Faez Ahmed’

Department of Mechanical Engineering,
University of Maryland,

College Park, MD 20742

e-mail: faez00@umd.edu

John Dickerson
Department of Computer Science,
University of Maryland,

College Park, MD 20742

e-mail: john@cs.umd.edu

Mark Fuge

Department of Mechanical Engineering,
University of Maryland,

College Park, MD 20742

W) Check for updates

Forming Diverse Teams From
Sequentially Arriving People

Collaborative work often benefits from having teams or organizations with heterogeneous
members. In this paper, we present a method to form such diverse teams from people arriv-
ing sequentially over time. We define a monotone submodular objective function that com-
bines the diversity and quality of a team and proposes an algorithm to maximize the
objective while satisfying multiple constraints. This allows us to balance both how
diverse the team is and how well it can perform the task at hand. Using crowd experiments,
we show that, in practice, the algorithm leads to large gains in team diversity. Using sim-
ulations, we show how to quantify the additional cost of forming diverse teams and how to
address the problem of simultaneously maximizing diversity for several attributes (e.g.,
country of origin and gender). Our method has applications in collaborative work
ranging from team formation, the assignment of workers to teams in crowdsourcing, and
reviewer allocation to journal papers arriving sequentially. Our code is publicly accessible
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1 Introduction

Collaborative work often benefits from having teams or organiza-
tions with diverse backgrounds and experiences [1]. For example,
studies have suggested that there is a positive relationship
between diversity in a firm’s knowledge base and its capability to
innovate [2]. A large-scale study by Mckinsey [3] looked at the rela-
tionship between the level of diversity (defined as a greater share of
women and a more mixed ethnic/racial composition in the leader-
ship of large companies) and company financial performance.
They found that the companies in the top quartile of gender diver-
sity were 15% more likely to have financial returns that were above
their national industry median. Companies in the top quartile of
racial/ethnic diversity were 30% more likely to have financial
returns above their national industry median. Firms or teams with
employee diversity are often considered to be more competitive
since such teams make the firm more open toward new ideas [4]
—for example, by increasing a firm’s knowledge base and interac-
tion between different competencies. As the cultural, educational,
and ethnic backgrounds among employees become more diverse,
so does the knowledge base of the firm.

However, forming and maintaining diverse and high-quality
teams over time can be challenging, in large part because people
(whether in traditional firms or online collaborative groups) join
and leave the firm sequentially, over time, rather than as one
large cohort or pool. In contrast, if we knew ahead of time
exactly when and who would be available to join different teams,
then the problem reduces to the easier mathematical problem of
static bipartite matching: that is assigning a set of resources
(people, in this case) to a set of tasks/groups (teams, in this case).
If different people were better suited for some teams or tasks over
others (say, they had a certain skill that was highly valued for a
given team’s task), then this is called weighted bipartite matching,
such that we assign people to teams such that the assignment max-
imizes the overall weight (or quality) of the matching. In practice,
people can often be assigned to multiple teams or collaborative pro-
jects at the same time, up to some upper and lower limits (say,
maximum of » number of teams per person), which is referred to
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as weighted b-matching. The widely studied weighted b-matching
problem occurs in all cases where a finite set of resources (e.g.,
people, computers, and vehicles) needs to be matched to another
finite set of resources (e.g., teams, tasks, and trips) like team-
formation and scientific peer-review (assigning people to review
papers).

For collaborative work, we must handle two additional con-
straints not considered together by past matching approaches:

(1) We do not know ahead of time exactly which future people
will be available and need to decide at the moment
whether to assign a newly arrived person to a team—i.e.,
we must match people to teams in real-time rather than
waiting to collect a pool of people and then matching every-
one in that pool to teams in an offfine fashion.

(2) We want to encourage matching a diverse subset of people to
teams—e.g., teams where people are not only well matched
to the task but also have complementary expertise or relevant
but different viewpoints.

We refer to this as real-time, diverse, weighted b-matching.
Figure 1 shows an illustration of this problem with three teams
and people belonging to two groups. This setting is particularly
important in practical implementations of collaborative work,
where teams of people are formed to solve problems together.
Without real-time matching, for example, if one waits to match
people to teams offline (e.g., by collecting a pool of people
before assigning teams), then team starvation or worker retention

= Person hired

—— Person not
hired

People yet to arrive  People (P) Teams (T)

Fig.1 Bipartite graph of people arriving sequentially and teams
requiring two workers each. People belong to two groups here
(first group for p1, p2, and p5 and second group for p3, p4, and
p6). Team t1 is matched to two people from different groups
while teams {2 and t3 are so far matched only to one person each.
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issues arise where teams may sit dormant without progress or
workers may leave while you wait to assign people to the teams.
The problem of real-time diverse matching arises in many disci-
plines and problems, including matching workers to firms [5], chil-
dren to schools [6,7], reviewers to manuscripts [8,9], donor organs
to patients [10,11], and residents to public housing [12]. Specifi-
cally, this paper contributes to the following:

(1) We show how to formulate the real-time diverse bipartite
b-matching problem as an optimization problem and demon-
strate how our general formulation resolves, as a special case,
to real-time person-to-team matching.

(2) We present a simple approximation algorithm for performing
real-time diverse matching.

(3) We demonstrate that the empirical performance of our simple,
greedy allocation not only satisfies theoretical results but is
also often surprisingly close to optimal, in practice, on a
variety of tasks including simulated test cases with known
optima and via Amazon Mechanical Turk experiments.

To enable practitioners to deploy this method for their own
domain, we have provided the source code® and encourage inter-
ested readers to use it.

2 Related Work

Matching people to form diverse teams leverages the intersection
of two past areas of research: the role of team diversity in collabo-
rative work (Sec. 2.1) and how resource diversity is measured and
used to form teams (Sec. 2.2). In the context of this past work, this
paper provides a practical, simple-to-implement, and high-
performing method to perform diverse, real-time, b-matching that
can enable diverse team formation when unknown people arrive
sequentially over time.

2.1 Diversity in Teams. Building effective teams is often
defined as “helping a work group become more effective in accom-
plishing its tasks and satisfying the needs of group members” [13].
Prior research has explored what constitutes a successful team [14],
how teams develop [15], and how different selection criteria and
competencies might lead a team to excel [16]. For example, effec-
tive teams may need diverse knowledge and skills [17-19],
workers’ attitudes, personalities [20], and emotional intelligence
[21]. Team diversity can include both task-related diversity (e.g.,
functional expertise, education, and organizational tenure) as well
as bio-demographic diversity (e.g., age, gender, and race/ethnicity).
Task-related diversity has been reported to have a positive
impact on team performance [3,22,23] although bio-demographic
diversity is shown not to be significantly related to team perfor-
mance [24].

Non-diverse teams often emphasize on consensus-seeking beha-
vior, which can result in suboptimal decision-making, such as
Groupthink [25]. Team diversity can often circumvent this by bring-
ing in differing perspectives and promoting healthy debates and dis-
sents [26] with limited to no decrease in performance [27]. For
example, increased cognitive diversity can increase performance
on complex and non-routine tasks [28,29]. In contrast, other
researchers have argued for the benefits of homogeneous (non-
diverse) teams which can include increased team cohesion and per-
formance on certain tasks [30].

In relation to that body of work, this paper provides an algorithm
for organizations to control to what extent they wish to incorporate
or emphasize various types of diversity when matching workers to
teams.

2.2 Measuring Diversity and Matching Teams. While
researchers have found benefits to encouraging team diversity

2hups://gilhub.com/IDEALLab/onlinemalching
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(cognitive, task-based, etc.), one open question lies in how to rigor-
ously and scalably form teams (or, equivalently, match people to
teams) to achieve that diversity. To do this, we first need to under-
stand two areas of related research: (1) how is diversity measured
and (2) how can one use those measures to form diverse teams?

Past researchers have measured diversity by defining some
notion of coverage—that is, a diverse set should cover the space
of available variation. Mathematically, researchers have done so
via the use of submodular functions, which encode the notion of
diminishing returns [31,32]; that is, as one adds items to a set that
are similar to previous items, one gains less utility if the existing
items in the set already “cover” the characteristics added by that
new item. For example, many previous diversity metrics used in
the informational retrieval or search communities—including
maximum marginal relevance [33], absorbing random walks [34],
subtopic retrieval [35], and determinantal point processes [36]—
are instances of submodular functions. These functions can model
notions of coverage, representation, and diversity [37], and they
achieve the best results to date on common automatic document
summarization benchmarks— e.g., at the Document Understanding
Conference [31,32].

Once one has an appropriate function for measuring diversity,
one now has to use that function to form diverse teams. Wilde
[38] proposed that diversity of a team can be measured by a
count of the number of unique affinity groups present in the team.
They provided a practical method to form teams based on the cog-
nitive patterns of people in a personnel pool. However, their
approach uses a diversity measure (which is similar to the richness
measure used in ecology) that does not account for affinity group
variations within a team. Their heuristic approach does not simulta-
neously maximize quality and diversity, and cannot scale to cases
with thousands of participants. While fully automated team forma-
tion algorithms have recently emerged to place people together in
socially networked environments [39,40], past approaches do not
ensure or encourage diversity in any matchings, instead focusing
only on how qualified the members are to the task (standard
weighted b-matching) and meeting the cost/capacity constraint.
However, in the offline case, Ahmed et al. [41] provided an algo-
rithm for diverse b-matching applied to reviewer-paper matching
of conference papers. Their matching occurred offline (where all
people and tasks were known ahead of time) using a mixed
integer quadratic program, rather than the real-time case that more
realistically captures actual team formation in most firms or com-
munities. They also proposed a pseudo-polynomial time algorithm,
which guarantees to provide optimal solution for the offline match-
ing problem using an auxiliary graph approach [42]. In Ref. [43],
authors study the offline diverse team formation problem and
provide a polynomial method for approximating optimal team for-
mation. They study a complementary definition of diversity, where
the goal is to find teams that are close to a given distribution and not
the team members being different from each other.

2.3 Why Form Teams in Real Time? In contrast to offline
team formation, real-time algorithms (also called online algorithms)
are more appropriate for forming teams for tasks where a timeline
exists with varying worker arrivals and departures. This paper con-
tributes a means to form teams that are both diverse and formed in
real time. In real-time team assignment problems, (1) a firm has a
fixed set of tasks/teams and a budget that specifies how many
times the firm would like each task completed or how many teams
it needs; (2) new people arrive at the firm one at a time (in the case
of regular hiring) and potentially the same person could arrive mul-
tiple times (e.g., in the case of freelancing or gig/shift work); and (3)
people must be assigned to a team immediately upon arrival (or
rejected and not assigned to any team). The goal is to allocate
people to teams in a way that maximizes the value of collaborative
work all teams produce ( i.e., solely maximizing utility).

But why do we need to form teams in real time? Does not one still
need the team to be built to start performing its task? In such a case,
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the team members who arrive earlier need to wait for later team
members to join the team. If they are waiting for other workers to
join, why can they not just wait in a pool so that one can use an
offline team formation algorithm? The answer to these questions
relate to two main factors: (a) the type of the task and (b) the com-
pensation of the individuals. First, not all team tasks require the
entire team to work synchronously. In tasks like conference paper
reviewing, each team member works independently and then their
output is aggregated. Real-time team formation works well for
such tasks. However, even in tasks which require the team to
work synchronously, real-time team formation can help when task
timeliness and cost are constrained. To form the teams offline,
one may have to create a large pool of workers and ask them all
to wait until the pool is large enough. This means all the workers
have to be paid while waiting and many may drop-out from the
waiting room. In contrast, a real-time algorithm only requires that
the selected workers wait, not the entire pool. This improvement
in time comes at the cost of lower objective value, as offline match-
ing will always be strictly better than the real-time matching method
(assuming no drop-outs and ignoring the cost of waiting). Finally, in
case of a batch of workers appearing at a time, our algorithm can be
easily modified to use a submodular greedy method to rank order
the entire batch and then use real-time matching algorithm outlined
in Algorithm 1.

Few papers have studied the real-time or online task assignment
problem. For instance, Basu Roy et al. [44] proposed a framework
for optimizing task assignment in knowledge-intensive crowdsourc-
ing. They maximize overall task quality and minimize cost, with
constraints on skill, cost, and tasks per worker. Unlike our work,
they use an additive skill aggregation model [40] to calculate the
total skill of a team of workers. The work closest in scope to our
problem is that of Schmitz et al. [45] who study the problem of
both task assignment (finding which worker should do which
task) and sequencing (identifying at what time each worker
should contribute). Their model assumes that workers are available
only at specific time slots and worker/task arrivals are not known a
priori. In their work, the utility provided by each worker in a team or
task is independent of other workers. This assumption can fail if
previously arrived workers have similar skills and have already
joined the team. In contrast to their method, we address a harder
problem where every worker’s utility depends on whoever else
has already been accepted to the team.

This paper addresses how to maximize both utility and diversity
—where we, similarly to past research, represent diversity using a
submodular function. Mathematically, we essentially express the
diverse real-time matching problem as a subset selection problem
with multiple knapsack constraints. Online matching and its gener-
alization to set packing have been studied through the lens of theo-
retical computer science for nearly three decades [46]. These
algorithms have been applied to a multitude of tasks like online
video summarization [47]. The algorithms we present in this
paper draw motivation most heavily from recent work in online sto-
chastic optimization with nonlinear objectives [48,49] and from
Ref. [50] in particular.

3 Diversity in Matching

This section introduces some of the more detailed mathematical
notation needed to properly describe our algorithm for team forma-
tion in the next section. We flesh out in more precise detail how
diversity is modeled and calculated via a submodular function
and how this relates to matching people to teams.

We model the overall problem as maximizing a monotone sub-
modular function over b-matchings in a bipartite graph G=(P, T,
E), where P is a set of M vertices (e.g., people) that arrive sequen-
tially, T'is a set of N vertices (e.g., teams) known a priori, and where
no vertex i (team or people) is incident to more than b(i) edges in a
proposed matching ( i.e., we cannot assign a person i to more than
b(i) teams at once), and E is the set of edges between teams and
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people. Even the offline version of this problem is nondeterministic
polynomial time (NP) hard (i.e., NP-hard) , so we focus on approx-
imate submodular maximization and instead bound how close we
can get to the optimal solution. To incorporate diversity, we con-
sider a scenario where left-side nodes (e.g., the people) are
divided into K groups or clusters (as shown in Fig. 1). We want a
matching which allocates each node on the right side (a team) to
nodes from different clusters on the left side (people). A set of
edges is considered diverse if it connects left-side nodes (people)
from different clusters. For example, in Fig. 1, matching team ¢1
to person pl and p2 is a non-diverse matching (as both p1 and p2
come from same block), while matching it to p1 and p3 is consid-
ered diverse. Note that the clustering can be pre-defined (like the
country of origin of workers) or calculated using any attribute.
The methods discussed here are agnostic to the choice of clustering
method, and they assume that each item has a cluster label and we
want to maximize coverage over different cluster labels. If the labels
are country of origin of workers, then the optimal teams will have
people from different countries.

We use a square-root-based diversity reward function which bal-
ances the number of nodes (e.g., people) selected from different
clusters, adapted from the work of Lin and Bilmes [31] on multi-
document summarization. We first define some notations. S; C E
is the subset of edges in a proposed matching that are also incident
to team j € 7. Assuming people belong to K clusters—e.g., of skill-
sets or levels of experience—P,C P, k€ [K], is a partition of all
people P (i.e., Uy P, =P and Py N Py =@ for all k#k'). This
means that each edge is associated with the cluster of the person
it is incident on. We also define w;; as the quality (or expertise)
of worker i to do team j. In our context, for a specific team j€ T,
we define an objective function fj:E — R which rewards diversity
as follows:

K

fSy=>" oo wy o)

k=1 "\ {ili€Pc AGi))ES;}

The part within the square root function controls the quality such
that a higher weight w;; implies the person i offers higher utility
(better expertise or higher quality) for the job j. On the other
hand, the sum of the square roots corresponding to each cluster
means that adding nodes from the same cluster gives less marginal
gain compared to adding nodes from a different cluster. Hence, it
promotes diversity by preferring people from groups that have not
been well represented in the teams so far.

Maximizing ) serf(S)) over all legal matchings S allows us to
solve the offline diverse matching problem. To solve the offline
problem, submodular function maximization techniques [51] can
be used; however, this assumes that we know exactly all of the
people who will be available now and in the future. Note that we
chose the objective function in Eq. (1) because it is submodular,
and it can be optimized using a mixed integer convex solver and
has been shown to give a state-of-the-art performance in diversity
measurement for document summarization tasks [32]. However,
there are other submodular functions too, which are used in the lit-
erature to measure diversity (like Herfindahl index [52]), and they
can be used instead of Eq. (1). The team formation algorithm,
which we discuss later, can be integrated with any monotonic sub-
modular function, for which we can estimate the optimal solution.

In Sec. 4, we define the real-time variant of this problem where
we do not assume to know exactly which people will arrive in the
future and perform matching “on-the-fly,” which more accurately
mirrors real-world team formation.

4 Team Formation With Sequentially Arriving People

In our real-time model for team formation/assignment, we again
model people and teams with a bipartite graph G(P, T, E) where an
edge e=(i, j) € E represents whether a person i € P can perform
task or join a team j& 7. Teams are represented as the right side
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of the bipartite graph and people are considered on the left side.
There is a firm with a limited budget of B and a set of N heteroge-
neous teams 7" that need to form. People arrive one at a time from a
large pool P. Each person i € P has a fixed cost ¢ which is the cost
of interviewing or screening the person, during which we learn their
attributes (e.g., demographic information, skillset, etc.). After the
interview/screener, the firm must either assign the person to one
or more teams or reject the person. When a person is accepted for
team j, she receives a payment/salary/bonus of c}?i. Note that
while we mentioned using b(i) to refer to the upper bound for
any node i, to differentiate between the upper capacity of teams
and people on the two sides of a graph, we use notations R* and
L* also. Each team has an upper budget R* of the maximum
number of workers it needs. Each person has an upper budget L*
of the maximum number of teams she is willing to simultaneously
participate in. Every time a person is interviewed/screened, the set
of edges from the person to all teams is considered to “arrive.”

Each person i has a weight w; ; representing the local utility (i.e.,
fit, value, etc.) derived by the firm after matching her to j (we
assume that after team formation, the person performs the task).
We use M to denote the maximum number of people who can
arrive, which is assumed to be known by the firm; typically, M is
determined by the firm’s budget and screening cost c?.

With this setup, our problem can now be formulated as a real-
time submodular maximization problem with N knapsack con-
straints—the N teams’ upper bounds R™.

4.1 Overview of Our Streaming Algorithm. To perform
real-time team formation, we treat people as a continuous stream
and build upon past approaches to streaming algorithms to do
diverse matching. Specifically, our objective function is monotonic
submodular with an upper bound on the cardinality of people and
teams. Recently proposed algorithms by Ref. [50] attempt to
solve the problem of real-time submodular maximization with d
knapsack constraints, for d € N (fully described as Algorithm 4
of Ref. [53]). This algorithm estimates optima for the offline
problem based on all items and then accepts or rejects edges
based on feasibility and marginal gain being above a cutoff value.
An optimum is estimated either using maximum possible marginal
gain over all edges or the current maximum marginal gain.

Algorithm by Yu et al. [53] cannot be practically applied to the
team formation problem due to two reasons. First, it maintains
multiple separate assignment solutions and, when items arrive,
they are accepted or rejected for each list separately. An arriving
item can be accepted by multiple lists and rejected by others. Prac-
tically, this would mean that when a person arrives at a firm, he or
she is possibly allocated to several teams and rejected by others.
The person does their allocated job for all the teams they are
accepted for and the firm maintains multiple possible allocations
simultaneously. After completing the real-time allocation phase
(when all people have arrived), the firm would then “select” the
allocation list that has with maximum utility. This would mean
that many people previously allocated to (and already working
on) teams would then be rejected. If a person has completed the
task already, then their output gets wasted. Each person may
have to be paid for all the tasks they did, while only a fraction
of tasks is used.

Second, their algorithm has only capacity constraints, implying
that in many situations, teams may receive fewer people than its
upper bounds (due to strict filtering). This can be problematic in
practical scenarios, where teams often require at least a minimum
number of people and have upper bounds too—i.e., have both cov-
erage and knapsack constraints.

In this paper, we address these two issues with modifications to
algorithm of Ref. [53] for practical team formation. We propose
to use Algorithm 1 for submodular maximization with d-knapsack
constraints, where optima objective value (OPT) is known. In this
algorithm, c, j; is the cost of admitting an edge e (corresponding
to worker being allocated to team) for the d constraints. For our
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case, with only maximum team size as capacity constraints, c,;; is
1 and the maximum capacity of a team equals »=R*. Running
this algorithm requires an o-approximation of the global optimum
for the offline case, a€(0, 1]. v is a value less than OPT and
greater than aOPT, and we later explain how v can be estimated.
Af(@, e) is the marginal gain of adding a single edge e to a null
set. Af(S, e) is the marginal gain of adding edge e to the set S.
This algorithm provides a o/(1 4 2d)-approximation guarantee of
the optimal solution, where d is the number of knapsacks and « is
the approximation factor up to which we can estimate the optima
OPT.

Algorithm 1 Real-time diverse matching

Input: v such that « OPT <v < OPT, a € (0, 1]
Output: A feasible team allocation S C E

1 S«
2 fori < 1to M do
3 Find a permutation ¢ of all edges from i s.t.

AF(S, &) = AF (S, by) = - = AF (S, dy)

4 | for e < ¢, to ¢y do )

5 Ifc.j; > 7 and Af (@, e)c.jj > b1 2d) +v2d) for any jj € [d] then
6 LS:{e]z,returnS AF(S. ) o

7 I )" e iy S b and ——— > ———— Vjj € [d] then

8 [ S=Sufe Ce,jj b(1 +2d)

9 return S

We solve the problem of real-time team formation in three steps
using Algorithm 1. First, we define a convex optimization problem
and solve it to estimate an upper bound on OPT. Second, instead of
individual edges (items) arriving sequentially, we receive a batch of
edges (corresponding to all teams a person could join) arriving
together. We sort these edges for marginal utility provided by an
edge and send them in decreasing order of marginal gain provided
by them. By prioritizing tasks more suited to the skill set of a
person, we improve the performance of our algorithm by giving
strictly better results than random order. Third, we discuss setting
o using marginal gains for clusters to guarantee that we can
satisfy lower bounds too (given unlimited arrival of people). Note
that in Algorithm 1, we have not explicitly mentioned the case
with capacity constraints on people (when each worker cannot do
more than L* jobs) or monetary budget constraints (when
maximum budget B is given for team formation), but adding
these constraints is straightforward and does not change the algo-
rithm. To add any additional constraints like budget or person
capacity, we only need to define the individual cost incurred in
selecting the corresponding node and the total budget allowed.
For instance, considering the monetary case would mean cost ¢
in Algorithm 1 equals cfj for the budget constraints and upper
bound b equals B. We do not model the screening cost ¢ in
accepting or rejecting a worker.

We provide a summary of the algorithm’s intuition before diving
into details on how to estimate parameters in it. Algorithm 1
decides the allocation for each edge (from a person to a task) inde-
pendently. This means when a person arrives, it can do both—allo-
cate the person to a new team or allocate the person to a team with
existing qualified workers. Let us consider a simple case of three
teams (T1, T2, and T3), maximum three team members in each
team, and 15 people from three countries (A, B, and C). Each
person can be a part of maximum two teams. For simplicity of
demonstration, we assume that everyone from all countries are
equally good (unit weight). The optimal offline diverse solution
should have three people from different countries allocated to
each team.

Now, let us assume that people arrive in this order: Al, A2, C1,
B1, B2, B3, C2, C3, C4, A3, A4, A5, B4, B5, and C5. When a
person arrives, we first calculate how much marginal gain they
provide to each team and decide the allocation of the team in
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descending order of marginal gain (step 3 of Algorithm 1). The allo-
cation will work as follows® : Al gets T1 (1) and T2 (1); A2 gets T3
(1); C1 gets T1 (1) and T2 (1); B1 gets T3 (1) and T1 (1); B2 gets T2
(1); B3 gets rejected by all tasks (v/2—1), and finally C2 gets T3 (1).
As all teams have received the required number of people, the rest
are not needed. In this example, we assumed that we knew the
offline optimal solution. In Sec. 4.2, we will explain how we can
either estimate the optimal solution or circumvent the need of esti-
mating the optimal solution by using the marginal gain values.

4.2 Estimating the Optimum: Finding the Maximum
Number of People From Each Cluster. To estimate the
optimum for the offline problem, we assume that an unlimited
stream of people exists, without knowing the number of people
arriving from each cluster or their order. We make two assumptions.
First, we assume that all people from the same cluster provide
similar utility for any given team and, second, we assume that
people are willing to participate in all teams. With these assump-
tions, we can formulate the diversity maximization problem for
all teams by summing up submodular gains across each team and
each cluster from Eq. (1). Let y;; be the number of people from
cluster k matched to team j. Let wy; be utility of a worker from
cluster £k matched to team j. The maximum number of people
who can work in a given team is R*. Hence, we define the following
problem:

N K K
mvaxzz Wik sty v <RY V€N ()
T j=1 k=1 k=1

This is a concave maximization problem with linear constraints
and can be solved using a convex solver for real-valued y and
optimum value OPT*. A mixed-integer convex solver can also be
used to obtain the true OPT [54]; however, such solvers are still
in their nascency and, as we discuss later, the real-valued relaxation
is sufficient for our case.

Solving Eq. (2) with real valued y yields OPT*, which satisfies
aOPT <v<OPT<OPT*. Solving this problem essentially esti-
mates how many people from each cluster we should expect in an
optimal solution and not the allocation of individual people (as
people are exchangeable within a cluster). We use OPT* in place
of OPT to filter edges in Algorithm 1.

Algorithm 1 accepts or rejects edges based on marginal gain and
constraint satisfaction in step 5. However, in practice, matching
people to teams often also requires a lower bound of at least R~
people for each team. In Algorithm 1, it is possible that the cutoff
is too high for marginal gain (step 5) and enough people do not
get assigned to each team. To solve this problem, we pre-calculate
the marginal gains for each cluster and find the R™th highest mar-
ginal gain among all clusters (denoted as dfg-). This value is used
to set the value of v (used in Algorithm 1) such that

)< dfg-.b.(1 +2d) 3)
2
Setting v using Eq. (3) ensures that at least R~ workers will get
accepted by the algorithm irrespective of the arrival order of people
as the marginal gain of (R™)th person will still be below the cutoff in
step 5 of the algorithm. In the simulation results, we explain how
setting o or v not only helps ensure the lower bounds but also improves
overall matching utility. If the optimization problem in Eq. (2) is
solved exactly with integral y, the current algorithm also provides a
o/(1+2d) approximation of the optimal solution. The specific
choice of v or order of arrival of nodes does not alter the theoretical
guarantees. For clarity, we have provided a table with nomenclatures
in the Supplemental Material on the ASME Digital Collection.

The marginal gain of each person for their allocated task is shown in parentheses.
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4.3 Performance Metrics for Diverse Allocation. We
measure the performance of diverse matching on two factors—
how much cluster diversity it adds to the team and how much
utility it loses for the requester relative to maximum-weighted
matching. To measure improvement in diversity, we measure the
Shannon entropy of a match for each team, with and without our
method. Shannon entropy has been used to incorporate diversity
in recommendations and matching [41,55] and is also widely
used in the ecological literature as a diversity index. It quantifies
the uncertainty in predicting the cluster label of an individual that
is taken at random from the dataset. Entropy of a team is given
by —Zf:l (pr log pr), where p; is the proportion of people on
that team from cluster k. Hence, the impact of real-time diverse
matching can be measured as improvement in average entropy for
all teams. We define the entropy gain (EG) as

_ Average entropy using a diverse matching rule

EG
Average entropy using baseline allocation

“

Entropy for a team is maximized if it has members with even cov-
erage of different clusters; entropy is minimized when all people are
from the same cluster.

To measure the loss of utility due to diverse matching, we adopt
the price of diversity metric proposed by Ref. [41] which measures
the trade-off in economic efficiency under a diverse matching objec-
tive. Specifically, we define two complementary versions of this
metric. First, to measure the economic loss due to rejection of
people by diverse matching, we define the price of diversity
(PoDy) as

P OD#

_ Number of people interviewed for diverse allocation

" Number of people interviewed for baseline allocation ©)
For example, let us say a team requires four people and diverse
matching rejects two people and finds an allocation after the
arrival of the sixth person. If a baseline method accepts the first
four people, PoDy will be 1.5, implying that encouraging diversity
requires interviewing/screening 1.5 times as many people. Nor-
mally, the cost of interviewing or screening candidates is low com-
pared to the cost of the main team (e.g., paying their salary); thus,
even large values of PoD; may be acceptable and will also
depend on resultant entropy gain.
We also define utility-based price of diversity, PoD,,, to measure
the aggregate weight lost due to rejecting people by diverse match-
ing as

_ Utility obtained using baseline allocation

PoD, =
O Utility obtained using diverse allocation

(6)

For example, say a team j requires three people, and that people
belong to one of three clusters k€ {1, 2, 3} with team utilities
w23y, =1{3, 1, 1}, respectively. If we use a greedy algorithm as
a baseline, it will maximize utility only by selecting people from
the first cluster, accruing total utility of 9, while diverse matching
will accrue total utility of 5 by selecting one people from each
group. Hence, PoD,, will be 1.8 against the greedy baseline.

5 Experimental Results

We begin this section by testing our algorithm on simulated
results, showing how the price of diversity is affected by factors
like how many people come from each cluster. Next, we deploy it
on an online platform to show how filtering works in practice.
We use our online platform to collect data from 50 online crowd
workers, who are tasked to complete two tasks. Using these data,
we then show our algorithm’s performance on the true arrival
order as well as the new unseen arrival ordering of workers.
While we compare our algorithm’s final utility with the offline per-
formance, we cannot use it as a baseline to calculate PoDy, as it
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requires all people to be present in a pool. Instead, we use the
first-come-first-serve (random) allocation baseline for our experi-
ments. For the baseline, people who satisfy all the constraints are
allocated to tasks without optimizing for diversity. Lastly, we
create another simulated dataset and show how the matching algo-
rithm can be used to handle complex constraints and diversity for
multiple attributes.

5.1 Team Formation for Simulated Agents. In this section,
we test our algorithm on simulated data. We consider simulated
people sampled from different groups arriving in real-time and
the algorithm assigns them to different teams. We demonstrate
the effectiveness of our method in different situations when there
are balanced or imbalanced clusters (or group identities), when
the utilities of workers are different, and when the arrival ordering
of the workers varies.

For our study, we consider 10 team tasks (N = 10), each of which
requires at most three people (R* = b = 3). People are sampled from
three clusters (K'=3). In the real world, these clusters can be any
label attached to a person, like the country of origin, race, or area
of expertise. While the total number of groups is known beforehand,
a person’s group or cluster id is known only after she arrives ( i.e.,
are interviewed/screened). The cluster ID refers to any possible
grouping of people. Clusters can be based on single attributes
(like gender or country) or a combination of attributes. Our model
assumes that the utility obtained from all people sampled from
the same group is the same. We start by simulating a situation
where every person’s utility is the same irrespective of what
cluster they belong to, and all the clusters are roughly the same
size. Next, we show what happens when people from particular
clusters have higher or lower utility. We demonstrate how the
parameter o affects matching performance in such cases. Finally,
we show that our algorithm is robust, even for skewed distributions.

Clusters With Equal Utility. Imagine a case where a firm tries to
recruit people who belong to three different professions. Each pro-
fession is valued equally to complete the task and roughly one-third
of the applicants belong to each profession. To model such a sce-
nario, we consider three equally probable clusters offering equal
utility, where all people have unit utility for all tasks, hence
wi233,;=1{1, 1, 1}. We do not model the monetary cost of inter-
viewing or total budget, so ¢;;=1 for all workers and teams. We
do 100 runs with a maximum of 100 people (M =100) streaming
in random order. People are drawn from a multinomial distribution
with cluster probabilities 0 = [1/3, 1/3, 1/3], respectively.

Solving the optimization problem in Eq. (2), we find the offline
optimal objective value OPT* =30.0. For our simulation, we set
a=1 (which gives v=30.0). This gives the worst-case performance
bound of 1.428 for the real-time algorithm. Using Algorithm 1 to
filter edges, we obtained the team assignment for all the runs. In
each run, we were able to find the optimal matching with utility
30.0, which is also the offline optimal allocation (one person
accepted from each cluster). Entropy for all teams in all 100 runs
is 1.09, implying that all teams were formed with people from
three different clusters. In our experiment, we find that, on
average over the different runs, the median number of people we
interviewed before forming a diverse team is five people. For the
run with the worst-case performance of our algorithm, we inter-
viewed eight people and the run requiring minimum interviews
had only three interviews to hire three people. Hence, median
PoDy is 2.67, while PoD,, is 1. This means that diverse matching
improves coverage over clusters in all cases but requires us to inter-
view or screen 2.67 times as many people before we can form
diverse and high-quality teams. To facilitate reproducibility, we
have provided a table with nomenclatures and the values used in
the above experiment in the Supplemental Material on the ASME
Digital Collection.

Avoiding Task Starvation. In our optimization problem, we do
not explicitly impose lower bounds (cover constraints) on teams
or tasks, i.e., we do not model a constraint saying each team must
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get a minimum threshold number of people. However, for real-time
team formation, teams may require at least R~ people to be effec-
tive. As discussed earlier, Eq. (3) can be used to set o, guaranteeing
the goal of meeting the minimum quota. Using Eq. (3), v<31.5 for
the previous case requires three workers for each task (R~ =3), so
setting o = 1 satisfied this condition.

The parameter o acts as a filter, as decreasing it lets the real-time
algorithm accept more people from each cluster (forming less
diverse teams for the sake of expediency) while increasing it
accepts only the workers with highest marginal gain (holding out
on candidates until it can form a diverse team). On one hand,
setting o too high will mean most people get rejected, leading to
a matching where a team never receives enough people.
However, reducing o to very low values will essentially accept all
people and behave similarly to random team formation (i.e., just
allocate whichever person arrives first). For example, in the previ-
ous problem, when we reduce o to 0.4, the median fitness drops
to 24.14, while the median entropy drops to 0.636. This means
that the median team has three workers, who belong to only two
clusters. Hence, by smartly choosing the parameters of the algo-
rithm, we can control how strict we want to be in the filtering of
incoming workers.

Clusters With Different Utility. Imagine a case where a firm tries
to recruit people who belong to three different professions. Each
profession is valued differently with people from one profession
being more desirable as another. Unequal weights can be allocated
to people when those from a particular profession specialize in the
task. Roughly one-third of the applicants belong to each profession.
To model such a scenario, we consider clusters with unequal cluster
utility. In this work, we assume that we know the team task utility
for each group after the screening task and that other methods like
expertise identification can be used to identify how much a person is
valuable to the team task at hand. In this simulation, we consider
three clusters with utilities w; 23y;=1{3, 2, 1}.

On running the simulation, we found that setting a =1 and sim-
ulating 100 runs led to a median fitness of 31.4 with all team tasks
only matched to two people (one from cluster O and other from
cluster 1). From Fig. 2(a), we notice that the marginal gain of the
first person from cluster 2 is 1.0 (y value on the lowermost curve
corresponding to x=1). The dotted horizontal line for =1 has a
y-intercept greater than 1.0, hence this person will not be accepted
by the algorithm. The optimal fitness OPT* from Eq. (2) is 42.42.
However, if a is reduced to 0.7 (which is less than the cutoff of
0.74 calculated using Eq. (3)), the desirable lower bound is met
(each team receives three people) and the median fitness for 100
runs improves to 41.46 (which is also the optimum fitness for the
offline problem). Hence, the real-time matching algorithm gives
the optimum offline allocation of diverse teams.

In this case, the median entropy is 1.09 with zero violations—i.e.,
all teams get three people from three different clusters. On average,
the team forms after five workers arrive. In the worst case, the team
formed after 16 workers arrived, leading to a median PoDy of 1.67.
Figure 2(b) shows how utility increases when lowering a initially
and then decreases on further reducing it. This is due to the submod-
ular marginal gain of individual clusters as shown in Fig. 2(a). The
x-axis shows the number of people selected from a single cluster for
a single task. Here, each new person from a cluster provides less
marginal utility and different clusters have different curves for mar-
ginal gain. In step 5 of Algorithm 1, we accept or reject people if
their marginal gain exceeds a cutoff directly proportional to « (as
shown by the dotted horizontal lines). We will accept people
from a given cluster until the marginal gain curve for that cluster
dips below the dotted line. The marginal gain of people belonging
to each cluster is shown, where the first person from cluster O has a
marginal gain of 1.73 and the second person from cluster O has a
marginal gain of 0.72. Hence if a =1, only a maximum of one
item from cluster 0 will be accepted. Similarly for cluster 1, if a
=0.5, a maximum of two people can be accepted.

Similarly, for «=0.3, up to five people from cluster 0, three
people from cluster 1, and two people from cluster 2 can be

Transactions of the ASME

120z Aenuer /g uo Jesn saueiqr] puelAie Jo Ausiaaun Aq4pd LovLLL LL 2Pl PW/yL89ESY/LOYLL L/L /gy L/APd-aonie/ubisapleoiueyosw/Bio-swse uonos|jodjenbipawse//:dny woly pspeojumoq


http://dx.doi.org/10.1115/1.4046998

—— Cluster 0
1.6 - Cluster 1 40
*— Cluster 2

ais 1.0

ais 0.7

Mean Utility
W
(o2}

ais 0.5

9 i 6 s
Number of items in cluster

(a)

—— Mean Utility —+— MeanEntropy [1.1 py_1-1
1.0 1.0
> >
[=X [=}
S o
0.9 |0.9%
w w
c [ =4
3 3
082 (082
0.7 + 107
02 0.4 0.6 08 10 0

(b)

Fig.2 Effect of o on worker acceptance and mean utility. (a) Effect of a on worker acceptance from each
cluster. (b) Effect of a on utility and entropy. Utility maximizes when a is set according to Eq. (3).

accepted. Although, the actual acceptance rate depends on the
order in which people arrive, setting o less than 0.74 guarantees
that real-time diverse matching has zero violations as soon as one
person from each cluster shows up. The theoretical lower bound
on total utility, in this case, is <1.46 and in practice, we get much
better results. For the tasks requiring three workers, we first find
the third-highest marginal gain among all clusters. As shown in
Fig. 2(a), there are three clusters with weights 3 (top curve), 2
(middle curve), and 1 (bottom curve). The top four marginal gain
values are /3, +/2, 1and +/6 — /3. For R~ =3, the third-highest
value is dfg- = 1. After obtaining df-, we calculate v using Eq. (2).
Different Sized Clusters. Imagine a case where a firm tries to
recruit people who belong to three different countries. We assume
that workers from different countries have different utility for differ-
ent tasks and the number of workers from each country is different.
Such a situation frequently occurs on Amazon Turk, when a person
wants to assemble a team of people belonging to different countries
from an online community or a pool of people (such as Mechanical
Turk). If we consider three clusters being the USA, India, and all of
the other countries, then past literature [56,57] has shown that
approximately 75% workers are from the USA and 16% from
India. This means that if we draw randomly from the population,
it is equivalent to sampling from a multinomial distribution with
proportions 0 =[0.75, 0.16, 0.09]. Let us assume that the utility
of assigning a person from these clusters to a team is w;»3),;=
{1, 2, 3}, respectively, implying a worker from India is twice
more suitable for this task than a worker from the USA. If a firm
knows these proportions, a natural and practical question to ask is
“How much budget will I need to form a diverse team?” or “How
many people should I expect to reject to form a diverse team?”
To answer this, we use the following example. A firm can only
pay to interview at most ten people. When the firm starts

0.8 {1

Probability of Cluster 1

0.2 04 06 08
Probability of Cluster 0

interviewing, assume that [6, 3, 1] people arrive from three clusters,
respectively. As people are drawn from a multinomial distribution,
we can calculate the probability of this event as Pr(6, 3, 1) =10!/6!
31 11(0.75)°(0.16)°(0.1)*%° = 0.055. We also know the maximum
number of people allowed from each cluster (e.g., one person),
which means seven people will be rejected in expectation. Like-
wise, we enumerate all possible scenarios for different numbers
of people coming from each group and calculate the expected
number of people accepted for that distribution. In this case, we
expect to accept 2.95 people. This makes sense, as we need three
out of ten people to complete the task and in some cases, people
may arrive only from one or two clusters. As we increase the
number of people we interview, the expected number of accepted
people also increases. Hence, we can calculate the expected
number of people we need to screen to get three people accepted
for each team.

Figure 3 shows the expected number of people needed to get the
desired three people (zero violations) for different cluster probabil-
ity distributions. The x-axis shows cluster 0’s probability while the
y-axis shows cluster 1’s probability. Even for very skewed distribu-
tions with 6 = [0.9, 0.05, 0.05], we get a PoDy of only 15.4. In plain
words, this means that if 90% of the worker population is from the
USA and only 5% worker population is from India, and a firm wants
to create a diverse team, it should expect to interview approximately
15 people for every one person accepted for the team. This is attrib-
uted to the skewed distribution, where people from certain clusters
rarely show up.

In general, Fig. 3 is trying to demonstrate what happens when the
number of people arriving from three different clusters is highly
skewed—that is, how are my interviewing costs affected by diver-
sity requirements, if there are (comparatively) few applicants in a
given category? Each point in Fig. 3 is a distribution of people.
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Fig. 3 Effect of cluster distribution. Left: Expected number of people needed. Right: Actual

number of people needed (median of 100 runs).
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The x-axis and y-axis show the proportion of people from the first
two clusters. Let us say, we are trying to hire a team of three
people, with people coming from three different countries (Cl,
C2, and C3). Now, we take a point on Fig. 3, say x=0.4, y=0.3.
This means 40% of all the people are from C1 (e.g., USA), 30%
of all the people are from C2 (e.g., India), and remaining people
are from C3 (e.g., 30% are from all the other countries). The dark
shade at x=0.4, y=0.3 maps to a value of five people (as shown
in the legend). As people from C1, C2, and C3 are in large propor-
tions, on average, one only needs to interview five people to form a
diverse team of three people. Hence, Fig. 4(b) shows how many
people we have to reject before accepting a person for different pro-
portions of populations.

In context, if people are paid $1.00 to interview them compared
to $100.00 for doing the main task, then for zero expected violations
(i.e., forming all teams), it costs only $46.20 more compared to no
screening and accepting the first three people—even under a highly
skewed distribution of clusters with people from each of the two
groups representing only 5% of the population. In the median
case, where distributions are more even, it only costs an extra
$5.00 to get a diverse allocation. Figure 3 shows the results on sim-
ulating 100 runs for different probabilities of clusters and observing
the median number of people needed by our algorithm.

For clusters with different probabilities, we simulate ten teams
and 100 people, fix a=0.7, and calculate the utility and entropy
for 100 different runs, drawing samples randomly according to
cluster 0 and cluster 1 probabilities. Each run randomizes the
order in which people arrive. Our simulation shows that even for
skewed distributions, our algorithm successfully finds high utility
solutions. In all cases where people from all three clusters show
up, real-time diverse matching finds solutions as good as the
offline optimal solution. For edge cases, where not a single
person from clusters 1, 2, or 3 shows up, the competitive ratio (per-
formance compared to the offline algorithm) is 0.81, 0.79, and 0.80
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Fig. 4 Bipartite illustration of the matching algorithm. People
are shown by circles on the left, and two people from the same
country have the same number (1-5) inside the circle. Females
are shown by larger circles compared to males. The number on
the left of each circle shows the maximum number of teams
that they are willing to join and the number next to each team
shows the maximum number of people needed in that team.
The bipartite graph on the right side shows first-come-first-serve
matching and the bipartite graph on the left side shows our
diverse matching. We observe that for this particular order,
diverse matching interviews only three extra people but leads
to increase in gender entropy by 23% and increase in country
entropy by 18%.
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respectively. In these edge cases, the team minimum requirement of
workers (or lower bounds) is not satisfied by real-time matching as
it only assigns two people per team rather than three. No one from
the third cluster shows up and the algorithm does not accept multi-
ple people from clusters which do show up to avoid a non-diverse
allocation. However, out of the 171, 00 total orderings we simu-
lated, only 40 such violations occurred ( i.e., teams did not get
three people as nobody from one cluster ever arrived in only
0.23% cases).

We find that the median number of people needed for balanced
distributions is low (five people for 6 =[0.33, 0.33, 0.34]). For
skewed distributions, where people from one or more clusters
rarely occur, the median number of people needed to be interviewed
is more (27 people for 6 = [0.05, 0.05, 0.9]). The values are similar
to the expected number of people shown in the left side of Fig. 3,
where we calculate the expectation values instead of simulating
them.

Worst-Case Ordering. So far, we have assumed that workers
arrive randomly from a known or unknown distribution.
However, imagine the worst case scenario, where workers come
one at a time, in such an order that the cost of interviewing
workers by the algorithm is maximized. Suppose a firm is willing
to interview 20 workers (some of whom they will hire), but it
does not know how many people will come from each group.
Assuming that the clusters have highly skewed utilities of [1, 30,
30], that is workers from the second and third cluster provide 30
times utility compared to the utility of workers from the first
cluster. The optimal worker allocation is [0, 1, 2] people from
first, second, and third clusters, respectively, with 13.2 utility
(OPT*=13.52). We set a=0.75 for zero violations, which means
that the algorithm only accepts people from the last two clusters
due to the skewed weights. However, the worst case ordering
could have 20 workers from the lowest weight cluster (cluster O
in this case), all apply first. In such a case, the diverse matching
strategy will not accept any of the first 20 applicants. Hence, with
a limited number of applicants, the algorithm can do arbitrarily
bad if people from a few clusters never show up. In contrast, if
an unlimited stream of workers is allowed, we are guaranteed to
have no violations and will achieve a utility of 13.2 when people
from the second and third clusters eventually arrive. In the next
section, we show that the price of diversity is not high in practice,
even when workers arrive in the worst case ordering.

5.2 Team Formation for Crowd Workers Arriving
Sequentially. Using the simulation studies, we showed the efficacy
of our real-time matching algorithm under different worker utilities
and different probability distributions of classes. To further under-
stand how the method performs when applied to a web platform to
recruit workers, we conducted a crowdsourcing experiment. To test
our algorithm for an online crowd team, we implemented diverse
worker allocation on MTurk via two stages. We created a web plat-
form, where we posted a screening task where people provided us
demographic information. Next, we asked them to complete an ide-
ation task in the second stage. To make the experimental protocol
easier and simpler to test and replicate, we selected writing tasks
that were easy to complete in a short amount of time by team
members and did not require the expertise of the workers in an engi-
neering domain. However, the methods developed in this work to
filter workers are task-agnostic and can be applied equally well to
relevant engineering tasks such as forming diverse technical
teams or assigning design review tasks to diverse experts.

For the sake of demonstration, we assumed that our task required
teams with education diversity, under the assumption that we wish
to form teams with different educational backgrounds. Online
crowd workers reported their educational background using six pre-
specified categories ranging from “high school degree or equiva-
lent” to “doctorate degree.” The categories and corresponding
cluster id for various worker attributes are listed in Table 1. We cat-
egorized education up to a high school degree (ID 0) as cluster 0,
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Table 1

Distribution of various personal attributes in our MTurk experiment

Age Gender Education Country Politics Race
D Age ID Gender D Education D Country D Politics ID Race
0 18-24 0 Male 0 High school degree 0 USA 0 Democrat 0 White (56%)
(20%) (54%) or equivalent (2%) (72%) (46%)
1 25-34 1 Female 1 Some college credit, 1 India 1 Republican 1 Asian (30%)
(48%) (46%) no degree (12%) (28%) (30%)
2 35-44 2 Associates degree 2 2 Independent 2 Hispanic (2%)
(14%) (12%) (20%)
3 45-54 3 Bachelors degree 3 Other (4%) 3 American
(8%) (50%) Indian or
Alaska Native
(6%)
4 55-64 4 Masters degree 4 Other (6%)
(10%) (22%)
5 Doctorate degree
(2%)

other non-graduate degrees (ID 1, 2, 3) as cluster 1, and graduate
degrees (ID 4, 5) as cluster 2. In this task, we assumed that
workers from cluster O provide thrice utility compared to workers
from cluster 2. This screening task filtered people using pre-set
weights of w=[3, 2, 1] for three clusters (K=3) and a=0.7. It
used two constraints d=2 corresponding to maximum people
needed for each task. We designed a platform, which after receiving
a person’s screener response, either directs them to the last page or
allocates them to two different teams/tasks (V= 2). Each team/task
required three people (R* =R~ =b=3), we paid 10 cents for the
screening task (cis =0.10), and a $ 1.00 bonus for the main task
(cf/- =1.00). When we started the experiment, we received people
with education levels denoted by the following labels (ID’s in
Table 1):3,1,3,1,1,4,2,3,3,3,3,4,2,3, 1, 3, 2, 0. The first
entry (3) shows that the first person indicated her educational
level to be “bachelor’s degree” (from Table 1), hence she belongs
to cluster 1, and so on for the remaining entries.

Upon running this experiment, we found that our algorithm
accepted the first, second, and eighteenth person, providing a
diverse mix of education. Although the first three people could
have provided a total utility of 6 (2 +2+2), they all belonged to
the same cluster and offered no diversity of educational level
(zero entropy as first three people had a similar education level).
Our algorithm’s diverse allocation provided a utility of 7 3+2+
2). However, it incurred a cost of $ 4.80 rather than the $ 3.00, it
would have paid for non-diverse allocation. PoDy in this case is 6
and PoD,, is 0.86. The actual price of diversity in different situations
depends on the order in which people arrive.

To compare to counter-factual orderings, we ran another experi-
ment where each person completed both tasks every time they
accepted a job ( i.e., we did not perform team formation immedi-
ately). This allowed us to measure each person’s performance on
all tasks. We then used these data to evaluate our algorithm by
using the same data set to evaluate and compare several order-
ings/assignments. We provided people with two questions to each
participant, who had to submit their ideas on (1) “How might we
make low-income urban areas safer and more empowering for
women and girls” and (2) “How might we restore vibrancy in
cities and regions facing economic decline?”

These questions were selected as they are open-ended, complex,
and accepted different viewpoints. They did not require previous
domain knowledge by the workers. We ran the experiment in
three batches (M =50 workers total). For the screening task, we
requested demographics from each person regarding age, gender,
education, country, political inclination,* and race. In general, we

“While we used the terms “Democrat,” “Republican,” and “Independent” in our data
collection, this is similar to “Liberal,” “Conservative,” and “Moderate” terms, respec-
tively, used in other countries.
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observed that the distribution of people in certain demographics
was highly skewed ( i.e., most people belonged to one class)—
see Table 1.

Table 2 lists the real-time matching results for three scenarios.
First (columns 2 and 3), we calculated the entropy gain and PoDy
for the actual order in which we received people. We considered
six cases, corresponding to the six ways that individuals can be clus-
tered (age, gender, education, country, politics, and race). The
results showed that we can achieve much higher entropy gain
through diverse allocation compared to random allocation. For
instance, the entropy gain to achieve diverse allocation for politics
is 1.33, while the PoDy is 4.25. This meant that we gain in diversity
but have to interview 17 people for every four people accepted in
the team. Similarly, the PoDy for age, gender, education, country,
and race are 3.75, 1.0, 2.0, 1.0, and 10.75.

While the realized order shows an instance of the performance
of our algorithm, it is also possible that the next time we run it
on an online platform, then people show up in a different order.
As the people we drew might not be representative of other possi-
ble orders, we took 1000 permutations of those people and calcu-
lated how our algorithm performs in each case. Next, we calculate
the median values for PoDx and entropy gain (columns 4 and 5).
We notice that the real-time matching method successfully
achieves large values for the median gain in entropy too.
Finally, we calculate the worst-case scenario, where the people
belonging to the smallest cluster show up last. As expected,
PoDy is higher but is not unreasonable due to the low cost of
the screening task.

5.3 Simultaneously Maximizing Diversity for Multiple
Attributes. In many real-world applications, one may want to allo-
cate people to teams, such that teams are balanced for multiple
factors like gender, skillset, experience, etc. Our real-time diverse
matching algorithm can also be used to form teams by simulta-
neously maximizing diversity based on multiple attributes.

To demonstrate this, we experiment on a simulated example. Our
goal of this experiment is twofold. First, we want to show how we
can modify the submodular objective function from Eq. (1) to
measure diversity for multiple attributes (like gender and country
of origin) simultaneously. Second, we also show that the algorithm
can be used when different teams and different people have differ-
ent demands. For example, one team may require three people,
while another may have a demand of five people. People may
also have different thresholds of the maximum number of teams
they are willing to join. These additional requirements make the
problem more difficult to compute, especially for a person trying
to form teams manually.

We start by defining a new objective function to maximize diver-
sity for two attributes—gender and country of origin. Similar to

NOVEMBER 2020, Vol. 142 / 111401-9

120z Aenuer /g uo Jesn saueiqr] puelAie Jo Ausiaaun Aq4pd LovLLL LL 2Pl PW/yL89ESY/LOYLL L/L /gy L/APd-aonie/ubisapleoiueyosw/Bio-swse uonos|jodjenbipawse//:dny woly pspeojumoq



Table 2 MTurk price of diversity (PoD.) and entropy gain in three cases: (1) realized order (columns 2 and 3), (2) median case

(columns 4 and 5), and (3) worst-case order (column 6)

Cluster Entropy gain PoDy Additional expenditure Median entropy gain Median PoDy Worst-case PoDy
Age 1.34 3.75 $1.12 1.23 1.25 7.25
Gender 1.0 1.0 $0.30 1.33 2 10.5
Education 1.33 2.0 $0.60 1.33 225 9.5
Country 1.0 1.0 $0.30 1.23 1.5 9.5
Politics 1.33 4.25 $1.27 2.0 3.75 12.25
Race 2.0 10.75 $3.22 2.0 3 11.25

Note: We also report the additional expenditure of interviewing people for three positions in the realized order, when each interview costs $0.10.

Eq. (1), we define a new objective function for a set S; of people
matched to task j. We use K, to represent the number of unique
genders and K, to represent the number of unique countries. Py,
is the set of people who belong to gender kg (for example, males
are mapped to kg=0 and females are mapped to kg=1). We
define P, as the set of people who belong to country kc. The objec-
tive function f(S;) measuring the quality and multi-attribute diver-
sity of a team j is defined as

K, K,
f&=rd |3 wyrA=n Do |3 wy
ke=1\| {i|i€Pw A(i))ES;} kg=1\| {ili€P, A(i))ES;}

@)

We use the weighing factor of r to define the relative importance
of gender and country diversity. Using Eq. (7), we can calculate the
objective value f(S;) of any team. By taking the difference between
the objective values before and after adding a person to a team, we
can calculate the marginal gain of that person for that team. This
marginal gain is used in step 7 of Algorithm 1 to decide whether
a person gets allocated to that team or not. As f(S)) is a sum of
two submodular functions, it is also submodular.

We create an experiment where there are 40 tasks and 50
workers. There are 14 tasks that require three workers, 16 tasks
which require four workers, and 10 tasks which require five
workers, as shown by values next to teams in Fig. 4. There are 17
workers who will not accept more than four tasks, 18 workers
who will not accept more than five tasks, and 15 workers who
will not accept more than six tasks. Similarly, the maximum
number of tasks a worker is willing to accept is shown on the left
of the worker nodes in Fig. 4. The figure has two bi-partite
graphs, each representing the same people and teams, but different
matching methods. The left sides of the first bipartite graphs show
nodes representing people and the right sides show teams. The
number to the left of a person node shows how many tasks a
person is willing to accept. The number to the right of a team
node shows the maximum number of people that a team is
willing to hire.

We assume that people belong to one of the five possible coun-
tries. The countries C1 (red), C2 (blue), C3 (green), C4 (yellow),
and C5 (cyan) have 20 workers, 10 workers, 10 workers, 5
workers, and 5 workers, respectively. The left nodes in each bipar-
tite graph are colored corresponding to their country of origin. We
also assume that each person belongs to one of two possible
genders. Sixty percent of the workers are male and the remaining
40% workers are female. The left nodes corresponding to the
female gender are double the size of male nodes in the graphs. It
is important to note that when simultaneously maximizing diversity
for two different attributes, these diversities may conflict. A newly
arrived person may increase the gender diversity of the team but not
the country diversity, while another newly arrived person may add
to the country diversity and not gender diversity. In our experi-
ments, we weight these two factors equally by setting r=0.5. We
also set the edge weights of all workers to all teams to one, implying
that people from all countries and gender are equally good for all
teams.
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For people arriving sequentially, one cannot judge an algorithm
based on a single permutation, as it is possible that for a particular
sequence of people the algorithm can perform very well or poorly.
For instance, if one male and one female arrive alternately, a
first-come-first-serve algorithm will also give the most diverse
matching for gender. To compensate for differences in arrival
order, we conducted 100 runs with different permutations in
which people arrive. We measure the performance of our algorithm
using gain in entropy (GIiE) and price of diversity (PoD) metrics
defined before for each run. The gain in entropy (GiE) for gender
(GiEg) and country GiE, are defined separately to measure improve-
ments in diversity for both types of attributes. As a baseline, we use
a first-come-first-serve algorithm, which allocates people to teams
by only satisfying the constraints.

For 100 runs, our results show that the random allocation gives an
average gender entropy of 0.521, while average country entropy is
0.906. Average gender entropy of 0.589 and an average country
entropy of 1.119 are obtained from our algorithm, which are large
improvements over the baseline. Note that these averages are of
100 runs, where each run has 40 teams in them (effectively, it is
an average of forming 4000 teams). We observe that our algorithm
gets more diverse teams for both gender (average GiE, = 1.130) and
country (average GiE.=1.235). The average price of diversity
(PoD) of 100 runs is 1.143. This means that if the baseline algorithm
interviewed 100 people to do the allocation, on average the diverse
algorithm interviewed 14 more people. To explain the results, we
next show the improvement for an individual run (selected
randomly).

We consider the permutation of arrival order shown in Fig. 4.
One can note from the differences between baseline and diverse
allocation that the number of people interviewed for baseline was
32 and the number of people interviewed for diverse matching
was 35 (the PoD =35/32= 1.093). Both cases satisfied all the
constraints and met all team demands. For this run, the gender
entropy and country entropy of the baseline algorithm are 0.473
and 0.977, respectively. Using our diverse matching algorithm,
the gender entropy is 0.581 and the country entropy is 1.150. The
baseline allocation had nine teams (out of 40) which had all
people from different countries. In contrast, our allocation had 21
teams which had all members from different countries. The baseline
allocation had nine teams where all people were of the same gender
(non-diverse), while our allocation had only three such teams.
Hence, by interviewing just three extra people, our algorithm led
to large improvements in both gender and country diversity. This
shows the efficacy of diverse matching on multiple attributes and
complex constraints.

Using this complex setting, we showed that our algorithm can
show large improvements over a baseline algorithm. While we
did not conduct an additional experiment comparing the algorithm
against a human, manually trying to form teams, we argue that
forming a diverse team for multiple attributes (gender and
country) and satisfying the constraints for all workers and teams
is a difficult task for a person to do manually within a reasonable
amount of time. Even if a person can find a good solution manually,
the process will not be efficient or scalable. For instance, we con-
ducted 100 runs for different arrival orders of people, effectively
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forming 4000 teams (15,600 total allocations) within a few minutes.
We can also scale up our experiment to include a much larger
example, doing millions of allocations and incorporate different
utilities. These qualities make algorithmic team formation a neces-
sity in simultaneously forming multiple diverse teams.

6 Discussion

Our above algorithms provide a scalable way to perform real-
time, diverse, team formation that mirrors some of the constraints
of real-world collaborative work and teams. However, our work
leads to many open questions: (1) What kinds or types of diver-
sity is our approach well- or ill-suited to include? (2) When in
collaborative team formation would one want real-time diverse
formation versus not? And (3) what kinds of diverse team forma-
tion tasks or constraints would limit the approach we outline
here?

6.1 Handling Different Types of Diversity. Our above
results demonstrated how to form diverse teams which were
diverse with respect to people who were clustered into discrete
groups (in our case, specifically based on demographics). We also
showed that the method is generic in the sense that it can be
easily applied to any type of diversity wherein people can be cate-
gorized into a set of groups—whether it is based on demographics,
task-related skills, cognitive preferences, etc. In the Supplemental
Material on the ASME Digital Collection, we added an additional
experiment to show how our algorithm can be applied to a real-
world application of allocating reviewers to sequentially arriving
journal papers. This demonstrated that the algorithm is also applica-
ble when the sequentially arriving side is teams. However, there are
two important cases that we do not explicitly handle above: (1)
where people can belong to multiple groups/clusters ( i.e., where
the clusters are not mutually exclusive) and (2) where there are
not discrete clusters but rather continuous scales or spectra along
which people vary.

When people may belong to multiple, non-mutually exclusive
clusters, one must modify our objective function in Eq. (2) to con-
sider not just the given weight assigned to that individual’s
group-to-team edges but also other edges from other groups that
the person may belong to. For instance, a person may have political
affiliation as 50% Democrat and 50% Republican. If such a person
gets matched to a team which tries to maximize the diversity of
political views, then both groups get credit proportional to the per-
centage membership of the person. This increases the computa-
tional cost slightly (in that we have to consider more edges) but
does not substantively change the above algorithm or results.

When people are mapped to a continuous or ordinal spectra (e.g.,
right-to-left leaning, etc.) rather than in groups (e.g., Democrat or
Republican, etc.), diversity is often cast as a type of area, volume,
or density coverage over a space. This changes the objective func-
tion—for example, using determinantal point processes [36] instead
of entropy over groups. In such cases, our greedy algorithm remains
the same so long as the coverage function is submodular, but esti-
mating OPT is more challenging. Methods for doing so are a fruitful
area for future research.

6.2 Under What Conditions Would One Want Diverse
Team Selection?. Theoretically, our proposed method applies to
any situation where people belong to different groups and we
want even coverage of those groups (e.g., in team membership).
However, practically, there are two important factors to consider.
First is the price of encouraging diversity, especially in skewed dis-
tributions. In our simulated and human experiments, when some of
the clusters or groups were quite rare, it was possible that requiring
diverse matching rejected many people (while waiting for a person
from a rare group to arrive). This rejection can have a non-trivial
cost (e.g., when interviewing people), which may affect the total
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budget. In such cases, one must balance the cost of rejection with
the skewness of the applicant pool. If the cost of rejection is high
or there are few applicants from a given cluster/group, then
diverse matching can become expensive. In some situations,
however, this higher cost may be worth the commensurate benefits
of a diverse team.

Second, understanding that benefit-cost trade-off is central to
knowing when and how to apply automated diverse team formation.
Diversity is often portrayed as a “double-edged sword” in contem-
porary organizational theory [26]. At one end of the spectrum, pro-
ponents stress how heterogeneity helps team outcomes, while
opponents posit that heterogeneous teams may lead to dysfunctional
interactions or sub-optimal performance. Different researchers who
study collaborative work have looked at diversity from the lens of
creative output [58,59], team satisfaction [60] or tie formation
[61] etc. Although teams are routinely assembled from individuals
with varying degrees of demographic and cognitive abilities, it is
still an open question as to under what conditions heterogeneous
composition leads to groups which outperform homogeneous
teams [24]. While the answers to those questions lie beyond
the scope of this paper, our proposed method complements
existing research on the benefits of diversity by allowing one to
mathematically study whether balancing one type of diversity
might be useful for a domain. For example, by calculating the
“price of diversity,” our method helps researchers in quantifying
the impact of diversity on real-time team formation or other real-
time matching problems.

As an example, consider two tasks. Task 1 requires a team to
craft policies for an important national issue, while task 2 requires
the team to jointly write a review for the movie “Titanic.” Assume
that the manager wants to maximize diversity with respect to polit-
ical affiliation (Democrats, Republicans, Independent, and Others)
for these two teams. As in our simulation studies, one can use pop-
ulation estimates to calculate the expected price of diversity. For
instance, we observed a PoDy of 4.25 on Amazon Turk. This
means, to form a team of four people for this task, we expect to
reject another 13 people. Getting this estimate and comparing it
to a firm’s costs and internal values illuminates the pros or cons
of political affiliation diversity in each team. For the first task,
opinions from diverse political viewpoints will make the policy
stronger and may be worth the rejection costs. On the other
hand, current research does not indicate that political diversity sub-
stantially benefits dramatic movie review writing, and thus may
not be worth the rejection cost. In such cases, the firm can
decide whether more research is needed to establish the benefit
or not. Our method can be adapted to estimate the trade-off
between the total cost of team formation and the utility gained
by forming diverse teams.

6.3 Limitations of Diverse Team Formation. From the sim-
ulations provided, one may wonder why a computational method is
needed at all. Can diverse matching just be done manually? For a
small number of teams and clusters, where all team members are
equally qualified for the tasks, it is possible to form diverse teams
manually. However, when the constraints are more complex (e.g.,
different tasks have different demands, multiple clusters exist, and
different people have different utility), it quickly becomes impossi-
ble for a human to select diverse teams. In such cases, our diverse
team formation method applies.

Another important implication of our research lies in a better
understanding of team member utility. In our simulations, we
assumed that we already knew the edge weights or the utility that
a person offers to all the tasks. In practice, it is non-trivial to esti-
mate that utility and a large body of research have looked into esti-
mating a person’s task utility [62]. Future research directions can
look at this problem holistically to estimate utility for diverse
teams. One interesting direction would be integrating real-time
diverse team formation with simultaneous utility assessment (e.g.,
based on worker accuracy in crowd markets).
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Likewise, one must estimate a person’s cluster or group. This
paper used demographic groups but our method allows groups
based on any factor. With some modification to the objective func-
tion, it is possible to allow multiple group membership too.
However, defining groups in itself are non-trivial for some applica-
tions, and a person’s group, affiliations, or characteristics may
change over time. These questions complement our line of work
and would be interesting areas for future research.

6.4 Extensions Beyond Team Formation. Thus far, we have
discussed how to form diverse, collaborative teams. However, team
formation can benefit from diversity in two different ways—by joint
team effort or just by aggregating individual efforts. For the former,
organizational research has investigated many factors where diver-
sity may benefit team output. However, a less obvious application
of diverse team formation is the scenario where the team
members work independently. In such cases, one expects to
benefit from aggregating their individual outputs to form a collec-
tive output. Conference or journal paper reviewing is one
example of this situation, where reviewers are not necessarily col-
laborating together, but aggregating reviews from diverse view-
points will benefit a paper more than those from the same
viewpoint. Diverse matching also applies to such broader defini-
tions of team tasks. For instance, many online design communities
expect participants to also review and critique each others’ designs
[63,64]. By matching diverse sets of individuals to each design, one
can expect to get reviews from different viewpoints. Real-time
matching is necessary in this case as people arrive randomly over
time and need a subset of designs to review. Similar issues arise
in network science and formation as well, such as the preferential
attachment problem.

7 Conclusions and Future Research

We presented an algorithm for assigning sequentially arriving
people from different groups to teams—real-time diverse matching.
We show that by using a low-cost screening task, one can group
people and then allocate them to teams as they arrive while balanc-
ing the team diversity. While we clustered people into groups based
on demographics, our method is generic and can be applied to other
attributes like expertise. Our method also applies to other real-time
allocation tasks where diversity of viewpoints might matter, e.g.,
real-time worker-to-team assignments, journal paper-reviewer
assignments, and intelligence analysis tasks. Future work could
include (1) journal paper-review assignments where both the
static and dynamic sides of the bipartite graph are clustered; (2)
latent or non-mutually exclusive cluster labels/attributes; and (3)
combining real-time diverse matching with real-time cluster identi-
fication using Bayesian techniques [65].
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