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Abstract—With the evolution of 5G cellular communication, beamforming is mature for the implementation on a large scale. The
development of cellular networking provides a great opportunity for swarm UAS. Concurrently, the advantages of swarm UAS can
provide immense improvement to the advance of industrial and residential implementations. However, the nature of the antenna array
constrains beamforming in a limited space which is rarely mentioned in networking routing researches.

In this paper, regarding the constrained steering space, we proposed a novel algorithm, Optimized Ad-hoc On-demand Distance Vector
(OAODV), which aims to improve the capacity of beamforming on swarm UAS networking. With the adjustable searching space,
OAODV can achieve better latency, overhead, and link generation than the conventional algorithms of Ad-hoc On-demand Distance
Vector (AODV) and Optimized Link State Routing (OLSR). Compared with AODV and OLSR, OAODV can reduce 35.07% and 68.93% of
average overhead, and decrease 47.73% and 11.55% of average latency respectively. Further, we leverage Ant Colony Optimization
(ACO) to enhance OAODV, and the ACO enabled OAODV can achieve better throughput and fewer hops with reduction of overhead.
The proposed algorithms show the promising capacity to improve swarm UAS networking.The OAODV is more suitable for the 5G
cellular networking based swarm UAS networking. The decentralized advantages can improve the deployment of swarm UAS
networking on a large scale with more efficiency, flexibility and elasticity.

Index Terms—Swarm UAS networking, Beamforming, Ant Colony Optimization, 5G cellular communication, Optimal Routing

1 INTRODUCTION

s cellular networking evolves, the 5th Generation New
Radio (5G NR) is coming on a large scale. Compared
with 4th Generation Long Term Evolution (4G LTE), 5G
NR has more enhancements, such as latency [?], spectrum
efficiency [?], traffic capacity [?], connection density [?], ex-
perienced throughput [?] and networking efficiency [?]. The
implementations of 5G NR on a large scale are stimulating
new revolutions in many fields like self-driving, health care,
agriculture, education, etc [?], [?]. The advantages of 5G
NR also drive the Unmanned Aircraft System (UAS) [?]
feasible on a large scale. The advanced UAS helps workers,
officials, and civilians to finish their work more efficiently
and safely [?], [?]. Further, the capacity of UAS can be
amplified remarkably once the UAS are formed in the
swarm. The swarm UAS can execute multiple and complex
missions simultaneously which improves the efficiency and
the quality of mission complement [?]. As the core of swarm
UAS, swarm UAS networking is critical to maintaining the
performance of swarm UAS. And the capacity of swarm
UAS networking is derived from the routing algorithms
mostly [?]. Due to the cost of research and the limited swarm
robot exploration, the routing algorithms for swarm UAS
are rare. Most of the researches mainly focus on the capacity
of the UAS fleet which is smaller than swarm UAS in the
scale.
Currently, with the advance of 5G NR, beamforming is
implemented to improve the UAS networking [?]. However,
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the conventional routing algorithms for UAS networking
are mainly based on Ad-hoc On-demand Distance Vector
(AODV) and Optimized Link State Routing (OLSR). AODV
is decentralized, reactive, and less overhead for manage-
ment which is robust to the dynamic topology. Nevertheless,
the main drawbacks of AODV are the consumption of path
discovery and the local optimization for routing generation
[?], [?]. In contrast, OLSR is a centralized algorithm that
could achieve global optimization of routing generation
with the sacrifice of overhead [?]. Compatible with beam-
forming, a swarm-oriented routing algorithm, implemented
with decentralization and efficiency, is an urgent need for
the development of swarm UAS networking.

In this paper, we propose a swarm-oriented, decentral-
ized, and efficient routing algorithm, Optimized Ad-hoc
On-demand Distance Vector (OAODYV), for swarm UAS
networking. Based on beamforming, OAODV can select
the next hops and deliver packets in directional. Each path
discovery is labeled with the identified vector which allows
OAODV to generate multiple paths to increase the rout-
ings and reduce the link generation and the latency. Most
importantly, with the adjustable searching space, we can
avoid unnecessary searching and reduce the overhead of
swarm UAS. With the subjection to bandwidth and latency,
Ant Colony Optimization (ACO) is implemented to contain
better throughput and the fewer hops of routing. Compared
with AODV and OLSR, OAODV shows promising poten-
tials, which can reduce 35.07% and 68.93% of average over-
head, and decrease 47.73% and 11.55% of average latency
respectively. With the enhancement of ACO, the evaluation
shows ACO enabled OAODV can reduce hops generation
and increase throughput efficiently.

Different from the majority of research, we consider
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beamforming as a model with constraints for steering angles
[?] which shows the maximum steering range is 0° ~ 140°
with variation of £20° currently. Most of the previous
research ignored the constraints which will be a barrier to
the implementation in practice. The most important effect
of ignorance of the constraint of the steering angles can
lose much energy on the unnecessary searching. Besides,
the blind areas in the searching can lead the signal loss
increasing remarkably once the the receiving UAS locates
out of the steering ranges. Regarding the constraints, we
optimize the searching space for OAODV and reduce the
overhead of swarm UAS. There are multiple error resources
derived from UAS mobility and networking fluctuations
which can cause the optimal next hops dynamic and hard
to decide. The fluctuation derived from the UAS network-
ing can cause much energy consumption to optimize the
solution, especially, the ambiguous selection is too exact. In
this situation, our beamforming generation has a divergence
angle which can enlarge the searching space and cover the
fluctuation of the UAS networking. Apart from the natural
divergence angles, our proposed approach can adjust the
searching angles to extend the optimal selections and mit-
igate fluctuations effect. The next hops can be optimized
based on the optimal selections extending in the fluctuated
situations of UAS networking. The proposed OAODV is
different from the conventional AODV which is suitable for
the 5G cellular networking on the swarm UAS networking
on a large scale. The difference between the scenarios is that
the AODV can be deployed in a group and the members
of the group can not exceed over 100. The OAODV aims
to improve the swarm UAS networking to an amount
that is over thousands. The massive implementations need
much more efficiency, reliability, flexibility, and elasticity for
the cooperation between different swarm UAS networking
which is essential to the deployment of the cyber physical
system in the future on the aerial areas.

The rest of the paper is organized as the following. Sec.
IT presents the related work for swarm UAS networking
routing specifically. Sec. III presents the proposed system
model and methodology of swarm UAS networking routing
algorithms. Sec. IV provides the evaluation of the proposed
algorithms. Sec. V concludes the results.

2 RELATED WORK

Currently, there are many routing algorithms proposed for
UAS networking. However, the majority of researches fo-
cuses on the UAS fleet which is smaller than swarm UAS in
scale.

The distributed routing algorithms for UAS networking
are mainly based on AODV [?], [?]. The authors compared
AODV and OLSR in Flying Ad hoc Networks (FANETs)
with the simulator of NS-2 [?]. The evaluation shows that
OLSR is not suitable for highly-dynamic and low-density
networking. In the research of [?], the evaluation shows that
the time consumption of AODV on the initial path discovery
stage is overwhelmed. And the authors, in [?], concluded the
path discovery stage on the AODV can decrease the stability
of FANETs. To mitigate this problem, an optimization is
proposed to implement Dijkstra to extend the transmitting

buffer. The results show that the optimization can reduce
the latency between end-to-end communication [?].

In terms of the centralized routing algorithms, the main
weakness of OLSR is overhead for topology maintenance in
real-time. Based on the weakness, many researchers made
a relative modification on OLSR to satisfy the requirement
of communication. With constraints of the related speed be-
tween nodes, the authors in [?] proposed a predictive OLSR
(P-OLSR) which predicts the transmission load and adjusts
transmission count in real-time. Their evaluation shows that
the P-OLSR outperforms OLSR and BABEL. Apart from
the speed, the authors, in [?], proposed a mobility and
load aware OLSR (ML-OLSR) for FANETs. Compared with
OLSR, the simulations show that ML-OLSR can achieve
lower end-to-end delay and high PDR. Similar research in
[?], a multidimensional perception, and energy awareness
OLSR (MPEAOLSR) is proposed. The MPEAOLSR can im-
prove PDR, reduces packet loss rate, and end-to-end delay
regarding node link time, link layer congestion, and node
residual energy.

Flexibility is a distinctive advantage of swarm UAS, but
also a great disadvantage of swarm UAS. The swarm UAS
has more freedom to complete missions which also poses
an immense challenge to swarm UAS networking. Due
to the dynamic topology of UAS networking, the authors
optimized the search space for a cube-based space region
partition (CSRP) [?]. Their evaluations show that this par-
tition could improve the performance of the average delay,
packet delivery, and delay jitter. The main drawback is that
it sacrifices the flexibility of swarm UAS. CSRP guarantees
efficiency and low latency underneath the stability of net-
working. In [?], the authors acquire geographic information
to enhance routing efficiency which collects localization of
its peers and executes routing path in direction greedily.
Their simulation shows that directional delivery can im-
prove the performance of packet delivery ratio, average
delay, and routing overhead. The combination of Greedy
Perimeter Stateless Routing (GPSR) and AODYV is proposed
in [?] and optimized with Particle Swarm Optimization
(PSO). This combination could improve PDR on the greedy
routing stage and the flooding path-discovery stage.

The 5G NR cellular networking is impending to assist
the evolution of swarm UAS networking. The compact and
the affordable nodeB devices can be implemented into the
mobile devices to extend the scale of 5G NR from the ground
to the aerial [?]. The current research of 5G NR on routing
mainly focus on the optimization of multiple resources
allocation [?], and multiple combined problem resolving [?]
of new characteristics of 5G NR and the conventional issues
[?]. To improve the data rate with the enhancement of beam
alignment, Signal-to-Noise Ratio (SNR) and Reference Sig-
nal Received Quality (RSRQ) are implemented to enhance
the detection of beam alignment of mmWave 5G which
can improve the capacity of each beam connection. With
the combined prediction of target localization and mobility,
the link-weight based routing can achieve an optimal route
to transmit packets with Huffman coding for security [?].
With the optimization of channel quality and resource block
allocation, the base stations can achieve the maximization
of the cellular spectrum with multiple paths for routing
[?]. The advantage of the optimization can provide Device-
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to-Device (D2D) communication when a small set of base
stations are invalid [?]. As the most critical issue of 5G
NR cellular networking in all fields, joint optimization of
Virtual Networking Function (VNF) placement and multi-
cast traffic routing has serious effects on the quality and
the stability of links generated between nodes in the 5G
NR networking [?]. A Mixed Integer Linear Programming
(MILP) model can formulate the joint optimization of the
multicast traffic routing and VNF placement with the mini-
mum provisioning cost on VNF and links. Since the MILP is
an NP-hard problem, the combination of single path routing
and multipath routing can enhance the efficiency and the
accuracy of problem resolving remarkably [?]. Similar to
[?], an Integer Linear Programming (ILP) model [?] can
formulate the problem of the joint multicast routing and
OFDM resource allocation problem in D2D networking
with consideration of limit spectrum reusing half-duplex
operation, and contiguity in the resource block allocations.
A two-stage optimization performs pre-admittance filtering
to detect the states of networking and extends the reduced
ILP model with the branch-and-cut method. With enabling
Network Slice (NS) selection and routing of traffic through
an NS, a framework for enabling negotiation, selection, and
assignment of NSs can request applications to improve the
Quality of Service (QoS) with static, dynamic, and hybrid
routing in 5G networking [?]. At the same time, a fast
request routing distributes traffic demands among source
nodes intelligently and routes flow through intermediate
nodes strategically. The joint optimization mainly focuses
on source direction and flow routing in mobile networking
with built-in content sources. The evaluation shows the
maximum link utilization can extend significantly [?].

With the high capacity of bandwidth in 5G NR cellular
networking, the minor errors on links can be amplified to
degrade the performance of the communication between
heterogeneous networking and devices [?]. The links quality
of 5G NR cellular networking is critical to elevate the
stability and the security of applications in the upper layers.
The dynamic of swarm UAS cause the 5G NR enabled
swarm UAS networking is more dependent on the quality
of the links generated between heterogeneous networking
including the aerial networking and the ground network-
ing. To improve the fusion convergence rate of hetero-
geneous networking, Wireless Sensor Networking (WSN)
and Mobile Ad-hoc Networks (MANET) are combined to
improve the routing efficiency when disasters occur. The
combined 2-layer routing can generate paths via WSN or
MANET according to the types of packets in the delivery
and the states of emergency [?]. The dynamic environment
requires the stability of link quality. A routing and resource
allocation (RRA) scheme based on self-organizing feature
maps (SOM) can reorder the link set generated in RRA
processing to achieve the optimal quality of service in the
multi-core networks underneath beyond 5G networking [?].
Assisted with Ultra Dense Networking (UDN) [?], a particle
swarm optimization can optimize the routing discovery and
enhance the packet delivery rate, throughput, and energy
saving to improve reliability and QoS for UDN in routing.

Apart from the reliability, the delay between end-to-end
devices is also essential in the 5G NR cellular networking,
especially in the packets delivery of swarm UAS network-

Fig. 1. Packets Delivery inside Swarm UAS

ing. An anchorless routing is enhanced with Locator/ ID
Separation Protocol (LISP). The control plane can achieve
the optimal delay and provide services for user plane nodes
[?]. Fueled by machine learning, Q-learning optimized the
selection of nodes and generated the shortest paths for the
maximization of throughput with avoidance of congested
network nodes [?]. A deep reinforcement learning based
autonomous synchronous signal routing algorithm leverage
a Deep Neural Network (DNN) to learn the policy of the
minimum link asymmetry. With the optimal result, the time
synchronization can assist the remote controller to maintain
the balance between the synchronous services request and
network resources allocation with reduction of end-to-end
latency [?].

The impending trend of 5G NR cellular networking
on every device stimulates the evolution of swarm UAS
networking from many aspects [?]. However, there are
still many issues waiting for researchers to explore and
solve. The reliability, elasticity, and flexibility of swarm
UAS networking require deep research stemming from 5G
NR cellular networking [?]. The 5G NR based swarm UAS
networking can extend the scale and the flexibility of 5G
cellular networking on a large scale and smartly.

3 ENHANCED AODV FOR SWARM UAS NET-
WORKING

Different from the conventional UAS fleet, in this paper,
swarm UAS is equipped with 5G NR cellular networking
devices. Each UAS in the swarm can deliver packets and
broadcast information via beamforming with desired re-
ceivers and senders. Due to the dynamic topology of swarm
UAS, FANET is an optimized architecture for swarm UAS
networking. FANET is an Ad-hoc based networking frame-
work that allows UAS to join and leave freely. In FANET,
UAS can utilize multi-hop to deliver packets and broadcast
information (depicted as Fig. ??). Most importantly, FANET
is decentralized which can enable networking to manage on
a large scale. Concurrently, AODV is a reactive and decen-
tralized routing algorithm that is suitable to implement on a
large scale. The overhead of AODYV is much lower than the
centralized routing algorithms.
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Based on the advantages of FANET and AODYV, in this
paper, we propose a novel routing algorithm, OAODYV,
which is swarm-oriented, AODV-based, and decentral-
ized. With the optimized searching space, OAODV can
reduce overhead. Thereafter, we leverage ACO to optimize
OAOQODV to enhance routing generation which could be
more smart and robust. The two problems in this part are
proposed and resolved: (1) ADS-B Enabled OAODYV; (2)
Pheromones Assisted Routing Optimization.

3.1 ADS-B Enabled OAODV

The conventional UAS is equipped with Omni-directional
connection devices that do not support direction pointing.
The main method of the Omni-directional connection is
based on broadcast with encoded packets. The drawbacks
of the Omni-directional connection can not avoid informa-
tion leakage and unnecessary energy consumption. With
beamforming of 5G NR cellular networking, swarm UAS
can deliver packets and receive information with desired
directions [?]. With purposed directional pointing, beam-
forming can reduce much the redundant of communication
resources.

Enhance with beamforming of 5G NR, in OAODV, we
leverage ADS-B to broadcast positions and mobility of
swarm UAS [?]. The source of UAS can get an approximate
position of the destination, and deliver packets to the ad-
jacent UAS which flies in the direction of destination (de-
picted as Fig. ??). Thereafter, the selected UAS, in adjacent,
take the responsibility as relay UAS, and handover the pack-
ets to the destination. In the path discovery stage, the relay
UAS steer beams close to the direction to the destination
and avoid the path discovery in the undesired directions.
With the geographic information shared via ADS-B, the
relay UAS can calculate an approximated search space for
the next hop selections in their delivery ranges. As depicted
as Fig. ??, our proposed algorithm can discover multiple
paths for routing which is more robust to the topology
variation. Due to the prevention of loop generation, in
the path discovery stage, we insert a label generated with
the first hop to mark the RREQ of path discovery. With
the marked RREQ, the relay UAS in the swarm drops the
RREQs with recording labels. Based on the redundant of
routing, the source can adjust the delivery routing to satisfy
the transmission requirement regarding the existence of
invalid routings caused by networking topology fluctuation.

OAOQODYV aims to reduce the latency and the overhead of
path discovery. In Fig. ??, the UAS in red circle is source (de-
noted as Us) and its position is denoted as Ps = (x5, Vs, 2s),
where x; is the latitude of U position, y; is the longitude of
Us position, and z; is the altitude of Us position. The UAS in
green circle is destination (denoted as U;) and its position
is denoted as Py = (x4, y4, z4), where x; is the latitude of
U, position, y; is the longitude of U, position, and z; is the
altitude of Uy position. Based on the position of destination,
the source derives the next-hop selection from the vector:

M

and the angle (denoted as 0) which is the search range for
next hop. Each UAS (denoted as U, n =0,1,2,3, ..., N) gets

—
V(s, d)y = (X4 — Xs, Ya — Ys, Za — Zs)

Fig. 2. Path Discovery in Direction of Destination

the set of next hops H:

H = {h|V( 4, 0}, his next hop. )

Figures_for_Manuscript/Processing2-eps—conven

Fig. 3. Path Discovery of OAODV

Each position of UAS is denoted as P, = (xn, Yn, Zn).
The vector between UAS is denoted as V(, ,41), n =
0,1,..., N.

—
Vin, n+1) = (Xn+1 = Xn, Yn+1 = Yn, Znt1 — Zn) 3)
We have
N
—
Vis,d) = Vs, 00+ Vv, a) + Z:OV(n, n+1) 4)
n=l

As depicted in equation (??), the whole routing V/, 4, ob-
. . e —
tains the first hops V(, ¢, the last hop V(y 4), and the relay
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hops YN, Vin, nt1)- With V(g ), the routing can be marked
with distinction.

As depicted in Fig. ??, Us obtains the location of desti-
nation approximately via ADS-B and calculate the approx-
imated searching direction Vs ). With the approximated
searching direction, Us obtains the searching space ¢ for the
first searching V|, ). The relay UAS, in the space ¢, are
selected as the next hops. At the first searching, each hop
is identified with the insertion of V(, ) into RREQ. Here,
‘0" means the first relay UAS. The first relay UAS forwards
the RREQ to the following relay UAS. The following relay
UAS receives the RREQ, and checks whether its stack exists
the same record of V| ). The following relay UAS drops
the RREQ which has been recorded in its stack. After each
successful forwarding, the relay UAS will record the RREQ
in its stack.

For the next hops searching, the following relay UAS
follow the same searching space ¢. Here, the ¢ is determined
by the location of the current relay UAS, U}, and the desti-
nation, Us. With ADS-B, the current U, can get the vector to
destination, V(,, 4y = (Xg — Xn, Ya — Yn, 2a — zn). With the
velocity of the current relay UAS, V;,, = (vy, vy, v;) and
Vin, 4), we can have VV, ;) depicted as equation (??) and

2?).

—
ALY
VWV gy = o) 5)
oVy,
Xd—Xn Xd—Xn Xd—Xn
Vo &) _ | vam vm va=w 6)
= vy vy vy
OV, Z4—Zn  Z4—Zn  Z4—Zn
0, 05 v,
e
Based on the VV(, ;, we can have the center of
—
searching space ¢ based on V;,:
o
Peenter = tran 1(vv(n, d)) @)

The ¢eenter is the angle between center of the searching space
and the velocity of UAS. The next step is to determine the
bound of the searching space. The steering range of beam-
forming is denoted as «, for communication. In different
antenna arrays, « is variable. For convenience, we assume
« = 180° in this paper, and the center of beamforming is the
same with the velocity, V,,,. To satisfy the requirement of
routing path discovery, we propose a policy for rending the
searching space 0. As Fig. ?? depicted, the red line denotes
the vector of V,,, the green line denotes V(n, d)- Searching
space is depicted as 6, and the range of beam steering is
depicted as . Based on the calculation of ¢center, the 0 is
defined as follows:

2(% - 4’center)r (P < %
5023
a, =0

0= ®8)

With the determination of searching space, we can de-
rive the bound from searching space ¢ which includes
Pup, Poottoms Pleft and Prign:, and obtain the slopes of bound,
Kup, Kpottoms Kieft, Krignt- With locations of adjacent UAS,
the UAS, falling in the bound, are selected as the next hop
set Hy,. After receiving the RREQ, the destination responds a

Figures_for_Manuscript/spaceSearchingDefiniti

Fig. 4. Searching Space Definition

request reply (RREP) to the source and confirms the routing
to the source. Destination follows the routing gathered by
RREQ and backhaul RREP to the source.

For the relay UAS, the pseudocode of next-hop selection
is depicted as Algorithm ??.

Generally, Greed Perimeter Stateless Routing (GPSR) has
some similarities with our proposed OAODV routing algo-
rithms which both obtain geographical information for the
routing discovery. The following is the difference between
GPSR and OAODV.

The GPSR will update the geographic information timely
to its peers which will cost much energy and spectrum
efficiency and is hard to deploy on a large scale for the
swarm UAS networking. Geographical information is crit-
ical to the GPSR in the path discovery which needs frequent
updating from peers and shares the same channels with
regular communication. The consumption for scheduling
for the packet delivery needs additional overhead of system
for each UAS in the swarm UAS networking that is not
efficient and cost much more queuing delay for the delivery.

Different from GPSR, the OAODYV just update the geo-
graphic information when new path discovery needs which
can save much energy consumption on the new path dis-
covery. Concurrently, we adopt ADS-B as the geographic
information supply which does not need to share an addi-
tional spectrum for the geographical information exchange.
And ADS-B can have long distance transmission and low
energy consumption for the management. The OAODV
does not need central management for the routing which
enables the OAODYV can be implemented in the swarm UAS
networking distributively and on a large scale ubiquitously.
The OAODV can select the next hops with the destination
directions that can have advantages of the optimal routing
generation and over the greedy behaviors (GPSR). Com-
pared with GPSR on the selection of the next hop, the
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Algorithm 1 Hops Selection of OAODV

1: procedure THE NEXT HOP SELECTION(H,)
2: U, < RREQ;
U, < source_ID;
U, < destination_ID;
U, < Mation_Pusition;
u, « V(s, O);
if V(S—/O; has been recorded then
Drop the RREQ;
Stop procedure;
10: else
11: Indexy, < m
12: end i
13: Vin, 4) < (Xd = Xn, Ya — Yn, 24 — Zn);
IR P
14: Peenter < tan (VV(H, d));
15: ¢left < Peenter +0.5 X 0;
16: ¢right < Qeenter — 0.5 % 6;
17: Gup < Peenter +0.5 X 6;
18: Dvottom < Peenter — 0.5 X 6;
19: Kuyp  tan(pup);
20: Kpottom < tan((Pbottom)}
21: Kleft — tun(@eﬂ);
22: Kright A tan((pright);
23: while Y, 1 < Kleft X X1 and Yo > Kright X
§n+1 and Zy 41 < Kup X X1 and Zy 11 > Kpottom X Xn+1
o
24: H,, < Select UAS;
25: end while
26: end procedure

OAODV is more purposeful to obtain the hops directing
to destinations.

3.2 Pheromones Assisted Routing Optimization

In the above, we proposed OAODV to improve the capacity
of networking routing for swarm UAS. Based on OAODV,
we can obtain multiple routings for packet delivery, and
some of them are redundant for the bandwidth requirement.
The following problem is how to arrange multiple routings
for packet delivery. In the communication, each routing is
denoted as Ry, n =1, 2, 3, ..., S. The requirement of
bandwidth is denoted as BW, and the latency between end
to end devices is denoted as L.,. Based on the routing
capacity, we can have a convex optimization as follows:

S
arg min 2 Ry
0

N
S.T. ) by>BW ©)
S

d H
Z dy +ZP(1‘,]‘) < Leze

Where, R, includes Ug, U, and relay hops H. bw
represents the bandwidth of each routing. To the require-
ment of bandwidth, BW, we assume routings, derived from
OAOQODYV, are redundant. d;, is the delay for each UAS which
mainly contains queuing delay. p(; ;) indicates the propaga-
tion in each hop. In this paper, we assume the latency of
end-to-end for each routing mainly includes d, and p; ).

Fig. 5. Path Selection based on ACO

Further, we leverage ACO to improve networking rout-
ing for swarm UAS. The ACO is not the only choice for
routing optimization. The ACO is a distributed algorithm
that can be deployed in the scattered swarm UAS net-
working. The ACO leverage pheromone to mark the states
of traffic that can be updated with packet delivery and
path discovery simultaneously. In ACO, each agent can be
assigned several behaviors which are simple and storage
efficiency over the particle swarm optimization, fish swarm
intelligence, and other swarm optimizations. However, the
conventional ACO focuses on single path optimization
which is not suitable for OAODV and can not meet the
dynamic variation of topology. Based on V(, ), each hop
is marked with pheromone, and only the hops with high
pheromone can be selected. To each routing marked with
V(s, 0), local optimization is completed with ACO, which
means the global optimization for swarm UAS is achieved
with maximum optimization of each routing.

In ACO, each agent uses the pheromone to mark the
next hops. The agent selects the next stop which has higher
pheromone. Each UAS stores the pheromones of the adja-
cent UAS, Ph = {Ph,}, n = 0,1,2,..,N. In the set of Hy,
the UAS selects the one with max pheromones Max(Ph).
Among the multiple paths, the UAS selects the highest
Phy, to keep the cumulative pheromones max (denoted
as Max(Ph) = Max{Y_Ph,| n € H,}, n = 0,1,2,...,N).
Here, we utilize the response time 7, as the stimulation
of pheromone updating. 7, includes d, and p(i,j). The
probability of UAS selects the next hop, Ppy, :

Phy x (717)
Y Phy x % !
0, otherwise

(Tn < 00)

Ppy,, = (10)

The pheromone is updated based on each successful deliv-
ery.

m
Phy < (1—a) x Phy+ Y APhy,
k=1

(11)
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Here, 0 < a < 1 is the pheromone decay parameter, and
APhy, is,

L if UAS n is sel
APhn{Tn'lfu S n is selected (12)

0, otherwise

With the modified ACO, the optimization is not limited to
the specific iterations. Each delivery can be considered as
an optimization that is continuous and dynamic. The con-
tinuous updating of pheromone is derived from a delivery
that can track the status of networking in real-time. The
distribution of pheromone accumulation renders the net-
working status simultaneously. The updating distribution of
pheromone enables the most efficient delivery distributively
[?]. The decay parameter is critical to the performance of
pheromones marking. The decay parameter decides the per-
centage of involvement of the history. Due to the dynamic
of swarm UAS networking, the traffic of the routing is
supposed to be variable to the variance of environment and
mission assignments. If the traffic is under the updating of
the high speed, the decay parameter will be set to smaller
than 0.5, and the current states will affect the final decision
more. Otherwise, the decay parameter is supposed to be set
over 0.5, the sluggish scenarios are more dependent on the
historical data to keep the whole decision steady. Due to our
focus on the routing part in a tiny time slot, our intending
is to choose the 0.5 as a balance between the history and the
current states which is shown in the evaluation part.

In the scenario, we assume each UAS has an equal band-
width, bw, for packet delivery. The objection of optimization
can be converted into a selection. This selection is assigned
to Us. The Us can adjust the paths selection which is sub-
jected to L.y, and BW. U, take the delivery request of the
packet. The decision of the next hop is selected with Ppy, .
U, calculates Ppy, and selects the one with high pheromone.
After the delivery of packets, U, count the backhaul packets
for the updating of Phy. Once the T, changed, Ph, will
be updated with the affection of the previous Ph, and
the accumulation of Y}’ ; APh,. The specific processing of
Algorithm ?? is as follows:

Algorithm 2 ACO Enabled OAODV

1: procedure THE LEAST HOP
(argmin ) Hy)
Us + {Rn_};>
Us — {V(s, 0)| Uo is selected}
e 4
if V(, ) then
PPh,, < Phy;
Deliver Packet;
Check RREP;
if Trrep Changed then
Phy, < Tlﬂ ;
10: Update Phy;
11: end if
12: end if
13: end procedure

OPTIMIZATION

4 EVALUATION

In this section, the results of the evaluation are conducted
with Matlab 2019b and the networking configuration is ref-

erenced with the NS-3.29 simulator (waf 2.0.18). The whole
routing generation processing obtains path initial stage (de-
picted as Fig ??), path discovery processing stage (depicted
as Fig ??), and path discovery complement stage (depicted
as Fig ??). The routing path is generated after the path
discovery complement. Based on the generated routing, we
evaluated the performance of communication which aims
at latency, overhead, and searching link generation with the
comparison of OLSR and AODV algorithms. Pheromone
assisted routing selection is depicted as the following figure:
(Fig ??, Fig ??, Fig ??). We can achieve multiple routings
with Algorithm ??, and then the pheromone assisted rout-
ing selection is implemented to optimize the routings for
swarm UAS. The ACO performance is evaluated based on
the OAODV multiple paths generation which focuses on
average hops reduction and average throughput increment.

TABLE 1
parameters of swarm uas configuration

Mobility Model ConstantVelcityMobilityModel
Swarm Distribution Space 100 m * 100 m * 5 m
Speed 10-15m/s
Movement Direction 11,2, 3]
Transmission Rate 1 Mbps
Transmission Range 15m

Beam Steering Range 0-180 °
Transmission Protocol UuDP
Latency Requirement < 110 ms
Bandwidth Requirement > 2 Mbps
Evaluation Runs 10000

Each Evaluation Time 20s

4.1 Parameters of UAS in Swarm

The configuration of UAS in the swarm is depicted as the
Table ??. Based on the swarm UAS mobility, in this evalua-
tion, we configured the mobility model, swarm distribution
space, and movement direction (V};,). The constant velocity
of UAS for swarm UAS networking is that the swarm UAS
needs to keep the formation of the whole swarm UAS net-
working which has minor differences between each other.
In some aspects, the mobility model we take has the char-
acteristics of variable velocity without significant variation.
The great variation of speed on swarm UAS networking
can cause the separation of the swarm UAS networking
which is critical to the construction of UAS communication
in the flight. Generally, each UAS has its noise for the speed
control which has no big effect on the generation of the
topology of swarm UAS networking that means the variable
velocity does not make an effect on the integrity of swarm
UAS networking. Therefore, the routing algorithms do not
have different performance on the integrated topology of
swarm UAS networking. In the swarm mobility model,
each UAS keeps static with its neighbors which means
that in the whole processing the distribution space is not
variable for each evaluation. We simplify the waypoints of
swarm UAS into the static distribution space which could
enable us to observe the path discovery processing more
distinctly. In swarm communication, each UAS has a limited
transmission range, and the UAS can not deliver packets to
the UAS which is out of the range of beam steering (depicted
in Table ?? specifically). To explore the performance of pro-
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Fig. 6. Path Discovery Initial Stage

Fig. 8. Path Discovery Complement Stage

Figures_for_Manuscript/ExplorePathProcessingd—-eps—-converted-to.pdf
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Fig. 7. Path Discovery Processing Stage

posed algorithms, we executed 10000 runs of the evaluation
for gathering enough data.

4.2 Evaluation of Searching Angles for OAODV

Due to the characteristics of beam steering, we explored
the performance of OAODV with variable searching space  Fig. 9. OAODV Multiple Paths Discovery
which is mentioned as searching angle 6. In this evaluation,
we assume the active range of beam steering is 180°. Based
on the variable searching angle (¢), we explored the capacity
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Fig. 12. Angles Searching Performance

Fig. 10. OAODV Multiple Routings of overhead, latency, and link generation on average. Based
on the effect of the amount of UAS, we chose the median
amount, 100, to perform the evaluation. The average eval-
uation results are depicted in Fig ??. The average overhead
and the average latency show similar trends which keep
steady as the searching angle rises from 10° to 60°, and
increase rapidly as the searching angle expands from 70°
to 100°. Thereafter, the average latency and the average
overhead fluctuates in the range (110° ~ 180°). From our
observation, the searching angle at the range, 10° to 60° can
achieve better latency and overhead. However, the OAODYV,
in this range, obtains less throughput than the throughput
generated in the range of 110° ~ 180°. The average link
generation shows a similar trend as the searching angles
increase. Fig ?? shows, in the communication, the trade-off
between latency, overhead, and throughput is significant.

Figures_for_Manuscript/OaodvMultiplePathDiscqv4.8yRPathiDistovieny Comparispn-converted-to.pdf

With the result of Fig. ??, the trade-off between the low-
est latency and the lowest overhead for UAS networking
is challenging simultaneously. In this evaluation part, we
choose 90° as the searching angle range regarding the
balance of latency and overhead for UAS networking. The
optimal searching angle is supposed to be variable accord-
ing to the states of the UAS networking which can achieve
the best balance between the latency and the overhead
of the UAS networking in real-time. In this part, we just
proposed a fixed parameter selection for the balance of the
routing discovery with the purpose of optimization of whole
Fig. 11. OAODV Multiple Routings Pheromone connections constructions. To show the distinction of the
OAODYV, we illustrated the complement of AODV, OLSR,
and OAODV in the following figures (Fig ??, Fig ?? and
Fig ??).
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Fig ?? shows the path discovery of AODV in the swarm
which contains 100 UAS. In the path discovery processing,
the nodes will abort the packets which duplicated broadcast
with the purposed of loop avoidance. Each UAS in the
swarm is marked with a pink circle when it received the
RREQ. From Fig ??, we can observe that there are still
some UAS not being received RREQ. This means that the
overhead of the swarm system is not full. In the evaluation,
we assume the overhead is occupied after the UAS received
forwarding missions, and the overhead of UAS is equal
when it is on the forwarding mission.

Fig ?? shows the path discovery of OLSR in the swarm
which contains the same amount of UAS with Fig ??. In the
path discovery processing, the OLSR needs to get all the link
states of the whole networking so that we can observe the
searching link generation (depicted in blue line) are more
than the AODV which means the overhead of OLSR is much
higher than AODV. The high overhead of OLSR could get
the reward of shorter routing which is marked in the red
line.

Fig ?? shows the path discovery of OAODV with single
routing finding in the same scenario with Fig ?? and Fig ??.
In this scenario, the UAS aborts the RREQ with the same
broadcast (Vs 4)). In Fig ??, we can observe that the over-
head of OAODYV is much less than AODV and OLSR. Con-
currently, the AODV can achieve a shorter path as OLSR.
Based on the results of Fig ??, we made a trade-off between
overhead, latency, and throughput, we set the searching
angle for 90° to achieve better performance. Thereafter, the
configuration is the same in the following evaluation.

Apart from the path discovery complement in Fig ??,
Fig ??, Fig ??, we also depicted the performance of different
algorithms in variable amount of swarm UAS in the follow-
ing figures: Fig ??, Fig ?? and Fig ??.

Fig ?? shows the average searching link generation for
AODYV, OLSR, and OAODV. The average link generation of
OLSR shows exponential increment as the amount of UAS
in the swarm. The increment shows that the overhead of the
swarm UAS grows rapidly when the amount of swarm UAS
extends. Generally, the AODV and the OAODYV keep steady
as the amount of swarm UAS grows. Slightly, the OAODV
generates less searching links than AODV.

Fig ?? shows the average latency of the AODV, OLSR,
and OAODV. In this evaluation, the latency obtains the
propagation, queuing time for each routing. In Fig ??, the
AODV achieves the highest average latency as the amount
of UAS increases. The OLSR keeps 60 ms of latency roughly
with the increment of the amount of UAS in the swarm.
Before the amount of UAS ended up 90, the OAODV shows
an increasing trend of average latency and lower than OLSR.
After the amount of UAS reached 110, the average latency
of OAODV is becoming steady as the amount of UAS rise.
Compared with AODV and OLSR, OAODV can reduce
47.73% and 11.55% of the average latency respectively.

Fig ?? shows the average overhead of AODV, OLSR,
and OAODV. Due to the characteristics, the overhead of
OLSR keeps 1.0000 as the amount of UAS expands. The
average overhead of AODV fluctuates from 0.4226 to 0.7552
as the amount of UAS rise. The average of OADOV keeps
growing as the amount of UAS rises from 10 to 110, and
then fluctuates between 0.3402 and 0.4692 from 120 to 200.

Figures_for_Manuscript/AodvPathDiscovery—-eps-

Fig. 13. AODV Path Discovery

Figures_for_Manuscript/OlsrRoutingExportProcs

Fig. 14. OLSR Path Discovery

Generally, compared with AODV and OLSR, OAODV can
reduce 35.07% and 68.93% of the overhead respectively.

4.4 ACO enabled OAODV

Based on the Algorithms ?? and constraints in Table ??, we
achieved Fig ?2. The V|, ) enables us to obtain multiple
routings with different labels. Thereafter, we can gain more
throughput for swarm UAS networking. Fig ?? shows the
comparison of average hops between the OAODV and the
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Fig. 15. OAODV Path Discovery

Fig. 17. Average Latency Comparison
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Fig. 16. Average Searching Link Generation

ACO enabled OAODV. The result shows that the ACO can
reduce the redundant hops to achieve a shorter routing.
Fig ?? depicts the average throughput of the comparison
between OAODV and ACO enabled OAODV. The result Fig. 18. Average Overhead Comparison
shows the ACO can improve the throughput of swarm

UAS networking efficiently as the amount of swarm UAS

increases.
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Fig. 19. Average Hops Generation
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Fig. 20. Average Throughput Comparison
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5 CONCLUSION

In this paper, we proposed a novel algorithm, OAODYV,
which aims to improve the performance of swarm UAS
networking that is limited by the constrained beamforming.
With the adjustable searching space, our proposed approach
can achieve better latency, overhead, and link generation
than the conventional algorithms of AODV and OLSR.
Compared with AODV and OLSR, our proposed approach
can reduce 35.07% and 68.93% of the overhead respectively,
and decrease 47.73% and 11.55% of the average latency.
With the optimization of ACO, our proposed approach can
obtain better throughput and fewer hops in the routing
with the purposed of reduction of overhead. The proposed

ralgorithpg show a promising capacity to improve the per-
formance of the swarm UAS networking. In the future, we
will continue to explore the optimization for the balance
between searching angles and throughput of the swarm
UAS networking.
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