤ D. To verify the assumed inequality (35), we use Lemma 8.i to obtain

f
(

0.8D · e(T+2)
)

= λσ 2 · f̄T ,μ,r (0) − λ̃ · h̄T+2

(

0.8 · e(T+2)
)

= λ
√

μσ 2

2
+ 10λσ 2μT − λ̃.

Therefore, if we set

T =
⌊

λ̃ − λ
√

μσ 2/2

10λμσ 2

⌋

(36)

then inequality (35) holds and ‖x�‖ ≤ D, and so f ∈ Fdist
1:p (D, L1, ..., L p).

Comparing the setting (36) of T above to the setting (13) of T in the proof of The-
orem 2, we see they are identical except that we replace the term � in (13) with
λ̃ := minq∈[p](2�̃q)−1Lq Dq+1. Thus, mimicking the proof of Theorem 2 after the
step (13), mutatis mutandis, yields the result. ��

B.4 Proof of Lemma 5

Lemma 5 Let T ∈ N, 0 < α ≤ 1, μ ∈ [T−2, 1] and ˜fT ,α,μ be defined as in (19), with
� and ˜ϒ satisfying

�′(0) = ˜ϒ ′(0) = 0 and �′ is 1-Lipschitz continuous and max
z∈[0,1] |˜ϒ

′(z)| ≤ G,

for G > 0 independent of T , α and μ. Then there exists x ∈ R
T+1 such that xT =

xT+1 = 0 and
∥

∥∇ ˜fT ,α,μ(x)
∥

∥ < Cμ3/4,
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where C ≤ 27+√
3G.

Proof We construct x as follows. We let x1 = 1, and for n > 1 let (with x0 := 1),

xn = xn−1 − (xn−2 − xn−1) − δn−1 = 1−
n−1
∑

i=1

i
∑

j=1

δi ,

where we take

δn = 1

m(m + 1)

⎧

⎪

⎨

⎪

⎩

1 n ≤ m

0 n = m + 1 or n > 2m + 1

−1 m + 1 < n ≤ 2m + 1

for somem ∈ Nwhich we will later determine. The elements of ∇ ˜fT ,α,μ are given by

∇n ˜fT ,α,μ(x) = �′(xn − xn−1) − �′(xn+1 − xn) + μ˜ϒ ′(xn),

where for n = 1 we used x1 = 1 and �′(0) = 0 to write α · �′(x1 − 1) = 0 =
�′(x1 − 1). Since �′ is 1-Lipschitz, we have

∣

∣�′(xn − xn−1) − �′(xn+1 − xn)
∣

∣ ≤ |(xn − xn−1) − (xn+1 − xn)| = |δn| .

Moreover, one can readily verify that xn ∈ [0, 1] for every n and that xn = 0 for every
n > 2m + 1. Therefore, using using ˜ϒ ′(0) = 0 and maxz∈[0,1] |˜ϒ ′(z)| ≤ G we have
that

∣

∣˜ϒ ′(xn)
∣

∣ ≤ G · 1(n≤2m+1), which gives the overall bound

∣

∣∇n ˜fT ,α,μ(x)
∣

∣ ≤ |δn| + μ
∣

∣˜ϒ(xn)
∣

∣ ≤
(

1

m2 + Gμ

)

1(n≤2m+1),

and thus,

∥

∥∇ ˜fT ,α,μ(x)
∥

∥ ≤ √
2m + 1

(

m−2 + Gμ
)

≤ √
3
(

m−3/2 +√
mGμ

)

.

Taking m =
⌈

1
3
√

μ

⌉

, we have

∥

∥∇ ˜fT ,α,μ(x)
∥

∥ ≤ √
3

(

⌈

1

3
√

μ

⌉−3/2

+ G

⌈

1

3
√

μ

⌉1/2

μ

)

≤
(

27+√
3G
)

μ3/4,

wherewe have used
⌈

1/(3
√

μ)
⌉ ≤ 1/

√
μ sinceμ ≤ 1. Thus,

∥

∥∇ ˜fT ,α,μ(x)
∥

∥ ≤ Cμ3/4

holds forC = 27+√
3G. For T ≥ 8, sinceμ ≥ T−2,we have 2m+1 ≤ 2  T /3"+1 <

T and therefore xT = xT+1 = 0 holds as required (since xn = 0 for every n > 2m+1).
In the edge case T ≤ 8 we have μ ≥ T−2 ≥ 1/64 and therefore x = 0 yields
∥

∥∇ ˜fT ,α,μ(x)
∥

∥ = α ≤ 1 ≤ 27 · (1/64)3/4 ≤ Cμ3/4. ��
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