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Abstract
Energy-harvesting devices have enabled Internet of Things
applications that were impossible before. One core challenge
of batteryless sensors that operate intermittently is reliable
timekeeping. State-of-the-art low-power real-time clocks suf-
fer from long start-up times (order of seconds) and have low
timekeeping granularity (tens of milliseconds at best), often
not matching timing requirements of devices that experience
numerous power outages per second. Our key insight is that
time can be inferred by measuring alternative physical phe-
nomena, like the discharge of a simple 𝑅𝐶 circuit, and that
timekeeping energy cost and accuracy can be modulated
depending on the run-time requirements. We achieve these
goals with a multi-tier timekeeping architecture, named Cas-
caded Hierarchical Remanence Timekeeper (CHRT), featur-
ing an array of different 𝑅𝐶 circuits to be used for dynamic
timekeeping requirements. The CHRT and its accompanying
software interface are embedded into a fresh batteryless wire-
less sensing platform, called Botoks, capable of tracking time
across power failures. Low start-up time (max 5ms), high
resolution (up to 1ms) and run-time reconfigurability are
the key features of our timekeeping platform. We developed
two time-sensitive batteryless applications to demonstrate
the approach: a bicycle analytics tool—where the CHRT is
used to track time between revolutions of a bicycle wheel,
and wireless communication—where the CHRT enables ra-
dio synchronization between two intermittently-powered
sensors.
∗Also with Ege University, İzmir, Turkey.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378464

Figure 1. Botoks platform. The front (left) contains radio,
antenna, solar panel and MCU. On the back side (right) is the
Cascaded Hierarchical Remanence Timekeeper. The board
dimensions are 1"×1".
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1 Introduction
The continued miniaturization of energy harvesting tech-
nology and the increase in computing efficiency have un-
locked new application areas where untethered, tiny devices
can operate (sense, learn, infer, communicate) in perpetuity.
These energy-harvesting devices have emerged as a viable
alternative to their battery-powered counterparts, which are
generally expensive, hazardous, bulky, require maintenance,
and are prone to failure [48], significantly shortening life-
time and narrowing application domain. Relying on volatile
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harvested energy, however, makes computation, communica-
tion, and actuation very likely to be intermittent. In this case,
power failures become a frequent occurrence. Recovering
gracefully and efficiently from those interruptions has been
a theme for intermittent computing research [17, 39].
Researchers have addressed the intermittent computing

challenge by designing methods to ensure forward progress
andmaintain data consistency across repeated power failures.
Software-based solutions have tried to mitigate the short-
comings of intermittent operation either by instrumenting
programs with checkpoints [1, 7, 50], or by rewriting appli-
cations using task-based programming models [18, 42, 62].
Hardware and platform approaches have focused on reduc-
ing the cost of checkpointing [21], managing energy more
efficiently to reduce power failures and increase event de-
tection [7, 15, 16], and getting a rough estimation of time
elapsed between power failures [19, 49]. However, despite
the amount of progress achieved in the intermittent com-
puting domain, reliable infrastructure-less deployment of
intermittently-powered sensors remains challenging due to
the lack of one fundamental feature, robust timekeeping. The
ability to keep track of time undergirds a multitude of com-
puting and networking primitives such as synchronization
and networking, data collection, and real-time operation.

Problem Statement. Having access to an accurate, contin-
uous notion of time has always been taken for granted in
embedded system development. Timeouts and timestamps
constitute the backbone of embedded applications, particu-
larly those targeting sensing, communication and actuation.
The intermittent operation of ultra-low-energy batteryless
devices makes it impossible to track time solely relying on
on-chip digital timers, as they are not available during a
power outage. Even dedicated ultra-low-power real-time
clocks are not a good fit for intermittent operation, as they
require very long start-up times1 and a high initial energy
deposit after each power outage.

Importantly, real-time clocks and other embedded systems
timekeeping standards are statically provisioned with en-
ergy, usually conservatively to cover the longest possible
outage likely to be encountered. The problem with this ap-
proach is that the timekeeper’s energy buffer (usually, its
internal capacitor) is always over-provisioned to measure the
longest expected outage, even if short outages are the com-
mon occurrence. This wastes energy maintaining the large
energy buffer. This notion of over-provisioned timekeepers
is summed up in our key research question: "Why would we
provision a timekeeper to last ten hours when we only need to
time an outage of a few seconds?"

As of now it is impossible to dynamically set timekeeping
granularity, energy cost, and start-up time of an embed-
ded timekeeper. Exploiting reconfigurability in software for

1For instance, more than a second for Abracon AB18X5 [45] ultra-low-
power real-time clock.

intermittently-powered runtimes would be aided by a flexi-
ble timekeeper. Having power-failure-resilient and adaptive
timekeeping would enable new applications, including re-
liable intermittently-powered radio communication (since
intermittently-powered embedded nodes require methods
for synchronizing local clocks to align wake-up times), times-
tamped data collection and real-time scheduling.

Contributions. This paper seeks to provide hardware and
software kernel support to enable continuous timekeeping that
is resilient against repeated power failures incurred by bat-
teryless devices operating intermittently and adaptive to the
dynamic constraints of intermittent computing. The hard-
ware layer is inspired by the concept of remanence time-
keepers [19, 49] to keep track of time even when the de-
vice is depleted of energy. Remanence timekeepers work
by discharging a small capacitor over a large resistor dur-
ing execution and off-time, and measuring the voltage once
power returns to estimate the time elapsed between two
reboots. However, as the measured time increases, the res-
olution of the remanence timekeeper decreases (due to the
exponential energy decay of an RC circuit), making it diffi-
cult to design a timekeeper that has millisecond resolution
andmulti-second longevity. Our observation is that cascading
multiple of these cheap RC circuits of different sizes together,
arranged hierarchically, can result in both high resolution
and long timekeeping range, with low energy cost, low cold-
boot time, and small area. The software layer abstracts the
remanence timekeepers and makes them ready to use in any
existing or future runtime for intermittently-powered sensor
nodes. The contributions of this work are as follows:

1. Timekeeping architecture resilient to power failures. We
present a timekeeping architecture, denoted as Cas-
caded Hierarchical Remanence Timekeeper (CHRT),
that enables continuous tracking of time across re-
peated power failures. With the CHRT, multiple cas-
caded remanence timekeepers (each with different ca-
pacitors sizes) enable any software runtime supporting
batteryless (and intermittent) operation to select de-
sired timekeeping resolution and range.

2. Runtime CHRT support. A kernel software module ac-
companies our CHRT architecture to abstract its com-
plexity and to expose a simple and effective API to the
programmer. The hardware abstraction layer provides
accurate millisecond-scale timekeeping information,
andminimizes energy consumption of the CHRT based
on run-time energy harvesting conditions.

3. Batteryless timekeeping sensor.With the aim to allow
developers to experiment with the CHRT and its ker-
nel module, we design and build a hardware platform
named Botoks2, featuring an energy harvester, an CHRT
and an ultra-low-power active radio (see Figure 1) ready

2Phonetic transcription of BTKS: Batteryless Timekeeping Sensor.
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Figure 2. Energy-harvesting batteryless sensors operate in-
termittently, with execution broken up by power failures of
unpredictable duration. These off times are hard to measure
with existing timekeepers such as real-time clocks.

to be used to prototype complete timekeeping battery-
less applications.

The timekeeping architecture embedded in Botoks is first
characterized independently, and then evaluated inside two
case-study applications, emphasizing the importance of times-
tamps and network synchronization.

2 Motivation
Ultra-tiny Internet of Things (IoT) devices without batter-
ies present intriguing possibilities for a more sustainable
computational fabric, with application domains previously
considered unfeasible becoming more attainable (like micro-
satellites [7], deep-tissue micro-implants [41], and massive-
scale agriculture via augmented insects [32]).

Intermittent Operation. Batteryless systems are usually
powered by ambient energy and operate intermittently [17,
39], as shown in Figure 2. The core of the research in re-
cent years was devoted to the design of efficient runtimes
ensuring correctness of computation and memory consis-
tency despite power failures [6, 21, 42–44, 50, 62]. For embed-
ded devices engaging with real-time constraints and sensor
data, efficient computation is only one of multiple neces-
sary capabilities. Today, building and deploying untethered,
batteryless IoT devices is challenging because timekeeping re-
silient to power failures is imprecise, inaccurate, and statically
provisioned. In the absence of an external synchronization
signal (e.g., coming from a controlled light source, or from
an RF signal generator), accurate timekeeping support for
intermittently-powered devices proves crucial.

Timekeeping through Power Failures. Low-power time-
keeping solutions of today present challenges for intermit-
tent operation: either they are not designed for fast restarting
and short execution bursts—like real-time clocks—or they
rely on signals coming from external infrastructure or the
ambient, like light- or RF-based synchronization architec-
tures [20, 60]. Real-time clocks (RTCs) rarely time sub-second
intervals, and critically have excessively long cold-boot times
(tens of seconds for some low power models if power fails,
as in Table 1). This excessive boot time is tolerable for the
battery-powered devices RTCs were made for, where power

Start-up time Current
RTC Model Resol. Nominal Worst draw

NXP PCF85263A [53] 10ms 200ms 2 s 320 nA
Abracon AB18X5 [45] 10ms 900ms 21.5 s 55 nA

ST M41T62 [57] 10ms <1000ms 1 s 350 nA
Maxim DS139X [31] 10ms <1000ms N/A 500 nA

Table 1. Comparison of selected ultra-low-power RTCs.
Note that all commercial off-the-shelf RTCs have large start-
up times and do not support one millisecond resolution.

failures were rare and failure time generally short, while
operation time after failure was orders of magnitude longer.
RTC developers traded off cold-boot time for lower power
operation and smaller footprint. This trade-off, however, is
a killer for intermittently-powered devices, where power-
down failures are usually longer than operational time. These
devices lose power even tens of times per second [50, 59],
meaning that an RTC on a intermittently-powered device
could still be in a cold-boot state when the energy runs
out, wasting energy and losing timekeeping accuracy. In
addition to cold-boot problems, on-reboot SPI/I2C config-
uration of these devices wastes valuable energy and time.
Network-level sources of time, or sensed signals like visible
light communication, power line noise [36], or RF carrier
are not always viable, as these sources are not guaranteed to
be present in a particular deployment and are susceptible to
noise or interference.

2.1 Remanence Timekeepers
Remanence timekeeper, introduced in Mayfly [18], was the
most promising attempt at intermittency-safe, infrastructure-
free local timekeeping. A remanence timekeeper is essen-
tially a capacitor discharging through a resistor (RC circuit),
whose voltage level is sampled on reboot to get an estimate
of the time that has elapsed while the device was powered off.
As the voltage decay can be easily modeled and can happen
while the MCU is off, the timekeeping accuracy was good
enough to enable real-time sensing.

Trade-Offs. To use a remanence timekeeper the developer
is presented with a complex trade-off space between appli-
cation timing requirements, resolution, and available energy.
Tuning the size of capacitor and resistor of a remanence
timekeeper is the primary means of controlling the trade-off
between timekeeping resolution, range and energy consump-
tion. For instance, larger capacitors take longer to discharge
over a resistor of the same size, which means that longer
outages can be timed (Figure 3a). However, charging a larger
capacitor costs more energy at each reboot and more time
to charge (Figure 3b), and reduces the resolution of mea-
surements because the discharging profile is less steep as
compared to smaller capacitors (i.e., the change in voltage
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Figure 3. Partial design space for Remanence Timekeepers.

is indistinguishable for a 12-bit analog-to-digital-converter).
It becomes arduous to find a configuration that can satisfy
different needs of an application, balancing and anticipating
all these trade-offs at design time.

Timekeeping Rigidity. Beyond the physical constraints,
application behaviors with time-varying timekeeping re-
quirements mean that a single remanence timekeeper tuned
to a specific outage length is not useful for outages of a differ-
ent length. For example, synchronizing radio transmissions
needs millisecond-level timekeeping, while a humidity sam-
pling task only needs minutes or hours. A single remanence
timekeeper sized to time outages measured in milliseconds
with high precision cannot give any idea of the passing of
time at the minute level. Time accuracy, resolution, and pre-
cision needs are application-dependent and dynamic. Static
remanence timekeepers are too rigid to be useful.

Cost, Size, Complexity. Despite the large trade-off space,
remanence timekeepers offer attractive benefits due to the
simplicity of the circuit, allowing for ultra small size and
cost. While most RTCs can be upwards of one US dollar even
at scale, the discrete components of a remanence timekeeper
can be purchased for less than a penny, and even less when
built into a modern CMOS process.

3 System Overview
In light of the shortcomings of single remanence timekeep-
ers and RTCs, this paper argues for a different approach
where multiple remanence timekeepers of increasing capac-
itance are chained together. Depleted tiers automatically
activate the next smallest tier. For short time intervals the
smaller tiers provide higher resolution and consume less
energy, while the larger energy-expensive tiers time longer
intervals. From this key idea, we explore the complex de-
sign space of multi-tier remanence timekeeping with the
CHRT, an intermittency-safe timekeeping architecture, and
build Botoks, an energy-harvesting device with an on-board
CHRT. The benefits of using CHRT are summarized below.

Consistent Time Resolution. Compared to single-tier de-
signs, the multi-tier timekeeper does not suffer from loss of

Platform Intermitt.-
safe

Infrastr.-
independent

Time-aware

Hamilton [33] ✗ ✓ ✗
WISP [55] ✓ ✗ ✗
BLISP [22] ✓ ✗ ✗

Capybara [7] ✓ ✓ ✗
Flicker [16] ✓ ✓ ✗

Botoks ✓ ✓ ✓

Table 2. Comparison of selected low-power sensing plat-
forms of the past two decades. Botoks, and its timekeeper
(CHRT), are resilient to intermittent operation, and do not
depend on external infrastructure.

resolution as the discharge curve flattens, meaning that high
resolution can still be leveraged after long outages.

Reduced Boot Time/Energy. Boot time for the CHRT is
bounded only by the size of the capacitor, unlike for RTCs,
where the capacitor must be filled, then the RTC must stabi-
lize, then the RTC registers must be configured. With nearly-
instant boot-up and energy only dedicated to timekeeping,
the CHRT enables time tracking through short outages.

Lower Energy Consumption. RTCs and single remanence
timekeepers are provisionedwith a specific amount of energy
at design time, tuned to the best guess of themaximumpower
failure time. A CHRT can be provisioned at run-time so that
the smallest tier that can time the likely length of the next
outage is used. In this way the device avoids wasting energy
on charging up unnecessarily large capacitors for timing
short outages.

Overall Goals. Looking at Table 2, compared to existing
low-power platforms, Botoks features intermittency-safe,
infrastructure-independent timekeeping, effectively enabling
time-critical intermittent applications. Botoks embeds an
ultra-low-power radio as well, ready to be used in combi-
nation with the CHRT for infrastructure-less intermittent
networking applications.

The primary goal of this work is infrastructure-free, high-
resolution and high-accuracy timekeeping for intermittently-
powered devices. To ensure applicability to a broad range of
applications, we develop a software layer around the hard-
ware architecture and platform. This allows developers to
use the timekeeping functionality without having to delve
into the underlying physics of capacitor discharge. This hard-
ware abstraction software layer allows for integration into
any intermittency-management runtime like InK [62] or
Chinchilla [43]. In Section 4 and Section 5 we delve into
the design aspects of the timekeeping hardware and its ac-
companying software support, respectively. Both hardware
and software layers are integrated into Botoks, as portrayed
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int	data[10];
sample_sensor(data);
set_expire(data,	50);

if	(!expired(data))	{
	

				send(data,	10);
	

}

After some
reboots

CHRTEnergy harvester Radio

Communication
stack

Timekeeping subsystemIntermittency
management CHRT SW

interface
MCU
timer

Figure 4. Botoks high-level architecture. The runtime ker-
nel keeps track of time using the CHRT. Applications are
instrumented with CHRT functions to infer on the elapsed
time despite power outages.

in Figure 4 and described in Section 6, which will be used to
evaluate our design (refer to Section 7).

In summary, our goals are: (1) enable accurate and consis-
tent timekeeping, (2) allow runtime provisioning of CHRT
tiers to enable energy savings, and (3) provide software con-
structs for easy usage of the timekeeper in any runtime
system.

4 CHRT: Hierarchical Timekeeping
The limitations of ultra-low-power timekeepers for battery-
less and intermittently-powered systems listed in Section 2
motivate our new timekeeping architecture. The main idea is
to combine multiple capacitive timekeepers of different sizes
into a Cascaded Hierarchical Remanence Timekeeper (CHRT).
The various tiers of the CHRT can be used to minimize cold-
boot time and energy consumption, and maximize resolution
and timekeeping range at run-time. The tiers are linked to-
gether, from smallest to largest, so that a depleted tier can
automatically activate the next tier, therefore increasing the
total timing range, whilst maintaining the best possible res-
olution. For short time intervals, the smaller tiers provide
higher resolution and consume less energy. The larger tiers
are used to time longer intervals, but have lower resolution
and need more charging energy. To be able to use the CHRT,
the cascaded tiers have to be pre-charged at each reboot. Our
hardware abstraction layer, described in Section 5, can be
configured to minimize energy consumption depending on
the needs of an application and the expectations of energy
availability of the environment, by specifying how many
tiers should be pre-charged at each reboot.

4.1 CHRT Circuit
A schematic of the CHRT circuit is shown in Figure 5 (only
the first two tiers and the last tier are shown). The stable
charging voltage VCH is provided by a ultra low power regu-
lator, not shown in the figure. The switches allow the MCU

to recharge the capacitors and then to let them discharge
through the resistor. The comparator is used to trigger the
various stages of the cascade, i.e., a CHRT tier is activated
when the voltage across the preceding tier drops below the
reference of the comparator (VR). The control signal CEN can
be used to bypass the cascaded behavior and use any of the
tiers as an independent timekeeper. Using the tiers indepen-
dently, programmers can map tiers to particular functions
based on the timing granularity required.

4.2 CHRT Range Heuristics
To determine the number of CHRT tiers and their size, time-
keeping requirements need to be extracted. These range
heuristics can be partially inferred from the application it-
self. If data is of no use 10 seconds after it was gathered,
then there is little reason to have a timekeeper that can cap-
ture periods longer than 10 seconds. Application code for
embedded systems is usually full of timing requirements
baked into the program. Often these are explicit: many task-
based programming models have data timing requirements
stored on the edges of the task graph [18]. We also imagine
that empirical programming methods could use annotations
or assertions to define the timekeeping requirements. Be-
yond application information, such requirements could be
extracted from predictions about the environment. For par-
ticularly energy-sparse environments, larger tiers may be
required to sustain through interruptions.
Once the time requirements have been extracted (for ex-

ample, expiration time of data, synchronization granularity
of communication), one can decide on the number of tiers
and their size by examining the total range required, and the
granularity. Since each tier can only cover a portion of the
final timing range, we can use simple RC calculations to find
these ranges.

Tier’s Range. Assume a resolution of 𝛿𝑡 is required, using
an 𝑁 -bit ADC, a resistor 𝑅 and a capacitor 𝐶 , and during
calibration and usage the capacitor is charged at 𝑉0 (which
is also the maximum value the ADC can measure). We want
to find the maximum time interval Δ𝑡max such that, for all
Δ𝑡𝑥 < Δ𝑡max and Δ𝑡𝑦 = Δ𝑡𝑥 + 𝛿𝑡 ≤ Δ𝑡max, the difference
between the ADC values corresponding to Δ𝑡𝑥 and Δ𝑡𝑦 is at
least 𝐾 integers. Larger values of 𝐾 yield better robustness
against noise, but reduce the timekeeping range of a capaci-
tor. Assume that 𝑉𝑥 is the voltage associated to Δ𝑡𝑥 , and 𝑉𝑦
is associated to Δ𝑡𝑦 (Δ𝑡𝑥 < Δ𝑡𝑦 ⇒ 𝑉𝑥 > 𝑉𝑦). Then, we want

𝑉𝑥 −𝑉𝑦 ≥ 𝐾
𝑉0

2𝑁
, (1)

and, by applying the RC circuit discharge model, that is,
𝑡 = −𝑅𝐶 ln(𝑉 /𝑉0), to (1), we obtain

Δ𝑡𝑦 ≤ 𝑅𝐶 ln
(
2𝑁

𝐾

(
exp

(
𝛿𝑡

𝑅𝐶

)
− 1

))
≜ Δ𝑡max. (2)
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Figure 5. Cascaded Hierarchical Remanence Timekeeper. The left-most stage is activated first, while the subsequent stages
are activated in a cascaded manner. VCH: regulated output that charges the timekeepers; CS𝑖 : charge signal of tier 𝑖; A𝑖 : voltage
sampling point of tier 𝑖; DS𝑖 : discharge signal of tier 𝑖; CEN: cascaded mode enable signal; VR: comparator reference voltage.

Equation (2) can be used to obtain the maximum timing
range of an arbitrary tier. A negative value means that the
specific 𝑅𝐶 circuit cannot be used with a resolution 𝛿𝑡 .

Number of Tiers. Applications have a variety of accuracy
and range requirements. In a critical software section a data
sample might expire within a few milliseconds, non-critical
data samples within 100ms and the output might be times-
tamped with the accuracy of one second. This requires a
range of different tiers to maintain the accuracy restrictions.
Given a set of timekeeping requirements, expressed in terms
of resolution and maximum time-able interval, (2) can be
used multiple times to compute the number of CHRT tiers
required and their size. We have implemented this heuristic
in a script [10] that suggests a CHRT configuration based
on the timing requirements extracted from program code or
given by the developer3. However, we note that for many
applications the default configuration used in Botoks is likely
to be suitable (see Section 6). This configuration allows for
timing outages up to 100 s with a resolution up to 1ms.

5 CHRT Software Layer
The CHRT architecture presented in Section 4 is comple-
mented by a software layer, whose aim is twofold: (1) make
the best usage of the available tiers to maximize energy
efficiency and timekeeping resolution and range, and (2) ab-
stract the complexity of the CHRT to provide a user-friendly
API. More specifically, the software layer exposes (1) a raw
interface, which can be used to directly request the CHRT
hardware to charge the tiers and retrieve elapsed time on
reboot, and (2) a high-level interface, which uses the CHRT
in combination with a digital timer to provide higher-level
functionalities, like timestamp generation and data expira-
tion. Additionally, the software is responsible for a one-time
factory circuit calibration that must be performed before
using the CHRT, as in the case of RTCs.

3Details on this heuristic are also presented in [9, Section 4.2.1].

5.1 CHRT Hardware Abstraction Layer
The raw CHRT interface is a hardware abstraction layer
(HAL) of the underlying timekeeping hardware functional-
ity, to be used for low-level control of the CHRT. It is mostly
intended as a building block for more advanced timekeep-
ing duties to be exposed by the runtime or kernel that has
knowledge of the user tasks and operations, but can be used
at the application level as well by the user. Upon reboot, the
runtime calls a function to retrieve the time elapsed since
the previous reboot, and then another function to recharge
the tiers. A non-goal of the HAL is to make the CHRT fully
invisible to its user (for instance, the recharging procedure
has to be explicitly called). The intermittency-management
kernel (like InK [62] or Chinchilla [43]) can use the raw API
to define its custom timekeeping functions, or just pass the
high-level CHRT interface up to the application layer.

Elapsed Time Retrieval. Upon reboot, chrt_get_time()
must be called to get the elapsed time of the power failure
that was just recovered from. This function returns a 16-bit
unsigned integer representing the elapsed time, and a scaling
factor. The scaling factor times the elapsed time gives a time
value in milliseconds.

Dynamic Tier Recharge. After retrieving elapsed time,
chrt_charge()must be invoked to recharge the CHRT tiers.
This function provides a means to specify how many tiers
are charged on each reboot, to reduce energy consumption
and cold-boot time while still preserving the required time-
keeping resolution and range. This function is useful for
setting the dynamism of tier recharge to adapt the timekeep-
ing energy expended based on application or environmental
properties. Programmers and intermittent kernel designers
can choose to be either conservative or adaptive with tier
recharging.
Adaptive timekeeper provisioning is useful when energy

environments and application behavior are somewhat pre-
dictable or continuous (for example, solar environments).
The basic idea of adaptive tier recharge is to choose only the
smallest tier that can still satisfy the timing requirements.
Specifically, assume that the CHRT is composed of 𝑁 tiers
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𝑇0,𝑇1, . . . ,𝑇𝑁−1, chosen as suggested in Section 4.2, and that
𝑅𝑖 =

[
𝑡min
𝑖 , 𝑡max

𝑖

)
is the optimal timekeeping range of tier 𝑇𝑖 ,

again, determined as given in Section 4.2. We call target tier
𝑇𝑥 the tier whose optimal timekeeping range 𝑅𝑥 contains the
elapsed time retrieved on reboot. Suppose that the CHRT is
configured to only charge one tier, the target tier, on reboot.
Then, if tier𝑇𝑥 is charged on reboot 𝑗 , and the time 𝑡 retrieved
on reboot 𝑗 + 1 is not in 𝑅𝑥 , the target tier to be charged on
reboot 𝑗 + 1 would be 𝑇𝑥+1 (if it exists) in case 𝑡 ≥ 𝑡max

𝑥 , or
𝑇𝑥−1 (if it exists) in case 𝑡 < 𝑡min

𝑥 . The adaptive method saves
energy since overcharging the timekeeper when the kernel
is only timing a short outage is wasteful.
When the reboot frequency is variable the kernel may

choose to be conservative in timekeeper provisioning (tier
recharging), as retrieved times are more likely to be outside
the timekeeping range of the current target tier. For better
robustness against variable reboot frequency, the user can
request the CHRT to charge more than just the current target
tier. Specifically, the two function parameters 𝐾L and 𝐾R are
used to tell the CHRT software layer to charge all tiers in[
𝑇𝑥−𝐾L ,𝑇𝑥+𝐾R

]
, given that 𝑇𝑥 is the current target tier. For

instance, if 𝐾L = 𝐾R = 1, tiers 𝑇𝑥−1, 𝑇𝑥 and 𝑇𝑥+1 would be
recharged on reboot, and the discharge would start from
tier 𝑇𝑥−1, and continue with the larger tiers in a cascaded
fashion. The parameters 𝐾L and 𝐾R control the trade-off
between timekeeping robustness and energy consumption,
as charging more tiers requires more energy. In particular,
𝐾R has a higher impact on energy consumption, due to larger
tiers needing more charging energy.

5.2 CHRT High-Level API
The CHRT HAL described previously exposes the most basic
functions to control the CHRT. The high-level CHRT inter-
face enhances raw functionalities to provide higher-level
timekeeping tools to be used in real-world batteryless ap-
plications for intermittent devices. Fundamentally, this is
implemented combining CHRT functionalities with an on-
board MCU digital timer to maintain an always-available
system time. The system time is incremented at each reboot
using the raw chrt_get_time() function. When queried
during on-time, the system time is combined with timing
information retrieved from the digital timer running in the
background. The system time is used to generate timestamps
and to set expiration timers for data and functions. Figure 6
demonstrates the usage of this high-level API.

Timestamp Generation. get_timestamp(): a high-level
API function, uses the aforementioned system time to gener-
ate a timestamp when the application requires it. In particu-
lar, the returned timestamp is a 32-bit unsigned integer repre-
senting system time inmilliseconds.When get_timestamp()
is invoked, the value of the MCU timer is added to the CHRT-
powered system time to return a fine-grained timing value
that can be used to annotate data.

Expiration Timers. The high-level API exposes two more
functions to keep track of aging data, and discard it when
it is deemed expired. The function set_expiration() can
be used to set an expiration time for some data, or for a
complete function/task. The user passes a tag (of type void
pointer), representing the object (data or function pointer)
to be assigned an expiration time, and an exp_time (of type
uint32_t), to set an expiration time in milliseconds. Then,
the API function has_expired() can be called, passing a
tag, to check at any point if some object has expired.

Timekeeping Subsystem. The high-level API can be inte-
grated by a kernel runtime to implement a full timekeep-
ing subsystem for the application layer to use. The runtime
must only implement a timekeeper_init() function to call
during initialization, where the system time is updated (us-
ing chrt_get_time()) and the CHRT is recharged (with
chrt_charge()).

5.3 CHRT Software Calibration
Ideally, the 𝑅𝐶 circuit discharge model, 𝑡 = −𝑅𝐶 ln (𝑉 /𝑉0),
could be used to estimate the elapsed time 𝑡 . In actuality,
capacitance 𝐶 and resistance 𝑅 never match their nominal
values, and other parasitic capacitors and resistors are spread
through the circuit. To resolve this issue, a software calibra-
tion routine, to be performed before CHRT deployment, was
implemented, to obtain better precision and accuracy of the
timekeeper. During calibration, all the tiers of the CHRT are
repeatedly charged and discharged, and their discharging
profile is sampled over time to obtain a realistic physical
model for each tier. This way, an interpolated version of the
𝑅𝐶 circuit discharge model is built and stored in the form of
a lookup table. At run-time, the voltage across the target tier
is used to look up the table and retrieve the corresponding
elapsed time.

6 System Implementation
This section lists and briefly discusses the parameters we
used for the implementation of CHRT hardware and soft-
ware, and describes in more detail the components of the
integrated Botoks demonstration platform. All hardware,
software, and tools, as well as documentation for CHRT and
Botoks, are open-sourced [10].

6.1 CHRT Platform
The four-tier CHRT was implemented (1) as a system pe-
ripheral integrated into Botoks, built with off-the-shelf SMD
components (see Figure 1), (2) as a stand-alone development
board, featuring the same components as on Botoks, and
(3) as an integrated version.

CHRT Tier Settings. Following the practical guidelines
given in Section 4.2, we implemented an instance of CHRT
targeting a variety of general timekeeping requirements
found in sensing and real-time devices. To begin with, the
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void	compute()	{

		if	(!has_expired(data))	{

				process_data(data);

				next_task(send);

		}	else	{

				next_task(sense);

		}

}

void	send()	{

		if	(!has_expired(data))	{

				send(data,	timestamp);

				next_task(log);

		}	else	{

				next_task(sense);

		}

}

#define	EXP_MS	200

void	sense()	{

		sample_data(data);

		set_expiration(data,	EXP_MS);

		timestamp	=	get_timestamp();

		next_task(compute);

}

data has expired

Figure 6. Example usage of the high-level CHRT API. The program is a typical sensing routine, and the API is used to specify
that the elapsed time between sensing and transmission of some data must not exceed 200ms of absolute time (on and off), as
well as to get a timestamp to be sent together with the data.

value of the discharge resistor was fixed at 22MΩ for all
the tiers, as such resistors are cheap (less than a tenth of a
USD cent per unit) and guarantee a good balance between
long discharge time of the RC circuit and electrical noise.
Larger resistors would allow for even wider timekeeping
ranges, but the incurred noise would become detrimental
to the accuracy and the precision of the CHRT. As for the
capacitors, we mixed different sizes to obtain a variety of
resolutions and timekeeping ranges, to cover the needs of
various applications. Precisely, we chose to cascade four tiers
of increasing size: 2 nF, 22 nF, 220 nF and 2200 nF. The best
resolution achievable with such configuration is 1ms, when
using the smallest tier, which is guaranteed for capturing
time intervals up to 100ms. The longest time-able interval is
100 s, measurable using the largest tier, for which a resolution
of 1 s is guaranteed.

CHRT with SMD Components.We built the CHRT with
off-the-shelf components on a custom PCB as a proof of con-
cept. Other than the four RC circuits, the CHRT includes
other important components. Each capacitor is readable via
a trace to an ADC channel on the MCU. Ultra-low-power
D-type Flip Flops (SN74AUP2G79 [25]) protect the input sig-
nals after the MCU dies. TS3A4751 [27] switches are used
to gate power to the capacitors. For the cascaded effect,
TLV3691 [26] comparators are set to enable the discharge
of a tier when the voltage on the previous tier drops below
0.25 V. The stand-alone CHRT includes jumpers to enable or
disable individual tiers.

CHRT Integrated Design. The proof-of-concept PCB is
not what we envision will be eventually deployed in the
battery-free IoT, an integrated circuit design scales better and
is more cost effective in volume. We have also implemented
the CHRT in a TSMC 0.18 µmmixed-signal process [58], and
simulated the circuit with Cadence Virtuoso [2] in order to
extract power consumption estimates of the integrated ver-
sion of our architecture. The integrated design is significantly

lower power and ultra tiny, enabling integration alongside
batteryless enabled microcontrollers for low cost instead
of expensive crystal centered RTCs. We report the power
consumption numbers in Section 7.3.

6.2 Botoks Platform
Our batteryless sensor, Botoks, is meant to be used as a com-
plete development board to evaluate and experiment with
the CHRT, therefore it also includes an ultra-low-power
MCU, an energy harvester and an ultra-low-power radio.
Specifically, the device is centered on a Texas Instruments
ultra-low-power FRAM-enabled MSP430FR5994 microcon-
troller [28], with 256 kByte FRAM and 8 kByte SRAM. By
default, energy is harvested via the small solar cell on the
back of the PCB, and is routed into the 100 µF main storage
capacitor. A MIC841 [23] comparator with hysteresis lets the
MCU turn on only when sufficient charge is available. The
ultra-low-power active radio transceiver is built around the
Microsemi ZL70550 [8] chip (as of time of writing, the lowest
power 868MHz radio transceiver available) and a monopole
antenna. The complete fabricated device is shown in Figure 1.
We expect this platform to enable other researchers and prac-
titioners interested in battery-free devices.

6.3 Software
The code of the CHRT software layer described in Section 5
is split into two sub-components, a platform-independent
layer and a port layer, to give the option to port our software
module to other embedded MCU architectures. Our port
is written for the target MCU, that is MSP430FR5994. In
addition to the CHRT abstraction layer, we also implemented
the necessary drivers to use the ZL70550 [8] radio transceiver.
All the code is written in C and can be compiled with the
MSP430 GCC compiler [24].
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7 Evaluation
To quantify the performance of our system,we first character-
ize the behavior of the CHRT in terms of accuracy, precision
and power consumption. Then, we evaluate it in the context
of two case study applications implemented for Botoks, to
demonstrate the usefulness of a time-aware intermittently-
powered device. In summary we found that the CHRT is
accurate and precise at high resolutions (1ms) and for long
ranges (hundreds of seconds), has two orders of magnitude
lower startup time than a RTC, and has an ultra low power
consumption, especially in the integrated design.

7.1 Experimental Setup
Botoks and its on-board CHRT were used throughout all the
experiments. To evaluate timing performance the platform
was connected to a continuously-powered microcontroller (a
TI MSP430FR5994) that was used as a simulated intermittent
power source, in order to control power-on and power-off
times. For the case studies, solar, radio frequency and mag-
netic energy sources were used, as detailed in Section 7.4
and Section 7.5. To sample digital and analog traces, a Saleae
Logic Pro 16 logic analyzer [52] was used. Finally, for power
consumption measurements the X-NUCLEO-LPM01A ex-
pansion board [56] was used.

7.2 Evaluation Methodology
Our timekeeping architecture is benchmarked both on a fine-
grained scale and on an application scale. The fine-grained
benchmarks targets performance metrics such as timekeep-
ing accuracy and precision, energy consumption and ini-
tialization time. The case-study benchmarks (applications)
showcase the performance of the CHRT when used in real-
world scenarios.

We build a bike speedometer using CHRT by capturing
elapsed time between consecutive events (revolutions of the
wheel). For this type of applications, timekeeping ability and
accuracy is necessary to provide reliable readings of the bike
speed. However, the constraints on accuracy are not as tight
as other real time systems.

The second application is a message passing protocol that
aligns radio communication of two intermittently-powered
devices. In this case, robust timekeeping is a stricter require-
ment, since active radio transmission and reception consume
a lot of energy, thus it is crucial for networked nodes to know
exactly when to turn on their radio to minimize packet loss
and energy waste.

7.3 CHRT Microbenchmark
In order to characterize the isolated performance of the
CHRT, a Botoks node was powered by a controlled source
that was physically cutting power to the node under test at
predefined frequencies. All four tiers of the on-board CHRT
were tested extensively across various time ranges and at
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Figure 7. CHRT average measured time (top) and error dis-
tribution (bottom) for time measurements in the intervals
1ms to 100ms (tier 0, resolution of 1ms) and 1 s to 100 s (tier
3, resolution of 1 s).

various resolutions. The smallest tier (2.2 nF) was tested in
the range 1ms to 100ms, with steps equal to its resolution
of 1ms. Similarly, the other three tiers (22 nF, 220 nF and
2200 nF) where tested in the ranges 10ms to 1000ms, 100ms
to 10 000ms and 1 s to 100 s, respectively, with steps equal
to each tier’s resolution (10ms, 100ms and 1 s, respectively).

CHRTAccuracy. Figure 7 presents the accuracy of the small-
est tier and the largest tier of Botoks’s on-board CHRT. Fig-
ures 7a and 7b show the average reported time of the two
tiers, for their optimal timing ranges, where every data point
is the average of 10 measurements. The accuracy of a single-
tier remanence timekeeper (of 220 nF) is also presented, to
show the need for flexible multi-tier remanence timekeepers.
If the designer selects only a single tier a compromise be-
tween resolution and timekeeping range is required. Single
tiers have poor results for time ranges longer than what the
RC circuit can sustain (the single-tier saturates to around
20 s when trying to capture time intervals larger than that),
therefore motivating our multi-tier CHRT.

Error Distribution. The same raw measurements were
used to generate Figures 7c and 7d, in which the error distri-
bution of the two tiers is shown. As reported in the plot, the
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Charge energy (µJ) Start-up
Timekeeper Theoretical Measured time (ms)

CHRT Tier 0 0.00529 0.010† 0.3114
CHRT Tier 1 0.05819 0.110† 0.5053
CHRT Tier 2 0.58190 1.295† 0.913
CHRT Tier 3 5.81900 5.434 3.125

CHRT Total 6.46438 6.636 4.893
Table 3. CHRT dynamic energy consumption, i.e. energy to
charge each tier, and charging times. The CHRT has much
lower lower start-up time than any state-of-the-art RTC.

two tiers have a maximum absolute error equal to their re-
spective resolution, which is the case for the other two tiers
as well. The error distribution is well centered on zero, and
it is very narrow, demonstrating that the CHRT is accurate
and precise at high resolutions (1ms) and for long ranges
(hundreds of seconds). The error distribution of a single-tier
remanence timekeeper operating outside its optimal time-
keeping range has a much higher standard deviation, which
is the reason why it was not plotted at all.

Energy Consumption. The static current consumption of
the four-tier CHRT amounts to 0.958 µA for the SMD ver-
sion (the one embedded in Botoks), and to 37.335 nA for the
integrated version4, when powering the circuit at 2.2 V. We
also measured the energy required to charge the tiers at
each reboot, as reported in Table 3. In Figure 8 the energy
required to measure time is reported over the whole time
measurement range. Not only CHRT measures with much
higher accuracy than state-of-the-art RTCs, but also the re-
quired energy to measure time is comparable or lower, even
diregarding configuration time of RTCs.

Initialization Time. Initializing the CHRT boils down to
recharging the depleted tiers. The start-up time for each of
the tiers embedded in Botoks is reported in Table 3. Even
when all the four tiers have to be recharged, the initialization
time of the CHRT (≈ 5ms) is orders of magnitude smaller
than for any available RTC (refer to Table 1).

Chip Area. The estimated footprint of the integrated four-
tier CHRT is less than 1mm2 (excluding packaging), proving
its suitability for ultra-small embedded systems.

7.4 Application 1: Bicycle Analytics
For the bike speedometer application, Botoks’s energy har-
vester was replaced with an off-the-shelf magnetic energy

4Integrated design: NAND gate,𝐺 , consumes 15 pA, comparator,𝑀 , 7.43 nA,
and the oscillator driving the comparator, 𝑆 , 15 nA; all values were measured
at 1 kHz oscillator frequency. Therefore, for 𝑁 -tier CHRT the total static
current draw is (𝑁 − 1) × (𝐺 +𝑀) +𝑆 . Current draw of switches was below
15 nA and therefore removed from the calculation.
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Figure 8. Comparison between CHRT and two RTCs
from Table 1 of the total energy required to time a period.
The CHRT allows for millisecond timing whilst requiring
less or similar energy compared to the lowest power RTC.
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Figure 9. Calculated speed of the bicycle, in km/h, over
a period of 60 s. The result obtained with Botoks and its
embedded CHRT is compared to the ground truth. As shown,
the two smallest tiers of the CHRT are dynamically used
through the experiment.

harvester, extracted from a bike light [51], to collect electro-
magnetic energy induced by two magnets placed on the rear
wheel of a bike. The CHRT is used to time each revolution of
the wheel, as Botoks wakes up every time one of the magnets
comes close to the harvester. The stored energy is used to
charge and sample the CHRT, send a packet containing the
calculated speed using Botoks’s ULP radio, and power the
LEDs on the bike light PCB for the remaining time.

Outcome. The run-time calculated speed, sent by Botoks
over the radio and collected by a continuously-powered base
station, was compared to the ground truth, measured with a
logic analyzer connected to Botoks’s power pin. As shown in
Figure 9, the speed estimated using the CHRT follows very
closely the expected result. The figure also shows which
of the CHRT tiers is used for different time ranges. Higher
speeds, measured with the smallest tier, have better resolu-
tion, resulting in a smoother curve in the graph. While the
figure only shows a single run lasting 60 s, the same experi-
ment was run five times in total, with a total average RMS
error of 0.5 km/h.
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TX RX TX RX
Lux RPS Lux RPS 𝑑 RPS 𝑑 RPS

S1 11k 6.6 33k 12.5 RF1 0.6m 12.5 0.6m 17.3
S2 26k 9.5 26k 9.6 RF2 0.8m 12.9 0.8m 16.4
S3 26k 10.4 11k 5.9 RF3 1m 11.6 1m 12.6

Table 4. Description of scenarios described in Figure 10. S1,
S2, and S3, refer to using solar as energy source and RF1,
RF2, and RF3 refer to radio-frequency energy harvesting. For
solar energy harvesting the amount of Lux is measured at
the solar panel; for radio-frequency energy harvesting the
distance to the transmitter is listed. RPS: reboots per second.

7.5 Application 2: Intermittent Communication
The second embedded application uses the CHRT to align
transmission and reception schedules of two intermittently-
powered wireless Botoks nodes communicating via active
radios. We have established a point-to-point link with two
nodes powered by solar energy, in one experiment, and radio-
frequency energy, in another experiment. The solar energy
was generated by two independent light bulbs placed in two
closed boxes and collected by Botoks’s solar panel. The radio-
frequency energy was provided by a Powercast transmit-
ter [4] and harvested by a Powercast receiver [3] connected
to Botoks’s power supply (in place of the solar cell).
In the application, the transmitting node would wake up

to send one packet of data, using its buffered energy, even-
tually incurring a power failure, proceeding then to harvest
energy and finally recharge and wake up again. Similarly,
the receiving node would wake up and start listening until
receiving a packet, or until a power outage. Each of the 20-
Byte packets contained preamble, average on time measured
with the CHRT, a dummy payload and 16-b CRC, and was
sent at a data rate of 200 kb/s.
The baseline for the experiment is a scheme in which

the receiver wakes up and turns on its radio as soon as
possible, trying to catch a packet sent by the transmitter. This
baseline is compared to the case in which a simple CHRT-
powered synchronization protocol allows the receiver to
align its listening activity to the transmitter5. Specifically,
the receiver uses the average transmission period contained
in each packet to alter its listening schedule and align to the
transmitter.
Packet reception rates were measured for the synchro-

nized CHRT-powered protocol and for the non-synchronized
baseline, for different energy harvesting conditions, as sum-
marized in Table 4. Each experiment was run for 10min.

Outcome. We note that this is the first successful case of
two intermittently powered devices with active radios pass-
ing messages consistently. Figure 10 shows the percentage
of received packets (the complementary of lost packets). As
5Details on this network synchronization protocol are also presented in [11].
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Figure 10. Percentage of received packets for a point-to-
point link between two Botoks devices, measured in six
different energy harvesting conditions described in Table 4.
The percentage of packets received using the CHRT-powered
synchronization algorithm is compared to the baseline case—
with no synchronization. Note that for S3 and RF3 the max-
imum packet reception available is 50 %, as the receiving
node does not have enough energy to wake up as fast as the
transmitting node.

it stands out, our CHRT-based synchronization algorithm
yields an improvement over the non-synchronized message
passing scheme, resulting in a best-case increase in received
packets of 3.77 times for RF and 23.75 times for solar. Inspect-
ing the difference between energy sources, solar performed
better than RF due to a more consistent wake-up period. The
Powercast transmitter transmits a ID every 10ms causing an
inconsistent wake-up period.

8 Related Work
Numerous papers in intermittent computing have promised
to revolutionize the use of small sensing devices for diversity
of application. We place CHRT (and Botoks) in the context
of the state of the art.

Batteryless Systems and Sensing. Batteries [48] are an
obstacle for long-term embedded sensing. In response to this
challenge many battery-less sensing platforms have been
proposed in the last decade, which we summarized in Table 2.
Botoks does not require central coordination and energy
provision point, contrary to e.g. backscatter-based nodes [55]
or visible light nodes [20].

Batteryless Timekeeping. The foundational work is [19]
where two timekeeping techniques, TARDIS and CusTARD,
were proposed to keep track of time across power failures in
batteryless platforms. Both approaches exploit the decay of
charge in physical components, SRAM and capacitor respec-
tively, to generate a continuous notion of time. TARDIS is dif-
ficult to handle, has high memory overhead, and yields poor
accuracy. CusTARD, that is also a foundation of Mayfly [18],
has all the limitations of capacitive timekeepers listed in
Section 4. A similar discussion on Mayfly’s timekeeping lim-
itations was presented in [12].
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Programming Models. Many programming models for
intermittenly-powered sensors have been proposed in the
past. These can be grouped into checkpoint-based systems—
the recent ones being [43, 44], or task-based systems—the
recent ones being [42, 62]. None of checkpoint-based pro-
gramming models (and very few task-based ones) support
time-sensitive data processing. CHRT language constructs
enables time-sensitive intermittent computation and sens-
ing. CHRT can be integrated into any runtime: task- or
checkpoint-based.

Energy Harvesting Sensor Networks. Batteryless sen-
sors obtain energy for operation from the ambient. Since
energy harvesting patterns arriving at these wireless sensor
nodes fluctuate in time and are not easily predictable [38, 54],
asynchronous network protocols, such as [46], are used in co-
ordinating communication—proposed primarily for battery-
powered wireless sensor network. Synchronous network
protocols for energy harvesting sensor networks are not
practical, simply because a node that experiences a power
failure loses its notion of time. Another approach to deal
with unpredictable energy harvesting patterns is to keep all
nodes in the so-called energy neutral operationmode [13, 34],
meaning that the consumed energy is always less than the
harvested energy (thus power never fails). Our proposal
diverges from aforementioned prior works targeted for en-
ergy harvesting systems. We propose a synchronized duty-
cycling scheme based on batteryless timekeeping, which
aligns nodes’ schedules across power failures.

Network Time Synchronization. IoT nodes’ clocks are
generally sourced by cheap oscillators that are prone to sig-
nificant, unpredictable instabilities. Due to these drifts, the
local clocks of each node diverges over time. Consequently,
it is mandatory to perform periodic time synchronization to
ensure that nodes are able to acquire a common notion of
time and perform coordinated actions [40]. Naturally, there
is a considerable amount of work dedicated to wireless IoT
sensors’ time synchronization, such as [35, 37, 61]. The goal
of these works is to build a network-wide notion of time.
Unfortunately, all these works do not consider very frequent
power failures and, in turn, the loss of synchronization state—
a common phenomenon among batteryless platforms.

9 Discussion and Future Work
We discuss future directions enabled by Botoks and CHRT.

General Application to Embedded Systems. While the
CHRT concept is particularly useful for intermittent com-
puting, where power failures and energy constraints force
designers to rethink timekeeping; CHRT is generally applica-
ble to all embedded systems that need timekeeping through
power failures and are currently over-provisioned with an
RTC. The CHRT offers a modular, lower power, short startup
time and energy saving solution over RTCs.

Tool Support for CHRT. Beyond intermittently-powered
networking, there is a dearth of tools for intermittent com-
puting past EDB [5] and Ekho [14]. As complexity increases
of the programming models, hardware, and runtime systems,
the tradeoff space grows larger. A tool for exploring the
tradeoff space of CHRT would be useful for VLSI design as
well as prototyping with off-the-shelf components.

Complex Intermittently-poweredNetworks. Further ex-
ploration is needed on how to expand point-to-point Botoks
link into a full-fledged network (if the industry estimates on
the proliferation of IoT are to be believed [47]). To achieve
this, coordinated compute, voting strategies, etc., must be
made robust to intermittent power failures. That said, the
techniques shown here could form the basis for some of
these protocols. Improvements to our synchronization algo-
rithm are required that integrate collisions and increase time
accuracy.

Further Evaluation of CHRT. Naturally, we have not ex-
plored all possible corner cases of CHRT operation. A crucial
measurement considers CHRT use in varying temperatures.

10 Conclusions
We have presented a new battery-less timekeeping mecha-
nism enabling reliable batteryless sensing and computation,
the Cascaded Hierarchical Remanence Timekeeper (CHRT),
and presented two application instantiations useful for in-
termittent computing: time-critical sensing and intermit-
tent communication. The CHRT is based on the idea of a
hierarchy of remanence timekeepers which combine accu-
racy/resolution, have short cold-start, and allow timing long
periods of power failure. Combining the CHRT architecture
into one hardware and software platform we presented the
design and implementation of Botoks—a new batteryless
sensor. With Botoks, and its accompanying CHRT, inter-
mittent computing can enter a new phase and explore new
applications not possible so far.
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A Artifact Appendix
This artifact establishes a means to reproduce the results
presented in the paper and describes how to evaluate the
timekeeping accuracy under solar energy harvesting.

A.1 Artifact Check-List (Meta-Information)
• Program: Multiple (embedded) applications, depen-
dent on the metric to be evaluated. Each test scenario
has its dedicated application.

• Compilation:With a Docker image, or by installing
the TI MSP430 toolchain.

• Binary: To be compiled from source.
• Data set: To be measured using Botoks.
• Hardware: Botoks sensor.
• Execution: Manually/partially automated with the
Botoks sensor.

• Metrics: Time accuracy.
• Experiments: Timing accuracy under solar energy
harvesting.

• Howmuchdisk space required (approximately)?:
Less than 3GByte (including the docker image).

• How much time is needed to prepare workflow
(approximately)?: 1 hour.

• How much time is needed to complete experi-
ments (approximately)?: 2 hours.

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.3612620

A.2 Description

How Delivered. Archived on Zenodo (DOI: 10.5281/zen-
odo.3612620), and available on GitHub (https://github.com/
tudssl/botoks).

Hardware Dependencies. To evaluate timekeeping accu-
racy under solar energy harvesting, two Botoks nodes are
required, together with a Flash Emulation Tool programmer
(such as TI MSP-FET [29]) to program them. Reproducing
the applications presented in the paper requires additional
hardware (e.g., a bicycle, a magnetic energy harvester [51],
a logic analyzer, e.g. [52]).

Software Dependencies. Docker (or CMake and MSP430-
GCC [24]) to build applications, and UniFlash [30] to upload
binaries on the Botoks node.

A.3 Installation
We recommend using the Docker container, as explained
below. Refer to the GitHub repository [10] to build with
CMake and MSP430-GCC [24].

Make sure you have Docker installed on your machine,
and that you can run docker commands without root priv-
ileges. Use the build_with_docker.sh script to build all
applications. The script uses a Docker image6 to build ap-
plications inside a Docker container pre-configured with
CMake and the MSP430-GCC toolchain.

You can pass the argument -t <target> to the script to
specify a target for make. For instance, to build all projects
and install the generated executables in the bin/ folder of
the repository, run
$ ./build_with_docker.sh -t install

To upload a compiled application on a Botoks node, make
sure you have UniFlash installed on your machine, then use
the flash.sh script:
$ export UNIFLASH_PATH=/path/to/uniflash
$ ./flash.sh bin/<app-name>.out

A.4 Evaluation and Expected Result
To evaluate timekeeping accuracy results under solar en-
ergy harvesting, one can program one Botoks node with
the bike-rpm-tx application, and place it in a controllable
light environment. We used a cardboard box to filter out all
external light, and placed a controllable bulb inside the box
to provide solar energy to the intermittently-powered node.
The application running on this node simply uses the on-
board CHRT to measure time between two reboots, and the
on-board radio to send a packet containing the inter-reboot
time (given in milliseconds).

Then, the asplos-ae-rx application can be uploaded on
a second continuously-powered Botoks node to sniff ra-
dio packets from the intermittently-powered Botoks. This
continuously-powered Botoks node captures inter-packet-
arrival time using an on-board digital timer, and prints the
comparison between the ground truth (measured locally by
the continuously-powered Botoks node) and the timing infor-
mation received from the other node. A serial terminal (with
a baudrate of 19200) can be opened to inspect the printed
information.
The light intensity coming from the controllable source

can be altered to produce different energy harvesting pat-
terns. Specifically, at lower light intensity, the inter-reboot
period of Botoks will be longer, as it takes longer to recharge
the energy buffer. At higher light intensity, the inter-reboot
period is expected to be shorter.
Note that the intermittently-powered node must be cali-

brated once before it can be used. The GitHub repository [10]
contains detailed calibration instructions.
6https://hub.docker.com/r/cdelledonne/msp430-gcc
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