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Quantifying Uncertainty in Ecotoxicological Risk Assessment: MUST,
a Modular Uncertainty Scoring Tool
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ABSTRACT: Whether conducting a risk, hazard, or alternatives assessment,
one invariably struggles with the task of reconciling multiple available values of
toxicological thresholds into a single outcome. When combining multiple
pieces of evidence from many different sources, it is important to consider the
role of data uncertainty. Uncertainty is inherent to all scientific data. However,
in toxicological assessments, controversies and uncertainties are typically
understated; they lack methodological transparency; or they poorly integrate
qualitative and quantitative sources of information. Similarly, in model
development, data curation is rarely performed with sufficient rigor,
particularly when applying big data statistics. To overcome the hurdles of a
decision process that must reconcile divergent data, we developed an
uncertainty scoring tool that can be trained to reproduce specific decision-
making paradigms and ensure consistency in the practitioner’s judgment
across complex scenarios. While designed to aid with ecotoxicological assessments and predictive model development, the tool’s
applicability extends to any decision-making process that calls for synthesis of incongruent data. Here, we highlight the development
process, as well as demonstrate the method’s utility in several prototypical ecotoxicological case studies.
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B INTRODUCTION

Over the years, considerable progress has been made toward

and replacement protocols, and so forth, let alone measure-
ment of actual toxicant concentrations.” Variability in test data

developing hazard and risk assessment tools that better protect
environmental health.”” Some are (semi)quantitative; others
use traffic-light-style scoring, that is red, yellow, and green.
While some rely on highly curated data,” others use “big data”
with little or no curation.” Despite methodological differences,
these tools fall short of integrating uncertainty in a systematic
and quantitative manner. Uncertainty is inherent to all
scientific data, and its analysis is critical in human and
environmental health assessments.” While some methods use
the so-called uncertainty factors, these are not based on
inherent data uncertainty of the model or test but on ballpark
estimates of inherent extrapolation factors, for example, acute
to chronic data.® Furthermore, there is little agreement on the
magnitude of these factors and how to effectively combine
them in a risk assessment.”

In view of the need to integrate diverse data types in 21st
century risk and hazard assessments, multiple US EPA and
National Research Council reports have called for greater
understanding and transparency of uncertainty in ecotoxico-
logical data, its sources and character.® Data are never as
certain as a single value of toxicological threshold, such as
lethal concentration at 50% mortality (LCs,), implies.
Determination of an LCy, using a “standard” test has inherent
uncertainties even if one adheres to the (legally proscribed)
protocol. Inter- and intra-laboratory variables include age/size/
source of organisms, water quality beyond toxicant, aeration
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for a single chemical can easily exceed 2 orders of magnitude,
as shown in this report. While an in-depth evaluation of every
single test could tease out these differences and how they affect
outcomes and variability, such analyses often become
impractical, multiyear efforts.

Beyond whole-animal models, additional layers of un-
certainty must be considered for New Approach Method-
ologies, or NAMs, which are specifically designed for quick
data generation and analyses.'” Here, uncertainty arises both
from assumptions and approximations of the applied method/
theory and from model training and testing on the
experimental data."’ Though these uncertainties can be partly
alleviated by either perfect knowledge of the mechanisms of
chemical action, or by exhaustive testing of the chemical space
of interest, neither can ever be completely achieved.'”'* Thus,
systematic, computer-aided quantification of uncertainty in
NAMs data is especially important, given its implied additional
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variability, the speed with which such data are produced, and
the resulting quantity of such data.

Uncertainty embedded in toxicological data is carried into
the uncertainty of the risk-based decision. Without a systematic
approach to uncertainty analyses, risk assessments often fall
back on expert opinions, which involve application of (biased)
personal and professional judgments and assumptions.””~"> To
that end, it is not uncommon for different groups of experts to
reach dissimilar conclusions based on the same data sets.’
According to the 2009 NAS report, disagreements over
quantity, quality, and source of scientific data were the most
cogent reasons responsible for delays in regulatory responses.'
Despite the absence of systematic consideration of uncertainty
in risk-based decisions, there exist qualitative and quantitative
approaches suitable for this purpose. In toxicology, they range
from methods with narrow foci on variability in individual data
quality to complex statistical frameworks that combine
multiple lines of (diverse) evidence to inform a risk-based
decision.”"’~** Complex statistical frameworks, such as those
relying on Bayesian logic or Dempster—Shafer theory, have a
proven track record in toxicology.””**** However, a simpler
approach that captures magnitude and diversity of available
data and easily integrates into existing workflows of the (non-
statistician) risk assessor may be preferred in certain
applications, for example, in fast processing of raw (big) data.

To that end, here we report the development and testing of
a Modular Uncertainty Scoring Tool (MUST). MUST
combines standard statistics and expert judgment of data
quality in a transparent, easy-to-use tool that offers
toxicologists a quantitative determination of uncertainty as a
means to filter the available data. It can be used to select
statistically representative value(s) for decision analysis, that is
a risk, hazard, or alternatives assessment, as well as support
predictive-model development, which is critical for filling data
gaps.”"> Our main interest in developing this tool was to tackle
the specific, yet increasingly more frequent case of multiple
incongruent values originating from diverse data streams (e.g,,
in silico, in vitro, or in vivo tests) and to understand how the
distribution of these values and the practitioner’s expert
judgment impact uncertainty.

While MUST relies on user input to assess data quality, it
allows the user to factor his or her confidence in assigned data
quality into the overall uncertainty score. As a decision-support
tool, MUST considers the value of expert judgment and the
lack of consensus on the definitions of risk among
assessors.”>>® To that end, it is a modular tool that can be
trained to reproduce specific decision-making paradigms and
ensure consistency in the practitioner’s judgment in complex
scenarios. By allowing expert judgment affect computed
uncertainties, MUST can be used to generate a range of
scientifically plausible outcomes by having multiple users
analyze the same data set. The combination of fast data-
processing owing to standard statistics and the incorporation of
expert knowledge outline the unique value proposition of
MUST.

B METHODS

Broadly, uncertainty reflects variability in data, commonly
represented by interquartile range, variance, or standard
deviation, and the precision with which such data is measured.
The underlying relationship in MUST builds on these basic
statistical parameters. For a given data set, MUST computes

uncertainty scores (US,) based on variance of data weighted
by its quality (eq 1)

Z,NRE,'xi
O-g u ZII\IRfX
Us, = +y
E~Rf' E (1)

From eq 1, «; is the toxicity threshold value (e.g., LCs); E is
the experimental, that is random, error associated with the test
type; Reis a data-reliability factor, which reflects perceived data
quality associated with a given study; and o, is the sample

- . _ [ 3N 2 .
standard deviation, that is g, = \/ﬁzl:l (x, — x)", describ-

ing variability of the response, where % is the sample mean, and
N is the sample size. The above relationship assumes that all
available data, which can be considered equivalent in the
analysis (e.g., repeated determinations of LCs, values for acute
aquatic toxicity for chemical X), form a random sample within
a larger (unknown) population of (non-normally distributed)
values. The extent of equivalency within any group of values is
determined by the user, who may include or exclude data
points on the basis of relevance, such as due to differences in
testing/modeling protocols or target species. The data-
reliability factor, Ry is assigned by the user and translated
into indices ranging from 0 (poor quality) to 1 (high quality).
To estimate R, the user should ideally assess relevant criteria in
the test or model (e.g, per Organisation for Economic Co-
operation and Development/good laboratory practice guide-
lines) and consider discarding any unverifiable data. Existing
reliability metrics, such as Klimisch scores,'” which are
frequently reported for registered substances under ECHA/
REACH, can be used to generate R; values. In the absence of
such metrics, data reliability can be quantified using the many
available methods, for example, the ToxRTool, TRAM
(Toxicological data Reliability Assessment Method), or fuzzy
expert systems based on the Klimisch scoring approach.”” ™’
For predicted data, both data quality of the training set, that is
the underlying experimental data on which the model was
built, and performance metrics of the statistical model itself,>°
should factor into Ry In practice, a less rigorous and less time-
consuming estimation of data reliability can be applied, and the
user may simply choose to score analyzed values based on his
or her expert judgment. This is made largely possible by
incorporating a “scaling factor,” y, into eq 1. The scaling
factor’s mathematical function is outlined below, while its
practical utility is demonstrated in the Results and Discussion
sections. Briefly, the scaling factor reflects the user’s own
uncertainty in the assignment of reliability scores; its
magnitude drives the preference for either an average or the
most-reliable value in the data set. To that end, the scaling
factor is a variable that can be uniquely modified to suit a
particular decision-making paradigm, as discussed in the
following sections.

As formulated in eq 1, MUST comprises two terms, (%)
R,

N

i Reg
T§yN
DY 1

and , which are summed to determine the final

uncertainty score, where the latter term is weighted by the
scaling factor, y. The first term reflects the overall quality of the
group of equivalent values; the assumption here is that general
concerns regarding a particular test method or a chemical
should impact the confidence in any individual value, measured
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Figure 1. Effect of increasing and decreasing the standard deviation of normally distributed reliability factors, R; on computed uncertainty scores,
US. Left (a): ® = 5.5, 0, = 0.5; center (b):®=5.5, o, = 1; right (c):x=55, 6,=2; N=100,y = 1, and E = 0.1. Note: reliability scores distributed
over (arbitrary) values 1—10 exceed the 0—1 range in (a) in order to conserve the total area under the curve.
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Figure 2. Left (a): Skewed distribution of reliability factors, R; across arbitrary values 1—-10 (x = 3, 0y = 4). Right (b): Near-flat (linear)

distribution of reliability factors, Ry, across arbitrary values 1—10; N = 100, E = 0.1, and y = 1.

or predicted. The second term is the normalized deviation of
any given value from the reliability-weighted average.

In the case studies described here, the toxicity values are log-
transformed, where the log base corresponds to the spread of
the toxicity categories for a given endpoint. For example, given
thresholds for acute aquatic toxicity set by the US EPA Safer
Choice Program,"’1 a log base of 10 would be used to transform
analyzed values. Unless noted otherwise, computed uncertainty
scores using eq 1 are also log-transformed, that is US, = log;,
US,. Through the log-transformation, we account for non-
parametric statistics; it is expected that data are log-normally
distributed.”> All statistical analyses in this report were
performed using the R Program.”> Equation 1 and its
parametrization procedure were coded into a user-friendly
interface with the Perl programming language.

B RESULTS

Internal Validation. Validation of theoretical models is
essential to ensure satisfactory behavior across anticipated user
scenarios. Equation 1 was developed based on inductive
reasoning and intuition, recognizing the key factors that drive
uncertainty in a given value within a family of equivalent
observables. The specific definition was based on axioms and
logical relations developed to extract reasonable propositions
and predictions. To broadly test these propositions and
predictions was the basis for validating the model’s underlying
hypothesis.

We tested the behavior of eq 1 across different distributions
of value reliabilities, starting with a normal distribution (Figure
1b). For the purpose of these exercises, both terms in eq 1

12264

were weighted equally, that is y = 1; 100 equally spaced,
discrete points between 1 and 10 were used on the x-axis to
generate a smooth-fit curve; and a random error, E = 0.1, was
applied. The selection of values, which may represent raw or
log-transformed toxicity thresholds, and their error is irrelevant
here as the following analysis aims at deriving qualitative trends
in the behavior of eq 1. As expected, we observed that when
reliabilities are distributed normally around a mean value, the
corresponding distribution of computed uncertainty scores is
parabolic with the lowest uncertainty score being assigned to
the value with the highest reliability (Figure 1).

The trend noted in proceeding from Figure la—c, that is in
broadening the normal distribution, is that of increasing
uncertainty assigned to the most-reliable data point. Con-
currently, when the distribution is contracted (Figure la) or
expanded (Figure 1c) by decreasing or increasing the standard
deviation of reliability factors, outliers are penalized by
computed uncertainties to a greater or lesser extent,
respectively. This behavior can be observed on the second y-
axis as the range of computed uncertainties increases (Figure
1a) and decreases (Figure 1c). This effect is expected as one’s
confidence in a given value should be affected by the
distribution of reliable outcomes across the population. For
example, if a tight cluster of highly reliable values exists, one’s
relative confidence (which is defined by the range of the
computed uncertainties) in selecting the most-reliable value
should increase, while on the other end of the spectrum,
confidence in the least-reliable data should proportionally
decrease.

Given that magnitude of a value and its reliability are
fundamentally unrelated, it is interesting to consider the
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Figure 3. Preference for average (negative values) versus most-reliable data (positive values) in 3-point linear distributions as a function of the
scaling factor (y-axis) and value reliabilities (reported as a slope on x-axis); N = 3: 1, 2, and 3. Left (a): All data start with equal and high
reliabilities. Right (b): All data start with equal and low reliabilities. Dotted white line is used to separate regions where the average (i.e. middle)

value is favored from regions where the most-reliable value is favored [absent in (b)]. Linear models: Ry = {(—1)(0'3& + mG)xG + 0.9} (left)

0.02

and RfG = (T

+ mG)xG (right), where mg = (% + mG_l), starting from 0.007. E = 0.5.

behavior of eq 1 with skewed (asymmetric) distributions. This
is especially relevant here as most toxicological data are not
normally distributed. An example is provided in Figure 2a,
showing a distribution similar to those in Figure 1 but with a
sample mean of 3 and a standard deviation of 4.

In this broad distribution of relatively low reliabilities, the
most-reliable data point is no longer assigned the lowest
uncertainty score; the uncertainty minimum is skewed toward
the average value. This change of preference is due to the
second term in eq 1. It is reasonable to propose that when
faced with values of similar reliability, one may lean toward
selecting an average value to rely on (vs selecting the most-
reliable data point when the relative differences in assigned
reliabilities are large). Figure 2b demonstrates an extreme case
of a near-flat distribution of reliabilities, which indicates a
strong preference for an average value. In eq 1, the relative
weight of the two terms, that is the magnitude of the scaling
factor, y, can be altered to influence the relative preference for
the distribution average versus the most-reliable value in the
data set. A more detailed analysis of the scaling factor’s role is
presented in subsequent sections.

Role of the Scaling Factor. Our interpretation of the
scaling factor is that it represents the uncertainty in the
assignment of the reliability factors, and ultimately, the
uncertainty in the computation of uncertainty scores. This
manifests in analyzed data as changes of the relative preference
for an average value versus the most-reliable value in the data
set.

We investigated the role of the scaling factor that would
apply across various toxicity value distributions by considering
behavior on simple linear models of variable slopes, which can
be used to reconstruct any distribution. To analyze this
visually, we plotted the preference for the most-reliable versus
average value (computed as the difference between the two
corresponding uncertainty scores, AUS, = US er —
US ostreliable ) 25 @ function of both the scaling factor and
the gradient of the linear distribution of reliability factors.
Three data points, equally spaced in terms of magnitude of

12265

response with standard deviation of 1, were used for this
analysis. Figure 3 outlines two prototypical cases. In Figure 3a,
all values start with the highest reliability (R; = 1) and the
function gradually decreases (as shown on the x-axis); in
Figure 3b, all values start with near-zero reliability and the
function gradually increases. As the gradient increases (moving
left to right on the x-axis in both plots), differences in assigned
reliability factors increase. The regions where either the
average or the most-reliable value are favored by computed
uncertainty scores are denoted as such in the plots.

We offer the following interpretation of Figure 3a,b. With
highly reliable data, eq 1 is more sensitive to the average of that
data over small differences in assigned reliabilities. However,
this preference for an average value can be “tuned out” by
decreasing the scaling factor, y. Conversely, if we assign all
values comparable but low reliability, lowest uncertainty favors
the most-reliable value; this is true unless values get very close
in which case the average value is favored, viz. Figure S1. In
other words, there is greater sensitivity for smaller differences
in reliabilities when all values are generally unreliable than
when they are very reliable. It should be noted that the
gradient changes in figures on the left and right are subtle and
governed by the linear models

R, {(—1)(% + mg ) + 0.9}

Ry = (% + mG)xG, respectively, with m, = (% + mG_1>

. These models were selected to cover the effective (0—1)
range of reliability factors, Ry, starting with mg = 0.007. Thus, a
slight increase in preference for the average, that is middle,
value shown in Figure 3b can be attributed to the gradual rise
in reliabilities in all three values as the gradient increases.
The above analysis can be readily extended to larger data
sets with one important caveat: as the number of values
increases, so does the relative preference for an average versus
the most-reliable data point. We briefly illustrate this in Figure
4 by conducting the same analysis as in Figure 3b but for five

discrete values instead of three. Thus, Ry = (% + mG)xG

and
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where mg = (% + mG_l), starting with mg = 0.004. In this
case, the average (middle) value is favored over the most-
reliable value at reliability slopes greater than 0.028 for all
values of the scaling factor, y. This trend is expected as the
relevance of an average value increases with the sample size.

For the sake of completeness, it should be noted that
because of the absolute-difference expression in the second
term of eq 1, there is no change in computed uncertainties
when the increase/decrease in the linear function is toward a
value of greater or smaller magnitude. In other words,
extending the x-axis beyond the intersect with y-axis in Figures
3 and 4 yields symmetrical outcomes. The relationship
between the scaling factor, assigned reliability, and the
computed uncertainty score suggests that when one has high
confidence in his or her assigned reliabilities, the scaling factor
can be decreased or completely turned off (i.e, y = 0) to always
favor the most-reliable outcome. Conversely, high uncertainty
in assigned reliabilities may be best offset by a larger y that
skews lowest uncertainty scores toward the average value.

Experimental Error. By placing the experimental error (E)
variable into the denominator of eq 1, the larger the assigned
experimental error is for a given data set, the smaller the
computed uncertainty scores are as values become harder to
distinguish from each other. In our implementation, E does not
affect the relative trend of computed uncertainty scores for any
given data set, for example, by switching preference from the
highest-reliability value to the average when values effectively
become identical within the experimental error. However,
absolute uncertainty scores decrease as E increases and vice
versa, consistent with the notion that our confidence in
selecting a statistically representative value increases when
values are similar to each other.

Aquatic Toxicity Case Studies. To demonstrate the
utility of our scoring approach on real-world cases, we present
analysis of the acute fish toxicity of two compounds, nickel
sulfide (CAS 16812-54-7), a metal salt, and ethylbenzene

(CAS 100-41-4), an organic compound. Two sets of 123 and
60 independent LCy, acute aquatic toxicity values were
compiled for these chemicals from the ECHA REACH
database (Tables S1—S3). Unless otherwise noted, Klimisch
scores of 1, 2, 3, and 4 were normalized to reliability factors, R;,
of 1, 0.7, 0.3, and 0.1 in eq 1, respectively. This assignment
reflects the general notion that values with Klimisch scores of 1
and 2 are largely dependable, while those with scores of 3 and
4 are not."” In both case studies, we examined the effect of
varying the magnitude of the scaling factor on computed
uncertainties and, consequently, the selection of a representa-
tive LC, value.

Acute Aquatic Toxicity of Nickel Sulfide. For nickel
sulfide (CAS 16812-54-7), reported toxicity thresholds (LCs)
span all Klimisch scores of data reliability (1—4) and all
categories of concern, as defined by the US EPA (Figure S),

700
o
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o o %40
100 o 3 2 20
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Figure 5. Left (a): Distribution of LCgj values for nickel sulfide (CAS
16812-54-7) as a function of corresponding Klimisch scores. Values
were extracted from the ECHA database. Right (b): Histogram of
LCy, values based on US EPA’s categories of concern for acute
aquatic toxicity, <0.1, >1 and <10, >10 and <100, and >100 mg/L.*"

with the lowest and highest LCy, values of 4.2 X 10~ and 509
mg/L, respectively. This data set illustrates the limitations of
traditional decision-making approaches in toxicological assess-
ments. Computed geometric mean, 13.7 mg/L, is close to the
cutoff between two regulatory categories, and if relying on the
most conservative value, one ignores the rest of the data while
using a value, LCyy = 4.2 X 1073 mg/L, that is not the most
reliable. Importantly, unreliable values represent less than 5%
of all data; thus, curation based on data quality is not
particularly helpful.

Our full uncertainty analysis is shown in Table SI;
qualitative trends in computed scores and the effect of the
scaling factor, y, can be gauged from Figure 6. For small values
of y, LCs, values with low Klimisch scores correspond to low
uncertainty scores and vice versa. However, variability in
computed uncertainty increases as the scaling factor, that is the
impact of the reliability-weighted mean, increases. Thus, for
larger y’s, the correspondence between Klimisch and
uncertainty scores breaks down as values further from the
reliability-weighted mean are penalized more by greater
uncertainty.

With the default scaling factor equal to 1, the lowest
uncertainty score, 0.69, is assigned to LCy, = 10.9 mg/L, which
has a Klimisch score of 1 (viz. point #107 in Table S1). This
value is close to the computed geometric mean of the
distribution. In this particular data set, decreasing the scaling
factor (from 1 to 0.2) does not change the uncertainty scoring
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Figure 6. Computed uncertainty scores (left y-axis) and assigned
Klimisch scores (right y-axis) for 123 acute aquatic toxicity values
(LCsy’s) corresponding to nickel sulfide (CAS 16812-54-7). X-axis
represents the test count (1—123). Uncertainty analysis was carried
out using scaling factors y = 1, 0.2, and 0.

with regard to the selection of the least-uncertain value. We
believe this is due to the (fortuitous) proximity of the most-
reliable values to the geometric mean, which is 11.1 mg/L for
only the most-reliable LCy’s (Klimisch scores of 1). Zeroing
the scaling factor cancels the second term in eq 1, leading to
equal uncertainties for data points with the same Klimisch
score, that is all values with Klimisch score of 1 are assigned
the same lowest uncertainty score (0.55).

It should be noted that while the least-uncertain value
remains the same for y between 0 and 1 (LCy, = 10.9 mg/L),
the ranking of all values in the set by their computed
uncertainty scores changes. For example, in selecting the top
10 values with the lowest scores (Table S1, shaded cells), data
point #25 (LCs = 13.6 mg/L, Klimisch score = 2) is
substituted for data point #28 (LCs, = 100 mg/L, Klimisch
score = 1) when decreasing the scaling factor from 1 to 0.2.
This finding is consistent with our previous analysis, showing
preference for the most-reliable (vs average) values when the
scaling factor is lowered (viz. discussion of Figures 3 and 4).

While we proposed a default translation of the Klimisch
scores into reliability factors, the latter are considered to be
user-defined variables in eq 1 (just as they would have to be in
the absence of a formalized scoring system). These factors can
be adjusted based on user’s expert judgment, reflecting
professional experience and the context of the study. To that
end, we briefly considered how the translation of Klimisch
scores impacts the final outcome of computed uncertainties in
this case study. Translating Klimisch scores to R; values more
evenly, that is assigning reliability factors of 1, 0.9, 0.6, and 0.3
to Klimisch scores of 1, 2, 3, and 4, respectively, prompts a
selection of LCy = 15.3 mg/L (Klimisch score of 2, point #62
in Table S1) as the least-uncertain data point with a score of
0.67. This result is consistent with greater relative reliability
assigned to values with lower Klimisch scores in this alternate
scheme. When y is reduced to 0.2, LC;, = 109 mg/L
(Klimisch score of 1, point #107) is assigned the lowest
uncertainty score (0.58). Thus, reducing the impact of the
second term of eq 1 leads to concordance between the two
translation schemes.

Last, we examined how a reduced set of values for nickel
sulfide, which only includes Rainbow trout (Oncorhynchus
mykiss) test results, would fare compared to the full set. Such
initial curation is not unreasonable given that Rainbow trout
was shown to exhibit greater general sensitivity to toxic

substances, particularly metals, than the other species included
in this data set.”* While the geometric means for the full and
subset are relatively close, 13.7 and 17.7 mg/L, the computed
lowest uncertainty scores (using the default scaling factor of 1)
show a greater difference: LCsy = 10.9 mg/L versus LCsy = 21.2
mg/L (Table S2). Additionally, because the reduced set only
contains values with Klimisch scores of 1 and 2, the lowest-
computed uncertainty score (0.404) is below that of the full set
(0.694), indicating greater relative confidence in the assess-
ment.

Acute Aquatic Toxicity of Ethylbenzene. In considering
ethylbenzene (CAS 100-41-4), we noted a considerable impact
of the scaling factor on computed uncertainties (Table S3). In
this smaller data set, values with Klimisch score 1 (LCgq = 2.4,
5.1, 5.8, and 7.0 mg/L) are well below, as well as in different
category of concern,”’ than the geometric mean, 57.2 mg/L.
Consequently, equal weighting of both terms in eq 1 leads to
assigning the lowest-computed uncertainty score (0.72) to a
value much smaller than the geometric mean, LCs, = 15 mg/L
(Klimisch score 2, point #32 in Table S3). Decreasing the
scaling factor to 0.5 changes this selection to LCsy = 7.0 mg/L
(Klimisch score 1, point #22), which is consistent with our
previous explanations of the role the scaling factor plays in the
selection of average versus the most-reliable data. It is
interesting to note that in this case (vs the previous case
study), our selected value of LCy, = 7.0 mg/L would result in
the same decision outcome as selecting the most conservative
value in the data set, LCy, = 2.4 mg/L, based on US EPA’s
guidelines.31 In contrast, taking an average (105.8 mg/L), or
better a geometric mean (57.2 mg/L), of this data set would
lead to a very different regulatory outcome.

B DISCUSSION

MUST is a robust tool for ranking ecotoxicological data by
computed uncertainty scores, which then can be compared
within and across different data sets to inform decisions. In
practice, the user can use MUST to select either a single-value
or subset of values. We view the latter as being beneficial when
dealing with mixed data streams, for example, combining in
silico, in vitro, and in vivo data, or different test species,
experimental conditions, etc. The user may want to include all
available data (with appropriately assigned reliabilities) in the
uncertainty analysis; however, he or she may prefer to
subsequently “hand-pick” a certain data type from a reliable
subset to support a decision. We should emphasize that there is
a fundamental difference between a curation that eliminates
certain data prior to the uncertainty analysis and post-analysis
curation. This can be readily demonstrated on the nickel
sulfide case study using the test species as the curation
criterion. Considering the entire data set, reliable subset of top
10 LCy, measurements with the lowest uncertainty scores
consisted of eight test results for rainbow trout (O. mykiss),
one result for bluegill (Lepomis macrochirus), and one result for
white perch (Morone Americana) (Table S1). Relying only on
the Rainbow trout test results, given their greater sensitivity for
metal salts, the user would subsequently select LCy, = 10.9
mg/L, which corresponds to the lowest uncertainty score
(0.69, y = 1). If, however, curation was carried out prior to the
uncertainty analysis, the selected value would be LCy = 21.2
mg/L (Table S2). The two values are only ca. 10 mg/L apart;
however, because the first one is close to the L/E/ICs, cutoff
of 10 mg/L provided by the US EPA’s Safer Choice program,”’
it might lead to a different regulatory decision. Overall, we
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recommend that any manual curation, beyond issues with
erroneous data reporting and data interdependence, is applied
after MUST assessment. MUST incorporates both data
reliability and user’s confidence in assigned reliability factors
in its algorithm; thus, it is a “safer” choice to give less weight to
less reliable data than to ignore it completely, especially in
cases where low-quality data constitute majority of the
available data and/or points to greater risk/hazard.

The ability to generate a subset of dependable values can
also facilitate development of more accurate and robust
predictive models by providing reliable training and test sets.
While a plethora of databases exist online to aid in predictive-
model development,™ the quality of experimental results and
quality of its online storage and reporting (e.g, accuracy,
completeness, and integrity) are of increasing concern,’
particularly for statistical, big-data models, for which detailed
data curation is impractical.”” We should note that the extent
of data set curation using MUST depends on the type of a
predictive model: for a highly mechanistic model, a smaller
subset of data with very low uncertainty scores may be
preferred, while for statistical models that require larger
training sets, eliminating only data with the highest uncertainty
might be useful."”

Parametrization. The unique value proposition of eq 1 is
in skewing the preference, that is the assignment of the lowest
uncertainty score, toward either an average value or the most-
reliable value in the data set, and that this “balance” can be
altered by the scaling factor. While the default equal weighting
of both terms in eq 1 generates reasonable propositions and
predictions, it is nonetheless important to recognize the breath
of standard practices and preferences involved in risk, hazard,
and alternatives assessments. To that end, we implemented eq
1 into a computer algorithm using the Perl programming
language, which can be used to input data and generate
corresponding uncertainty scores. We also incorporated the
ability to train and parametrize eq 1 via the scaling factor in
order to reproduce specific decision-making paradigms. To
facilitate this process, we developed a questionnaire based on
27 case studies that combinatorially explore unique assign-
ments of high, medium, and low reliability to values of high,
medium, and low toxicological concern (Table S4). We further
added 12 cases where reliability is scored in the range of 1-10,
offering insights into the user’s sensitivity to relative
reliabilities. While we do not specify data type(s), or what an
assigned reliability value or a category means, we expect both
would be viewed and characterized through the lens of the
end-user’s professional setting to facilitate effective custom-
ization.

From Table S4, using expert knowledge, the user ranks
toxicity values for every case from the most-likely to the least-
likely to inform his or her decision. Corresponding scaling
factor values between 0 and 1 that satisfy the user’s selection
based on eq 1 are calculated. MUST carries out this analysis by
iteratively examining scaling factors that reproduce the user’s
rank in terms of relative uncertainty scores and then
determines the final scaling factor to be the value that is
most-frequently featured across all 39 case studies. If there is
more than one winner, MUST reports the relevant range of
scaling factors. A % concordance metric is provided to the user
that reflects goodness of fit. In our testing of MUST, pilot users
reported an improved decision logic based on the question-
naire and subsequent MUST parametrization.

Applicability. In this study, we showcased MUST’s utility
on two ecotoxicological data sets, which are sufficiently large to
benefit from our approach. In principle, MUST’s applicability
extends beyond ecotoxicology, owing to its general definition
of uncertainty in terms of reliability-biased data variability. It
should be noted that the practical usefulness of MUST
diminishes for very small data sets. Limited toxicological data is
a frequent problem, particularly for tests of mammalian
(chronic) toxic endpoints, which are economically and
ethically expensive. Thus, the end-user may encounter
chemical-endpoint combinations where data are scarce and
the use of MUST is impractical even when available in vitro or
in silico data are included in analysis. In those cases, expert
review based on data reliability or strategies using Bayesian
logic or Dempster—Shafer theory, which were referenced
previously, may be more suitable.

In the present analysis, we assumed data were independent
within each data set. In the two case studies, this assumption
was based on our initial curation of the ECHA/REACH data
to ensure independent test results for a single endpoint (LCsy).
When aggregating different data types (e.g, in vivo, in vitro, and
in silico), the user should be cognizant of data interdependence.
For example, because in silico models are trained on
experimental data, unwanted bias toward a particular value
(or set of values) may arise. In those cases, we recommend
closer inspection of data to remove any values that overlap
between models and may be part of a training set, prior to
MUST analysis.
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