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ABsSTRACT. Complexity one spaces are an important class of examples in symplectic
geometry. They are less restrictive than toric symplectic manifolds. Delzant has es-
tablished that toric symplectic manifolds are completely determined by their moment
polytope. Danilov proved that the ordinary and equivariant cohomology rings are dic-
tated by the combinatorics of this polytope. These results are not true for complexity
one spaces. In this paper, we describe the equivariant cohomology for a Hamiltonian
S M*. We then assemble the equivariant cohomology of a complexity one space from
the equivariant cohomology of the 2— and 4-dimensional pieces, as a subring of the
equivariant cohomology of its fixed points. We also show how to compute equivariant

characteristic classes in dimension four.

1. INTRODUCTION

A symplectic action of a torus T = (S')* on a symplectic manifold (M,w) is called
Hamiltonian if it admits a momentum map. That is, we have a smooth map
®: M — t* ~ R* such that d®; = —u(§;)w for every j = 1,...,k, where &,...,&
are the vector fields that generate the torus action. If the Hamiltonian action is ef-
fective, the triple (M,w, ®) is called a Hamiltonian T-space. In this paper, we will
consider closed and connected Hamiltonian 7T-spaces. In a Hamiltonian 7T-space, the
vector fields &, ..., &, define an isotropic subbundle of the tangent bundle, so we must
have dim(7T") < 5 dim(M). When we have the equality dim(7T") = 5 dim(M), the action is
called toric, and the space is called a toric symplectic manifold. Delzant has shown
that closed connected toric symplectic manifolds, up to equivariant symplectomorphism,
are in one-to-one correspondence with simple, rational, smooth polytopes, up to affine
equivalence.

More generally, an effective Hamiltonian action (S')"*  M?" has complexity k.
Hence, a complexity one space is a symplectic manifold equipped with an effective
Hamiltonian action of a torus which is one dimension less than half the dimension of
the manifold. The only example of an effective Hamiltonian action on a two-dimensional
closed connected M is a linear action S' S2, which is toric. When M is four-dimensional,
the only tori that act effectively are S* and S x S'. Thus examples of Hamiltonian circle
actions S M* are the first examples of complexity one spaces.

Already for S* M*, we see that an analogue of Delzant’s theorem is impossible.
Delzant’s theorem says that 72 M* correspond to a class of polygons in R2. Restricting

to a circle, we have moment image a single interval: we’ve lost too much information
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to be able to recover any topological information about M. Nevertheless, the existence
of an effective Hamiltonian circle action on a compact connected symplectic 4-manifold
does have topological implications. Li has shown [18] that for an effective Hamiltonian
circle action, the fundamental group m; (M) must be isomorphic to the fundamental group
71(Zmin) of the submanifold 3,,;, on which the moment map ® achieves its minimum.
This minimum is automatically a symplectic submanifold, so it must be an isolated
point or an oriented surface. On the other hand, thanks to a construction of Gompf
[10], any finitely presented group can be the fundamental group of a compact symplectic
4-manifold. Thus, the existence of an effective Hamiltonian circle action restricts the
topology of M considerably.

In general, Hamiltonian T-spaces enjoy a number of useful features when it comes to
computational topology. Components of the momentum map are Morse functions (in
the sense of Bott). Thus, topological invariants like singular cohomology are amenable to
computation for these spaces [5]. More subtly, it is often possible to compute equivariant
cohomology, an invariant depending on both the manifold and the action. As the critical
set for a generic component of the momentum map, the set M7 of fixed points plays a
leading role in these calculations. For an effective Hamiltonian action S M* with only
isolated fixed points, Goldin and the first author [9] use the Atiyah-Bott/Berline-Vergne
(ABBV) localization formula [1, 2] to describe the equivariant cohomology HZ, (M;Q).
In this case, the S'-action extends to a toric action 72 M?*. In general, an effective
Hamiltonian S!-action on a four-manifold might fix two-dimensional submanifolds and it
need not extend to a toric action. We review the relevant facts on equivariant cohomology
in Section 3.

The first main result of this manuscript describes the S'-equivariant cohomology for
any effective Hamiltonian S!'-action on a symplectic four-manifold. Examples include k-
fold blowups of symplectic ruled surfaces of positive genus. This is a rare instance in the
symplectic category where the presence of odd degree cohomology doesn’t make calcula-
tions in equivariant cohomology impossible. It is also the first occurrence of calculations

with fixed point components of different diffeomorphism types.

1.1. Theorem. Let M be a closed connected symplectic four-manifold, and S* M be an

effective Hamiltonian circle action.
(A) The equivariant cohomology Hg (M;Z) is a free HE, (pt; Z)-module isomorphic to
H*(M;7) ® Hu (pt; 7).

More precisely, if Fy,...,Fs are the (finitely many) components of the fized set
MSI, then there are even natural numbers Ay, ..., \s such that

Hiu(M;Z) = @(I*‘AJ(FJ; Z)® Hu(pt; Z).
J
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(B) The inclusion i : MS" < M induces an injection in integral equivariant cohomol-
0gy
i (M3 Z) — Hi (Msl;Z> (h
(C) In equivariant cohomology with rational coefficients, dhe image of i* is character-
ized as those classes o € Hg ( Sl; Q) = @ Hg (F; Q) (uhich satisfy:

FcMS
(0) that the degree zero terms a9 |r are all equal;

(1) that the degree one terms 04(1)\2 restricted to fixed surfaces are equal; and
(2) the ABBYV relation

(12) S (716 (e ) € Ol = A (i)

FcM*S

where the sum is taken over the connected components F of the fixed point
set M5, alp is the restriction of a to the component F, the map (W\F)!
is the equivariant pushforward of m|p: F — pt, and esi(v(F C M)) is the
equivariant Fuler class of the normal bundle of F.

(D) The Atiyah-Bredon sequence for S* M is exact over Z.

(E) We have a short exact sequence

0 — (7*(u)) — Hi(M:Z) — H*(M:Z) — 0.

For Parts (A) and (B), we adapt Morse theoretic arguments of Tolman and Weitsman
[21] over Q to show they work for our class of manifolds when the coefficients are the
integers. Franz and Puppe have also adapated this argument to work over Z (see [6,
Proof of Theorem 5.1]), but they require the action to have connected stabilizer groups,
which we do not have. By contrast, we do have torsion-free fixed point components,
which allows us to draw the same conclusion. We then use Franz and Puppe’s work to
verify that (D) and (E) hold for these 4-manifolds.

Turning to part (C) of the main theorem, we exhibit a sample class satisfying the
requirements listed in (C) in Figure 1.3. We prove this part using Morse theory to
compute the equivariant Poincaré polynomials P2 s (t) and P& (t) and their difference.
This tells us the ranks of i*(H% (M;Q)).

To interpret the ABBV relation, we calculate explicitly equivariant Euler classes and
their inverses. In Section 4 we give formulas for these classes, and for equivariant Chern
classes, in terms of the weights of the action at the fixed points and the self intersection
of the fixed surfaces. In the appendix we apply the ABBV relation and our calculations
to compute the intersection numbers of embedded invariant surfaces.

In the second main result of the manuscript, Corollary 6.3, we generalize Theorem 1.1,
applying a theorem of Tolman and Weitsman [21] to assemble the equivariant cohomology
of a complexity one space, 7"t M?". Tolman and Weitsman’s work is a consequence of

an earlier result of Chang and Skjelbred [4] but the Tolman-Weitsman proof illuminates
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D(Z,)=4,Area=2,¢g 5®1 +(agtbg) ®(5-u) + (-1Qu - [£,]® 1)

d(p)=3 (5+3u+u?)
2
D(p)=1 (5+u)
D(Z,)=0,Area=4,g 5&1+ (agtby)® (5-u)

F1GURE 1.3. On the left is the decorated graph for a circle action on the

manifold M = [CP? x (Eﬁd#@i#(ﬁ_Pi and on the right a collection of
classes in HY, (F') for each fixed component F. These classes satisfy the
requirements in Theorem 1.1, so they are the restrictions to the fixed sets
of a global class in H, (M;Q).

the type of geometric argument that we use in the Hamiltonian setting. Our main results
demonstrate how amenable complexity one spaces are to algebraic computation. It opens
the door to questions about the geometric data encoded in the equivariant cohomology
ring for complexity one spaces, along the lines of Masuda’s work [20], distinguishing toric

manifolds by their equivariant cohomology.
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2. HAMILTONIAN CIRCLE ACTIONS ON 4-MANIFOLDS

Let (M* w) be a closed connected symplectic four-manifold with an effective Hamil-
tonian S!'-action. The real-valued momentum map ® : M — R is a Morse-Bott function
with critical set corresponding to the fixed points [12, §32]. Since M is four-dimensional,
the critical set can only consist of isolated points and two-dimensional submanifolds. The
latter can only occur at the extrema of ®. The maximum and minimum of the momen-
tum map is each attained on exactly one component of the fixed point set. This is the
key point for our computations below.

To (M,w, ®) Karshon associates a decorated graph. The decorated graphs for two
different circle actions on CP? are shown in Figure 2.1. Two Hamiltonian S'-spaces are
isomorphic if and only if they have the same decorated graph [14]. Moreover, we know
which such spaces occur [14]. In particular, when the fixed points of the action S*  M*
are isolated, the S'-action extends to a toric action 7% M*. If there is a single critical
surface Y, then we may deduce that 3 has genus 0. When there are two fixed surfaces

Ymin and X,,.., they must have the same genus, so are each homeomorphic to a fixed
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FIGURE 2.1. The decorated graphs for S* CP?: with 3 isolated fixed
points on the left; and with a fixed surface and an isolated fixed point on
the right. An edge labelled ¢ indicates a Z,-sphere containing the two fixed
points.

surface . Wel\call the case when there are two fixed surfaces of genus g > 0 the positive

AN

genus case. '

|
| \
|
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complexity on

Ha(MifR) = H' (M x E4Y)/S% R),

where the clabsifying bundle ES} := S Is the unif sphere in an infiffite dimensional

complex Hilbert space C*, equipped with a free S'-action by coordinate multiplication,
St (M x ES') diagonally, and R is the coefficient ring. The classifying space is BS! =
ES1/S! = CP*>. The equivariant cohomology of a point is

(3.1) 2 (pt; R) = H*(BS"; R) = H*(CP*; R) = Rlul,
where deg(u) = 2.

3.2. Remark. We can interpret ES! = S as the direct limit of odd-dimensional spheres
S+ CH! with respect to the natural inclusions, and BS! = CP>® = li_r)n CP’. Then
(M x ES')/S* is a direct limit of (M x S2t1)/St. For every degree g we have H2, (M) =
HI((M x §%+1)/S1:7) for all sufficiently large /.

More generally for a torus T' = (S*)*, we have HY(M; R) := H*((M x (ES")*)/T*; R).
The inclusion of the fixed point set i : MT < M is an equivariant map, and Borel studied

the induced map in equivariant cohomology, using field coefficients.

3.3. Theorem (Borel [3]). Let a torus T act on a closed manifold M and let F be a field
of characteristic zero. In equivariant cohomology, the kernel and cokernel of the map

induced by inclusion,
i HA(M;F) — Hiy(MT;F)
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are torsion submodules. In particular, if H7(M;F) is torsion free as a module over

Hi(pt; F), then i* is injective.

The map
(3.4) w: M — pt

induces a map in equivariant cohomology 7* : Hi(pt; R) — H;(M; R) which endows
H3(M; R) with an H}.(pt; R)-module structure. The projection (3.4) induces a fibration

(M x ET)/T — ET/T = BT.

In the context of Hamiltonian torus actions, Kirwan studied the Hj.(pt; R)-module struc-
ture for coefficient rings which are fields of characteristic 0. Kirwan proved the following,

adapted to our context.

3.5. Theorem (Kirwan [17, (5.8)]). Consider a Hamiltonian action of a torus T on
a closed manifold M. If T is a field of characteristic zero, then Hy(M;F) is a free
Hi(pt; F)-module isomorphic to H*(M;F) ® H}(pt; F).

3.6. Pushforward maps. An S'-equivariant continuous map of closed oriented S*-

manifolds, f: N — M induces the equivariant pushforward map
fli Hy(N;Z) — Hy "(M; Z),

where n = dim N, m = dim M, as follows. For ¢, ¢/ € N, we have the pushforward
homomorphism HI(N x S**1/S1:7) — HI="m(M x S?+1/S': 7) defined by

HI(N x 524151 7) Hetm=n (M x §2+1/51,7)

| T

Hy_o(N x S24+1/84,7) —— H, (M x S?*+1/S'; 7)

where the vertical maps are the Poincaré duality isomorphisms and the horizontal one
is the map induced by f on homology. To define the equivariant push-forward map
f' take ¢ large enough such that these cohomology spaces are equal to the equivariant
cohomology of M and N, see Remark 3.2. The push-forward is independent of ¢. This
map is sometimes called the equivariant Gysin homomorphism. We similarly define
the equivariant pushforward map induced by (S*!)*-equivariant maps.

For an S'-invariant embedded surface tx;: ¥ — M in a four-dimensional M, the
Poincaré dual of ¥ as an equivariant cycle in M, i.e., ¢5(1), where 1 € HY, (3;Z), is a class
in HZ,(M;Z). Tts pullback under 5, equals the equivariant Euler class eg: (v(X C M)) of

the normal S'-vector bundle of ¥ in M.

The Atiyah-Bott/ Berline-Vergne (ABBV) localization formula [1, 2] expresses the

equivariant pushforward under 7: M — pt of an equivariant cohomology class as a sum
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of equivariant pushforwards of 7|z over the connected components F' of the fixed point

set M7 as follows. We must use Q coefficients because Euler classes are inverted.

3.7. Theorem (Atiyah-Bott [1] / Berline-Vergne [2]). Suppose a torus T acts on a closed
manifold M. Then for any class « € H;(M;Q),

FCM

where the sum on the right-hand side is taken over the connected components F' of the
fized point set MT, a|p is the restriction of o to F, and er(v(F C M)) is the equivariant
Euler class of the normal bundle of F'.

4. FORMULAS FOR EQUIVARIANT CHARACTERISTIC CLASSES

The equivariant characteristic classes of an equivariant vector bundle £ are the
characteristic classes of the vector bundle E on (M x ES')/S* whose pull-back to M x ES*
is E x ES'. These characteristic classes are elements of H%, (M). In particular, we
have the equivariant Euler class egi1(E) when E is an oriented equivariant real vector
bundle and the equivariant Chern classes c; ' (E) when F is an equivariant complex vector
bundle. As discussed in [22, §5], these equivariant characteristic classes are equivariant
extensions of the ordinary characteristic classes. To interpret the ABBV relation, we
first calculate explicitly equivariant Euler classes and their (formal) inverses. For the
Euler classes, we work with integer coefficients. For their inverses, we must revert to Q.

In case v(F C M) is an equivariant complex vector bundle over a point, the formula
[11, (C.13)] for the equivariant Euler class of v({pt} C M), obtained from the splitting
principle in equivariant cohomology [11, Theorem C.31], simplifies to a single term, as

follows.

4.1. Lemma. Consider a linear circle action S C" with weights by, ..., b, € Z ~ {0}.
Thought of as an equivariant bundle over a point C* = v({0} C C") — 0, this has

equivariant Fuler class
(4.2) es1(C") = (=1)"by - - - byu" € Hgi (pt; Z) = Z[ul,

with (formal) inverse

(esr(©) " = - e g

In the case of an equivariant complex line bundle over a positive-dimensional mani-
fold, where the action fixes the zero-section, we may also identify the equivariant Euler
class explicitly. Moreover, in this case, the equivariant Euler class is invertible (in the

appropriate ring), and we have an explicit formula for its inverse.
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4.3. Lemma. Let

st j
)y
be an equivariant complex line bundle with thezero section fized pointwise and the fiberwise

action linear. At any point p € X, let b € Z ~. {0} denote the weight of the circle action
on the fibre over p. Then the equivariant Fuler class of £ has the form

(4.4) esi(L)=-10b-u+te(L)®1 € Ha(S;Z),

where e(£) € H*(X;Z) denotes the ordinary Euler class of £. Its inverse (in the ring
of rational functions with coefficients in H*(3;Q), namely H*(3; Q)[u,u™']) is

N

(45) (D) ==Y ey o )

=0 bu
where N = Ldin;(E)J (

Proof. We first note that because the S* action fixes the surface Y, and since both the
cohomology of the orientable surface ¥ and the cohomology of BS*, over Z, are torsion

free, Kunneth formula gives the splitting
Hu(2;7) = H*(X;Z) @ Hi(pt; 2).

Moreover,
esi(Z) € Hgl (3;2)

and by the splitting,
o) = (e e meu0) @ (e e meu) (

The leading term in (4.4) is guaranteed by [11, (C.13)]. Furthermore, the equivariant
Euler class is defined to be the Euler class of the bundle .Z t(at fits into the diagram

Z xlESl T <

Y x ESt ——= ¥ xq ESL
p

By naturality of characteristic classes, we must have that the restriction
p(esi(£)) = e(ZL),

and so the second term in (4.4) must be ¢(.Z) ® 1.
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To check our formula for eg1 ()1, we take the product

(~1@b-ute(Z)21) - _i (Z)i(g(é)m)(
— iﬁg)i@(%)iZN:K("%)M@(i)iH

But e(Z)N*! = 0 for dimension reasons, so we see that the product equals 1 ® 1, as
desired. 0

4.6. Weights of the action. Consider an effective Hamiltonian S* (M* w). At an
isolated fixed point p € M, there exist complex coordinates on a neighbourhood of p
in M, and unique non-zero integers m and n, such that the circle action is linear with
weights m and n [14, Corollary A.7]; the tangent space TM|, = C? splits as a sum of
complex line-bundles C,, ® C,,. Denote the absolute values of the weights at p by m,, and
Ny

At a fixed surface ¥, we have TM |y = TE G v (X C M). The normal bundle v(¥ C M)
can be viewed as an equivariant complex vector bundle [14, Corollary A.6], moreover it
is a complex line bundle since dimg M = 4 and dimg > = 2. Note that the weight of the
action on T is 0. For any point p € 3, the S'-weight in the normal direction to X is £1.
It must be so because the action is effective and if it were +b with |b| > 1, there would be
a global Z, stabilizer. Moreover, it is positive when X is a minimum and negative when

Y is a maximum.

For an isolated fixed point p € M5, the equivariant Euler class is an element of
Hg (p; Z). By Lemma 4.1 and §4.6,

est (v({p} € M)) C { <_mpnpu if p is interior

mynyu® if p is extremal
with inverse
(.7) (s (i({p} < M)y = 4 (Tevi i pis interion
: €g1 _
) ! epu% if p is extremal

where e, 1= ﬁ For an S'-fixed surface 3 (which must be a minimum or maximum

PP
critical set), the equivariant Euler class is an element of HZ,(%;Z). From Lemma 4.3 and

§4.6, the equivariant Euler class is
€g1 (V(E C M)) C +1®u+ 62[2] ® 1,

where the first sign is determined by whether ¥ is a minimum (—) or maximum (+), ey is

the self intersection 3 - ¥, and [X] is the Poincaré dual of the class of a point in Hy(%; Z).
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(Recall that under the identification H?(X;7Z) = Z, the self intersection is the ordinary
Euler class of the normal bundle v(X C M).) By Lemma 4.3, the inverse is

1 1 1

(4.8) @JWECM»_:iﬂ®E—@EM%F

We may also deduce the restrictions of the equivariant Chern classes to connected

components of the fixed point set from §4.6 and the splitting principle.

4.9. Corollary. Consider an effective Hamiltonian S*  (M*, w).

o At a fixed point p
GH(TM)|y = (=m —n)u € H (p;Z),
s (TM)|, = mnu? € Hi (p; Z), and
(" (TM)],)* =265 (TM)], = (m* +n’)u?,

where m,n are the weights of the action at p.

e At a fized surface X, where * is either min or max,
S (TM)s, =2 -29)[B] @1+ e[S @1+ (—1)%=m @ u,

S (TM)|g, = (—1)%=mn(2 — 29)[2] @ u, and

(& (TM)|s.)? = 25 (TM)|s. = 1@ u? + 2(—1)%=mne,[S] @ u,

where e, s the self intersection of X,.

Proof. By §4.6 and the splitting principle [11, Theorem C.31], the restriction of the total

equivariant Chern class
SNTM) =14 (TM) 4 &5 (TM) + . ..

to a connected component F of the fixed point set equals ¢*' (C,)e5 (C,) if F = p
and ¢ (T%,)c (v(8, € M)) if F = %,. The class ¢! (L) of an equivariant complex
line bundle L over a fixed manifold equals ¢;(L) — bu, where b is the weight of the S'-

representation on a fiber of L, see [11, Example C.41]. Hence
A(C)e (C) = (14 ¢1(C) — mu)(1 + ¢1(Cy) — nu) = (1 — mu)(1 — nu),
and
ST (B, € M) = (14 e (TS) = 0)(1 4+ a1 (v(B. € M) — (=1)%=m @ ).

The corollary follows; in the case F' = ¥, we also use the fact that [Z*]2 = 0 in the

calculations. O
10



5. THE EQUIVARIANT COHOMOLOGY OF A HAMILTONIAN S'-ACTION ON A
4-MANIFOLD: PROOF OF THEOREM 1.1

Consider an effective Hamiltonian S*-action on a closed connected four-manifold M
with momentum map ®. In the proof of part (A) of Theorem 1.1, we adapt the argument
of Tolman and Weitsman [21, Proof of Prop. 2.1] to work in our situation when the
coefficients are the integers. Franz and Puppe have also adapated this argument to work
over Z (see [6, Proof of Theorem 5.1]), but they require the action to have connected

stabilizer groups, which we do not have.

Proof of Part (A) of Theorem 1.1. We will establish that H},(M;Z) is a free
H, (pt; Z)-module isomorphic to

H*(M;7) ® Hg (pt; Z).

The momentum map ¢ is Morse-Bott at every connected component of the critical
set. The critical sets are precisely the connected components of the fixed point set. The
fixed point set M5 consists of isolated points and up to two surfaces. The surfaces are
symplectic submanifolds and are hence orientable. Thus, H*(M* h Z) is torsion free. The
negative normal bundle to a critical set C' is a complex bundle, except at the minimum,
where the negative normal bundle is a rank zero bundle. Thus, the Morse-Bott indices
are always even and hence ® is a perfect Morse-Bott function.

Let ¢ be a critical value for ® and denote
M* =o' ((—oo,c+¢)).
Consider the long exact sequence in equivariant cohomology with Z coefficients,
o Hy(MT,M™) = Hiu(MT) = Hy(M7) = Hif (MY, M) — -

First suppose that ¢ = ®(C) is a non-minimal critical value corresponding to a critical
set C'. We may choose € to be small enough that c is the only critical value in the
interval [¢c — ¢,¢ + ¢]. Denote the negative disc and sphere bundles to C' in M by D.
and S, respectively. We let A denote the Morse index of C' in M. Following an identical

argument to [21, Proof of Proposition 2.1], we obtain a commutative diagram, with Z

coefficients,
" N e % Be % _
- H51<M+7M ) —= H51(M+) — Hu(M™) —
T
(5.1) Hg (D, Se) — Hu(De)
Nl Uee
Hg (D)

11



where e, = eg1(D,) is the equivariant Euler class of the bundle D, — C. The left-most
vertical arrows in the diagram are excision and the Thom isomorphism with Z coefficients.
An explicit analysis of the Thom isomorphism and the push-pull forumla guarantee that
the diagonal arrow is indeed the cup product with e.. Because C' C M is torsion-free’,
the cup product map Ue, is injective, and so . and 7, must also be injective. Thus, the
long exact sequence splits.

If a = f(C) is the minimum critical value, the spaces M* and C are equivariantly
homotopic, and M~ is empty. Thus, Hi, (M~) =0 and Hj, (M™*) = HZ, (C). Therefore,
the sequence splits in this case as well. Finally, when b = f(C) is the maximum critical
value, M+ = M and we will have assembled H%,(M; Z).

Because ® is a perfect Morse-Bott function for both ordinary and equivariant coho-
mology, we may assemble HY, (M;Z) as a module over H,(pt; Z). As the critical set is
precisely the set of fixed points, we conclude that if Fy,..., F; are the (finitely many)
components of the fixed set M5 and )\, ..., \s are their Morse-Bott indices, we have
now established that as modules over H, (pt; Z),

Hu(M:Z) = @D {9 (F;; Z) © Hi(pt; Z) = HY(M; Z) @ H (pt; Z).
J
Proof of Part (B) of Theorem 1.1. As before, we use ® as a Morse-Bott function
on M. The critical set is the fixed point set F' = M S' and it consists of isolated points

and up to two surfaces. Order the critical values of ® as ¢; < --- < ¢y, and let F; be the

critical points with ®(F;) = ¢;. Denote

MF = &' ((—o0,¢; £¢)).

7

The injectivity statement holds for M, because this set is empty. We use this as a base

case and proceed by induction. Suppose that

s1 (M) = Haa (M7 N F)

(2

is an injection with Z coefficients. As in the proof of part (A), we have a short exact

sequence with Z coefficients

0— Hi (M, M) — H&H(M;") — Hi (M) — 0.

(2 K3
Let 4% be the inclusion MF N F < M:*. Then we have a commutative diagram, with Z

coefficients,

0 —= Hg (M, M) —— Hg (M;7) 51 (M) ———0

e

4 (F) (M N F) — H3 (M7 N F) — 0.

0

IThis is the point at which Franz and Puppe [6, Proof of Theorem 5.1] need connected stabilizer groups
to guarantee that the Euler class e. is primitive and doesn’t interfere with any torsion in the fixed
components. By contrast, we have no torsion.

12



The map ¢* is an injection by the inductive hypothesis. The Four Lemma guarantees
that 7% is an injection. Finally, notice that M;" is equivariantly homotopy equivalent to

M. This completes the proof of part (B).

7

Proof of Part (D) of Theorem 1.1. Let My, —1 < i < k, be the equivariant i-
skeleton of T = T* M, i.e., the union of orbits of dimension < 4. In particular,
M(_l) - (Z), M(()) = MT and M(k) =M.

By [6, Lemma 4.1], it is enough to show that for 0 < j < k = 1 the long exact sequence,

with Z coefficients,
s = H5 (M, M) = Hg (M, M(;_yy) = Hg (M), Mj—y) = HH (M, M) — - -,

obtained from the inclusion of pairs (M), M;—1y) < (M, M(;_1), splits into short exact

sequences (over Z)
0 = H (M, M_y)) = Hg (M), Mj—y)) = Hg (M, M) = 0,
i.e., for j = 0 we need (over Z)
0 — Hi (M, 0) — Hi(MS',0) — H5 (M, M) — 0
and for j =1 we need (over Z)
0 — Hi (M, MS") — Hi (M, M®") — H5H(M, M) — 0.

For j = 0, we have the long exact sequence for the pair (M, M 51). The injectivity of
the map i* : Hy (M) — H& (M Sl), proven above, then forces the long exact sequence to
split into short exact sequences, as desired. In the case j = 1 the long exact sequence
degenerates, so it splits into very short exact sequences: H;Tl(M , M) =0 and the map
H (M, M5 — H (M, M5") induced from the inclusion (M, MS") — (M, MS") is the

identity isomorphism.

Proof of Part (E) of Theorem 1.1. Denote by I: M — (M x ET)/T the inclusion
of the fiber, and by

(5.2) I": Hi(M;Z) — H*(M; Z)

the induced map on cohomology. Franz and Puppe have established that the exactness
of the Atiyah-Bredon sequence implies that I*: Hg, (M;Z) — H*(M;Z) is a surjection
[6, Theorem 1.1]. This is equivalent to the statement that the map

;1<M;Z) ®H;1 7 — H*(M; Z)

is an isomorphism. Moreover, because H, (pt; Z) is generated by the degree two class u,

we then have a short exact sequence
0— (7"(u)) = H\(M;Z) — H*(M;Z) — 0.

13



5.3. Equivariant Poincaré polynomials. The S!-equivariant cohomology of M splits
Hz (M;R) = H*(M; R) ® Hg (pt; R),

as H¢, (pt; R)-modules: Theorem 3.5 for R = Q and Part (A) of Theorem 1.1 for R = Z.

Hence the equivariant Poincaré polynomial splits:

(5.4) P (1) = PM(1) - PR(1).
By (3.1),
(5.5) PPt = (1424t +..) = 1_#{2

We use Morse theory to find the Poincaré polynomial PM(¢). The momentum map of
the Hamiltonian circle action is a perfect Morse-Bott function whose critical points are
the fixed points for the circle action [12, §32]. Therefore

(5.6) dim(H’(M; R)) =Y _ flim H' " (F; R),

where we sum over the connected components ¥ of the fixed point set, and where Ag is
the index of the component F. In the special case of S* M?*, the fixed point components
are finitely many isolated points and up to two orientable surfaces, of the same genus
g. The contribution of each fixed component is as follows. For a minimal fixed surface,
Ar = 0, so the contribution to H°(M) is 1 and to H'(M) is 2g. For a maximal fixed
surface A\p = 2, so the contribution to H*(M) is 1 and to H3(M) is 2g. For an isolated
fixed point, A = 0 if it is minimal, and the point contributes 1 to H°(M). For an isolated
fixed point, A\p = 2 if it is an interior fixed point, and the point contributes 1 to H?(M).
Finally, for an isolated fixed point, Ap = 4 if it is maximal, and the point contributes 1
to HY(M). See, e.g., [15].

Hence
(5.7) PM(t) =14 6min29t 4+ (£ — 24 20,min + 20ma2)t? + Omaa2gt® + 4,
and
(5.8) py* (t) = isolated points in M®  + surfaces in M5 (14 2gt + 1?)
= (04 Smin + Omaz) + (Omin + Omaz) 29t + (Smin + Omaz)t?,
where

¢ = # isolated fixed points,
Omin = # minimal fixed surfaces (zero or one), and

dmae = # maximal fixed surfaces (zero or one).
14



Therefore

Pil(t) = PY(t) &

(5.9) = 14 (€ =14 20min + 26mae)t* + (L + 20 + 20maz)t* ()
+5mzn2.gt + (5mm + 5ma$>29t3 (1,1152) (

Also
PYT(t) = PV () s
—|—(€ + 26mm + 2(5max>t4 (#)
ax)2gt3 ( 1Et2 )

+(6mzn + 5maw)2gt + (6mzn + 5 (
The differences between the corresponding coefficients in Pj{ st (t) and\P¥ (t) tell us

how many constraints cut out i*(H%, (M; R)) in H, (MS'; R). The constraints are linear

(5.10)

relations among the equivariant cohomology classes on M*® ' and we will refer colloquially
to the relations the classes must satisfy. Equations (5.9) and (5.10) combine to give the

following lemma.

5.11. Lemma. Let S' M* be a closed connected Hamiltonian space.
Pé\{[SI ) =P (1) = [(g + Omaz 1 Omin — 1) + Omaa2gt + (2 = £ = Oppaz — Opin)t
~ Omax2g1” - t4] Cl + L)
= (# components of MS = 1) + 2gt + 2

The coefficient 2g of t in the last equality follows because if g > 0, we must have 6,0, = 1.
Hence we must find (# components of MS' — 1) relations in degree 0; 2g relations in

degree 1; and one relation in degree 2 to determine the image
i"(Hy (M; R)) C Hu(M®'; R),
for R=17, Q.

5.12. Constraints on the image of i* from ABBYV. The ABBV relation (1.2) will

impose one constraint in homogeneous degree 2 on tuples
* 1 *
a=(alp) € Hu(M®;Q) = P (Hu(F;Q.
FcMS

Suppose we have such a tuple o = («|r). For an isolated fixed point p, set

p is interior
0p =

p is extremal.
15



At each isolated fixed point p, we may identify HZ, (p; Q) = H°(p; Q) ® Hz,(pt; Q). Thus,
al, =1 ® cyu for some ¢, € Q. In the ABBV relation (1.2), this will contribute

() ol (e € )] - ) (18260 ((—n%p 0| = v,

u

where the first equality is by (4.7). Next, for a fixed surface ¥,
H5 (5:Q) = (H*(%,Q) ® Ha (pt; Q) @ (H°(3%5Q) ® Hi (pt; Q).

Thus a|y = [X] ® ax, + by ® u, where ax, by, € Q. In the term in (1.2), this will contribute
(rls) |als - (ess (= € M) = (wls) (B @ ax + by 2 w) - (es1(w(2 € M) C

_ (W\E)!{ Y] @ as; + by @ u) - (fl‘@i—@m@ﬁ)](

byes
)

ax
= 4+= _
U U

where the second equality is by (4.8). Combining these, we get a term of the form

Z(<_1>5p@ + Onax (¢mam _ bmawemar) Y . (amin + bmmemzn> :
u \'LL u u u

p

where p runs over all isolated fixed points. This is in Q[u] if and only if

(513> Z _1)5pcp6p> + 5maaz (amaz - bma:cemaz) - 5min (amin + bminemin) - 0

p
This precisely gives us one linear relation among the rational numbers ¢, @maz, bmag,

Amin aNd byin.

Proof of Part (C) of Theorem 1.1. We want to determine which classes in HZ, (M* )
are the images of global equivariant classes. Let S denote the submodule of classes in
H;l(MSI;Q) which satisfy conditions (0), (1) and (2) of Theorem 1.1. As a submod-
ule of a free module over the PID Q[u| = HYi(pt; Q), the submodule S is itself a free
H, (pt; Q)-module.

By Parts (A) and (B) of Theorem 1.1 and Theorem 3.5, we also know that i*(H%, (M; Q))
is a free submodule of H;il(MSl;Q). We aim to show that i*(HZ (M;Q)) C S and
that these have equal rank in homogeneous degree k for each k. This will prove that
#(Hz(M: Q) = 5.

We first consider equivariant cohomology classes of homogeneous degree zero. By
Theorem 3.5, we have Hg, (M;Q) = H'(M) ® H2: (pt; Q) = Q® HE (pt; Q), and so

dim(H3: (M; Q) = 1
over Hg, (pt; Q). Constant functions on M are equivariant, so they represent classes in

H$ (M;Q). They must represent all of Hg,(M;Q) since it is one dimensional. Thus,

for v € i*(H3, (M;Q)), its restriction to any fixed component is its constant value. This
16



means that for a class in Hgl(MSI; Q) to be in the image of i*, it must be a constant
tuple, which is equivalent to satisfying (# components of M~ = 1) relations which force
the tuple to be constant. These are the (# components of M st _ 1) relations sought in
Lemma 5.11.

Next, we note that because the action S*  MS' is trivial,
L (M50) = (i1 (@) @ Hy (pt:Q)) @ ((%MSI; Q) ® Hy (b Q) ).

and the second term on the right-hand side is zero since*BS! is simply connected. Wore-
over, H*(M Sl) is non-zero only if there are fixed surfaces of positive genus. Thus,
HL, (M5") is non-zero only in the positive genus case. In that case, we have two fixed
surfaces of the same genus. A homogeneous equivariant class of degree 1 will be zero on
each interior fixed point. A globally constant class of homogenous degree one is, as ever,
Sl-equivariant. Such a class will restrict to the same class on X,,,, and X,,;,. That is, we
will have a pair (als, . ,@|s,,..) for which, when we identify H*(X,,:,; Q) =2 H (40 Q),
we have aly, ,, = o|s The possible classes of this form make up a dim(H'(%; Q)) = 2¢
dimensional subspace of Hg, (M5"). We know from (5.9) that i*(He (M; Q) is 2¢g dimen-

sional, so as in the degree zero case, these must be everything in the image of 7*. In terms

max *

of relations, we will have exactly the 4g — 2g = 2¢ relations that force oy, = als,...,
namely the 2¢ relations sought in Lemma 5.11.

We conclude that i*(HZ, (M; Q)) is a subset of the submodule of classes in H, (M5": Q)
which satisfy conditions (0) and (1). By the ABBV localization formula 3.7, every class
in i*(HZ (M;Q)) is in the submodule of classes that satisfy the ABBV relation (1.2).
Therefore, i*(HZ, (M;Q)) is a subset of the intersection submodule S. The ABBV relation
imposes weaker constraints than being globally constant in homogenous degree zero, and
it imposes no constraints in homogenous degree one. In homogeneous degree two, it
imposes exactly one constraint (5.13). This is precisely the one degree two relation
sought in Lemma 5.11.

Thus, we have verified that i*(H%, (M;Q)) C S and has the same ranks, so the two (free)
submodules must be equal. This completes the proof of Theorem 1.1. Il

To assemble the equivariant cohomology of a complexity one space, we will need a
slightly more general form of Theorem 1.1. We consider a Hamiltonian T-action on a
symplectic four-manifold M which is the extension of a Hamiltonian S* M by a trivial
action of a subtorus K of codimension one. This forces the fixed point set M7 to consist
of isolated points and up to two surfaces. We still have the parameters associated to the

decorated graph described in Section 2 for the Hamiltonian 7'/ K-action.

5.14. Proposition. Let M be a closed connected symplectic four-manifold. Let a torus
T act non-trivially in a Hamiltonian fashion on M, and suppose that a codimension one
subtorus K C T acts trivially. Let mr : Hy(—; R) — Hj(—; R) be the restriction map in

equivariant cohomology.
17



(A) The equivariant cohomology, Hy(M;Z) is a free Hy(pt; Z)-module isomorphic to
H*(M;7) ® H}(pt; Z).

(B) The inclusioni : MT — M induces an injection in integral equivariant cohomology
i Hy(M;Z) — H; (M";Z)

(C) In equivariant cohomology with rational coeﬁcients(the image of i* 1s character-
1zed as those classes o € H7, (MT; Q) hich satisfy:
(1) nx(alr) = Tk (alg,) for all compéynem‘s Fi, F; of MT; and
(2) the ABBV relation

(.15 > (w10 (ot ) © Hion )

FCcM

where the sum is taken over connected components F of the fized point set
M7T, and the equivariant Euler classes are taken with respect to the effective
T/ K -action.

(D) The Atiyah-Bredon sequence for T M s exact over Z.

(E) The map (5.2) is a surjection Hy(M;Z) — H*(M;Z).

The proof is identical to the proof of Theorem 1.1. Parts (A) and (B) follow word-for-
word as above, using ® as a Morse-Bott function. For part (C), the conditions (0) and
(1) in Theorem 1.1 have become the single more compact form (1) in this generalization.
Writing the conditions in this way is equivalent to saying that a|p, — a|g, is in ker(7g).
This boils down to requiring that a|p, — a|r; is a multiple of 1® 7, where 7 is a generator
for the dual of the Lie algebra of T/ K. Since the generator 7 is an element of H2 1k (Pt; Q),
this imposes the requirement in degrees zero and one that the classes a|p, and afr; agree.
For part (D), the fact that a codimension one subtorus K C T acts trivially guarantees
that there are only 0- and 1-dimensional orbits, so the result again follows in a straight

forward way from [6, Lemma 4.1]. Part (E) is then an immediate consequence of (D).

5.16. Remark. When the fixed point set consists of isolated points, items (B) and (C) in
Theorem 1.1 coincide with [9, Proposition 3.1], and items (B) and (C) in Proposition 5.14
coincide with [9, Proposition 3.2]. In the case when there are fixed surfaces, even with

genus 0, our results are already providing new calculations.

6. THE EQUIVARIANT COHOMOLOGY OF COMPLEXITY ONE SPACES

Recall that a complexity one space is a symplectic manifold equipped with an effective
Hamiltonian action of a torus which is one dimension less than half the dimension of the
manifold. That is, the torus is one dimension too small for the action to be toric. These
manifolds have been classified in terms of combinatorial and homotopic data, together
called a painting, by Karshon and Tolman [16]. We begin with a Lemma that establishes
that the stabilizer groups for complexity one spaces must be of the form, a torus cross a

cyclic group.
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6.1. Lemma. Let T"'  M?" be a complexity one space and p € M. Then the stabilizer
group H of p is a direct product Hy X Z/kZ, where Hy is a connected torus (the connected
component of the identity in H ).

Proof. Let p € M and let H denote the stabilizer of p. The local normal form theorem
[13, 19] for momentum maps guarantees that there is a neighborhood of the orbit T - p
that is isomorphic to an open neighborhood of [1 : 0 : 0] in T x5 C* x ann(h) where h is

the (real) dimension of H. Counting dimensions, we must have
2n=(n—-1)4+20—h+(n—h-1).

This forces £ = h + 1 and means that H < (S') = (SY)"*1. This means that there is a
short exact sequence
1— H— (SHM - 8t — 1.

Now let Hj denote the connected component of H containing the identity. We can

quotient the first two terms in the short exact sequence by Hj to get
1 — H/Hy — (S")"*'/Hy — S* — 1.

The fact that H/H, is finite means that (S*)"™!/Hj is a finite cover of a circle, so it is a
circle itself. Thus, H/H, is a finite subgroup of a circle, so H/Hy is cyclic.

We now want to show that H = Hy x H/H,. Suppose that H/Hy = Z/kZ and choose
an element a € H that generates H/Hy. Then a* € H,.

Now, Hy is a connected abelian group so it must be isomorphic to a torus (S')". In a
torus, every element has a k'™ root. Choose a k™ root b € H, of a*. That is, a* = bF.
But now, ab~! generates a cyclic subgroup of H of order k complementary to H,. That
is, H = Hy x (ab™'), which is what we wanted to show. O

We now consider a complexity one space T"~!  M?". For any (closed, connected)
subtorus 7% C T™~!, the set of fixed points M ™ is a symplectic submanifold with com-
ponents of dimension at most 2n — 2k. Depending on how generic T* is inside of 777!,
some components of MT" could be fixed by all of 7", If there is a component X for
which (T"71/T*) X is an effective action, that component X must have dimension at
least 2n — 2k — 2. That is, (T"~1/T*) X will be either toric or complexity one itself. In
particular, the components of the one-skeleton are two-dimensional or four-dimensional.

Tolman and Weitsman considered the inclusion of the fixed points j : M7 — My,
which is an equivariant map. The following theorem is a consequence of work by Chang

and Skjelbred [4]. Tolman and Weitsman give an elementary geometric proof.
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6.2. Theorem (Tolman-Weitsman [21]). Let M be a closed Hamiltonian T-space. The

induced maps in equivariant cohomology with rational coefficients,

H3(M; Q) Hi(May;: Q)
Hi(M";Q)

have the same image in H:Z(MT; Q).

In other words, for a tuple of equivariant classes on the fixed point components to be in
the image of ¢*, we only need to ensure that the tuple is a global class on each component
of the one-skeleton. Combining Theorem 6.2 with our result in Proposition 5.14 gives the
following combinatorial description of the equivariant cohomology of a complexity one

space.
6.3. Corollary. Let T"* M be a closed connected complexity one space.
(A) The equivariant cohomology H3(M;7Z) is a free Hy(pt; Z)-module isomorphic to
H*(M;7)® Hy(pt; Z).
(B) The inclusioni : M* < M induces an injection in integral equivariant cohomology

i Hy(M;Z) — H; (M";Z)

(C) In equivariant cohomology with rational coeﬂicz’ents,(the image of i* 1s character-
1zed as those classes o € H7, (MT; Q) which satisfy, for every codimension one
subtorus K C T and every connected cqmponent X of M*,

(1) mi(alr) = mx(alg,) for all components F;, F; of X*; and
(2) when dim(X) = 4, the ABBV relation,

(6.4 S (1) (=) € Hilons

FcX

where the sum s taken over connected components F' of the fized point set
X7, and the equivariant Euler classes are taken with respect to the effective
T /K -action.

(D) The Atiyah-Bredon sequence for T M is exact over Z.

(E) The map (5.2) is a surjection H}(M;Z) — H*(M;7Z).

Proof. Parts (A) and (B) hold for precisely the same reasons as (A) and (B) in Theo-
rem 1.1. The components of the fixed set M7 are still zero- and two-dimensional symplec-
tic submanifolds of M and are hence torsion free. A generic component of the moment
map ®¢ will still be a perfect Morse-Bott function with critical set MT. This will allow us
to deduce that H3.(M;Z) is a free H3.(pt; Z)-module isomorphic to H*(M;Z)® H}(pt; Z)
and i* : H5%(M;Z) — H3(M7T;7) is injective, as before.

Part (C) follows by using Proposition 5.14 to assemble the equivariant cohomology of

the one skeleton.
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To verify Part (D), we use Lemma 6.1 to guarantee that the stabilizer group of any
point has at most one (finite) cyclic factor. This means that M satisfies condition (2.3b)
in [7, Theorem 2.1|. Because H;(M;Z) is free over H*(BT'; Z), the machinery in [7] now
implies that the Atiyah-Bredon sequence is exact over Z.

Finally, Franz and Puppe [7] proved that (E) is an immediate consequence of (D). O

We conclude with an example of a complexity one space and indicate some of the com-

putations our work allows.

51+ (ag+b8)®(5-u) -1®(u-uv) 5&1+ (ag+bg)®(5—u) -1®(u-uv)

[ 4

(5+v-u) (5-u)

5 (5+v)
5 (5+v)
(5+v+u) (5+u)

A > ' 4 ' 4

5@ 1 +(agtby) ®(5-u) + (1 Qutuv) - [Z]®1)  5& 1 +(agtby)®(5-u) + (1@ (2u+uv) - [Z,]®1)

FIGURE 6.5. On the left, the x-ray for a complexity one space for a T2
acting on M%. The red fat vertices correspond to genus g surfaces fixed
by T. The black vertices correspond to isolated fixed points. The red
edges correspond to four-manifolds fixed by a circle, and the black edges
correspond to 2-spheres fixed by a circle. This manifold has Betti numbers
Bo =0 =1, 01 =05 =g, o =04 =7and 3 =2g9. On the right,
a collection of classes in H;(F) = H*(F)[u,v] for each fixed component
F. These classes satisfy the requirements in Corollary 6.3, so they are the
restrictions to the fixed sets of a global class in H}.(M; Q).

5@ 1 +(agtb) ®@(5-u) + (10U - [E]®1) 581+ (agtby)®(5-u) + (-1@u - [£,]®1)

(5+3u+u?) / (5+3u+u?)

(5+3v+v?) (5-3v+v?)
APPENDIX A. COMPUTING THE INTER E("](;I‘S)N NUMEE@\I/:} dJdF GRADIENT SPHERES AS

A CONSEQ CE OF THE A V RELATION
(5+u) (5+u)

In principle, the ABBV relation applied when working with goefficients in a field. How-

ever, we may still use ABBV to deducg-infozmation abeut integrab-glasses and their cup
products as follows. For a four-manifold, the intersection form is an invariant of integral
homology. In the presence of a group action, it is the shadow of an equivariant invariant
for invariant submanifolds. We may compute the self-intersection of an embedded invari-
ant surface by using ABBV on an integral class (which is, after all, also rational), finding
the equivariant invariant which is a priori rational, but for an integral class is actually an

integer.
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Let S be an embedded invariant surface in a closed Hamiltonian S!-space M of dimen-
sion four and [S] its class in Hy(M;Z). Then

(A.1) [S]-[S] := ='(PD([S]) UPD([S]))
= 7 (I, a1 (1) U1 (1))
= 1*H&(pt)((@;(l)ULS!(I”)
= (1M u 51(1))(
B (s V)]e)?
- Z e (es1(y(FCM))>

FcMs?!

where PD stands for Poincaré dual, the cup product U in the first row is in standard
cohomology and the following are in equivariant cohomology, the pushforward 7' in the
first two rows are in standard cohomology and the following are in equivariant cohomol-
ogy; I* is the map induced by the fiber inclusion I: N — (N x ES')/S! for N = M and
N = pt. The third equality is since, by definition of the equivariant pushforward map,

the diagram of morphisms

!

Hiu(M) —— Hi*(pt)

(A.2) z*l

H*(Q) B H*—4+(<pt)

is commutative. The second and fourth equalities are since the restriction of I* to Ho, (N)
is an isomorphism onto HY(N): one-to-one since the intersection ker I* N HY, (N) =
(m*(u)) N H3(N) = {0}; onto by Ginzburg’s theorem 3.5 over Q and by item (C) in
Theorem 1.1 over Z. The last equality is by ABBV (3.8).

A.3. For an S'-invariant w-compatible structure J, the pair (J,w) determines an S'-
invariant Riemannian metric (-, -) := w(-, J-). We call such a metric compatible. The
gradient vector field of the moment map with respect to a compatible metric, character-
ized by (v, grad ®) = d®(v), is

(A.4) grad ® = —J&y,

where &,/ is the vector field that generates the S action. The vector fields &y, and J&y,
generate a C* = (S!)€ action. The closure of a non-trivial C* orbit is a sphere, called
a gradient sphere. On a gradient sphere, S! acts by rotation with two fixed points at
the north and south poles; all other points on the sphere have the same stabilizer. We
say that a gradient sphere is free if its stabilizer is trivial; otherwise it is non-free. In
a compatible metric on S'  (M*,w), every non-free gradient sphere is a Z,-sphere for
some ¢ > 1, i.e., a connected component of the closure of the set of points in M whose

stabilizer is equal to the cyclic subgroup of S! of order ¢, and every Z,-sphere is a gradient
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sphere [14, Lemma 3.5]. Note that there is an isotropy weight ¢ at the south pole of the
Zy sphere, and weight —¢ at the north pole.

Let S be a gradient sphere with respect to a compatible metric in a Hamiltonian

St (M*,w), and p and q its north pole and south pole. Assume that

e if p is an isolated fixed point, then there is a gradient sphere S, such that

) sputh pole of S,  if p is interior,
p is the ;
orth pole of S, if p is maximal

e if ¢ is an isolated fixed point then there is a gradient sphere S_ such that

) rth pole of S_ if ¢ is interior,
q is the .
uth pole of S_ if ¢ is minimal
If p is on the maximal surface X, set Sy = Y.x, and if ¢ is on the minimal surface
Ymin set S_ = Y. Note that if S is a gradient sphere whose image under the moment
map is an edge in the decorated graph associated to the Hamiltonian S'-space in [14],
then the above assumptions hold.

Denote by ¢ the order of the stabilizer of S; set £ =1 if S is a free gradient sphere. If
S, is a gradient sphere denote by ¢, the order of its stabilizer; set ¢, = 1 if S is free.
If Sy is a fixed surface set £, = 0. Similarly denote /_. The normal bundle of S can
be viewed as an equivariant complex line bundle over S? [14, Corollary A.6]; the circle

action is linear on the fibers over the north and south poles with weights
(A.5) (—1)5”=ma"€+ at p; (—1)5‘#““6_ at q.

If p is an isolated fixed point then 7'M, splits as the normal bundle to S and the normal
bundle to Sy with weights (—1)%=m=¢, and —¢. Similarly the weights at q are ¢ and
(—1)%#ming_ if q is an isolated fixed point. If p (¢) is on a fixed surface ¥, (* = max for
p and min for ¢) then the weights are 0, —1 (respectively 1,0), as explained in §4.6.

For a connected component F' of M 5" we have

1 1
LS!(1)|F = Up O LES'%M(lg )= L!FOS<—>F © Lfvm&—w(lg )-

In particular, if S and F do not intersect then ts'(1)|p = 0. If F = {p} then the
restriction tg'(1)|r = L{{p};} ) © L’Ep}f_)s(lgl) is the equivariant Euler class of the complex
one-dimensional normal S'-representation of S at p, hence, by (A.5) and (4.2) (with
n=1), 15'(1)|p = —(=1)%=m=<¢,¢t. Similarly, if F' = {q} then 15'(1)|p = —(—1)%=minf_¢.
If F is a fixed surface and F' intersects S at p (at ¢) then ¢4 = 0 ({~ = 0) and so is

15t (1)|p.
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Therefore, in case p and ¢ are isolated fixed points, (A.1) and (4.7) imply that

( /22 t2 02 t2 ) . . .
T - — it
T e T 0 if p and ¢ are interior
_ if p is max and ¢ is interior
[S]-181=19 0., N -
—— if p is interior and ¢ is min
A0 e L
S if p is max and ¢ is min

The first case in (A.6) is pkoven in [14, Lemma 5.2] by a different proof (not using ABBV).

Moreover,
( ﬁ‘ if p € Y ax and ¢ is isolated interior
\ if p € X ax and ¢ is isolated min
(A7) [S]-[S] = ﬁ* if p is isolated interior and ¢ € Yin

if p is isolated max and ¢ € Xy,

if p € Xnax and ¢ € Xpin

\

We note that, by a similar\argument, if S and S’ are gradient spheres with respect to
a compatible metric, and S # S, then [S] - [S'] is zero if SNS" =0 or SN S’ is a point

on a fixed surface and one if S NS’ is an isolated fixed point.
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