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In this article, we present a new contact resonance atomic force microscopy-based method
utilizing a square, plate-like microsensor to accurately estimate viscoelastic sample prop-
erties. A theoretical derivation, based on Rayleigh–Ritz method and on an “unconven-
tional” generalized eigenvalue problem, is presented and a numerical experiment is
devised to verify the method. We present an updated sensitivity criterion that allows
users, given a set of measured in-contact eigenfrequencies and modal damping ratios, to
select the best eigenfrequency for accurate data estimation. The verification results are
then presented and discussed. Results show that the proposed method performs extremely
well in the identification of viscoelastic properties over broad ranges of nondimensional
sample stiffness and damping values. [DOI: 10.1115/1.4049538]
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1 Introduction
Contact resonance atomic force microscopy (CR-AFM), origi-

nally pioneered by Rabe et al. [1], uses the measured freely vibrat-
ing and in-contact resonance frequencies of a coupled
microsensor-sample system to estimate material properties of the
sample. Contact resonance (CR) spectroscopy AFM techniques
are an ideal candidate for nanoscale quantitative mechanical prop-
erty extraction due to their avoidance of nonlinear interactions
present in other AFM measurement techniques. CR-AFM operates
primarily in the linear net-repulsive regime of the tip-sample inter-
action force curve. CR-AFM has been used to measure both elastic
and viscoelastic sample properties [2–6]. Recently, Aureli et al. [7]
showed that by using a square, plate-like cantilevered microsensor,
as opposed to the traditional rectangular, narrow beam AFM canti-
levered sensor, several advantages arise. These advantages include
an increase of sensing modes available in a given frequency band-
width and the ability to optimally place the sensing tip within the
plate domain to maximize measurement sensitivity.
In this study, we expand the method presented in Ref. [7], which

was formulated to test purely elastic samples, to include viscoelastic
materials. With this addition, the aforementioned measurement ben-
efits of the proposed sensor can be extended to include the measure-
ment of many viscoelastic materials of interest, including, for
example, polymer composites and biological materials. In addition,
with the inclusion of damping in the system, it becomes possible to
characterize and account for hydrodynamic forces present in liquid
measurement environments, such as those encountered when con-
ducting AFM measurements of live biological samples ex vivo.
To incorporate viscoelastic effects, Hamilton’s least action prin-

ciple is used to create a variational formulation of the problem. The
strain energy of the plate is calculated following the assumptions of
the Kirchhoff–Love plate equations. The sample contact, originally
modeled in Ref. [7] as a linear spring element, is replaced with a
Kelvin–Voigt element. We include an additional term in the

variational formulation of the method that accounts for the noncon-
servative work done by the new viscous damper added to the model.
A Rayleigh–Ritz method is used to transform the problem into a
generalized eigenvalue problem (EVP) with complex eigenvalues.
A nontraditional interpretation of the eigenvalue problem leads to
an efficient method for the estimation of the sample viscoelasticity.
Specifically, given the measured in-contact natural frequencies and
modal damping ratios of the coupled sensor-sample system, the
solution of the generalized EVP yields estimates of the viscoelastic
material properties, including stiffness and damping.
Following the derivation of the theoretical model, a numerical

experiment, using the finite element method, is created to verify
the method. Given a set of measured in-contact eigenmodes, a cri-
terion is proposed to select which of these frequencies should be
used to produce the most accurate material property estimates. In
addition, we discuss methods to extract the model input data from
experimentally measured frequency response functions of the
system. Finally, the verification results are presented over a broad
range of parameters of interest, and future research directions of
the work are discussed.

2 Theoretical Framework
2.1 Governing Equations. In this study, we extend the theore-

tical formalism developed in our previous paper [7], which is con-
cerned with purely elastic response of the sample, to incorporate the
effect of viscoelasticity in the sample mechanical behavior. As in
Ref. [7], we will consider the free vibrations of a thin rectangular
cantilevered Kirchhoff–Love plate as illustrated in Fig. 1. The
plate is clamped at its edge at x= 0 and free at the edges x= Lx
and y=±Ly/2, see Fig. 1. In-plane dimensions of the plate are its
length Lx and width Ly, and the plate thickness is indicated
with h. We assume that the mechanical constitutive behavior of
the plate is linear elastic, isotropic and homogeneous, with
Young’s modulus E and Poisson’s ratio ν, and we denote its mass
density per unit volume with ρ.
The plate is in contact through an attachment point of coordinates

(xs, ys) with a spring-damper element, which models the Kelvin–
Voigt viscoelastic behavior of a sample being analyzed via
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contact resonance AFM. For simplicity, both the elastic and the
viscous behaviors are assumed linear and fully described by a
single constant each, that is, the sample stiffness ks and the
sample damping coefficient cs. We restrict our study to small oscil-
lations, so that the sample is assumed to react to displacements of
the attachment point in the z-direction only.
The governing equations of the free vibrations of the plate sup-

ported by the viscoelastic sample are as follows [7–10]

D∇4w(x, y; t) + ρhẅ(x, y; t)=
− [ksw(x, y; t) + csẇ(x, y; t)]δ(x − xs)δ(y − ys)

(1)

where w(x, y; t) is the plate deflection in the z-direction, t is the
time variable, D = Eh3/(12(1 − ν2)) is the plate stiffness modulus,
∇4( • ) is the bi-Laplacian operator, δ( • ) is the Dirac delta distribu-
tion, and a superimposed dot denotes time derivative. Boundary
conditions are given as follows [7–10]:

w = 0,
∂w
∂x

= 0 at x = 0 (2a)

∂3w
∂x3

+ (2 − ν)
∂3w
∂x∂y2

= 0,

∂2w
∂x2

+ ν
∂2w
∂y2

= 0 at x = Lx

(2b)

∂3w
∂y3

+ (2 − ν)
∂3w
∂y∂x2

= 0,

∂2w
∂y2

+ ν
∂2w
∂x2

= 0 at y = ±
Ly
2

(2c)

We scale the aforementioned equations by dividing all lengths
by Lx, so that now the domain P of the plate is
described as P = {(x̃, ỹ) ∈ [0, 1] × [−ℓ/2, ℓ/2]}, where ℓ= Ly/Lx
indicates the plate aspect ratio and a superimposed tilde denotes
dimensionless variables. The plate deflection in the z-direction is
scaled as w/A0 = w̃, where A0 is some characteristic displacement
amplitude. Following Ref. [7], we introduce the parameter Ω =�����������
D/(ρhL4x )

√
that incorporates material and geometric properties of

the plate. We further nondimensionalize the sample stiffness and
damping by defining the usual cantilever stiffness kc = 3ℓ(1 −
ν2)D/L2x and introducing the parameters

α =
ks
kc
, β = csΩ/kc (3)

Note that kc is in effect the stiffness of an equivalent Euler–Ber-
noulli cantilever beam with length Lx, width Ly, thickness h, and
Young’s modulus E, see also Ref. [7]. While keeping the time vari-
able dimensional, the scaled form of Eq. (1) now reads

∇̃4
w̃ +Ω−2 ¨̃w = −(αw̃ + βΩ−1 ˙̃w)[3ℓ(1 − ν2)]δ̃(x̃ − x̃s)δ̃(ỹ − ỹs)

(4)

where we have omitted the arguments of w̃ for ease of notation.

2.2 The Rayleigh–Ritz Eigenvalue Problem. By following
our original derivation in Ref. [7], we now develop a Rayleigh–
Ritz method [11,12] to estimate the complex eigenvalues of
Eq. (4). We assume the following ansatz for the motion of the
plate w(x, y; t) =W(x, y)eλt , where W(x, y) indicates the complex
displacement amplitude and λ ∈ C is a separation constant. This
important difference from Ref. [7] is necessary to capture both fre-
quency and damping ratio for the separable solutions of Eq. (4).
Note, in fact, that the system studied in Ref. [7] is undamped so
it was therein assumed that λ = ±iω.
Corresponding to this ansatz, the kinetic energy of the plate is

thus [7,13]

T =
1
2
λ2ρhL2x (A0e

λt)2
∫
P
W̃

2
dx̃dỹ (5)

where W̃ =W/A0 indicates the complex displacement amplitude W
scaled with the characteristic displacement amplitude A0. Similarly,
neglecting the contribution of strain energy due to membrane and
shear effects [10], the potential elastic strain energy due to plate
bending Ub is written as follows [7,8]:

Ub =
1
2
D(A0eλt)2

L2x

∫
P
(W̃ ,x̃x̃)

2 + (W̃ ,ỹỹ)
2[

+ 2νW̃ ,x̃x̃W̃ ,ỹỹ + 2(1 − ν)(W̃ ,x̃ỹ)
2]dx̃dỹ (6)

where a comma subscript indicates differentiation with respect to
the indicated variable.
The potential (elastic) energy due to the sample deformationUs is

written as follows:

Us =
1
2
ks(A0e

λt)2W̃(x̃s, ỹs)
2 (7)

and the work of the nonconservative forces due to the sample visc-
osity Wncs is given by

Wncs =
1
2
csλ(A0e

λt)2W̃(x̃s, ỹs)
2 (8)

In the following, we will refer exclusively to dimensionless vari-
ables, so we will drop the superimposed tilde for ease of notation.
We use the energy expressions in Eqs. (5)–(8) to derive the charac-
teristic equation for the eigenvalue problem of the damped plate
vibration in a matrix form. We use Hamilton’s least action principle
[11,12] with the inclusion of the work of the nonconservative forces
to obtain

∫t2
t1

[δT − δUb − δUs − δWncs]dt = 0 (9)

where the symbol δ indicates the first variation. All the variations in
Eq. (9) can be found explicitly worked out in Ref. [7], except δWncs

which reads δWncs = csλ(A0eλt)2W̃(x̃s, ỹs)δW̃(x̃s, ỹs).
Now, we assume that the solution W(x, y) can be expressed in

terms of a weighted series of admissible functionsΦj(x, y) to be spe-
cified later, that is, W(x, y) =

∑N
j=1 Φ

j(x, y)qj, with qj some
weights. Then, δW(x, y) =

∑N
i=1 Φ

i(x, y)δqi since Φi(x, y) are inde-
pendent and the qi are arbitrary. These representations for W(x, y)
and δW(x, y) are substituted into Hamilton’s principle in Eq. (9).
By cancelling the nonzero factor (A0eλt)2 throughout and collecting

( , )

, ,

Fig. 1 Schematics and nomenclature of the problem
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the coefficients of each δqi and setting them equal to zero sepa-
rately, Eq. (9) thus reduces to the N×N matrix problem:

D

L2x

( )
K + (ks + csλ)S′ + (λ2ρhL2x )M

[ ]
q = 0 (10)

The matrices in Eq. (10) have been derived in Ref. [7] and are
reported below for completeness. Specifically, K is the (nondimen-
sional) symmetric bending stiffness matrix, whose (i, j)-entry Kij is
obtained from Eq. (6) as follows:

Kij =
∫
P
[Φ j

,xxΦ
i
,xx +Φ j

,yyΦ
i
,yy + ν(Φ j

,xxΦ
i
,yy +Φ j

,yyΦ
i
,xx)

+ 2(1 − ν)(Φ j
,xyΦ

i
,xy)]dxdy (11)

Similarly, S′ is the (nondimensional) symmetric sample viscoelasti-
city matrix, whose (i, j) entry S′ij is given by Eq. (7) as follows:

S′ij =Φ j(xs, ys)Φi(xs, ys) (12)

Finally, M is the (nondimensional) symmetric mass matrix, whose
(i, j)-entry Mij is given by Eq. (5) as follows:

Mij =
∫
P
Φ jΦidxdy (13)

In Eq. (10), the column vector q contains the entries qj, that is, the
frequency-dependent “modal” coefficients of w in the basis of
the functions Φj. As in Ref. [7], we divide through Eq. (10) by
the term (D/L2x ) and redefine the sample viscoelasticity matrix as
S = [3ℓ(1 − ν2)]S′. Thus, Eq. (10) is rewritten in the final form of
the eigenvalue problem that will be used in this work as follows:

K + (α + μβ)S + μ2M
[ ]

q = 0 (14)

where μ = λ/Ω, and α, β, and Ω are defined earlier. It is remarkable
that this equation is structurally very similar to the eigenvalue
problem in Ref. [7], which could be rederived from Eq. (14) by
letting β = 0 (i.e., undamped system) and μ = ±iω/Ω (i.e., follow-
ing an ansatz of purely harmonic plate vibrations). A detailed
description of the properties of the system matrices can be found
in Ref. [7]. Observe that, in the absence of plate-sample contact
(“unsprung” case), α = β = 0 and Eq. (14) reduces to the usual gen-
eralized eigenvalue problem for the isolated plate K + �μ2M

[ ]
�q = 0,

where overbars refer to “unsprung” quantities, and �μ = ±i�ω/Ω, with
�ω being one of the natural frequencies of the unsprung plate.
If the matrices K, S, andM are known, along with the scalars α, β,

and Ω, Eq. (14) represents a quadratic eigenvalue problem [13,14],
which has been studied in detail in a large body of works, for both
direct and inverse problems. One of the popular techniques that
proves effective in attacking this problem is, for example, the
method by Frazer, Duncan, and Collar [13,15]. We observe here
that the effective stiffness matrix of the sprung system is given by
[K + αS], the effective damping matrix is [βS], and the effective
mass matrix is simply M, with eigenvalue μ. The system in Eq.
(14) is thus rewritten in terms of 2N× 2N matrices as follows:

−[K + αS] 0
0 M

[ ]
q
μq

[ ]
= μ

[βS] M
M 0

[ ]
q
μq

[ ]
(15)

with the important advantage that the so-constructed 2N× 2N
system matrices are symmetric, and the resulting modes are orthog-
onal. The 2N eigenvalues μ extracted from this process appear in
complex conjugate pairs, for which the imaginary parts Im[μ]
describe the natural frequencies of the associated modes and their
real parts Re[μ] are related to modal damping. Eigenvectors from
Eq. (15) contain information on the mode shapes of the system,
but the number of degrees-of-freedom is doubled in the process.

2.3 Estimation of the Sample Viscoelasticity. While Eq. (14)
is typically used to calculate natural frequencies and modal

damping ratios as described earlier, in this work, the model devel-
oped will be used for the identification of the sample stiffness
parameter α and viscosity parameter β in Eq. (3). Specifically, fol-
lowing in spirit the practice of CR-AFM measurements in which
sample properties are estimated from a set of known frequency mea-
surements, here we are concerned with the estimation of α and β
when K, S, and M are known, along with Ω and a set of measured
λi, with i= 1,…M≪N. As in Ref. [7], Ω can, in principle, be iden-
tified from measurements of the free unsprung vibrations of the
plate.
Assuming that the parameter Ω is known and a complex eigen-

value λi of Eq. (14) has been determined from an experiment or a
physical measurement (see also Sec. 3), the eigenvalue problem is
rearranged in the alternative form

(K + μ2i M) − γ( − S)
[ ]

qi = 0 (16)

where γ = α + μiβ and qi is the eigenvector associated to λi. Since
Eq. (16) is satisfied identically, γ can be interpreted as the general-
ized eigenvalue of the problem (K + μ2i M)qi = γ(−S)qi, where the
known matrix (K + μ2i M) is diagonalized with respect to −S. This
new generalized eigenvalue problem will have N solutions for γ
for any μi. Following the argument in Ref. [7], we claim that
there exists one and only one distinct finite solution and, therefore,
only one physically admissible value for γ. Once this unique
value is determined, the sample viscoelasticity can be unambigu-
ously identified by noticing that Re[γ] = α + Re[μi]β and
Im[γ] = Im[μi]β, from which it follows that

β =
Im[γ]
Im[μi]

(17a)

α = Re[γ] −
Re[μi]
Im[μi]

Im[γ] (17b)

Finally, from α and β, the values of ks and cs are determined follow-
ing the definitions in Eq. (3). The unique finite (and, therefore, smal-
lest magnitude) eigenvalue of Eq. (16) can be easily computed for
any available μi with widely available eigenvalue routines, such
as for example those in LAPACK and MATHWORKS MATLAB. Thus,
each measured value of μi is uniquely associated with an estimate
of α and β, that we indicate with α̂i and β̂i, respectively. As in
Ref. [7], we note that the proposed identification procedure can
only succeed if μi ≠ �μi, that is, if there is indeed a measurable
change in the eigenvalues of the problem between the unsprung
and the in-contact conditions.
Given a set of measured in-contact and unsprung modal frequen-

cies, we obtain a set of estimates α̂i and β̂i. We must then determine
which of these estimates are “best,” in a certain sense. To accom-
plish this, we define the modal sensitivity σi of mode i as the quan-
tity

σi(α, β) =
d|λi|
dα

(18)

where λi should be considered functions of α and β. This quantity
describes the change of the eigenvalue (magnitude) of a particular
mode i in response to a unit increase of α. We posit that the esti-
mates α̂i and β̂i are most reliable when the sensitivity σi(α̂i, β̂i) is
highest in the neighborhood of the particular mode i. Many different
sensitivity metrics could be used to determine the suitability of the
estimates, and the performance of a few of them will be analyzed in
Sec. 4. As utilized in the extensive numerical campaign described
later, we have found the sensitivity given in Eq. (18) to perform
well, in general, over a broad range of viscoelasticity parameters
and to outperform several other choices of sensitivity.

2.4 Some Implementation Remarks. The calculation of the
K, S, and M matrices in Eqs. (11)–(13) is based on the selection
of suitable basis functions Φi(x, y) in the representations of
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W(x, y). Following our previous work [7], here we will again use
basis functions separable in x and y and, for simplicity, the functions
Φi(x, y) will be constructed as the Cartesian product of bases in
the x-direction with bases in the y-direction that satisfy the
essential boundary conditions. For the former set, we select the
fixed-free eigenfunctions of an Euler–Bernoulli beam in the interval
x∈ [0, 1], that is [13],

Xix (x) = [sin(βix x) − sinh(βix x)] −
sin(βix ) + sinh(βix )
cos(βix ) + cosh(βix )

× [cos(βix x) − cosh(βix x)] (19)

with ix= 1, …, Nx, where Nx is the maximum number of modes
retained in the x-direction. Here, βix are the solutions of the charac-
teristic equation cos β cosh β = −1, whose first few values are
{1.875, 4.694, 7.855, 10.996, 14.137}. For the latter set, we use a
“re-scaled” version of the traditional Legendre polynomials [16]
Pi, normalized as follows:

Yiy (y) =

��������������
2(iy − 1) + 1

ℓ

√
P(iy−1)(2y/ℓ) (20)

for iy= 1, …, Ny, where Ny is the maximum number of modes
retained in the y-direction. These polynomials represent an ortho-
normal and complete basis set in y∈ [−ℓ/2, ℓ/2] with weight +1.
Note that for iy= 1, 2, the terms Y1(y) =

����
1/ℓ

√
and Y2(y) =

2
�����
3/ℓ3

√
y describe the even and odd rigid body modes of the

cross section, respectively.
Construction of the Φi(x, y) functions as the Cartesian product of

“modes” Xix (x) and Yiy (y), their numbering scheme, and further
properties are discussed in Ref. [7]. The integrals in Eqs. (11) and
(13) are approximated by using Gauss–Legendre quadrature
points [17]. The complete details of the implementation are exten-
sively discussed in Ref. [7]. We only desire to mention here that
the proposed method results in a reduced-order model for the
plate system, including only a relatively small number of modes
(with much smaller matrix sizes than a comparably accurate finite
element model) capable of accurate prediction of the dynamic char-
acteristics of the system. As an example, when 20 modes are
extracted from an N= (15 × 15) size model, calculation run-time
is less than 2 s on a typical desktop personal computer, with approx-
imately 75% of the time required to calculate the system matrices.

3 Numerical Experiments
3.1 Finite Element Analysis Simulations. In lieu of

CR-AFM experimental measurements, we thoroughly test our
method for sample viscoelasticity identification via numerical
experiments. Our numerical campaign is centered around a
square plate-like cantilevered microscale sensor of dimensions
225 × 225 × 3 μm3, similar to one of the prototype plate sensors
considered in Ref. [7]. The plate material is silicon, with Young’s
modulus 169 GPa, Poisson’s ratio ν = 0.25, and density
ρ = 2320 kg/m3. The plate is connected with a linear viscoelastic
element located at (xs, ys)= (0.9Lx, 0.4Ly). This location is
close to, but not coincident with, the optimal location determined
in Ref. [7] for maximum sensitivity for a square plate. While this
location is chosen for its favorable sensitivity properties, the
choice has to be regarded as purely illustrative, as the application
of the method would be unchanged if a different attachment point
were to be selected. The viscoelastic element can be assigned
directly a stiffness ks and a viscous damping coefficient cs. A
model for finite element analysis (FEA) is created for the system
using the commercial software package ANSYS MECHANICAL APDL

V.17.0. Shell elements “SHELL63” are utilized to create the struc-
ture with a mapped quadrilateral mesh. The element size is selected
as Lx/100 to ensure accuracy in the numerical results. Membrane
effects are not considered. One combination element
“COMBIN14” is used to model the viscoelastic sample. A

comprehensive convergence study for the model was already pre-
sented in our previous work [7].
For each analyzed case, a known stiffness and damping are

assigned to the linear viscoelastic element modeling, and the result-
ing “in-contact” natural frequencies and modal damping ratios of
the system are then calculated via the software “MODAL” analysis
solution routine. Because of the explicit presence of the damping
in the viscoelastic element, the “DAMP” (damped system) solution
method is selected. The output of this analysis consists of a set of
complex eigenvalues, which essentially play the role of the λi in
Eq. (14). Thus, the output from the FEA is used in our algorithm
described in Sec. 2 for estimating α and β. After the modal analysis
is completed, we use the FEA model to conduct the identification of
the system frequency response function (FRF) via the software
“HARMIC" analysis solution routine. Specifically, we study the
driving point FRF by applying a harmonic unit force F at the attach-
ment point (xs, ys) and determining the harmonic displacement
response p at the same point (xs, ys) over the range of frequencies
f∈ (0, fmax] of interest. This choice is representative and, certainly,
not the only possible one. Further study is necessary to understand
the potential of nondriving point FRFs in the context of viscoelas-
ticity identification.
For the numerical study, we choose a measurement bandwidth of

fmax= 2 MHz to represent frequency limitations present in real
experimental systems, similar to Ref. [7]. We use 1000 equally
spaced sampling points in the band 0–2 MHz to obtain a fine repre-
sentation of the system FRF with complex displacement data every
2 kHz. Then, in the neighborhood of each of the resonance peaks
identified from the FRF (and coincident with the output of the pre-
vious modal analysis), we conduct a second scan with another 100
frequency points to obtain a very fine FRF of the system in such a

Fig. 2 (Top) Sample FRF for α=100, β= 12, and tan δ= 10.
(Bottom) Comparison between the eigenvalues generated by
FEA through modal analysis versus FRF extraction. Close-up
view of the first mode is shown. The complex eigenvalues can
be accurately estimated from the FRF of the system.
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way as to obtain at least ten sample points in the 3dB bandwidth of
each resonance peak, especially for lightly damped modes.
The entire analysis is automated, by calling the ANSYS solver on a

prepared input file from within a MATLAB script. The script updates
the analysis parameter with the current α and β coefficients to be
studied in the input file with which the ANSYS solver is called. The
FEA output, consisting of modal data and FRF data, is then redi-
rected to text files that are later re-imported within MATLAB for
further postprocessing. Specifically, we consider 24 different com-
binations of parameters α (varying over five orders of magnitude to
study very soft to very hard samples, when compared to the stiffness
kc) and β (varying over 4 orders of magnitude per each α to study
very lightly to moderately damped systems). In particular, the selec-
tion of α and β values is performed as follows. The six chosen
values of α are 10−2, 10−1, 100, 101, 102, and 103 to explore a
wide range of sample stiffness. For each value of α, physically
meaningful values of β are selected according to the following cri-
terion:

β =
αΩ

2πfmax
tan δ (21)

so that at the largest frequency of interest fmax, the ratio between
the loss and storage modulus tan δ, see, for example, Ref. [18], of
the sample is within physical limits practically observed in
samples for CR-AFM. We select the following values for tan δ:
0.01, 0.1, 1.0, and 10 to explore very lightly to moderately
damped systems. Equation (21) can also be rearranged as
cs(2πfmax)/ks = tan δ, which further clarifies its physical meaning
in terms of the viscoelastic properties of the sample.
Note that, in our previous analysis in Ref. [7], we have shown

how the parameterΩ can be directly estimated from the eigenvalues
of the unsprung, freely vibrating system from the FEA simulations.
This procedure is analogous to the method used in traditional CR
studies and, rather than trying to identify the individual geometric
and material parameters separately, we choose to robustly identify
the important governing parameter Ω. Therefore, in the remainder
of the article, the value of Ω≈ 1.5079 × 105 s−1, calculated from
nominal geometric and material parameters of the plate system,
will be presumed known.

3.2 Eigenvalue Extraction From the Frequency Response
Function. In a real experimental measurement, obtained, for
example, by contact resonance atomic force microscopy, the fre-
quency response function of the system is the primary measurand.
In the proposed method, we require the complex eigenvalues of
the in-contact system to generate material property estimates.
Here, we show that the eigenvalues of the system can be effectively
extracted from measured FRFs using a single-mode approximation,
provided that the modes are not too closely spaced. Although, in the

following, the procedure will be illustrated on a numeric dataset, it
could be implemented seamlessly on actual experimental data.
As stated earlier, the free response of the plate is given by

w(x, y; t) =W(x, y)eλt . Assuming that the modes of the system
response are well spaced, we approximate each mode as a
single-degree-of-freedom (SDOF) oscillator, whose free response

is given by p(t) = C+e(−ζωn+iωn

����
1−ζ2

√
)t +C−e(−ζωn−iωn

����
1−ζ2

√
)t , where

C± are constants determined by the initial conditions, ωn is the
SDOF natural frequency, and ζ is the damping ratio [13].
At any given location on the plate, the displacement frequency

response to a harmonic point load F(t) at the same location
(driving point FRF) is proportional to the SDOF response given
in the frequency domain by

p̂

F̂

∣∣∣∣
∣∣∣∣ = G��������������������

1 − u2
( )2 + (2ζu)2

√ + N (22)

where u = 2πf /ωn, G is an unknown gain, N is the noise floor of the
measurement, and superimposed hats denote Fourier transformed
variables. Given a measured FRF, the quantities ωn and ζ can be

Table 1 Eigenvalues extracted from FRFs for several combinations of α and β for various eigenmodes and comparison with results
from FEA modal analysis

FRF fit FEA value % Difference

α β Mode Im[λ] −Re[λ] Im[λ] −Re[λ] Im[λ] Re[λ]

0.01 1.20 × 10−03 4 0.65757 1.36 × 10−04 0.65757 1.36 × 10−04 0.00 −0.06
0.1 1.20 × 10−03 7 1.4743 2.10 × 10−05 1.4743 2.11 × 10−05 0.00 0.42
0.1 1.20 × 10−02 3 0.51682 1.84 × 10−04 0.51682 1.83 × 10−04 0.00 −0.21
1 1.20 × 10−03 2 0.22845 2.21 × 10−04 0.22845 2.21 × 10−04 0.00 0.00
1 1.20 × 10−02 1 0.10389 7.32 × 10−04 0.10386 7.36 × 10−04 0.03 0.47
10 1.20 × 10−03 6 0.80441 2.68 × 10−04 0.80441 2.68 × 10−04 0.00 0.00
10 1.20 × 10−02 7 1.3343 8.03 × 10−04 1.3343 8.04 × 10−04 0.00 0.12
100 1.20 × 10−02 5 1.1723 6.01 × 10−04 1.1723 6.01 × 10−04 0.00 −0.02
100 1.20 × 10+01 1 0.14219 4.04 × 10−04 0.14219 4.04 × 10−04 0.00 0.00
1000 1.20 × 10+00 5 1.2413 3.16 × 10−04 1.2413 3.16 × 10−04 0.00 0.01

Table 2 Predicted α̂ and β̂ versus assigned values α and β, with
percent differences (%D)

α β Mode α̂ β̂ %D α %D β

0.01 1.20 × 10−06 1 9.71 × 10−03 1.20 × 10−06 −2.9 0.0
0.01 1.20 × 10−05 1 9.71 × 10−03 1.20 × 10−05 −2.9 0.0
0.01 1.20 × 10−04 1 9.71 × 10−03 1.20 × 10−04 −2.9 0.0
0.01 1.20 × 10−03 1 9.71 × 10−03 1.20 × 10−03 −2.9 0.0
0.1 1.20 × 10−05 1 9.97 × 10−02 1.20 × 10−05 −0.3 0.0
0.1 1.20 × 10−04 1 9.97 × 10−02 1.20 × 10−04 −0.3 0.0
0.1 1.20 × 10−03 1 9.97 × 10−02 1.20 × 10−03 −0.3 0.0
0.1 1.20 × 10−02 1 9.97 × 10−02 1.20 × 10−02 −0.3 0.0
1 1.20 × 10−04 2 9.98 × 10−01 1.20 × 10−04 −0.2 0.0
1 1.20 × 10−03 2 9.98 × 10−01 1.20 × 10−03 −0.2 0.0
1 1.20 × 10−02 2 9.98 × 10−01 1.20 × 10−02 −0.2 0.0
1 1.20 × 10−01 2 9.99 × 10−01 1.20 × 10−01 −0.1 0.0
10 1.20 × 10−03 2 9.98 × 10+00 1.20 × 10−03 −0.2 −0.4
10 1.20 × 10−02 2 9.98 × 10+00 1.20 × 10−02 −0.2 −0.4
10 1.20 × 10−01 2 9.98 × 10+00 1.20 × 10−01 −0.2 −0.4
10 1.20 × 10+00 4 1.01 × 10+01 1.21 × 10+00 0.9 0.5
100 1.20 × 10−02 5 9.87 × 10+01 1.17 × 10−02 −1.3 −2.6
100 1.20 × 10−01 5 9.87 × 10+01 1.17 × 10−01 −1.3 −2.6
100 1.20 × 10+00 5 9.93 × 10+01 1.17 × 10+00 −0.7 −2.5
100 1.20 × 10+01 1 9.86 × 10+01 1.13 × 10+01 −1.4 −5.5
1000 1.20 × 10−01 2 8.47 × 10+02 8.62 × 10−02 −15.3 −28.1
1000 1.20 × 10+00 2 8.47 × 10+02 8.61 × 10−01 −15.3 −28.2
1000 1.20 × 10+01 2 8.55 × 10+02 8.64 × 10+00 −14.5 −28.0
1000 1.20 × 10+02 2 1.40 × 10+03 7.61 × 10+01 40.0 −36.6

Note: The eigenmode used for the prediction, selected via the maximum
sensitivity criterion σi(α, β) = d λi| |/dα in Eq. (18), is indicated.
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determined for each mode by fitting the measured data to
Eq. (22). Then, for each mode, we equate the complex eigenvalue
λ to the SDOF assumed form. That is, Re[λ] = −ζωn and

Im[λ] = ±ωn

�������
1 − ζ2

√
. Figure 2 shows extraction results for the

representative case, where α= 100 and β = 12. The eigenvalues
obtained directly from the FEA modal analysis are identical to the
eigenvalues extracted from the FRF generated in the FEA.
Table 1 presents the extraction results for several combinations of

assigned α and β. In general, our results demonstrate that, as long as
the mode is adequately sampled (>10 sample points in the 3 dB
bandwidth), the eigenvalues can be reliably calculated. Having
shown the applicability of the extraction of eigenvalues from the
system FRF, in the rest of this study, we will directly use the eigen-
values calculated through the FEA modal analysis routine as an
input for our estimation procedure.

4 Results and Discussion
The results of the estimations, using the FEA calculated eigenval-

ues and Eqs. (16) and (17), are shown in Table 2, which reports the
percent difference between the estimated values and assigned
values in the two-dimensional (α, β) space explored.
Table 2 also indicates the specific mode used for the estimation,

selected by the maximum sensitivity criterion given in Eq. (18). We
see that the error of the estimation is below 3% for values of α≤ 100
for all combinations of β. For α≥ 1000, the error in the estimation
begins to increase, becoming successively larger with increasing β.
Interestingly, the mode number used does not increase monotoni-
cally when using the sensitivity criterion in Eq. (18). For
example, for α= 100, β = 12, the most sensitive mode is mode 1,
while for α= 1000, the criterion in Eq. (18) selects mode 2.
The selection of the form in Eq. (18) for the sensitivity is inspired

by the results in Ref. [7], in which, however, the eigenvalues are
purely imaginary numbers since the system is undamped. Thus, it
is of interest to evaluate whether other sensitivity parameters, lever-
aging the complex nature of the present eigenvalues, may offer a
better estimation performance. To this aim, Table 3 presents the pre-
diction results for α and β using the mode with maximum sensitivity
using σi(α, β) = d|λi|/dβ. We see that by using this sensitivity crite-
rion, the predictions are less accurate compared with those using Eq.
(18) in nearly all cases. In particular, the α estimates for assigned

values of α≤ 0.1 are extremely poor. On the other hand, the α esti-
mates for assigned values of 1≤α≤ 100 are comparable to esti-
mates using Eq. (18), except for the α= 100, β = 12 case. In
general, β estimates perform well for assigned values of α≤ 100.
For large assigned values of α, the predictions for both α and β
diverge. In addition, and very interestingly, the mode selected by
this criterion is much different than those selected by Eq. (18), pos-
sibly because of how the natural frequency of higher modes enters
in the proposed definition of sensitivity.
Table 4 presents the prediction results for α and β using the mode

with maximum sensitivity using σi(α, β) = d|λi|/d|α + μβ|. We see
that, by using this criterion, the predictions are very similar to those

Table 3 Predicted α̂ and β̂ versus assigned values α and β, with percent differences (%D), using the eigenmode (indicated) with
maximum sensitivity σi(α,β) = d|λi|/dβ

α β Mode α̂ β̂ %D α %D β

0.01 1.20 × 10−06 4 −2.08 × 10−01 1.20 × 10−06 −2182.8 0.2
0.01 1.20 × 10−05 4 −2.08 × 10−01 1.20 × 10−05 −2182.8 0.2
0.01 1.20 × 10−04 4 −2.08 × 10−01 1.20 × 10−04 −2182.8 0.2
0.01 1.20 × 10−03 4 −2.08 × 10−01 1.20 × 10−03 −2182.8 0.2
0.1 1.20 × 10−05 4 −1.18 × 10−01 1.20 × 10−05 −218.4 0.2
0.1 1.20 × 10−04 4 −1.18 × 10−01 1.20 × 10−04 −218.4 0.2
0.1 1.20 × 10−03 4 −1.18 × 10−01 1.20 × 10−03 −218.4 0.2
0.1 1.20 × 10−02 4 −1.18 × 10−01 1.20 × 10−02 −218.0 0.2
1 1.20 × 10−04 2 9.98 × 10−01 1.20 × 10−04 −0.2 0.0
1 1.20 × 10−03 2 9.98 × 10−01 1.20 × 10−03 −0.2 0.0
1 1.20 × 10−02 2 9.98 × 10−01 1.20 × 10−02 −0.2 0.0
1 1.20 × 10−01 2 9.99 × 10−01 1.20 × 10−01 −0.1 0.0
10 1.20 × 10−03 2 9.98 × 10+00 1.20 × 10−03 −0.2 −0.4
10 1.20 × 10−02 2 9.98 × 10+00 1.20 × 10−02 −0.2 −0.4
10 1.20 × 10−01 2 9.98 × 10+00 1.20 × 10−01 −0.2 −0.4
10 1.20 × 10+00 4 1.01 × 10+01 1.21 × 10+00 0.9 0.5
100 1.20 × 10−02 5 9.87 × 10+01 1.17 × 10−02 −1.3 −2.6
100 1.20 × 10−01 5 9.87 × 10+01 1.17 × 10−01 −1.3 −2.6
100 1.20 × 10+00 7 1.06 × 10+02 8.75 × 10−01 6.3 −27.1
100 1.20 × 10+01 6 4.51 × 10+01 1.17 × 10+01 −54.9 −2.2
1000 1.20 × 10−01 4 5.01 × 10+02 3.02 × 10−02 −49.9 −74.8
1000 1.20 × 10+00 4 5.01 × 10+02 3.02 × 10−01 −49.9 −74.8
1000 1.20 × 10+01 4 5.22 × 10+02 3.00 × 10+00 −47.8 −75.0
1000 1.20 × 10+02 8 2.79 × 10+03 1.05 × 10+02 178.8 −12.3

Table 4 Predicted α̂ and β̂ versus assigned values α and β, with
percent differences (%D), using the eigenmode (indicated) with
maximum sensitivity σi(α,β),d|λi|/d|α + μβ|

α β Mode α̂ β̂ %D α %D β

0.01 1.20 × 10−06 2 8.72 × 10−03 1.20 × 10−06 −12.8 0.0
0.01 1.20 × 10−05 2 8.72 × 10−03 1.20 × 10−05 −12.8 0.0
0.01 1.20 × 10−04 2 8.72 × 10−03 1.20 × 10−04 −12.8 0.0
0.01 1.20 × 10−03 2 8.73 × 10−03 1.20 × 10−03 −12.7 0.0
0.1 1.20 × 10−05 1 9.97 × 10−02 1.20 × 10−05 −0.3 0.0
0.1 1.20 × 10−04 1 9.97 × 10−02 1.20 × 10−04 −0.3 0.0
0.1 1.20 × 10−03 1 9.97 × 10−02 1.20 × 10−03 −0.3 0.0
0.1 1.20 × 10−02 2 9.87 × 10−02 1.20 × 10−02 −1.3 0.0
1 1.20 × 10−04 2 9.98 × 10−01 1.20 × 10−04 −0.2 0.0
1 1.20 × 10−03 2 9.98 × 10−01 1.20 × 10−03 −0.2 0.0
1 1.20 × 10−02 2 9.98 × 10−01 1.20 × 10−02 −0.2 0.0
1 1.20 × 10−01 2 9.99 × 10−01 1.20 × 10−01 −0.1 0.0
10 1.20 × 10−03 2 9.98 × 10+00 1.20 × 10−03 −0.2 −0.4
10 1.20 × 10−02 2 9.98 × 10+00 1.20 × 10−02 −0.2 −0.4
10 1.20 × 10−01 2 9.98 × 10+00 1.20 × 10−01 −0.2 −0.4
10 1.20 × 10+00 4 1.01 × 10+01 1.21 × 10+00 0.9 0.5
100 1.20 × 10−02 5 9.87 × 10+01 1.17 × 10−02 −1.3 −2.6
100 1.20 × 10−01 5 9.87 × 10+01 1.17 × 10−01 −1.3 −2.6
100 1.20 × 10+00 5 9.93 × 10+01 1.17 × 10+00 −0.7 −2.5
100 1.20 × 10+01 2 1.08 × 10+02 1.16 × 10+01 7.5 −3.6
1000 1.20 × 10−01 1 7.48 × 10+02 6.71 × 10−02 −25.2 −44.1
1000 1.20 × 10+00 1 7.48 × 10+02 6.71 × 10−01 −25.2 −44.1
1000 1.20 × 10+01 1 7.46 × 10+02 6.66 × 10+00 −25.4 −44.5
1000 1.20 × 10+02 2 1.40 × 10+03 7.61 × 10+01 40.0 −36.6
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using Eq. (18), except for cases of assigned values of α≤ 0.01. As
before, the modes selected by this criterion differ from the two pre-
vious criteria used. On the basis of these comparisons, thus, we
recommend that the sensitivity in Eq. (18) be used to isolate the
“best” prediction of the α and β values from an array of available
modal data.

5 Conclusions
In this study, we have presented a new method, to be used in

contact resonance atomic force microscopy, to accurately determine
the viscoelastic properties of a sample using a plate-likemicrosensor.
The theoretical formulation, based on the Rayleigh–Ritz method and
on an “unconventional” generalized eigenvalue problem, was pre-
sented and a numerical experiment was devised to validate the
method capability to identify viscoelastic parameters from modal
data. The proposedmethod performed extremely well for nondimen-
sional sample stiffnesses in the range 0.01≤α≤ 100 and nondimen-
sional damping values in the range 1.2 × 10−6 ≤ β ≤ 120. For values
of α≥ 1000, the prediction error became increasingly larger with
successively larger values of β.
This study opens up several avenues for future research. First,

future work should include validation of the method against exper-
imental results. While we anticipate that the method will perform
well in a practical implementation, additional study must be per-
formed to determine the validity of the sensitivity metric used in
Eq. (18) and whether better metrics exist to accurately select the
modal data used in the predictions, given experimental test data
rather than numerical surrogates. In addition, in the future work,
we would like to address: the optimal placement of the sensing
tip given damping, the effect of large material damping, and the
implications of fluid–structure interactions in liquid environments
and their effects on the sensor estimates.
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