PHYSICAL REVIEW X 10, 031006 (2020)

Coherent Multispin Exchange Coupling in a Quantum-Dot Spin Chain

Haifeng Qiao,l"* Yadav P. Kandel,l’* Kuangyin Deng ,2 Saeed Fallahi,3 A Geoffrey C. Gardner ,4’5

Michael J. Manfra,>*>® Edwin Barnes,” and John M. Nichol®""
'Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
2Departmem‘ of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
3Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
*Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
>School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
8School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA

® (Received 8 January 2020; accepted 12 May 2020; published 8 July 2020)

Heisenberg exchange coupling between neighboring electron spins in semiconductor quantum dots
provides a powerful tool for quantum information processing and simulation. Although so far unrealized,
extended Heisenberg spin chains can enable long-distance quantum information transfer and the generation
of nonequilibrium quantum states. In this work, we implement simultaneous, coherent exchange coupling
between all nearest-neighbor pairs of spins in a quadruple quantum dot. The main challenge in
implementing simultaneous exchange couplings is the nonlinear and nonlocal dependence of the exchange
couplings on gate voltages. Through a combination of electrostatic simulation and theoretical modeling, we
show that this challenge arises primarily due to lateral shifts of the quantum dots during gate pulses.
Building on this insight, we develop two models that can be used to predict the confinement gate voltages
for a desired set of exchange couplings. Although the model parameters depend on the number of exchange
couplings desired (suggesting that effects in addition to lateral wave-function shifts are important), the
models are sufficient to enable simultaneous and independent control of all three exchange couplings in a
quadruple quantum dot. We demonstrate two-, three-, and four-spin exchange oscillations, and our data

agree with simulations.
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I. INTRODUCTION

A unique and valuable feature of electron-spin qubits
in quantum dots [1,2] is the voltage-controlled nearest-
neighbor Heisenberg exchange coupling. Heisenberg
exchange coupling results from the interplay of the elec-
tronic confinement potential, the Coulomb interaction, and
the antisymmetric nature of the electronic wave functions
under particle exchange. On a basic level, exchange
coupling enables two-qubit [1,3-5] and three-qubit gates
[6] for single-spin qubits. Exchange coupling also allows
rapid and high-fidelity initialization and readout of pairs of
spins. As a result, exchange coupling underlies the oper-
ation of electron-spin qubits consisting of two [7,8], three
[9-14], or more [15—17] electrons. Superexchange [18,19]
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in multielectron systems and extended exchange-coupled
spin chains can enable new forms of quantum information
transfer [20,21] and the generation of many-body entangled
states [22]. Recent experiments exploiting pulsed exchange
coupling in spin chains point to the feasibility of these
proposals [23]. Heisenberg spin chains are also predicted to
generate nonequilibrium quantum phenomena [24,25].

Partly because of these exciting possibilities, indepen-
dent and automated control of interdot tunnel couplings has
been the focus of intense research in quantum-dot arrays
[26-31]. However, generating multiple independent, non-
zero, and coherent exchange couplings in quantum-dot
arrays is challenging for many reasons. First, the standard
procedure to measure tunnel couplings involves detuning
pairs of dots away from the symmetric idling point [32],
making it difficult to calibrate exchange couplings under
actual experimental conditions. Second, as discussed fur-
ther below, the nonlinear and nonlocal dependence of
the exchange couplings on the confinement gate voltages
poses a significant challenge. Third, multiple nonzero ex-
change couplings generate complicated spectra that do not
permit easy measurement and iterative tuning of individual
exchange frequencies.

Published by the American Physical Society
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In this work, we demonstrate coherent multispin
exchange coupling in a GaAs quadruple quantum dot.
We show that the nonlinear and nonlocal dependence of
exchange couplings on confinement gate voltages results,
in large part, from electronic wave-function shifts during
exchange pulses. We model our data using the Heitler-
London (HL) expression for exchange coupling between
two spins [33], assuming that the barrier-gate pulses used to
induce exchange coupling primarily shift the locations of
the electrons. The model parameters we use change slightly
depending on the number of spins involved, suggesting that
additional effects beyond wave-function shifts, including
perhaps the quantum-dot potential depths and widths, are
also important.

The parameters we extract by fitting our data to the
Heitler-London model agree well with electrostatic simu-
lations of the confinement potential of our device. We also
show that a simpler, exponential model also fits our data
well and can be used to predict gate voltages for indepen-
dent control of exchange couplings. We demonstrate two-,
three-, and four-spin exchange coupling in our four-dot
device. These results are applicable to Si qubits, which
feature reduced hyperfine coupling and longer electron-
spin coherence compared to GaAs spin qubits. Our results
are also applicable to longer arrays of spin qubits, an
encouraging prospect for quantum information processing
and the exploration of Heisenberg spin chain physics.

II. DEVICE

We use a quadruple quantum dot in a GaAs/AlGaAs
heterostructure with overlapping gates [Fig. 1(a)] [34-36].
Two extra quantum dots placed above the main-dot array
serve as charge sensors and are configured for rf reflec-
tometry [37,38]. We tune the confinement potential using
“virtual gates” [26,30,39—41] such that each dot contains
only one electron. We define virtual-plunger-gate voltages
P, P,, P3, and P, as linear combinations of the physical-
plunger-gate voltages (pi, p2, P3, P4) such that changes to
P; are proportional to changes in the electrochemical
potential of dot i. We also define virtual-barrier-gate
voltages B;, B,, and B3 as the voltage applied to the
corresponding physical barrier (b, b,, and bs3) together
with a linear combination of physical plunger voltages
chosen such that the chemical potentials of the dots are
unchanged by the barrier pulse. In particular, barrier-gate
pulses therefore involve voltages applied to physical barrier
gates in addition to compensation pulses applied to all four
physical plunger gates. The virtual gates are related to the
actual voltages via the measured capacitance matrix A
through G = Ag, where G = [P}, P,, P53, P4, B, B, B3|"
and g = [py, P2, D3, P4, b1, by, b3]T. In the following, we
use the term ‘“virtual-gate voltages” to mean pulses away
from the idling tuning of the device, which is the symmetric
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FIG. 1.
quantum-dot device. The scale bar is 200 nm. (b) Measured
exchange oscillations with virtual barrier gate Bz = 30 mV.
Inset: Absolute value of the fast Fourier transform (FFT) of data
shown in panel (b). As B, increases, J; decreases. P is the
singlet return probability of the right pair.

(a) Scanning electron micrograph of the quadruple

operating point [42,43] of the four-dot array with one
electron in each dot.

For initialization and readout, we configure the four-spin
array into two pairs. We refer to spins 1 and 2 as the left
pair, and spins 3 and 4 as the right pair. We initialize the
array in the product state || 1] 1) via adiabatic separation
of singlets in the hyperfine gradient [7,23]. Here, the arrows
indicate the spin states of all four spins. Alternatively, we
can prepare a polarized triplet state [11) in either pair by
exchanging electrons with the reservoirs while each dot
contains a single electron [44]. We measure both pairs via
Pauli spin blockade [7,23,45], together with a shelving
mechanism [46], to enhance the readout fidelity.

The spin-state Hamiltonian of the quadruple dot is

4
> Bio;. (1)
i=1

Here, J; is the exchange coupling strength (with units of
frequency) between dots i and i + 1, 6; = [0}, 0}, 67] is the
Pauli vector describing the components of spin i, and # is
Planck’s constant. Note that B; is the z component of the
magnetic field experienced by each spin, and it includes both
a large 0.5-T external magnetic field and the smaller
hyperfine field. The quantization axis (z direction) is defined
by the external magnetic field direction. The x and y
components of the hyperfine field are neglected in this
Hamiltonian since their sizes are negligible compared to
the external magnetic field. In addition, B} has units of

frequency.

H =

NSRS

3
> Jil6i6141) +
pa

B~

III. EFFECT OF POSITION SHIFTS ON
EXCHANGE COUPLING

A single nonzero exchange coupling J; is easily tuned by
adjusting the voltage on the relevant barrier B; [42,43].
When we extend the interaction to more than two spins
by pulsing another virtual barrier gate B;, however, the
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original exchange coupling J; is strongly affected. For
example, a large pulse to B; nominally induces a nonzero
J3. But adding an additional pulse to B, during the
evolution rapidly and nonlinearly reduces J5 before even-
tually turning on a J, [Fig. 1(b)]. In fact, J5 reduces to
nearly zero before J, turns on.

We now show that this effect primarily results from lateral
shifts of the quantum dots during a barrier-gate pulse. We
have self-consistently calculated the electron density
and potential of our device in COMSOL using the Thomas-
Fermi approximation [47]. Our simulation replicates the
behavior of the physical device with high fidelity. For
example, the predicted incremental voltage on p, required
to transition from one to two electrons in dot 4 is about
12.5 mV. This value corresponds quite closely to the behavior
of the device. The same transition in the physical device
requires a change of 12 mV on p,. Figure 2(a) shows the
potential associated with dots 2 and 3 tuned to single
occupancy as a function of the barrier voltage B,. Our
simulations include compensation pulses on the plunger gates
to match our use of virtual gates in the actual experiment. The
dots clearly move toward each other as B, increases.

To obtain more detailed information about this process,
we fit our two-dimensional simulated potentials to an
equation of the form [33]

(a) Dot 2 Dot 3

Potential (eV)
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FIG. 2. Electrostatic simulations. (a) Line cuts of the simulated
potential associated with dots 2 and 3 vs the barrier voltage pulse
B,. The left dip is the potential of dot 2, and the right dip is the
potential of dot 3. The dots move closer together as B, increases.
The dashed lines are guides to the eye. (b) Fitted parameters of the
simulated double-dot potential vs B,. Based on the simulated
potential of dot 1 (not shown), we also find that dots 1 and 2 move
farther apart during the sample pulse.

o=l ()

x exp G_j) )

Here, x and y are coordinates in the plane of the two-
dimensional electron gas, and Vy, a, [, and [ characterize
the potential wells of the dots. Double Gaussians of this
type are commonly used to model double dots, but usually
a separate barrier term is included, as in Ref. [33]. Our
simulated potential is shallow enough that a separate barrier
term is not required to reproduce the potential we simulate.
By fitting our simulated potentials to Eq. (2), we find how
the parameters a, [,, and V, vary with B, [Fig. 2(b)]. The
distances between dots 2 and 3 (2a,) and dots 1 and 2 (2a;)
change approximately linearly during the barrier pulse,
but in opposite directions, because dot 2 moves closer to
dot 3 but farther from dot 1. Based on the simulations,
we calculate that a, changes by about —0.3 umV~!, and
a, changes by about 0.19 yumV~!. Other parameters
of the confinement potential change as well during the
barrier pulse.

Reference [33] computes the exchange coupling between
two quantum dots in a potential of the form Eq. (2) in the
HL framework. At zero magnetic field, the result is

Jur(Vo. a)

282 {h%ﬂ 2Vl
1 _ 4 4
P Umh e m) @+ )

X |ex ﬂ —2ex —a’
Pere P\lere
T 32 a2
- \/;47165010 [1 ~ 5 <E>} } (3)

Here, S =exp(—a*/13), ly=+/h/mwy, with @,=
\/Vo/ml2. Note that m is the electron effective mass, €,
is the permittivity of free space, € is the dielectric constant
of the material, and [ is the zeroth-order modified Bessel
function. In writing this equation, we have assumed that the
minima of the double-dot potential occur at x = +a. We
have also ignored the magnetic-field-dependent terms
because, for the magnetic field used here (0.5 T), the
effective magnetic confinement is still weaker than the
electrostatic confinement.

To determine if lateral position shifts can indeed explain
our data, we experimentally measure how B; affects J; in
our device (Fig. 3). We then fit our data to Eq. (3). To
parametrize the effect of the B, we allow for a; = o B;+
a, B, + a3 B3, where the a; are fit parameters. We also fit
for V,, but we constrain [, =/, = 100 nm, which is
approximately the value we obtain from our simulations.
The fitted values are V, = 11.4 meV, a; = —0.40 yumV~!,
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FIG. 3. Dependence of J; on the barrier-gate voltages. (a) J; vs

B,.(b) J; vs B,, for B = 60 mV. (c) J; vs B3, for By = 60 mV.
The black data points in each panel are obtained from the fast
Fourier transform of a data set similar to Fig. 1(b). In (a)—(c), the
dark blue line is the fit to the exponential model, and the light
blue line is the fit to the HL model. Panels (d)—(f) show the
difference between the fits and the data for the two models.

a, = 0.25 yumV~!, and a3 = 0.01 umV~!. The simulated
and fitted values of V|, are on the same order of magnitude.
This level of agreement is reasonable, considering that
the simulation calculates the semiclassical self-consistent
potential associated with the electron density in the
quantum dots. Moreover, the potential of each dot is not
exactly Gaussian, making it challenging to extract an exact
potential depth. Our simulated values of the quantum-dot
position shifts (=0.3 gmV~! and 0.19 umV~") described
above agree well with the fitted values of @; and a,. This
agreement supports our hypothesis that lateral position
shifts cause the observed trends in our data.

IV. MODELING THE DEPENDENCE
OF EXCHANGE COUPLING ON
ALL BARRIER GATES

The nonlinear and nonlocal dependence of exchange
couplings on the barrier-gate voltages, which results from
position shifts of the quantum dots, poses a challenge to
implementing simultaneous exchange coupling between all
dots in an extended array. Previous work has investigated
how to adjust multiple interdot tunnel couplings iteratively
[26,30]. Here, we discuss two different models that allow
us to determine the virtual-gate voltages given a set of target
exchange couplings. In contrast to previous iterative
approaches, our approach generates a predictive model.
As discussed further below, predictive tuning of exchange
couplings in extended spin chains is especially helpful
when multiple exchange couplings are present because the
observed spin oscillation frequencies do not correspond to
the bare two-spin Heisenberg couplings. We also use our

model to control coherent exchange coupling instead of
incoherent electron tunneling. Finally, our approach has the
advantage that it enables calibrating exchange couplings at
the symmetric operating point, where tunnel couplings
cannot be easily determined.

Our general approach is to measure how all of the J;
depend on the B; and then to fit the parameters of a
nonlinear model to the data. Using these fit parameters, we
create a model that allows us to generate a set of virtual-
gate voltages G(j), for a set of target exchange coupling
values j = [j, j», j3], Where the j; are the desired exchange
coupling values. We compute the actual gate voltages using
the transformation described above. We validate this model
by inducing exchange coupling between two, three, and
four spins and compare our observations with simulations;
we find good agreement.

To calibrate the models, we begin by inducing one strong
exchange coupling J; > J;; and measuring the effect of
the B; on that exchange coupling. For example, to measure
how J; depends on B;, we initialize the array, as discussed
above, with B; = 0. Then, we pulse B; from 25 to 65 mV,
and we record exchange oscillations at each pulse height.
Setting B; = 60 mV, which yields a large but still-
measurable J; ~ 200 MHz, and B; = 0 mV, we then pulse
B, from 0 to 35 mV, and we record exchange oscillations.
Setting By = 60 mV and B, = 0 mV, we sweep B; from 0
to 40 mV and again record exchange oscillations. The
pulses on B, are not sufficient to induce substantial J, due
to the large pulse height on B;. The pulses on B; induce
substantial J3, but J; is not affected by the next-nearest-
neighbor exchange coupling. We extract the oscillation
frequencies through a fast Fourier transform (FFT) of the
data (Fig. 3). We repeat this process for the other J; (see
Supplemental Material [48]).

We fit the resulting J; vs B; data to a set of equations

related to Eq. (3), of the form J; = Jy; (Vi a;), where

ay =a+a, By +apB; +a;3B;, (4)

ay = a+ ay By + axnB; + a3 B, (5)
and

ay = a+ a3 By + a3 By + ax3Bs. (6)

Here, the V| and the q; ; are fit parameters. As discussed
above, we constrain /, and [, to be the values found from
simulations. These equations model our data quite well
(Fig. 3), and the parameters we extract from the fits agree
reasonably well with our simulations. Values of V{ range
from 6.4 to 11.4 meV, and values of ¢;; range from —0.40 to
—0.43 yumV~!. Once the model is calibrated and the
parameters found, we choose target exchange coupling
values j. We then numerically solve the set of equations
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Jji = J(Vi, a;) for the interdot separations a;, and we invert ~ Using @ = 100 nm, [, = 32 nm, and taking a typical value
Egs. (4)—(6) to find the desired barrier-gate voltages. of a; =—0.4 umV~', we expect §; ~ 156 V=, which
While this model (the “HL model”) originates from a  agrees reasonably well with our fitted values. We have also
microscopic theory, the exchange coupling is a highly  conducted measurements to confirm that the §,;; do notdepend
nonlinear function of the potential parameters, and some  significantly on the barrier-gate voltages, supporting the form
a priori knowledge of the quantum-dot confinement poten-  of the exponential model (see Supplemental Material [48]).
tial is desirable. Using the HL model, in practice, also With the model parameters in hand, we choose a set of
involves numerically solving nonlinear equations, which  target exchange coupling values j. Setting J = j, we invert
can be susceptible to errors. An alternative, more robust,  Egs. (8)-(10) to find the required virtual barrier-gate
model for the dependence of the J; on the B; is motivated by~ voltages:
the realization that the part of the expression for J; in Eq. (3)
that is most sensitive to the interdot separation is the factor B, 811 61 613 | 7 [log((j1—71)/P1)
S? o exp (—2a?/13). Setting a; = a + n;, where ; < a ~ By | = |6y 8y 6 og((j»—72)/62) |. (11)
100 nm and 7; < [y ~ 32 nm, we have B; 53y B3 B3 102((js —73)/fs)

For both the exponential and HL models, we require that
the virtual-plunger gates remain fixed at the symmetric
operating point, and we transform the virtual-gate voltages
to physical gate voltages using the capacitance matrix
through g = A~1'G, as discussed above.

Ji ~exp (—2a3/13) ~ exp (—2a*/13) exp (—4an;/13). (7)

Ifn; = a;B; + a,B, + a3 B; as before, we expect the J; to
depend approximately exponentially on the B;. Thus, we
introduce the following “exponential model” for our data:

Jy = p1exp(61,B) + 8128y + 613B3) + 11, (8)
V. MODEL VALIDATION
Jy = Prexp(831 By + 6228, + 623B3) + 72, ) . ,
In practice, we prefer to use the exponential model
J3 = B3exp(631B) + 83,By + 833B3) +73.  (10)  because it features a robust inversion process and fits our
data as well as the HL model (Fig. 3). (See the
Here, 6, p;, v; are fit parameters. Empirically, the fit  Supplemental Material [48] for a comparison of the gate
parameters y; are required for two reasons. As discussed  voltages generated by these two models.) We first validate
above, the exchange couplings are not pure exponential  our approach by sweeping js, the target exchange coupling
functions of the barrier gates. Second, the hyperfine gradient ~ between spins 3 and 4, linearly from 0 to 200 MHz
can increase the measured oscillation frequency above the [Fig. 4(a)]. The observed oscillation frequency matches
bare exchange frequency. Including y; in the fit allows usto  our expectation. We also perform the same test on qubits 1
accommodate these deviations from pure exponential  and 2, and qubits 2 and 3, and observe good agreement
behavior. between the measured and target frequencies.

The exponential model also matches our data quite In our device, we estimate that the residual exchange
well (Fig. 3). Typical values of f; and y; are on the coupling at the idling point with no barrier-gate pulse is not
order of 10 MHz, and values of o, range from 93 to  zero but rather a few megahertz for each pair. In generating
114 V-!. From Eq. (7), we expect that &, i~ —daa;;/ l(z). the data of Fig. 4(a), which features a swept j;, we did not

R (c) (d)

S S
O)_ N\ \EEL\_ e x
150 1 150 ] 1 1 T T
0.8 / 08 08 .
100
0.6 ‘ 06 0.6 Simulation
50 0.4 04 04 .
Data
0.2 0.2 ! I
0

100 200 0 100 200 "o 50 100 150
Time (ns) Time (ns) Time (ns) Time (ns)

FIG. 4. Two- and three-spin exchange coupling. (a) Two-spin exchange oscillations obtained by linearly sweeping j; from O to
200 MHz. Inset: FFT of the data. (b) Three-spin exchange oscillations obtained by linearly sweeping j; from 10 to 150 MHz and
fixing j, at 70 MHz. Inset: FFT of the data. Theoretical predictions of the exchange oscillation frequencies are overlaid in red.
(c) Simulated three-spin exchange oscillations corresponding to the data in panel (b). Inset: Simulated FFT. (d) Line cuts from panels

(b) and (c) at j, = j3 = 70 MHz. In all panels, PS(U is the singlet return probability of the right (left) pair of dots.
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simultaneously require that j; = j, = 0. If we had required
j1 =Jj>» =0, our model would generate large negative
values of B; and B,. Instead, for this data set, we fixed
B, = B, = 0 since the weak residual exchange coupling
does not significantly affect these data.

Next, we induce three-spin exchange oscillations between
spins 2-4. The array is initialized in the [11]1) state.
Preparing |11) on the left side ensures that spins 2—4 remain
inthe s, = —|—% subspace, regardless of the sign of the local
magnetic field gradient. We fix B; = 0, j, = 70 MHz, and
we sweep jz linearly from 10 to 150 MHz; we measure
oscillations on the right pair. We compare our data to
simulated predictions (see Supplemental Material [48] for
details on the simulation). The observed frequencies closely
match our expectation, confirming that we can correctly
set the target frequencies [Figs. 4(b)—4(c)]. Note the pres-
ence of three distinct frequencies in the measured spectrum
of Fig. 4(b). These frequencies are not the bare Heisenberg
couplings. Instead, they result from the different energy
splittings between the singletlike and tripletlike states of
three spins [9]. The theoretically predicted [9] low-lying
energy splittings of three exchange-coupled spins are shown
in red in Fig. 4(b), and they overlap nicely with our
measurements [9]. This theoretical prediction assumes zero
magnetic gradient between the dots. The presence of a
hyperfine gradient in our device causes the experimental
data to slightly deviate from the theoretical predictions
[Fig. 4(c)]. However, this deviation is relatively insignificant
for exchange strengths above 10 MHz.

The model parameters we extract from the fits alone do
not suffice to accurately generate the target three-spin
exchange frequencies for both the exponential and HL
models. We empirically find that the voltages G(j) gen-
erate actual exchange frequencies J < j when two or more
of the j; are nonzero (see Supplemental Material [48]). To
overcome this challenge, we make minor adjustments to the
fitted model parameters and compare the observed three-
spin exchange frequencies with simulations. We repeat this
process for a few iterations until the experimental data
match closely the simulated predictions, usually within
about 10 MHz. In the exponential model, we normally need

J1:Jo.f3 (MHZ)

0 200 400 0 200 400
Time (ns) Time (ns)

FIG. 5.

to modify the values of f3; and y;, while the values of 6;; can
remain mostly unchanged. For the HL. model, we usually
need to slightly increase the confinement strength V. See
the Supplemental Material [48] for a comparison of the
fitted and adjusted parameters and gate voltages.

The need for a modified parameter set for three-spin
exchange coupling may originate because of the following.
First, we calibrate our model when only one of the J; is
large. However, three-spin exchange coupling requires
multiple large J;, for which we need several large,
simultaneous barrier-gate pulses. Second, our assumption
that only linear position shifts induce exchange coupling
likely breaks down at large gate voltages. Indeed, Fig. 2(b)
shows that both the characteristic size and confinement
energy change during barrier-gate pulses. Third, generating
three-spin exchange coupling involves simultaneous large
voltage pulses on several plunger and barrier gates, and any
errors in our measured capacitance matrix will cause errors
in the exchange couplings.

Despite the need for an additional set of parameters for
three-spin exchange coupling, the data in Fig. 4 show that
our model can still be used in this regime. Indeed, this
additional set of parameters also suffices to induce four-
spin exchange coupling because the exchange coupling has
vanishing dependence on the next-nearest-neighbor barrier
gates [Figs. 3(c)]. To calibrate the two sets of three-spin
parameters needed for four-spin coupling, we first tune the
model for exchange coupling between spins 2—4, which
yields precise values of 65, 053, 03,, and d33, together with
P2, B3, 72, and y3. To calibrate the model for exchange
coupling between spins 1-3, we leave these parameters
fixed and tune 6,1, 012, 81, f1, and y;. With the parameters
tuned in this way, we induce simultaneous exchange
coupling between all four spins in the array by initializing
the array in the || 1] 1) state, and we sweep all three target
exchange frequencies linearly from 10 to 40 MHz. The
oscillations are measured on both the left and the right pairs
[Figs. 5(a)-5(b)]. The experimental data and the simulated
predictions [Figs. 5(c)-5(d)] match closely. The agreement
between the experimental data and the simulation shows
good control over all exchange couplings. The maximum

0 200 400 0 200 400

Time (ns) Time (ns)

Four-spin exchange oscillations. (a) Experimental data measured on the left side. Inset: FFT of the data. (b) Experimental data

measured on the right side. Inset: FFT of the data. (c) Simulated four-qubit exchange oscillation data on the left side. Inset: FFT of the
simulation. (d) Simulated four-qubit exchange oscillation data on the right side. Inset: FFT of the simulation.
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simultaneous exchange coupling is limited to about 40 MHz
because larger barrier pulses disrupt the tuning of the device.

VI. DISCUSSION

A significant source of error in our model is the
fluctuating nuclear hyperfine field, which is of order
10 MHz in our device (see Supplemental Material [48]).
Empirically, our model can generate exchange couplings
that are accurate to about 10 MHz, suggesting that the
hyperfine fields are a significant source of error. Our model
becomes increasingly inaccurate when exchange frequen-
cies approach the hyperfine field values.

Although different sets of parameters are needed for two-
and three-spin exchange coupling, the range of validity of
the model is sufficient to accurately predict voltages for a
wide range of exchange coupling values in either of these
cases. To improve on this model, additional effects beyond
lateral position shifts probably need to be considered. As
discussed above, it is likely that other parameters of the dots
are changing or that the capacitance matrix may require
further refinement. More sophisticated modeling of the
electrostatic potential, using the actual computed potential,
as opposed to a Gaussian approximation, and a more
accurate calculation of exchange couplings beyond the
two-spin HL framework [49] will likely also help to
improve the model.

In the future, it seems likely that fabricating devices with
extremely narrow barrier gates may help to reduce the
voltages needed for simultaneous exchange coupling
between multiple electrons in quantum-dot spin chains,
although large pulses may still be required to adjust the
exchange coupling from very small to very large values. It
is less clear that the challenge of position shifts can be
avoided with narrow barrier gates. In any case, we expect
that electrostatic simulations can be used effectively to
guide the design of future quantum-dot spin chains. We
also expect that the use of electrostatic simulations to
guide quantum-dot spin-qubit tuning and operation will
become a valuable tool as quantum-dot devices increase in
complexity.

We expect that our technique can apply to different types
of quantum dots. A similar exponential dependence of
exchange has been observed in Si/SiGe quantum dots
[5,42] and GaAs devices [43]. The form of Eq. (3) suggests
that lateral wave-function shifts may be a primary cause of
this behavior. A similar exponential model has also been
used to describe the behavior of tunnel couplings in a GaAs
device with a nonoverlapping, open-gate architecture [31].
We also expect that this model could be applied to Si/SiO,
devices, where voltage-controlled tunnel coupling between
quantum dots has now been demonstrated [50].

The possibility of creating quantum-dot Heisenberg spin
chains opens up a wide array of new phenomena to explore.
As we have shown in previous work, pulsed exchange
couplings between spins in quantum-dot spin chains can

enable new forms of quantum information transfer [23,51].
When multiple exchange couplings can be controlled
simultaneously, coherent information transfer via antifer-
romagnetic spin chains becomes a possibility [20-22].
Various techniques related to adiabatic quantum informa-
tion processing, including adiabatic state transfer [52] and
adiabatic state and gate teleportation [53], seem within
reach. Single-pulse three-qubit gates [6] and the creation of
long-range entangled states also become possible. Beyond
quantum computing applications, Heisenberg spin chains
are essential elements of models for quantum magnetism,
and they underlie important nonequilibrium many-body
phenomena of great interest, such as effects related to
many-body localization [24,54] and time crystals [25].

As an example of the utility of our approach, we return to
the experiment described in Fig. 4, where we generate
coherent exchange coupling between three spins. These
data represent an experiment in which an initial state
|11 1) evolves under simultaneous exchange coupling
between dots 2 and 3 and dots 3 and 4. When J, = J3,
evolution for a total time (2/9J,) yields the final state
W)= (VI @ (114) + 23 111) +[111)). Here,
lw) is equivalent to a W state on qubits 2—4, up to single-
qubit rotations. For the case shown in Fig. 4(d),
Jjo» = j3 =70 MHz. Thus, in a total evolution time of
approximately 3.2 ns, we expect to generate a three-qubit
entangled state. Based on Monte Carlo simulations, which
integrate the Schrodinger equation including initialization
errors, charge noise, and hyperfine noise [Fig. 4(d)] (see
Supplemental Material [48]), we expect that we can prepare
qubits 2—4 in the state (1/v/3)(|11)) + 31 M)+
[ 11)) with a fidelity of about 0.60. The dominant source
of infidelity is state preparation error associated with
thermal population of excited states and the fluctuating
hyperfine gradient. Neglecting preparation errors, we
expect that the fidelity can exceed 0.9, largely because
the total evolution time is much shorter than the relevant
dephasing times in this system. The creation of extended W
states in larger Heisenberg spin chains is discussed further
in Ref. [22].

In addition to generating a many-body entangled state,
the case where J, =J; can also generate a remote
entangling operation, as we now discuss. An initial
state [111]) evolves after a time (2/3J,) to |y) =
(V3/2)11) ® ([411) + (€™2/V/3)|11])). Here, |y) fea-
tures entanglement only between qubits 2 and 4. Moreover,
the initial state of qubit 3 is unchanged. In fact, it is easily
verified that, in the absence of magnetic gradients, this
operation is equivalent to an (S,,)*? operation, where S,
indicates a SWAP gate between qubits 2 and 4. Compare this
to the common entangling operation (Si_,-)l/ 2 between two
qubits i and j. Based on our simulations, we expect that
with perfect state preparation, we could generate this three-
qubit state with a fidelity of about 0.86 in a total time of
about 9.5 ns. The generation of remote exchange in
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extended exchange-coupled spin chains is further discussed
in Ref. [55].

VII. CONCLUSION

In summary, we have demonstrated simultaneous coher-
ent exchange coupling between two, three, and four spins
in a quadruple quantum dot. We have also shown that
lateral position shifts of the quantum dots during barrier
pulses present a significant hurdle to implementing simul-
taneous exchange coupling between multiple electron
spins. Using a phenomenological model based on a micro-
scopic theory, we can predict the virtual-gate voltages
required to generate a set of target exchange couplings.
Our method is also scalable and applicable to other types of
quantum-dot spin qubits, such as silicon qubits, which offer
the possibility of isotopic purification and substantially
reduced nuclear hyperfine fields, leading to longer electron-
spin coherence times. This method enables us to generate a
four-site Heinseberg spin chain, which is an exciting
prospect for the exploration of the physics associated with
interacting spin chains.

Recently, we became aware of a related work demon-
strating independent control of tunnel couplings in a
quantum-dot array [31].
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