
Xanthomonas is a Gram-​negative bacterial genus in the 
class Gammaproteobacteria, and contains species caus-
ing diseases in more than 400 different plant hosts, such 
as rice, wheat, citrus, tomato, pepper, cabbage, cassava, 
banana and bean1,2 (Fig. 1). Outbreaks of Xanthomonas 
diseases have been reported from multiple hosts world-
wide3,4. Banana Xanthomonas wilt, which continues 
to spread in Central and East African countries, has 
caused major losses to banana production and threat-
ens the livelihood of millions of farmers, who use it as 
both a food and a cash crop5–7. The genus has under-
gone changes in nomenclature over the past 25 years 
based on phenotypic and conventional molecular tech-
niques and, more recently, whole-​genome sequencing 
(WGS)8–10. The genus currently comprises more than 
35 species11 and is subdivided into subspecies or patho-
vars. Xanthomonads are characterized by a unique yel-
low pigment, xanthomonadin12, although some strains 
do not produce this pigment, such as X. axonopodis pv.  
manihotis, X. campestris pv. mangiferaindicae and  
X. campestris pv. viticola13–15. Overall, studies have shown 
extensive genomic diversity among Xanthomonas spp. 
that can colonize unique ecological niches. For exam-
ple, X. albilineans and X. oryzae pv. oryzae colonize 
the vascular tissue of sugarcane and rice, respectively, 
whereas many other Xanthomonas spp. preferentially 
colonize mesophyll tissue2,16,17. Additionally, comprehen-
sive ecological studies have identified non-​pathogenic 
Xanthomonas strains, which add to the previously 
estimated diversity in the genus18. Recombination and 
horizontal gene transfer contribute to the pathogen 
population structure and diversity across different 
Xanthomonas pathosystems19–21. Several factors, such as 

the type III secretion system (T3SS) and associated effec-
tors, lipopolysaccharides, adhesins, transcription factors 
and TonB-​dependent receptors, have been identified that 
influence host specificity and bacterial pathogenicity 
in several Xanthomonas spp.22–24. Among the widely 
prevalent and studied xanthomonads are pathovars of  
X. oryzae, causal agents of bacterial blight and leaf  
streak of rice; Xanthomonas spp. that cause bacterial spot  
disease in tomato and pepper; citrus canker caused pri
marily by X. citri pv. citri; and X. arboricola, pathogenic 
on stone fruits and nuts — therefore, these taxa will be 
the focus of this Review.

Xanthomonas spp. use the T3SS, encoded by the 
hrp cluster, to translocate proteins referred to as 
type III secreted effectors (T3SEs) into plant host 
cells25,26. Xanthomonas T3SEs are generally called Xops 
(Xanthomonas outer proteins), except for AvrBs1, 
AvrBs2 and AvrBs3, which are traditionally associated 
with their respective avirulence phenotype, recognized 
by corresponding R proteins from hosts, resulting in 
effector-​triggered immunity (ETI)26. Currently, 53 Xop 
families are known, with an alphabetical nomen
clature from XopA to XopBA (Overview of T3SEs in 
Xanthomonas Resource). These effectors have important 
roles in host colonization and pathogenicity. Improved 
genomic databases, population and genome-​wide asso-
ciation studies, and machine-​learning approaches have 
improved the identification of Xops and their interac-
tions with the plant hosts, when the phenotype is indis-
tinct27,28. The T3SS contributes significantly towards 
suppression of host defences and disease progression, 
and there has been considerable progress in our under-
standing of the contribution of other pathogenicity 

Vascular tissue
Tissue involved in transporting 
nutrients and fluids in plants. 
The primary components 
include xylem and phloem.

Mesophyll tissue
Leaf tissue between the 
epidermis layers that carries 
out photosynthesis.

Recombination
Genetic exchange between 
bacteria resulting in the 
incorporation of homologous 
and non-​homologous 
sequences.
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factors, such as cell wall-​degrading enzymes secreted by 
the type II secretion system (T2SS), type IV secreted effec-
tors, the type VI secretion system (T6SS) and associated 
effectors, adhesins, lipopolysaccharides, small RNAs and 
regulators, such as Rpf, HrpG, HrpX, HpaR, Clp, Zur, 
FhrR and RsmA29–35. Not all of these other secretion sys-
tems and factors are directly involved in virulence of the 
pathogen but they can affect pathogen fitness34.

Understanding plant–microorganism interactions 
within an ecological context has been key in developing 
new knowledge to enhance overall plant health. Recent 
studies of Xanthomonas spp. have integrated the host, 
pathogen and microbial community influencing disease 
development, making it a model system to study plant 
pathogenic bacteria. In this Review, we will cover recent 
insights into Xanthomonas spp. virulence factors, diver-
sity and their evolution. We will highlight the genomic 
diversity in Xanthomonas spp., examine current under-
standing in pathogenomics and discuss mechanisms of 
host evasion.

Xanthomonas genomics and diversity
Starting with the sequencing of two Xanthomonas spp. 
in the early 2000s (ref.36), there are now more than 
1,400 Xanthomonas genomes representing all named 
Xanthomonas spp. publicly available in the National 

Center for Biotechnology Information (NCBI) database. 
A typical Xanthomonas genome is ~5 Mb with a GC con-
tent well over 60% and encodes >4,000 genes1,37,38. The 
exception is X. albilineans, which has a reduced genome 
of ~3.7 Mb (refs39,40). This species has undergone 
genome erosion with an estimated loss of more than 500 
genes, but the drivers of this gene loss are unclear39,41.

Xanthomonas diversity can be categorized at multi
ple levels, including genetic diversity within popula-
tions and species, and functional or ecological diversity, 
which describes their roles in plant microbiomes. Our 
understanding of Xanthomonas diversity is mainly 
based on population and species-​level data, described 
by analyses of single genes, several housekeeping genes 
and whole genomes. Recent studies targeting microbial 
communities have revealed ecologically diverse lineages 
within Xanthomonas spp. and novel pathogenic and 
non-​pathogenic species.

Population and species diversity. Advances in omics 
tools have revealed more of the Xanthomonas diver-
sity and identified mechanisms of speciation and 
evolution42,43. Strains of X. arboricola pv. juglandis are 
increasingly reported from various parts of Europe and 
population studies have found unprecedented genetic 
diversity, with non-​pathogenic strains cohabiting with 

a b

c d e

Fig. 1 | Xanthomonas spp. in different plant hosts. a | X. oryzae causes bacterial blight in rice. This species encompasses 
two pathovars, oryzae and oryzicola. b | X. campestris pv. musacearum causes banana Xanthomonas wilt, which can lead  
to extensive oozing. c | X. citri infects citrus and produces unique pustules in the leaf and fruit tissues. d | X. axonopodis pv. 
mangiferaindicae causes mango black spot disease. e | Four Xanthomonas spp. are associated with bacterial spot disease  
in tomato and pepper: X. cynarae pv. gardneri, X. euvesicatoria, X. perforans and X. vesicatoria. Part b courtesy of  
M. M. Shimwela, Tanzania Agricultural Research Institute, Maruku, Tanzania; part c courtesy of A. M. Gochez, National 
Agricultural Technology Institute, Argentina; all other images provided by authors (F.F.W and J.B.J).

Type III secretion system
(T3SS). A secretion system 
composed of ~20 proteins 
that forms a syringe-​like 
structure to deliver bacterial 
proteins to eukaryotic cells. 
Also referred to as the 
injectisome.

Effector-​triggered immunity
(ETI). Innate immune response 
triggered by recognition of the 
type III translocated effector 
proteins by host resistance 
gene products.

Type II secretion system
(T2SS). A secretion system 
formed by secretin proteins, 
which form characteristic 
β-​barrels for passage of 
secreted proteins.

Type VI secretion system
(T6SS). A secretion system that 
delivers bacterial proteins 
across a cellular envelope to 
adjacent target cells. Primarily 
known for interbacterial 
antagonism.
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pathogenic strains in several plants18,44,45. Genomic com-
parisons found that several non-​pathogenic strains of 
X. arboricola and X. cannabis carried only four T3SS-​
associated regulatory genes (hrpG, hrpX, hpaS and 
hpaR2) and orthologues of six T3SEs, compared with 
24 orthologues found in pathogenic strains45,46.

High genome plasticity has been shown in several 
Xanthomonas spp., suggesting mechanisms for bacterial 
adaptability and response to selection. Comparison of 
bacterial spot-​causing xanthomonads in tomato and pep-
per showed genome-​wide recombination of X. perforans 
with X. euvesicatoria19,47,48. A host-​driven population 
shift was observed in X. oryzae pv. oryzae. Six different 
groups with distinct genotypic characteristics evolved 
after introduction of plants with the Xa4 resistance locus 
in the Philippines49. A total of 386 full-​length insertion 
sequences was found in a single genome of X. oryzae, 
indicating high genome plasticity of individual strains50. 
Insertion sequences are reported to have an important 
role in genome instability and loss of gene function, as 
exemplified by the insertion sequence-​mediated inacti-
vation of the gumM gene, which is involved in xanthan 
production, and thus abrogated the production of this 
extracellular polysaccharide in X. oryzae51. Plasmids are 
another source of genomic variability and Xanthomonas 

diversity, and a chimeric (hybrid) plasmid was reported in 
an X. citri pv. citri strain carrying four copies of the same 
type of effectors52 in a single plasmid53. Similarly, mobile 
elements including integrative and conjugative elements, 
which typically function as conjugative transposons, have 
been reported to carry copper resistance genes in the 
pathogenic X. arboricola strain CFBP 7179 (ref.18).

Intraspecific diversity and host specialization are 
apparent in X. citri pv. citri, which exhibits three patho-
types: A, A* and Aw. These three pathotypes have a 
varying host range: pathotype A has a wide host range, 
whereas A* only infects Citrus aurantifolia, C. latifolia 
and C. macrophylla, and Aw affects C. aurantifolia and  
C. macrophylla54. Aw also induces a hypersensitive response 
in grapefruit54,55. The effector AvrGf1 found in Aw was 
identified as a host-​limiting factor that determined 
the hypersensitive response in grapefruit56. Although 
deletion of this gene in Aw resulted in no hypersensitive 
response, the mutated strain was unable to grow to levels 
similar to an A-​type strain, thus suggesting the presence 
of additional host-​limiting factor(s) in distinct lineages. 
A recent WGS study of 95 X. citri pv. citri strains pre-
dicted that the diversification of these strains occurred 
approximately 1,700–5,700 years ago57. This diversifi-
cation coincides with the spread of citrus cultivars in 
Asia, much later than the origin of citrus, suggesting that 
the pathotypes evolved as a result of cross-​infection by 
dispersal rather than by host-​driven speciation57. Unlike 
X. citri pv. citri diversification, a host-​driven population 
shift was observed in X. oryzae pv. oryzae in response to 
the introduction of resistant plants49.

Diversity in the phytobiome. Comprehensive studies 
of Xanthomonas diversity and epidemiology should 
take into account the total microbial population. An 
analysis of the leaf microbiomes of 3,024 rice accessions 
adapted to a wide variety of agro-​ecosystems in China 
and Philippines, two major rice production areas, found 
that the leaf microbiome converged to a few central 
taxa that strongly regulated the microbial networks58. 
Xanthomonas was among the most abundant genera 
within these microbiomes. Another study investigated 
the seed microbiomes of five genotypes of rice and 
found that Xanthomonas was one of the abundant genera 
shared by all of the genotypes59, indicating that they form 
part of the major core of endophytic bacteria. However, 
the role of Xanthomonas spp. as dominant endophytes in 
healthy, asymptomatic rice seeds is not well understood. 
This type of study begins to unravel the ecological roles 
of Xanthomonas spp. within the host microbiome (Box 1).

Virulence mechanisms
Evolution of Xanthomonas-​associated secretion  
systems. WGS of diverse Xanthomonas spp. enabled 
studying the evolution of the Xanthomonas core genome. 
Phylogenomic analysis of the core genome indicates 
two major groups within Xanthomonas, and at least five 
clades within group 2 (Fig. 2). WGS has also provided 
insights into the evolution of secretion systems, their 
associated virulence factors and their ancestral acqui-
sition patterns (Fig. 2). The T3SS cluster, also known as 
the Hrp (hypersensitive response and pathogenicity) 

Hypersensitive response
A response mechanism found 
in plant hosts, characterized 
typically by a rapid cell death 
to prevent the spread of the 
pathogen.

Accessions
Groups of related plant 
material from the same species 
collected from a specific 
location. The accessions are 
collections to capture the 
diversity in a given plant 
species.

Box 1 | Host specificity and ecology of Xanthomonas spp.

Xanthomonas spp. encompass a large group of plant-​associated bacteria that usually 
cause disease. recently, there has been an increased focus on ecological and genomic 
studies of xanthomonads2,21. although members in this genus are found on a wide 
variety of hosts, including monocots and dicots, species are associated with a limited 
number of hosts and produce either localized or systemic infections. Host specificity 
has been suggested as the main species determinant in xanthomonads175. as avirulence 
genes were identified in different Xanthomonas spp., they were regarded as determinants 
of host range and defined pathovar nomenclature in xanthomonads. as we have gained 
an appreciation of diversity of xanthomonads through sampling efforts, whole-​genome 
sequencing and functional analyses, effectors were suggested to be involved in 
defining the host range by the repertoire-​for-​repertoire hypothesis176. Comparative 
genomic studies of Xanthomonas strains have identified several candidate virulence 
factors with a major role in host specificity and tissue localization. However, genomic 
analyses have also revealed a complex interplay of multiple factors underlying host and 
tissue specificity. a population-​based analysis of 67 Xanthomonas genomes identified 
avrBsT and xopQ as host-​limiting effectors in X. perforans43. Nonetheless, deletion of 
these genes from different phylogenetic groups of X. perforans did not always result  
in a broader host range. Growing evidence has suggested that host specificity in 
xanthomonads is not limited to t3ses or repertoires of t3ses; instead multiple genetic 
determinants underlie this process and the effects of individual genes range from small 
to major2,20,177.

Xanthomonas strains show high tissue specificity, but the genetic drivers of this 
specificity are as yet unknown. a study compared vascular and non-​vascular strains of 
Xanthomonas spp. from both monocots and dicots to unravel the determinants of tissue 
specificity178. X. albilineans, a vascular pathogen of sugarcane, has a reduced genome 
compared with other xanthomonads and lacks the extracellular polysaccharide gum 
gene cluster and the type iii secretion system41. Comparative genomics have been used 
to identify the putative gene(s) responsible for tissue specificity. Preliminary studies 
have indicated the role of cellobiosidase, Cela and/or Cbha, in vascular colonization46,179. 
additionally, with more microbial community studies, Xanthomonas spp. have been 
found to colonize previously unpredicted ecological niches. the approaches for 
microbial studies are shifting from selective genotyping of strains to population and 
community studies in multiple host–pathogen systems2,180. Comprehensive studies that 
consider potentially diverse functional and ecological roles are required to generate 
knowledge on the complex systems driving Xanthomonas spp. pathogenicity and host 
and tissue specificity.
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cluster, which belongs to the Hrp2 family in the genus 
Xanthomonas, has been extensively studied. For all 
group 2 species except X. campestris, acquisition of 
the Hrp2 cluster occurred in their common ancestor60.  
X. campestris pv. campestris independently acquired 
Hrp2, as suggested by the chromosomal location of 
its T3SS cluster, which differs from the other group 2 
species46. A different genetic organization, different 
genomic content and high divergence at the sequence 
level of the Hrp2 cluster in group 1 species compared 
with group 2 species indicated independent acquisi-
tion in group 1 (ref.60). Some species and strains that 
are scattered throughout the phylogenetic tree seem to 
have lost the Hrp2 cluster. Gene flow in the Hrp2 cluster 
was observed between X. arboricola strains belonging to 
clade A and X. dyei and X. hortorum60. 

Although the T3SS is considered the primary secre-
tion system responsible for virulence, the contribution 

of other secretion systems, including the T2SS and 
T6SS, towards pathogenesis or overall pathogen fit-
ness has been shown in X. euvesicatoria, X. citri pv. citri 
and X. oryzae pv. oryzae30,61–63. These two systems 
have been implicated in the secretion of several cell 
wall-​degrading enzymes. The T2SS Xps cluster is 
conserved in the Xanthomonas genus. Furthermore, 
the T2SS Xcs cluster is present in all clade C, D and 
E strains and in most clade A and B strains, but is 
absent from X. populi, X. fragarie and X. oryzae strains. 
X. arboricola, X. vasicola, X. oryzae pv. oryzicola  
and X. bromi had partial Xcs clusters. The Xcs cluster 
is absent from group 1 strains, with the exception of  
X. translucens (Fig. 2). The T6SS is important for inter
actions with both prokaryotic and eukaryotic neigh-
bours, including manipulation of virulence in animal 
pathogens64,65. In plant pathogens, there is little evi-
dence for its direct interaction with the plant hosts but it 
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X. axonopodis DSM 3585
X. fuscans subsp. fuscans NCPPB 381
X. citri pv. malvacearum LMG 761
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X. sacchari CFBP 4641
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Fig. 2 | Diversity of Xanthomonas spp. and lineages and their virulence genes. We determined the phylogenetic 
distribution of Xanthomonas spp. based on the core alignment of 198,114 nucleotide sequences using the Roary 
pipeline171. Whole-​genome sequences of type strains or completely sequenced genomes representing the Xanthomonas 
spp. available in the National Center for Biotechnology Information (NCBI) database were used for phylogenetic 
reconstruction. The presence of virulence-​associated secretion systems is shown. The xps type II secretion system (T2SS)  
is conserved in all Xanthomonas spp. The type III secretion system (T3SS) is found in most strains, except X. maliensis and  
X. sacchari. X. hyacinthi, X. theicola and X. albilineans have an atypical T3SS. Of the group 1 strains, only X. translucens 
carries the full T3SS. X. pisi and X. dyei have more than one core gene of the T3SS. T6SS, type VI secretion system.
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influences interactions with other members of the plant 
microbiota35,63. The presence of the T6SS across different 
clades warrants attention to its role in xanthomonads. 
Based on the gene content and phylogeny, three differ-
ent T6SSs are described in Xanthomonas. T6SS-​I is pres-
ent in some of the clade B strains, including X. oryzae,  
X. vasicola, species belonging to the X. euvesicatoria 
complex, X. axonopodis and X. phaseoli. X. maliensis is 
an exception as it has the complete T6SS-​I cluster as well 
as partial clusters of T6SS-​II and T6SS-​III63,66. T6SS-​II is 
present only in three species surveyed here: X. hortorum, 
X. oryzae and X. fragarie. T6SS-​III is present in clade C, 
X. euvesicatoria and sister species, X. citri pv. citri and 
related species, and X. phaseoli from clade B (Fig. 2).

T3SS-​dependent Xanthomonas outer proteins. T3SEs 
modulate host physiology to obtain nutrients, facili-
tate infection and/or evade host immune responses67. 
Putative identification of T3SEs has relied on homology-​
based searches largely driven by phenotypic observa-
tions, followed by functional reporter assays to confirm 
translocation of the candidate effectors into the plant 
cell68,69. These reporter assays take advantage of our 
understanding of molecular signals, including secretion 
and translocation signals found in T3SEs (ref.68). More 
recently, machine-​learning approaches have been devel-
oped that rely on multiple criteria for the identification 
of novel effectors, such as secretion signals at the amino-​
terminus of T3SEs, amino acid composition, con-
served motifs, structural disorder, regulation by HrpX 
and HrpG, GC content, codon use and homology to 
known and validated T3SEs (refs27,70). Such a machine- 
​learning approach identified seven novel T3SEs in  
X. euvesicatoria 85-10 as a representative genome and 
the method could be used to predict effectors from other 
Gram-​negative bacteria that have a T3SS (ref.27).

T3SEs are integral to Xanthomonas pathogenicity, 
and are determinants of host specificity and pathogen 
fitness (Fig. 3). Xanthomonas effectors have evolved to 
target different components of the pathogen or damage- 
​associated molecular pattern (P/DAMP)-​triggered immunity  
(PTI/DTI) pathway1,71. The T3SEs XopACXcc, XopYXoo, 
XopAAXoo and XopNXe target receptor-like cytoplasmic  
kinases, members of the receptor-like kinase superfamily. 
XopQXoo, XopXXoo, XopZXoo and XopNXoo inhibit DTI72. 
XopAUXe, a catalytically active protein kinase, pro-
motes disease development by manipulating MAPK 
signalling through phosphorylation and activation  
of the immunity-​associated MKK2 (ref.73). Examples of 
effectors that inhibit PTI include XopPXoo, XopLXe and 
XopSXe

74,75. Effectors such as AvrXv4, XopJXe and XopDXe 
interfere with the host ubiquitin proteasomal system76. 
XopBXe interferes with vesicle trafficking, interferes with 
cell wall-​bound invertases and prevents sugar-​mediated 
defence signals77. XopDXe, XopDXcc8004, XopJXe and 
XopAH (also known as AvrXccC) interfere with hor-
mone signalling pathways involved in plant defences 
or disease susceptibility78. Effectors eliciting ETI have 
conventionally been identified as avirulence genes, and 
examples with known direct or indirect targets include 
XopJ4 (AvrXv4), XopH (AvrBs1.1), XopAG (AvrGf2), 
AvrXccC and AvrRxv26,79. T3SEs also function as ETI 

suppressors. Examples include AvrBsT, which is involved in  
suppression of AvrBs1-mediated ETI80, and XopQXe (ref.81).

Several functional methods exist to characterize 
effectors in terms of their direct or indirect molecular 
targets in the host and their mode of action69,82,83, includ-
ing mutagenesis of the effector(s) and host interactor, 
Agrobacterium tumefaciens-​mediated transient expres-
sion, yeast two-​hybrid assays and pull-​down assays. Two 
additional approaches, the protoplast transient expres-
sion assay84 and the recently developed pathogen-​free 
protoplast-​based assay in Arabidopsis thaliana85, were 
used to identify effectors that target specific host signal-
ling pathways. For example, effectors from X. euvesica-
toria 85-10 that interfere with PTI signalling mediated 
by Flg22, a highly conserved PAMP present in flagel-
lin, were identified by expressing them in the attenu-
ated Pseudomonas syringae pv. tomato DC3000∆CEL 
strain85. Another method used to study Xanthomonas 
spp. effectors included using yeast as a heterologous sys-
tem for expression of effectors and identifying effectors 
that affect cell growth and viability86. Recent techno-
logical advances in imaging tools enabled quantitative 
image-​based phenotyping to study spatio-​temporal 
dimensions of disease development for the vascular 
pathogen of cassava, X. axonopodis pv. manihotis, and 
to understand the contribution of individual effectors 
by time-​resolved imaging87.

TAL effectors. Xanthomonas spp. have evolved a distinct 
family of T3SEs known as transcription activation-​like 
effectors (TALEs)52, which increase plasticity in adaption 
of the bacteria to host plants. They have a rearrangea-
ble repetitive domain that controls the ability to bind 
promoters of host susceptibility genes in a sequence-​
specific manner88–90. There is an uneven distribution 
of genes encoding TALEs among Xanthomonas spp. In 
some Xanthomonas spp., such as X. gardneri, X. camp-
estris36, X. euvesicatoria91 and X. perforans43, TALEs are 
not found in all strains, whereas TALEs are prevalent 
in X. oryzae, with X. oryzae pv. oryzicola strain BLS256 
carrying a record 27 genes37.

Various TALE-​associated susceptibility genes, defi
ned here as host genes associated with some aspect of 
disease or pathogen population, have been identified.  
A prominent example of TALEs and their cognate suscep
tibility are TALEs of X. oryzae pv. oryzae and SWEET  
genes of rice, which are responsible for a pronounced 
phenotype in bacterial blight of rice (Box 2). Eight major 
TALEs are known in X. oryzae pv. oryzae that target one 
of three SWEET alleles of the clade III SWEET members; 
host targets that are convergently activated by multiple 
TALEs are referred to as susceptibility hubs92–94. In the 
absence of SWEET gene expression, bacteria fail to effec-
tively colonize rice leaves. The TALE PthXo1 occurs 
in a subset of strains in the Asian lineage of X. oryzae 
pv. oryzae89 and targets SWEET11, a sugar transporter 
gene that is essential for the early stage of rice grain 
filling95. Some rice cultivars have a recessive resistance 
allele (xa13), which interferes with PthXo1 function at  
the SWEET11 promoter89,96 (Fig. 4). Loss of function  
at a particular SWEET allele and consequential loss  
of bacterial virulence can be overcome by the presence  

Pathogen or damage- 
associated molecular 
pattern (P/DAMP)- 
triggered immunity
(PTI/DTI). PTI refers to the 
immune response in hosts 
triggered by recognizing 
patterns associated with 
pathogen, for example, flagellin 
or lipopolysaccharide. DTI 
refers to the host immune 
response triggered as a result 
of recognition of cell wall- 
degradation products that are 
generated by the action of 
pathogen-​secreted cell 
wall-​degrading enzymes during 
pathogen invasion. PTI and DTI 
pathways have a significant 
overlap in their signalling 
components.

Receptor-​like cytoplasmic 
kinases
Kinase-​mediated signalling 
proteins that regulate plant 
cellular activities in response to 
biotic or abiotic stresses and 
endogenous extracellular 
signalling molecules.

Receptor-​like kinase 
superfamily
Transmembrane proteins with 
versatile amino-​terminal 
extracellular domains and 
carboxy-​terminal intracellular 
kinases. They control a wide 
range of physiological 
responses in plants and belong 
to one of the largest gene 
families in the Arabidopsis 
thaliana genome, with more 
than 600 members.

MAPK
Protein kinases involved in 
regulating cellular responses  
to an extensive array of stimuli, 
including mitogens, heat shock 
and stress. Specific to serine 
and threonine amino acids.

Protoplast
The entire cell excluding the 
cell wall.

SWEET genes
Sugar will eventually be 
exported transporter (SWEET) 
genes encode membrane 
proteins with diverse function, 
typically facilitating sucrose 
and glucose efflux.

Recessive resistance
Resistance conferred by 
recessive allele of a gene in  
a plant host. The term is also 
used to refer to resistance 
conferred by mutation in 
disease-​susceptibility genes.
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of major TALEs that target other SWEET genes97,98. 
African lineage strains of X. oryzae pv. oryzae have 
evolved in apparent isolation from Asian lineage 
strains and have a distinct set of major TALEs that 
target SWEET14, which encodes a low-​affinity sugar 
transporter93,94,99,100.

Bacterial leaf streak is a wheat disease caused by  
X. translucens pv. undulosa, and one of eight genes 
encoding TALEs in the bacterial genome is associated 
with lesion length and the specific induction of the gene 
encoding 9-​cis-​epoxycarotenoid dioxygenase (NCED), 
causing a rise in the levels of the phytohormone 
abscisic acid101. A second TALE gene of X. translucens pv. 
undulosa with an unknown host target gene has been 
associated with virulence102. Lateral organ boundaries 1 
(CsLOB1), a member of the plant-​specific lateral organ 
boundaries domain (LBD) family of transcription fac-
tor genes, is targeted for expression by several TALEs of  
X. citri pv. citri and X. fuscans pv. aurantifolii, the causal 
agents of citrus canker103,104. Loss of the ability to induce 
CsLOB1 either by loss of the relevant TALE or modifica-
tion of the effector binding site in the CsLOB1 promoter 
by genome editing leads to loss of the typical canker 
symptoms103,105,106.

TALE-​mediated ETI involving nucleotide binding,  
leucine-​rich repeat (NLR) resistance genes has been identi-
fied in tomato and rice107–109. Remarkably, the rice NLR 
gene, Xa1, was identified some time ago but research 
failed to identify the corresponding elicitor110. XA1, 
in fact, recognizes several TALEs, and most strains of  
X. oryzae have several TALEs. However, TALE-triggered 
resistance by XA1 is masked by sets of truncated TALEs, 
the iTALEs, which interfere with Xa1 function and occur 
in most strains of X. oryzae109. For example, the iTALE 
Tal2h suppresses recognition mediated by rice Xa1. 
Similar findings have been reported for the NLR gene 
Xo1 of the American heirloom rice variety Carolina 
Gold Select40,108. TALE-​mediated ETI can also be trig-
gered by host genes that combine an effector binding site 
with a gene encoding a toxic gene product or a so-​called 
executor gene111 (Fig. 4).

Other factors associated with fitness and virulence.  
A previous review has discussed in detail virulence fac-
tors such as extracellular polysaccharides, lipopolysac-
charides, adhesins, substrates of virulence-​associated 
secretion systems, including T1SS and T2SS, and the 
regulatory network, including RpfC, RpfG, RpfF, RavS, 

RavR, ColS, ColR, PhoP, PhoQ, Clp, Zur, FhrR, HrpX, 
HrpG and HpaR, and post-​transcriptional control by 
RsmA34. The importance of small non-​coding RNAs 
has been highlighted recently in X. euvesicatoria,  
X. campestris pv. campestris and X. oryzae pv. oryzae112. 
Several functional studies with vascular as well as non-​
vascular xanthomonads have indicated the importance 
of a repertoire of cell wall-​degrading enzymes for viru-
lence, although effects vary with the pathosystem and 
some show minimal contribution to overall virulence. 
Interestingly, cell wall-​degrading enzymes, specifically 
xylanases, are secreted by outer membrane vesicles 
(OMVs) in X. euvesicatoria113. OMVs have also been 
called a type zero secretion system114. T3SEs could also 
be transported through OMVs or function in coordi-
nation with them. About half of the X. campestris pv. 
campestris OMV proteome consisted of virulence-​
associated proteins115. How these OMVs and associated 
virulence factors contribute to pathogenesis remains to 
be explored. Post-​translational regulation of HrpG was 
recently demonstrated, in which stabilization of HrpG 
relied on host-​induced phosphorylation of the ATP-​
dependent Lon protease116. A novel regulator, designated 
TfmR (T3SS and fatty acid mechanism regulator), was 
responsible for the upstream regulation of the T3SS in  
X. citri pv. citri117. The study also showed that fatty acids 
can have an important role in metabolic regulation of 
HrpG and HrpX. A two-​component system (TCS), which 
consists of membrane-​bound histidine kinase and a 
cytosolic response regulator, has an important role in 
niche adaptation of Xanthomonas spp. In X. citri pv. citri, 
cyclic di-​GMP binds to RavS, which in turn induces 
phosphotransfer to RavR. The interaction between RavS 
and RavR, through a series of events, results in modula-
tion of phosphorylation levels of RavS, which in turn is 
involved in switching between swimming and virulence, 
confirming the importance of this TCS in regulating life-
styles118. In another X. citri pv. citri strain, proteolysis 
of the histidine kinase VgrS prevents its autophospho-
rylation, which in turn promotes osmotolerance119. The 
histidine kinase PcrK can sense plant-​derived stimuli, 
specifically the hormone cytokinin, which enables  
X. citri pv. citri to adapt to oxidative stress by regulat-
ing downstream genes including TonB-​dependent 
receptor and other virulence-​related genes120. Another 
TCS, involving StoS and SreKRS, regulates carbohy-
drate metabolism, chemotaxis, synthesis of extracellu-
lar polysaccharide and Hrp expression121. This TCS was 
proposed to contribute to fitness given its advantage 
in survival of X. oryzae pv. oryzae outside the host and 
overall adaptation121. XooNet is an in silico platform that 
has integrated genomic information to improve predic-
tions of regulatory networks involving TCSs associated 
with virulence in X. oryzae pv. oryzae122. Other secre-
tion systems that have not been discussed here in detail 
include the type IV secretion system and the T6SS. The 
type IV secretion system, and its effectors, and the T6SS 
have been characterized for their role in mediating xan-
thomonad interactions with the surrounding microbial 
community29,62,63,123. These interspecies and community 
level interactions need to be further explored to evaluate 
their contribution towards overall pathogen fitness.

Fig. 3 | Xanthomonas spp. effectors and their modes of action to trigger or suppress 
host defence responses. a | Effectors involved in suppression of pathogen or damage-​ 
associated molecular pattern (P/DAMP)-​triggered immunity can interact with receptor-​ 
like kinases (RLKs) or interfere with downstream signalling pathways. Some effectors can 
interfere with hormone signalling pathways, cytoskeleton remodelling or sugar-​mediated 
defences during early pathogenesis. b | Avirulence genes and their products interact with 
specific host components in the cytoplasm, nucleus or chloroplast and trigger effector-​
triggered immunity (ETI). Xanthomonas spp. have evolved some effectors that can 
suppress the ETI response by direct or indirect interaction with the ETI components, or by 
modulating hormone signalling pathways. These effectors contribute to effector-​triggered 
susceptibility. Please see Supplementary Box 1 for details on functions of individual 
effectors. CWDE, cell wall-​degrading enzyme; P, phosphorylation; ROS, reactive oxygen 
species; T3SE, type III secreted effector; T3SS, type III secretion system; Ub, ubiquitination; 
WT, wild type; Xop, Xanthomonas outer protein.

Abscisic acid
A plant hormone with 
numerous functions in the 
plant developmental process, 
including dormancy and stress 
response.

Nucleotide binding, 
leucine-​rich repeat (NLR) 
resistance genes
Resistance genes named after 
their characteristic nucleotide 
binding and leucine-​rich repeat 
domains.

Two-​component system
(TCS). Mediators of signal 
transduction in bacteria to 
detect the surrounding 
changes and relay the signal 
for modulating gene 
expression.
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Virulence evolution
Horizontal gene transfer and mutation of avirulence genes  
to evade host resistance are among the major factors  
that influence the evolution of virulence in Xanthomonas 
spp.22,124,125. As shown with several methods, approxi-
mately 5–25% of the genome of Xanthomonas spp. is 
acquired via recombination126,127.

Comparison between pathogenic and non-​pathogenic  
strains has been useful in elucidating stepwise evolu-
tion of pathogenicity and the associated factors. Com
parisons of pathogenic and non-​pathogenic strains 
predicted recombination-​driven species diversification 
and host expansion in X. arboricola21. A distinct phylo
genetic cluster of non-pathogenic strains lacked the hrpG  
and hrpX genes essential for regulation of the T3SS 
(ref.46). Acquisition and positive selection of several 
pathogenicity-​associated genes at different evolution-
ary phases were shown for X. arboricola46,127. Genetic 
exchange from genera other than Xanthomonas has also 

been reported. For example, a recent study found a strain 
of X. arboricola pv. juglandis carrying a large genomic 
segment (~95 kb), with genes conferring copper 
resistance, that resembled genes in Stenotrophomonas 
maltophilia and Pseudomonas aeruginosa18. Horizontal 
gene transfer resulting in exchange of virulence factors 
between Xanthomonas spp. has been reported on several 
occasions. Although common in several Xanthomonas 
spp., TALEs were not reported until recently in X. per-
forans. Interestingly, two TALEs — AvrHah1 and a 
homologue of AvrBs3, PthXp1 — occurred in distinct 
lineages, indicating multiple independent TALE acquisi-
tions22. TALEs have been studied extensively in X. oryzae 
pathovars, which carry a large repertoire of these effec-
tors. Strains of X. oryzae that had been exposed to pre-
viously domesticated rice cultivars were shown to carry 
higher numbers of TALEs than strains not exposed128. 
Additionally, due to the repetitive region shared among 
the TALEs, recombination is frequent, thus creating 
novel TALEs128.

Overall, local host and environmental factors likely 
drive the emergence and selection of any pathogen, 
including Xanthomonas spp. Genome-​wide recombi-
nation between X. perforans and X. euvesicatoria led 
to intraspecific variability in effector repertoires and 
virulence factors, with different recombinants in dif-
ferent global production regions48. The X. perforans 
strains isolated in the early 1990s in Florida, USA, car-
ried bacteriocins that were antagonistic to the endemic  
X. euvesicatoria population129. By the late 1990s and 2000s,  
gradual erosion of bacteriocin activity was observed 
in X. perforans strains as distinct phylogenetic lineages 
emerged as a result of recombination with other closely 
related Xanthomonas spp.130. Once introduced to a new 
population, virulence factors can be selected for or grad-
ually erode from the gene pool. In X. perforans, avrBsT 
has increased in frequency and has become established 
in the Florida population, whereas avrXv3 was lost130,131. 
Similarly, distinct X. oryzae pv. oryzae lineages isolated 
from the Philippines and shifts in pathogenic races were 
correlated with change in the cultivars132. The apparent 
fitness of emerging X. oryzae pv. oryzae races was specu-
lated to be associated with changes in cropping patterns, 
fertilizer use, environment and overall adaptation of the 
pathogen49. Among the 30 TALE families described in  
X. oryzae pv. oryzae strains isolated from the Philippines, 
diversification was observed only after the lineage for-
mation and likely during host adaptation132. These 
findings illustrate the dynamics of Xanthomonas spp. 
diversity and evolution of virulence.

Plant resistance and evasion
Xanthomonas spp. stimulate PTI and ETI. Host immu-
nity is triggered by flagellin, potentially through several 
PAMP receptors133–136. FLS2 encodes the flagellin recep-
tor, which recognizes the immunogenic component of 
flagellin133,137. Host glycosidases, such as β-​galactosidase 1,  
together with host proteases, release immunogenic 
peptides from flagellin of plant pathogenic bacteria137. 
However, some variants of flagellin from Xanthomonas 
spp. fail to trigger an FLS2-​dependent response138. 
Furthermore, flagellin from X. oryzae pv. oryzae fails to 

Pathogenic races
Groups of strains that belong 
to the same or closely related 
bacterial species, characterized 
by differential responses 
(compatible or incompatible 
reaction) on an array of hosts.

Box 2 | Host targets of TAlEs

Candidate targets for Xanthomonas TALEs
Many type iii secreted effectors (t3ses) have been shown or are predicted to interfere 
with host immunity. How transcription activation-​like effectors (taLes) enhance host 
susceptibility, either by suppression of host immunity or other mechanisms, is largely 
unknown. strains containing genes encoding taLes also invariably harbour an array of 
other genes encoding t3ses. Plant pathogenic species with genes encoding taLes can 
suppress host immunity in the absence of taLes. Loss of other effector genes has been 
correlated with reduced virulence in highly pathogenic strains of X. oryzae, which 
contain multiple genes encoding taLes72,83,148. One difficulty is associating the loss of 
taLe function with changes in virulence. taLes may promote expression of several 
genes due to a wobble in binding specificity. without some indication of phenotype, 
assigning targeted genes to a function in susceptibility is largely conjectural, although 
rational. Most genes encoding taLes, despite a few well-​characterized members,  
have not been associated with phenotypes other than host gene transcription or 
effector-triggered immunity. as such, transcriptomic approaches have been applied to 
determine the candidate targets that are upregulated in the presence of the taLes103. 
Following the identification of potential candidates, the promoter regions with 
potential binding sites are predicted based on the repeat variable di-​residues and the 
taLe binding code. the elevated expression of the target host genes is quantified using 
real-​time PCr of the mrNa genes with a housekeeping gene from the host. Microarray 
analyses identified lateral organ boundaries 1 (CsLOB1) as a susceptibility gene for  
citrus canker. CsLOB1 is a transcription factor in the lateral organ boundaries domain 
(LBD) family. Members of this family are often involved in tissue differentiation and 
maintenance of organ boundaries through both elevation and repression of downstream 
gene expression.

TALEs are more than susceptibility enhancing factors
Quite the opposite effect has been proposed for Brg11, which is one of the few members 
of the taLe family found outside Xanthomonas spp.181. Brg11 of Ralstonia solanacearum 
targets the gene for arginine decarboxylase (ADC), increasing putrescine levels and, 
consequentially, higher-​order polyamines182. the rise in polyamines triggers a subset of 
defence response genes in the tomato host, which is proposed to reduce co-​infection 
with other competing microorganisms. thus, Brg11, instead of inducing a susceptibility 
gene, induces a niche-​enhancing gene. a modified Brg11 introduced into X. euvesicatoria 
inhibited the growth of Pseudomonas syringae in co-​infections of tomato182. Here, the 
focus has been on taLes and genes with links to disease phenotypes, and Brg11 invites 
expansion of analyses of taLe function. a related family member is induced during root 
infection of Arabidopsis thaliana by the fungal pathogen Fusarium oxysporum, and a 
mutant plant for atLBD20 has enhanced resistance to infection. a subset of genes in the 
jasmonic acid disease defence pathways were repressed in concert with atLBD20 
expression. the possibility exists, therefore, that CsLOB1 is also involved in defence  
gene expression. in addition, tools are available to inform recent studies of taLe function, 
and associations of taLe-​targeted genes with plant physiological insights will provide 
novel insights into taLe contributions183–185.
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elicit an FLS2-​dependent response in A. thaliana or a 
response to a rice FLS2 homologue, whether in rice or 
transferred to A. thaliana139. Other bacteria also trigger 
host responses, including LPS, xanthan gum, peptido-
glycan, cell wall-​degrading enzymes, elongation factor 
Tu and quorum sensing molecules140–144. Many T3SEs 
of Xanthomonas spp. suppress PTI72,83–85,145–149 (Fig. 3). 

Basal immunity has also been reported to be suppres
sed by other extracellular compounds, including the  
exopolysaccharide xanthan144.

Dominant resistance genes, which comprise the 
distinct components of ETI, target many species of 
Xanthomonas. The resistance gene Xa21 has similar 
functions to the receptor-​like kinases involved in PTI150. 
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Fig. 4 | role of Xanthomonas TAlEs in plant susceptibility and resistance. 
a | The repeat regions of the transcription activation-​like effectors (TALEs) 
bind to the effector binding elements (EBEs) in the host and transcribe a 
host susceptibility gene for pathogenicity92,96. b | Several mechanisms 
underlie host resistance: (i) a modified EBE (red) avoids TALE binding and, 
thus, the susceptibility gene is not transcribed, resulting in host 
resistance96,98; (ii) the host carries resistance instead of a susceptibility gene 
under control of the promoter targeted by the TALE — this set-​up tricks the 
pathogen into activating transcription of a resistance gene when the TALE 
binds to the executor EBE, leading to host resistance107,111,172; and (iii) the 
host uses recognition by nucleotide binding, leucine-​rich repeat (NLR) 

protein of the TALE to trigger ETI107–109. c | In response, pathogens have 
evolved mechanisms to evade host resistance and induce pathogenicity:  
(i) variable copies of TALEs can bind to different EBEs, transcribing the same 
susceptibility gene; (ii) Xanthomonas spp. can use modified repeat variable 
di-​residues (RVDs) to bind the modified EBE and the susceptibility gene is 
successfully transcribed to cause disease173; (iii) Xanthomonas spp.  
can modify the RVDs to avoid binding to the EBE and activating the 
executor gene, which leads to host susceptibility174; and (iv) interfering 
TALEs (iTALEs) lack the activation domain, and thus interfere with the 
function of NLR proteins109. AAD, acidic activation domain; NLS, nuclear 
localization signals.

Dominant resistance
Resistance conferred by a 
single dominant resistance 
gene in plant hosts.
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XA21 is broadly effective against strains of X. oryzae. 
The receptor recognizes an extracellular, sulfated small 
peptide called RaxX151. Some other Xanthomonas spp. 
also produce RaxX152. RaxX can mimic plant peptide 
hormones and may have a function in virulence151. 
Several resistance genes are members of the NLR fam-
ily, including Bs2 (pepper), Bs4 (tomato), Xa1 and Xo1 
(rice), and Zar1 (A. thaliana)107,108,110,153,154. Each of these 
NLRs has cognate effectors in the respective pathogens, 
which are subject to various evolutionary processes 
enabling evasion of host ETI; for example, disruption of 
avirulence gene expression through frameshift mutation, 
stop codons or transposon insertion130,155. Likewise, sev-
eral avirulence genes are carried by Xanthomonas spp. 
on self-​transmissible plasmids and may be lost over the 
course of a single season156. The durability of dominant 
resistance genes that recognize major pathogen virulence 
or fitness factors showed mixed results over the years. 
Disruption of AvrXa7 activity in X. oryzae pv. oryzae 
strains in response to Xa7 recognition in rice resulted 
in the loss of avirulence activity, although the pathogen 
incurred a substantial fitness penalty157. Nevertheless, 
Xa7 recognition can also be overcome by acquisition of 
alternate effectors with no Xa7-​dependent ETI activity 
that provides a similar fitness effect89,93,97,98. By contrast, 
a single amino acid substitution in AvrBs2, which is 
required for full virulence of numerous Xanthomonas 
spp., enabled X. euvesicatoria to evade Bs2 recognition 
in commercial pepper varieties, while maintaining viru-
lence146,149,158,159. Some T3SEs can suppress ETI in specific 
cases30. The NLRs XA1 and XO1 are triggered by sev-
eral TALEs, and therefore loss of even one or two TALEs 
from X. oryzae, which contains upwards of 27 different 
genes, is problematic. Furthermore, iTALEs, a class of 
truncated genes encoding TALEs, which were previously 
considered pseudogenes, can inhibit the recognition by 
XA1 and XO1 (refs109,160) (Fig. 4).

Host resistance can also occur as recessive resistance. 
Pepper contains bs5 and bs6, which confer resistance to  
X. euvesicatoria161,162. Soybean contains the recessive 
resistance gene rxp, which provides broad resistance  
against strains of X. axonopodis pv. glycines163. TALE- 
mediated susceptibility is especially prone to recessive 
resistance due to DNA polymorphisms that prevent 
TALE binding to specific DNA sequences89,98,164 (Fig. 4). 
TALEs function through the transcriptional activation of 
plant susceptibility genes, which in rice and citrus they 
are crucial for effective host invasion92. The recessive 
resistance gene xa5 interferes with TALE function and 
evasion occurs through strong induction of OsSWEET11 
or OsSWEET14, indicating that compatibility depends 
on expression levels rather than on activation of a spe-
cific susceptibility gene165. Recessive resistance in rice 
that happens due to polymorphism in the promoters 
of susceptibility genes can be evaded by TALEs with  
alternative binding sites97,98.

Non-​conventional approaches
Understanding of Xanthomonas–host interactions 
has fuelled the development of disease-​resistant hosts 
through genetic modifications. A notable example is 
the elongation factor-​TU receptor (EFR) in A. thaliana, 
which recognizes a conserved EF-​Tu domain in most 
bacterial genera134. Transfer of AtEFR from A. thaliana 
to tomato reduced the severity of bacterial spot dis-
ease caused by X. perforans in field conditions166.  
A second example relates to TALEs that bind specific 
DNA sequences (effector binding elements (EBEs)). 
Modifying EBEs so that TALEs can no longer bind 
can be an effective method for developing resistance. 
CRISPR–Cas9-​mediated citrus canker resistance has 
been developed in grapefruit and sweet orange through 
modifications in the effector binding promoter region of 
CsLOB1106,167. A similar approach has been used to mod-
ify three SWEET genes targeted by TALEs from X. oryzae 
pv. oryzae in rice. EBEs targeted by avrXa7 and pthXo3 
were modified in rice using TALE nucleases (TALENs), 
leading to the loss of susceptibility gene expression and 
resistance against X. oryzae pv. oryzae strains carrying 
the two genes168,169. Alternatively, EBEs can be added  
to the promoters of the resistance genes, which leads to 
the activation of resistance in the presence of TALEs. 
Researchers introduced 14 EBEs that match distinct X. 
citri TALEs into the ProBs314EBE promoter and fused it to 
the avirulence gene avrGf1, which induces a hypersen-
sitive response in grapefruit and sweet orange170. Using 
resistance genes from closely related species to target 
single genes could lead to rapid development of patho-
gen virulence. Durability and a combination of multiple 
resistance genes targeting several pathogenicity factors 
should be considered when developing host resistance.

Conclusions
Xanthomonas spp. use a multitude of virulence factors 
that interfere with host cellular pathways. Recent studies 
on Xanthomonas–host interactions have been vital for 
unlocking mechanisms associated with Xanthomonas 
spp. pathogenicity, diversity and host specificity. The 
T3SS and associated Xop effectors are major factors 
influencing pathogenicity and virulence. Studies have 
further evaluated the importance of other pathogenic-
ity factors, including T2SS, small RNAs and others. 
With an improved understanding of dynamics of vir-
ulence factors in pathogen populations, we will have a 
better understanding of Xanthomonas evolution in rela-
tion to host/tissue specificity and expansion. Research 
has evolved to integrate these novel findings when 
developing host resistance against Xanthomonas spp. 
Collectively, Xanthomonas spp. have been a model sys-
tem to understand emerging bacterial plant pathogens 
and diversity.
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