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Abstract. The raw outputs of the detectors within the Advanced Laser Interferometer
Gravitational-Wave Observatory need to be calibrated in order to produce the estimate
of the dimensionless strain used for astrophysical analyses. The two detectors have been
upgraded since the second observing run and finished the year-long third observing run.
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Understanding, accounting, and/or compensating for the complex-valued response of
each part of the upgraded detectors improves the overall accuracy of the estimated
detector response to gravitational waves. We describe improved understanding and
methods used to quantify the response of each detector, with a dedicated effort to
define all places where systematic error plays a role. We use the detectors as they
stand in the first half (six months) of the third observing run to demonstrate how each
identified systematic error impacts the estimated strain and constrain the statistical
uncertainty therein. For this time period, we estimate the upper limit on systematic
error and associated uncertainty to be < 7% in magnitude and < 4 deg in phase (68%
confidence interval) in the most sensitive frequency band 20-2000 Hz. The systematic
error alone is estimated at levels of < 2% in magnitude and < 2 deg in phase.

1. Introduction

The Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO)
detectors [1] and the Virgo detector [2] have directly observed transient gravitational
waves from multiple binary black hole coalescences and one binary neutron star merger in
the first and second observing runs [3]. After a series of instrument upgrades to further
improve the sensitivity, e.g., replacing test masses and optics, increasing laser power,
and adding squeezed light [4], the two LIGO detectors started the third observing run
(03), together with Virgo, on April 1st, 2019, and ended the first half of O3 (O3A) on
Oct 1st, 2019 [5, 6, 7, 8, 9].

The time series of dimensionless strain, h, measured by each detector and used to
determine the detection of a gravitational-wave (GW) signal and infer the properties
of the astrophysical source, is reconstructed from the raw, digitized electrical output of
each detector. This reconstruction process, with an accurate and precise model of the
detector’s response to h, is referred to as “calibration.” The accuracy and precision of h
are important for detecting gravitational wave signals and crucial for the reconstruction
of their astrophysical parameters [10, 11, 12].

We report the accuracy and precision of h by estimating the upper and lower 68%
confidence interval bounds on the systematic error and uncertainty for each detector
response. Systematic error is defined to be the deviation of the estimated detector
response from the true detector response at a given time, and is a combination of known
and estimates of unknown errors. The error is quantified by propagating the measured
error of each response component through the overall response of a given detector. The
associated uncertainty of this collection of measured systematic errors arises from either
the random statistical noise in the measurements, repeated sampling of parameters
from a random parent distribution, or the uncertainty from quantifying a systematic
error with unknown physical source. The resulting systematic error and associated
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uncertainty intervals of the error in the detector response, and thus in h, are complex-
valued, frequency-dependent functions. Photon calibrators (Pcal), which independently
use photon radiation pressure to produce strain within the detector [13, 14], are the
primary absolute reference used to validate the estimates of h itself as well as the error
and uncertainty of the detector response. We expect the ratio of the estimated h to
the strain produced by the Pcal systems to lie within the error and uncertainty bounds
68% of the time [11, 15]. When and where possible, we correct for the errors in h, if
the physical mechanism of the error is sufficiently understood and if the error can be
quantified with minimal uncertainty. The final systematic error of the detector response
presented in this paper is the estimate of what is left uncorrected in the reconstructed h
used for astrophysical data analyses in O3A.

In the first and second observing runs of Advanced LIGO (O1 and O2), we achieved
a combined error and uncertainty limit (68% confidence interval bounds) of < 5% in
magnitude and < 3 deg in phase in the most sensitive frequency band 20-2000 Hz. The
method to determine those estimates for O1 and O2 is presented in [15]. Details of
how a complete model is used to compute and produce the h data stream can be found
in [12]. In this paper, we update the discussion of the methods in [15], use new studies of
the upgraded O3A detectors to elucidate all sources of systematic error considered, and
estimate the contribution of each source through measurements and Bayesian inference.

The structure of the paper is as follows. In section 2, we review the model components
of the detector response to h, adding new qualifying details that are important to the
03 detectors, and discuss each component’s contribution to the detector response. In
sections 3 and 4, we describe the procedure for creating a detector response model
and estimating its error and uncertainty, following the workflow in figure 1: With a
verified absolute calibration reference, a model of the detector mechanical dynamics, and
detailed measurement of the detector electronics (section 3.1), we estimate remaining
detector response parameters through Markov chain Monte Carlo (MCMC) analysis of a
single set of interferometric measurements taken at the reference time to create a static,
reference model (sections 3.2 and 3.3). We then discuss how continuous time dependence
in model parameters within a given observation period are tracked and accounted
for (section 4.1), limitations of the O3A detector model components (section 4.2),
estimation of residual frequency-dependent error and statistical uncertainty through
Gaussian Process Regression (GPR) methods using multiple sets of interferometric
measurements (section 4.3), and the negligible and/or unaccounted for systematic errors
in each component (section 4.4). Finally, after all the well-understood systematic
errors are corrected for, the residual static (i.e., time-independent) and time-dependent
errors and their associated uncertainties, as well as other statistical uncertainties in the
measurements, are all collected from each modeled component and propagated to the
detector response function. The final numerically estimated error and uncertainty for
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Figure 1. Flowchart of how the detector systematic error and uncertainty estimate is
produced. Parenthetical numbers in each box guide the reader to the corresponding
section in the paper.

each detector response in O3A are presented in section 5. We summarize and conclude
in section 0.

2. Model fundamentals

While the instrument has been upgraded between O2 and O3 [4], the conceptional design
of the Advanced LIGO detectors has not changed fundamentally since the first observation
of gravitational waves [16], as described in, e.g., [17]. The optical configuration of the
two LIGO detectors remain dual-recycled, Michelson interferometers with 4-km-long
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Figure 2. Conceptual diagram of the optical configuration of the Advanced LIGO
interferometers: dual-recycled, Fabry-Pérot Michelson. The X and Y arms are 4-km-
long, Fabry-Pérot cavities formed by the highly reflective end test masses and partially
transmissive input test masses. Pre-stabilized laser light enters the detector from the
left, and is further stabilized using an input mode cleaner optical cavity. Cleaned
light then enters the Power Recycling Cavity (formed by a partially transmissive input
coupler and two high reflectors), is split by a 50/50 beamsplitter, and sent into the long
arm cavities where the light interacts most with the potentially changing gravitational
field. The light returning from the arm cavities interferes at the beamsplitter, and is
then extracted from the beamsplitter’s anti-symmetric port by the Signal Recycling
Cavity (SRC), similarly formed by two high reflectors and a partially transmissive
output coupler. Finally, light exiting the SRC is cleaned with an additional resonant
cavity, referred to as the “output mode cleaner”. Faraday Isolators (FI) are used
for optical isolation of the main interferometer from the rest of the instrument. The
transmitted light of the output mode cleaner is split onto two photodiodes, whose
output current is turned to voltage, conditioned, digitized, de-conditioned digitally,
and then linearly combined to form de,.. Inset: one of the full quadruple pendulum
suspension systems and its actuators.
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Fabry-Pérot resonant cavities (figure 2). These detectors have been built to measure a

dimensionless strain incident upon them. This dimensionless strain, denoted by h, is

defined by the differential changes in arm length (DARM length) ALy, divided by the

average length of the arms L,

_ A Lgree _ ALy — ALy (1)
L L ’

where AL, and AL, are the displacements in the two orthogonal arms, X and Y,

h

respectively. Due to the presence of noise and the desire to maintain the resonance
condition of the optical cavities, the detectors do not directly measure A Lg... Instead
A Lo is derived from the error and control signals of the DARM control loop, using
methods described previously in [11, 12, 15, 18].
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Figure 3. Advanced LIGO differential arm (DARM) length feedback control loop
(gray box) and the generation of calibrated strain data (pink box). The sensing function
C converts the residual DARM displacement AL,es to the digital error signal de,,.
The digital filter D processes de;; and produces the digital control signal d¢t1. The
actuation function A; (i = U, P,T; refer to figure 2 for the definitions of U, P,T)
converts dc,1 to the control force allocated to the test masses that form the arm cavities,
producing displacement —A L, to suppress ALge.. During the time dedicated to loop
characterization (see section 3.2), DARM displacement excitations AL are added
using the photon radiation pressure actuator system. Similarly, zp and z; (: = U, P,T)

ZPcal

are added using the quadruple pendulum actuator via the digital control system. In
the presence of xp, the digital signal dp = dg;; + xp may be used to characterize the
DARM loop suppression. In the pink box, the estimated DARM strain h is constructed
using the sensing and actuation models, C'(model) and A(model),

In this paper, we describe the procedure entirely in frequency domain. See [12] for
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the discussion of reconstructing A in time domain. Figure 3 shows the interferometer
DARM feedback control loop and the calibration process at a conceptual level. The
loop contains the physical interferometer, analog electronics, analog-to-digital converters,
a network of “front-end” computers, and digital-to-analog converters, as described in
[19, 20]. The residual DARM displacement AL, is converted by the sensing function
C, to produce the digital output de,,. The error signal is filtered through a set of digital
filters D, creating the digital control signal, dey (i.e., dety = Ddeyy). The actuation
function A converts d.,; to the control displacement —AL,; that suppresses A Lgce
caused by external stimuli, holding the optical cavities on resonance and leaving a small
amount of AL, in the DARM loop. Conceptually, ALy is reconstructed with models
of these functions as

ALfree - ALres + ALctrl = derr + A(mOdel)dctrl' (2)

1
(/(model)
We can define a response function, R™°4)  given by

(model) __ 1+ A(mOdel)DC(mOdel) B 1+ G(model) ;
= (' (model) T ((model) ' ( )

where G(model) = A(model) fyy(model) j5 the DARM open loop gain, such that

R(model) derr
h= = (4)

Note that the estimated DARM strain h output from the pink box in figure 3 is not the
GW strain.
It is desirable to produce calibrated strain with low latency for quick electromagnetic

R

follow-up. To fulfill this desire, a reasonably accurate, low-latency estimate of h is created
in near real-time. Later, a carefully-vetted, most-accurate estimate of h is delivered
within a few months after the raw data are stored.

The low-latency estimate of A is produced from the model in two parts. In the first
part, the models A(™mode) and C'™edel) are reproduced with moderate fidelity by infinite
impulse response (IIR) filters, which modify copies of de,y and dcy in near real-time on a
parallel computer within the network of the feedback control system to create estimates
of AL and ALc. These estimates are summed to form a crude version of A L., and
all are stored for later consumption. This “front-end” production of ALg.e is limited in
fidelity by causality and the finite sample rate of the computer network, but good enough
to assess the detector noise performance in near real-time. However, the systematic
errors in the moderate-fidelity, front-end production of ALge. are too large to be used in
detailed astrophysical analyses. As such, in the second part, AL, and AL, are pulled
from the front-end storage, modified further with finite impulse response (FIR) filters
derived from the model, and divided by L to produce an high-fidelity estimate of A with
~10 seconds of latency and manageable systematic error.
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This low-latency (online) estimate of h uses the best models of the detector at the
time of recording. Over the course of any observing run, data dropouts due to computer
failures, mistakes in modeling A™ode) and C'™edel) " and unknown residual systematic
errors are often identified. Further, methods may be developed at a later time to correct
for systematic errors. Finally, there are known model components excluded from the
IIR and FIR reproductions of A™°deh) and C(medel) for expediency, which create further,
albeit small, systematic error in all online estimated h.

Hence it motivates the creation of an additional high-latency (offline) estimate
of h, allowing for improved accuracy, which uses the best models developed after the
low-latency data are collected, stored, and understood. The offline estimate of h is
created entirely with the FIR reproductions of AM™edel) and C(medel) gtarting “from
scratch” with de, and de,1. Further details of the computational software and methods
for producing these versions of h can be found in [12].

In this paper, we focus on the systematic error and uncertainty of the offline estimated
h. The accuracy and precision of any estimate of h for a given detector is quantified
by comparing a large collection of independent measurements of the detector response
using the actuation excitation paths at Tpca, *p, and z; (i = U, P,T) against the model
R(model) T sections 2.1 and 2.2, we detail the components and parameters of the sensing
and actuation function models, C(™m°d) and A(model) " respectively. Section 2.3 describes
causes and impacts of slow time-variation of these frequency-dependent functions. The
frequency-dependent contribution of C' and each component in A to the response R(model
is discussed in section 2.4. The systematic error in R™°°) and the impact from each
component are defined in section 2.5.

2.1. Sensing function

The sensing function C(f) is the response of the filtered, digitized combination of photo-
detector output signals, i.e. dg., to the residual DARM displacement, AL,s. This
response is complex-valued (amplitude and phase), frequency-dependent, and slowly
time-varying. It is comprised of a linear combination of several conceptually different
parts: (a) the opto-mechanical, interferometric response to AL, producing power (in
units of watts) at the output of the signal recycling mirror, (b) the opto-electronic
processing of that power into photo-current, including any optical loss on the path to
and through the output mode cleaner, the final beamsplitter ratio as the transmitted
light is sent to the readout photodiodes, and the photodiodes’ response, (c¢) the analog
signal processing electronics for the photodiodes and analog-to-digital conversion process
which turn photo-current into digital counts, and (d) the conditioning, re-combination,
and linearization of those digitized counts into a suitable, single error signal for the
DARM control loop.
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In O3, we retain the same frequency-domain model transfer function for this
collection of conceptual parts (at a particular time) as in [15], analytically given by,

mode _ HC f2 .
o) = (50 ) (o ) Calh) esal-2rif ). 5

The overall gain of the sensing function, H¢, is the product of the scalar gains from

each component in all four parts (in units of digital counts of d,, per meter of DARM
length). Aside from H¢, the frequency dependence of part (a), represented by the first
two parenthetical terms, defines the response of the coupled Fabry-Pérot arm cavities
and signal recycling cavity (SRC) to ALgee. In the first parenthetical term, f,. is the
differential coupled-cavity pole frequency. In the second term, the numerator represents
two zeros at 0 Hz, and f; and @) in the denominator are, respectively, the pole frequency
and quality factor. Collectively the zeros and poles of the second parenthetical term
represent the optical spring response created by any detuning present between the SRC
and the arm cavities. The approximations and deficiencies within the first two terms
are described in sections 4.2 and 4.4. The collective frequency response of the analog
electronics described in parts (b)—(d) are addressed in two ways. Some portions of the
response are paired with corresponding inverse digital filters, applied after the photodiode
signal is digitized. Thus, they compensate the analog response within the DARM loop
itself (“in-loop”) and are not explicitly included in (5). The portions in parts (b)—(d)
not compensated in-loop are collected within Cg (see further discussion in sections 3.1
and 4.4). The collection of analog and digital time delays from all four parts is denoted
by 7¢ in the final term.

2.2. Actuation function

The actuation function, A, is the response of the control DARM displacement, AL, to
the requested digital control signal, d.,1. Like the sensing function described above, it is
composed of several components. We first qualify the O3 actuator model by extending
the discussion in previous work [12, 15].

First, we consider the DARM control system only in the frequency band above 5 Hz.
Below 5 Hz, actuation from absolute references (such as the Pcal) cannot be sufficiently
resolved in the detector noise in ALgq.. Hence, any further allocation of AL, to other
actuators below 5 Hz, e.g., to the first, top-most stage of the quadruple suspension, is
ignored.

Second, while AL, may be induced by actuating on any stage of any of the four
arm cavity optics quadruple pendulum systems [21, 22], we reduce complexity by only
modeling the DARM control actuator as the bottom three stages of a single quadruple
pendulum. In other words, if the upper two suspension stages of the X arm end test
mass and the final test mass stage in the Y arm are used in combination to produce
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ALy, each stage is measured and modeled independently, and the actuation from each
stage is summed as though created by single quadruple pendulum.

Third, each detector has many other cavities length and angle degrees of freedom
that must be controlled. Some of those control systems also use the quadruple suspension
systems as actuators. These auxiliary control loops will only impact the DARM loop
response if there is cross-coupling from A L., to the auxiliary degree of freedom and from
the auxiliary degree of freedom back to AL,.. Reducing potential auxiliary cross-coupling
to DARM is an essential element of the Advanced LIGO detectors collective control
system design [1, 23]. Further, the O3 detectors only use three actuation stages among
the six available lower stages of the end test mass suspensions to create ALg,. The
actuation model does not include any cross-coupling with auxiliary degrees of freedom.

Finally, each quadruple pendulum system is actually a pair of closely adjacent
quadruple suspensions, with the “main chain” holding the suspended test mass, and
the “reaction chain” suspending equally isolated masses upon which the actuators are
mounted (see the inset of figure 2 and [21, 22]). Among the lowest three stages of
each quadruple suspension, the upper intermediate (UIM), and penultimate (PUM), are
driven by magnetic coil actuators. The lowest stage of the suspension, named the test
mass (TST) stage, is driven by an electrostatic actuator system. The force from the
actuators on the reaction chain is considered to be applied directly to the center of the
mass at each stage of the main chain. For the purpose of estimating the displacement
of the test mass, only the dynamic response of the main chain is modeled; it is not
necessary to take into consideration the added complexity of the reaction chain.

With these qualifying remarks, the response of each actuator stage is modeled as
(a) the digital distribution system which allocates dg,1 (i.e., the filtered d.,,) to the
computer that controls the three end test mass suspension stages, where subsequent
digital filtering (i.e., the assignment of frequency-dependent control authority) and signal
conditioning occurs, (b) the digital-to-analog converters and associated signal processing
electronics that convert the conditioned digital signal into electrical signal suitable for
that stage’s actuator, (c¢) the mechanical pendulum dynamics of the stage’s actuator
itself, and (d) the mechanical, force-to-displacement response of quadruple pendulum
suspension system in the DARM direction from the given stage to the optic.

Thus, the total actuation model (at a particular time) is similar to that in [11, 15, 12],
with only slight modifications,

Aot (1) = Fy(f)Hy Au(f) exp(—2mi fry)
+ Fp(f)HpAp(f)exp(—2mif7p)
+ Fr(f)Hr Ar(f) exp(=27ifrr), (6)

where U, P, and T represent the UIM, PUM, and TST stages, respectively (see the
inset of figure 2). For each stage (i = U, P,T'), F;(f) is the digital, frequency-dependent
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filter which allocates d.,1 to the appropriate stage, H; is the overall gain, the product
of the scalar gains of each component in all four parts (in units of meters of DARM
length per digital count of d,1), and 7; is the total time delay in the digital-to-analog
conversion. Similar to the sensing function, some portions of the analog electronics
frequency response in part (b) are paired with inverse digital filters applied before
converting the digitized signal to analog voltage, and thus not explicitly included in the
model. Thus, A;(f) includes the dynamical force-to-displacement frequency response
of the quadruple pendulum and the residual response from any uncompensated analog
electronics (for further discussion, again, see sections 3.1 and 4.4). Note that (6) differs
from the equivalent expressions in [11, 12, 15] only in the generalization of 7; to be
an arbitrary delay at each actuator stage, instead of a common delay for all stages.
Limitations of this model are discussed in section 4.4.

2.3. Time dependence

The static, reference models described by (5) and (6) are constructed with parameters
He, fee, fs, and Q for ) and H; (i = U, P,T) for A4 that are measured at
a given time. Some parameters, however, are slowly varying over time due to various
physical mechanisms [24]. Sensing function parameters Heg, fe., fs, and @ fluctuate on
a time-scale of minutes due to the variations of optical alignment in the arm cavities,
the relative alignment between the arm cavities and the SRC, and the laser power. The
overall strength of the TST electrostatic actuator changes slowly on the time-scale of
days to weeks due to the slow accumulation of static charges around the test mass and
reaction mass. The overall strengths of the UIM and PUM magnetic coil actuators are
expected to be static, but occasional changes in actuator electronics in the path often
require compensation. The time-dependent sensing and actuation functions are virtually
identical to those in [11, 15, 12, 18], and are summarized here:

< Cr(f) exp(—2mifrc), @)

where k¢ (t) is a dimensionless, real-valued, scalar gain factor characterizing the frequency-

independent variations of H¢o, and

A(f3t) = ko) Fu(f)HuAu(f) exp(—2mifTv)
+ kp(t)Fp(f)HpAp(f) exp(—2mifTp)
+ rr () Fr(f) Hr Ar(f) exp(=2mi frr), (8)
where ki (t), kp(t), and kr(t) are similar dimensionless scalar gain factors (though in

this case complex) for the UIM, PUM, and TST stages, respectively, with the real parts
varying about unity. In Ol and O2, the fluctuations in UIM and PUM stages were
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tracked with a combined factor kpy(t). In O3, kpy(t) is replaced by separate scalar
factors ky(t) and kp(t) to provide more accurate tracking of temporal variation of the
actuation functions. We refer to these time-dependent parameters in (7) and (8), k¢ (),
fee(t), fs(t), Q(t), and k;(t) (i = U, P,T), as time-dependent correction factors (TDCFs).
Additional details are provided in section 4.1.

2.4. Contribution to the response function

The DARM loop response function is dominated by the actuation and sensing components
at low and high frequencies, respectively. The exact frequency dependence is determined
by choices made in the digital filtering, i.e., in the shape of D and F; (i = U, P,T'), as well
as the physical setup and state of the detector. It is important to quantify the frequency-
dependent contributions to the response function from each component to determine
how each component contributes to the uncertainty and systematic error. Figure 4
shows the magnitudes of these contributions, i.e., FiHiAEmOdeDD JRmed) (j — U P T
for each individual suspension stage), A(mede) P/ Rmodel) “anq 1 /(((model) plmodel)y = A
similar figure for phase contributions is not shown here for brevity.
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Figure 4. Contributions of each stage of the actuators, the overall actuation, and the
inverse sensing to the response function at (a) Hanford and (b) Livingston. The solid
and dashed curves indicate the static, reference models used towards the end of O3A

and O2, respectively.

The solid curves in figure 4 are computed from the reference model used in September
2019, towards the end of O3A. As described in section 2.3, the strength of actuators
and alignment of optical cavities can change, resulting in different contributions. In
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addition, different choices may be made and evolve with time to accommodate new
detector parameters and/or to improve detector noise performance. For comparison, the
02 model values are shown as dashed curves, reflecting the impacts due to these changes.
In particular, the contribution from the TST actuator at Livingston has increased in
O3A compared to O2. The same amount of error and uncertainty in modeling Agmedel)
in O3A as in O2 results in a larger overall calibration uncertainty around 50 Hz (see

section 5).

2.5. Systematic error definition

The frequency-dependent systematic error of the response function, equivalent to the
systematic error in estimated h, is defined by

R R

Nk = R (model) - R(model) + 1’ (9)

where § R/ R(™°4) = pp, — 1 is the relative error in the response function as defined in [15].
By applying nx to the model response function, we obtain the true response ngR™odel.
A systematic error in C, defined by ne = C/C™°4D)  will impact the response function

systematic error as

1 1
— (model)
Nr;c = R (model) |:ncc(model) +4 D:| : (10)

Similarly, a systematic error in A; (¢ = U, P,T), defined by na, = A; /A§
the response function systemic error as

1 (model) (model)
(/(model) + (nAiAi + ZAJ Dy . (11)
J#i
These definitions are employed in sections 3.1.3, 4.3, and 5.

model) w1l impact

1
[ R(model)

3. Construct a reference model

In this section, we describe the method and procedure of constructing a static reference
DARM loop model. Section 3.1 discusses the tools prepared and measurements made
before constructing the model: (a) the photon calibrator absolute reference, (b) a verified
model of the quadruple pendulum mechanical dynamics, and (c¢) a characterization
of all actuator and photodiode signal processing electronics present in A and C.
Section 3.2 describes the measurements of the remaining model parameters, which
are only measurable when the detectors are in their nominal low-noise configuration,
and section 3.3 explains how these parameters and their associated uncertainties are
computed.
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3.1. Essential building blocks

The systematic error and uncertainty associated with the absolute reference of the DARM
loop model and other essential “building blocks” are discussed in this subsection. Prior
to O3A, the dynamics of the quadruple pendulum and response of signal processing
electronics were included in the DARM loop model without considering their contributions
to the uncertainty or systematic error in the detector response. However, as our
understanding of the detectors improves, we now consider them to be a potential source
of systematic error, and thus their fundamentals are described in more detail here.

3.1.1. Photon calibrator absolute reference The displacement fiducials upon which all
estimates of h depend are generated by the Pcal systems [13, 25]. These systems employ
power-modulated auxiliary lasers with beams reflecting from end test masses to displace
the mirrors via photon radiation pressure. Pcal systems are deployed on both end test
masses of each interferometer. Their functionality is summarized here along with system
updates relevant to the O3A observing run.

Each Pcal system has a 2-watt laser operating at 1047-nm wavelength, housed
in a transmitter module located outside the vacuum envelope. A feedback control
loop that uses an acoustic-optic modulator to vary the laser power in response to a
digital excitation signal, xp.., generates a power-modulated output waveform that
reproduces the excitation waveform. The modulated laser light is directed into the
vacuum envelope and reflects from the surface of the end test mass, producing true
DARM displacement, AL,
power sensor that uses an integrating sphere and photodetector to generate a digital

(see figure 3). The reflected light is directed to a laser

signal, dpca, proportional to the received laser power. The bandwidth of this laser power
control servo is approximately 100 kHz. The Pcal systems can thus produce arbitrary

time-dependent forces resulting in AL similar to those that can be produced by

TPcal

the actuators of the quadruple suspension system. We estimate the induced DARM
displacement from digitized photodiode signal dp., with a bank of digital filters Hpca,

ALPcal = HPcalchala ( 12)

where ALpe, is the estimate of the true DARM displacement AL See (1) in [13] for
details of Hpey.

Though the test mass displacement decreases as the square of the modulation

ZPcal

frequency, with a maximum modulated power of approximately 1 W, the Pcal systems

can generate AL that is orders of magnitude larger than the AL, noise floor across

TPcal
the most sensitive band of the detector. The digital control system allows for arbitrary
excitation waveforms, but two specific waveforms for zp., are typically used. The first is

a sequence of monochromatic sinusoidal length modulations, referred to as a swept-sine
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excitation. The second is a colored random noise modulation used to probe more sensitive
frequency regions with high frequency resolution.

The 1o uncertainties of Hpc,j, and thus ALpg, as an estimate of AL for all four

ZPcal?
LIGO Pcal systems during O3A are 0.54%. They are dominated by unknown systematic
errors rather than by statistical variations in measured values (see details in [14]). At
the end of O3A, the Hp., value was refined using system characterization measurements
carried out during the six months of the run, as well as the correction of errors in the
masses of the end mirrors. These updates are accounted for by a multiplicative correction
factor, npca, applied to Hpga for each Pcal system. For the Hanford reference Pcal
system on the Y arm end test mass, we have np., = 1.0043. For the Livingston reference
system, also on the Y arm end test mass, we have npe,; = 1.0031 [26]. Accounting for

these systematic errors and uncertainties is discussed in section 5.

3.1.2. Dynamics of the quadruple suspension Preliminary models of the quadruple
suspension system rigid-body, force-to-displacement transfer functions were developed
from first principles well before the Advanced LIGO interferometers were installed [27, 28].
These preliminary models aided analysis and diagnostics of the early prototype quadruple
suspension systems [29]. Refinements were added to the model in order to match them
to the first production suspension system and improve their accuracy [30]. The refined
model was later used to verify the function of all production quadruple suspensions
installed in each LIGO detector.

The model parameters are kept up-to-date as the installed suspensions are modified
(e.g., between O2 and O3, small, few-gram damping mechanisms were added to the
test masses [31]). The change in model parameters can be typically quantified to high
accuracy (e.g. each ~ 40 kg test mass can be measured to an accuracy of ~ 10 g), and
the subsequent updated model parameters are revalidated to high precision through
many local and interferometric measurements of the dynamical response. These models
are used as the basis for the frequency dependence of force-to-displacement transfer
functions in A;. Beyond these rigid-body dynamics, we have found the need for additional,
non-rigid body modifications to these transfer functions in order to improve the model
accuracy. The impact of the additional modifications is discussed in sections 4.3 and 4.4.

3.1.8.  Signal processing analog electronics The responses of all signal processing
electronics are measured independently in advance and modeled as transfer functions
with poles and zeros at well-determined frequencies. Within the sensing function,
these electronics conditioning the current produced by the readout photodiodes are:
the transimpedance amplifiers of the photodiodes, “whitening” filters (i.e., frequency-
dependent, signal pre-amplification or noise reduction filters), and anti-aliasing filters.
Within the actuation function, requested voltage at each stage is conditioned through



16

anti-imaging filter electronics and sent to either the magnetic coil current drivers or
electrostatic voltage drivers, depending on the actuator type of the given stage of the
quadruple suspension. The actuator drivers also have frequency-dependent response
for noise reduction much like the readout photodiode transimpedance amplifier and
whitening filters.

The pole and zero frequencies for the responses of these electronic components
range from as low as 0.5 Hz to as high as 50 kHz, all of which need to be included in
Almodel) gngd Cmedel) t6 produce accurate estimates of h. For example, to minimize the
contribution to systematic error in the response function near the DARM loop unity
gain frequency (~100 Hz), the phase of A®°de) and C(Mmodeh) myst be accurate to a level
of <0.1 deg. Such accuracy cannot be achieved if any of the poles or zeros, even those at
~ 50 kHz, are excluded in the model. Measurements of the response of each electronic
component from 0.1 Hz to 100 kHz are made using an analog spectrum analyzer. Pole
and zero frequencies are determined by fitting the measured response of each electronic
component to a model consisting of poles and zeros [32]. Only the poles and zeros
frequency response is needed at this point, and later the gain of each path is measured
in He and H; (i = U, P,T') using techniques described in section 3.2.

The pole and zero frequencies of the electronic components are used in different
ways throughout the production of h. As described in sections 2.1 and 2.2, poles and
zeros below ~500 Hz are used to design digital IIR filters within the DARM loop that
replicate the inverse response of the electronics. The DARM loop would be negatively
impacted without including these poles and zeros. Each pair of analog response and
compensating digital inverse response occurs before constructing d,,, within C' and after
dety 18 distributed through A. Thus, the low-latency or offline estimate of h need only
further include the higher-frequency poles and zeros. Poles and zeros above ~500 Hz
but below the Nyquist frequency of the real-time system (~7000 Hz) are included in the
front-end IIR reproductions of Adeh) and C'ede) (outside the DARM loop) to produce
the roughly calibrated ALge.. Limitations of the front-end IIR filter construction result
in growing systematic error approaching the Nyquist frequency and prevent the inclusion
of any response above the Nyquist frequency. The second part of the low-latency pipeline
repairs any distorted high-frequency response of IIR models of A(model) and C(medel) apd
includes the response of super-Nyquist poles and zeros to form the low-latency estimate
of h. The most accurate, offline estimate of A includes all poles and zeros above ~500 Hz
(i.e., those not compensated within the DARM loop) in the FIR reproductions of A(mede)
and (C(model),

The contribution to the systematic error in A from each electronic component in
C and A is evaluated by ng.c or ngr.a in (10) and (11), respectively. An example is
given in figure 5 for the sensing function whitening filter electronics alone, assuming all
other electronics are modeled perfectly. To emphasize the need for careful measurements,
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the blue curves indicate the resulting ngr.c — 1 if the in-loop compensation filters are
designed using only pole and zero frequencies below ~500 Hz as reported in the design
specifications; the poles or zeros above ~500 Hz are not included. The orange curves
show the resulting ng.c — 1 if in-loop compensation filters are designed using pole and
zero frequencies obtained via fitting but do not account for poles or zeros above ~500 Hz.
Finally, the green curves correspond to ng,c — 1 remaining in the low-latency and offline
estimates of A if the in-loop compensation filters are designed with the measured poles

and zeros below ~500 Hz and include all other poles and zeroes above 500 Hz in the
FIR reproductions of A(™medel) and C(model),

= (i) Only low-frequency, idealized response = (i) Only low-frequency, idealized response
0 - .
10°) — (ii) Only low-frequency, measured response 81 = (ii) Only low-frequency, measured response

—— (iii) Accounting for complete response

— (iii) Accounting for complete response

1 magnitude
=
S

nrc — 1 phase [deg]

NR.c

102

1073

10! 10? 10° 10! 10° 10%
Frequency (Hz) Frequency (Hz)

(a) (b)

Figure 5. Relative error in the response function (ng.c — 1) in (a) magnitude and (b)
phase from the systematic error in sensing function whitening filter electronics alone.
The colored curves indicate the resulting ng,c — 1, if (i) the in-loop compensation
filters are informed only by design specifications, and high-frequency poles and zeros
are excluded from A(medel) and C(medel) (blue), (i) the in-loop compensation filters
are informed by measurements, but high-frequency poles and zeros are still excluded

(orange), and (iii) all measured pole and zero frequencies are included (green) as in the
final estimate of h.

3.2. Interferometric measurements

At frequencies much lower than the acoustic resonance frequencies of the test masses
(< 1kHz), the excitations from the Pcal systems zpca cause DARM displacement AL, ,
equivalent to ALge.. Thus, measuring the DARM loop error signal d,,, in the presence
of these Pcal excitations, while the detector is otherwise fully functional, is a direct
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measure of the (inverse) response function,

derr . 1 _ C(meas)
ALPcal - R(meas) o 1+ A(meas) N)(f(meas) ’

where the superscript “(meas)” stands for the measurement. To measure the sensing

(13)

function O™ an additional separate measurement of the loop suppression is required

(see figure 3),
dp 1
g o 1 + A(mEaS)DC(meas) ) (14)

where zp indicates the displacement excitations added using the quadruple pendulum

actuator system, and dp is the sum of d.,, and xp. Measurements in (13) and (14) need
to be taken sufficiently close in time, such that the time dependence of A and C' can be
ignored. Combining (13) and (14), we obtain the sensing function directly as

e = (st (i) "

For frequencies above 1 kHz, where much longer averaging is required to obtain

appreciable signal-to-noise (SNR) with respect to the detector’s noise floor, the sensing
function is measured by introducing discrete sinusoidal excitations from 1 kHz to 4 kHz, at
500 Hz intervals. Excitations at a single frequency are left on for 24 hours of “observation-
ready” (i.e., nominal operating configuration) time before moving to the next frequency
in the sequence. At frequencies above 1 kHz, where the detector’s response is determined
by the sensing function, we have |A(®™e) DC(meas)| < 10~ and thus the independent
measurement of the loop suppression in (15) is not necessary, i.e., |xp/dp — 1] < 1072
Therefore, for these frequencies, the sensing function is well-approximated by

(meas) ~ derr(f)
CE(f) = At )’

calculated from the average of 30-minute fast Fourier transforms (FFTs) over 24 hours

(16)

at each frequency. Due to the long duration of the measurements, the resulting sensing
function must be corrected for time dependence using k¢ (t) and f..(t) (see section 4.1).
The Pcal systems are also used to determine the actuator strength, H;, for each
stage of the quadruple suspension. Measuring d.,, caused by the excitations from the
suspension actuators, z;(f), gives
derr Agmeas) O(meas)

x_z, - 1_|_A(meas)DC(meas)' (17)

Combining (13) and (17), we can extract Agmeas) (i=U,P,T), asin [11, 15],
A (f) = [F(f) HiA( f) exp(—2mi fr;)] ™)

- () G 19
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The relative magnitude uncertainty and absolute phase uncertainty of the measured
transfer functions at each frequency point is given by [15, 33]

1 —~%(f)
2NV (f)

where N,y is the number of values averaged. The coherence, 72(f), between the

o) (f) = (19)

excitation x and readout d at frequency f is calculated by [12]

s @ (DA
D= (B NE

where the angled brackets denote averaging, and the asterisk denotes complex conjugation.

(20)

Measurements described by (15) and (18) are repeated with a weekly cadence
throughout the run. A single set of them is used to construct a reference model (see
section 3.3). The collection of weekly measurements is used to assess static, frequency-
dependent systematic errors (see sections 4.2 and 4.3).

3.3. Model parameter estimation

Remaining parameters in the DARM reference model are determined from one set of
measurements (section 3.2) taken at the reference time, after dividing out all known
frequency dependence from section 3.1.3; using MCMC fitting algorithms [34]. The
remaining parameters are

AC - [H07f087f87Q757—C] ) (21)
for the sensing function, and

for each ith stage of the actuation function, where d7¢ and d7; are the residual time
delays of 7 and 7;, respectively. We note that only measurement data at frequencies
below 1 kHz are used for parameter estimation. The high-frequency measurements are
used for studying the static, residual systematic error and statistical uncertainty above
1 kHz (see section 4.3). The MCMC method produces the posterior distributions of
the multivariate parameters assuming normally distributed priors for He, f.., H;, and
flat (uniform) priors for f,, Q!, 67¢, and é7; (i = U, P,T). The maximum a posteriori
(MAP) values, A{jsp and A{j,p, are adopted to create the DARM response model,
1
CEoa (NG 23 f)

When any physical change of the interferometer is too large to be corrected by the

Rmedel () = + A (X ps )D(f) - (23)

TDCFs, or a precursory component has changed, we create a new calibration “epoch.” It
is likely that in any new epoch one or more parameters in the existing A{;,p and A{ip
(and hence R(™°4D) are no longer valid. The MCMC parameter estimation process is
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repeated using new measurements, A®™) and C™¢) in order to create an updated
reference model and account for the precursory changes. Table 1 lists the O3A epochs in
both detectors and the main changes associated with each. We quantify the calibration
systematic error and statistical uncertainty for each epoch in section 5.

Table 1. O3A calibration epochs and the main changes in each epoch.

Hanford epoch Changes

(a) Mar 28-Jun 11  Start of the run
(b) Jun 11-Aug 28 Input power increased; angular control system modified
(¢) Aug 28-Oct 1 Added a microscopic length offset to SRC to relieve detuning

Livingston epoch Changes

(a) Mar 28-Jun 11  Start of the run
(b) Jun 11-Oct 1 Adjusted the gain in the TST actuator due to a 4% drift

An example of the MCMC fitting for the sensing function at Hanford is given in
figures 6 and 7. A set of measurements is taken in the frequency band 5-1084 Hz, and
passed to the MCMC algorithm. The five-dimensional fitting results are shown in figure 6.
Posterior distributions of five parameters in A® are shown in the diagonal panels.

The reference sensing model, created using the MAP parameters shown in figure 6,
is then compared to the original measured data points, plotted in figure 7. The left
column shows the magnitude and phase of both the reference model (grey curve) and
measurement (red points). The right column displays the residual between the two. The
units of the sensing function are shown in digital counts of d.,, per meter change in the
DARM length. The deviation between the measurement and the model below 20 Hz is
due to a poorly-modeled effect (discussed in section 4.2), and hence the measurements
below 20 Hz are not used to inform the MCMC fit (as denoted by the dashed vertical
lines).

A similar procedure is repeated to generate the model of the three end test mass
actuator stages. The Hanford detector produces AL, with all three end test mass
suspension stages on the X arm during O3A. The Livingston detector uses the TST stage
on the Y arm, and the PUM and UIM stages on the X arm.i In this “split actuator”
configuration for the Livingston detector, one must include information in the model
reflecting that different computers and digital-to-analog converters are used to create
ALy This is done by allowing for a different computational time delay in the model
for each stage. Thus, 7; is fit independently and included in the model. After accounting

1 In O1 and O2, AL, was produced entirely by the three end test mass actuator stages on the Y arm
at Hanford, and the three stages on the X arm at Livingston.
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Figure 6. Corner plot of posterior distributions of the sensing parameters, A,
at Hanford. The one-dimensional histograms along the diagonal are the posterior
distributions for the optical gain H¢, Fabry-Pérot coupled cavity pole frequency f..,
SRC optical spring frequency fs, inverse optical spring quality factor @', and residual
time delay d7¢, from top left to bottom right. The off-diagonal two-dimensional
histograms show the covariance of two parameters; 1o, 20, and 30 levels are delineated
by contours (from dark to light). The cyan lines indicate the MAP values for each
parameter. The dashed red lines in the 1-D histograms indicate the 1o values in the
distribution.

for these different delays, we find that all remaining residuals of 7; are consistent with
zero. The uncertainty of 7; is discussed in section 4.4.

4. Understanding of systematic errors

In this section, we first discuss the time-dependent systematic errors that can be corrected
using TDCF's and related special issues in O3A in section 4.1. Section 4.2 describes a
unique low-frequency feature in the Hanford detector, which cannot be simply addressed
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Figure 7. Sensing measurement C(™)(f) and the reference model C(™m°deD( f) at
Hanford created with the MAP parameters in figure 6 (left column), and the fractional
residual between the two (right column). The gray curves and red markers indicate
the reference model and the measurements, respectively. Vertical error bars indicate

uncertainties of the measurements. The top and bottom rows display the magnitude

and phase, respectively. The MAP values in figure 6 are inferred from the measurements

above 20 Hz only (on the right side of the vertical dashed lines; see explanations in

text).

by TDCFs. In section 4.3, we present how to account for unknown residual systematic

errors, including the special feature described in section 4.2. Finally, we list and quantify
uncompensated systematic errors from multiple sources in section 4.4.

4.1. Time dependent systematic error

The TDCFs, ke, fee, [s, @, Ku, kp, and K from (7) and (8), are monitored by a collection
of monochromatic, high-SNR sinusoidal excitations (“calibration lines”) injected into

the DARM control loop by both Pcal and suspension actuators. After demodulating
the magnitude and phase of these calibration lines in d.,;, the TDCFs are calculated

from (15)—(18) (see complete derivation in [18, 12, 24]) and applied to the appropriate

components in AL, and ALg,. The uncertainties for all TDCFs are computed using

(19).
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Table 2 shows how time-dependent corrections are applied in O1, O2, and O3, for
each of the three calibration pipelines. In O1 and O2, no TDCF was applied to correct
for systematic errors in the front-end calibration, and only the scalar gain factors were
applied in the low-latency, online calibration. The factor f.. was only applied in the
high-latency, offline calibration, producing the final, corrected strain data a couple of
months after the data were acquired. In O3, both the scalar gain factors and f.. are
applied in all of the three calibration pipelines. The front-end pipeline computes and
applies the TDCFs separately and independently from the online and offline pipelines
for real-time detector performance assessment and consistency checks. The remaining
two TDCFs related to SRC detuning, fs and @), are monitored but not applied to the
data in any of the pipelines. Static reference values for these two parameters are taken
from A{[,p and used by the pipelines. The impact from these two uncorrected TDCFs
remains below 20 Hz. In O3, there has been additional challenge in modeling the sensing
function at low frequencies at Hanford. See detailed discussion below and in section 4.2.

Table 2. Time-dependent correction factors applied in each of the calibration pipelines
in the three observing runs. Recall that the gains of the UIM and PUM suspension
stages were tracked by the combined factor kpy in O1 and O2.

Calibration pipeline O1 and O2 03
Front-end None Ko, KU, Kp, KT, fee
Low-latency (online) k¢, kpy, kT Ko, KU, kP, KT, fee

High-latency (offline) k¢, kpu, &1, foe Ko, kU, kP, KT, fec

The impacted frequency bands and level of systematic errors from all TDCFs are
slightly different at Hanford than at Livingston due to differences in the design of digital
filters, as shown in the contribution curves in figure 4.

As an example to show the necessity of time-dependent corrections, we quantify
the systematic errors that would be present in the O3A Hanford model, if the TDCFs
were not applied. Similar to studies in [18], figure 8 shows the estimated systematic

errors (colored contours) introduced in R(™edeD (

i.e., Np,c — 1) if the time-variation of
He, tracked by the factor k¢, is not corrected. The top and bottom panels correspond
to magnitude and phase of nr.c — 1, respectively. The measured fractional variation of
ke is typically at the level of 1%2%, and can be as large as ~10% in either detector. As
shown in the figure, an uncorrected ~5% change in k¢ will result in ~10% systematic
error in the magnitude of R™°d) near 100 Hz. Similar plots for impacts of uncorrected
fees K1, Kp, and Ky are shown in Appendix A.

The impact of TDCFs related to SRC detuning, f, and @, was not discussed in [18].
To study the impact from time-varying SRC detuning effect, we create an example with

a perfectly tuned SRC reference model (i.e., fs = 0 Hz) and vary only f, (@ is fixed at
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Figure 8. Magnitude (top) and phase (bottom) of the fractional error ng.c — 1 in the
Hanford detector response [O3A Epoch (c)] as a function of frequency due to uncorrected
gain variations in the sensing function, tracked by the scalar time-dependent factor, x¢.

52.14). In (7), the time-varying fs value is always positive but can be real or imaginary,
corresponding to an anti-spring-like or a spring-like detuned optical response, respectively.
We quantify the spring-like or anti-spring-like effect with f2? for simplicity; i.e., f> <0
is a spring response, and f2 > 0 is an anti-spring response. Figure 9 shows ng.c — 1 in
colored contours if the time-variation of f2 is not corrected. The variation of f2, denoted
by Af? on the vertical axis, covers both the anti-spring-like and spring-like detuned
optical responses. For |Af?]| < 25 Hz?, the impact is generally negligible. It has been
found that occasionally we have |Af2| > 50 Hz?, resulting in an error of 2> 5% in the
magnitude of R(™°d)  See further discussion and treatment of the resulting systematic
error in section 4.2.

In the rest of this section, we provide additional details about the time-dependent
corrections during an exceptional period in early O3A. There are two issues: (1) Prior
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Figure 9. Magnitude (top) and phase (bottom) of the fractional error ng.c — 1 in
the Hanford detector response [O3A Epoch (c)] as a function of frequency due to
uncorrected time-dependent SRC optical spring frequency, fs (with fixed Q=52.14).

to April 16, 2019, at Hanford, xp and ky were not applied because the estimates were
computed using calibration lines separated by ~20 Hz. Such large frequency separations
invalidated approximations used to compute xp and k. The systematic error introduced
by this issue is accounted for when reporting the overall accuracy of the estimated h in
section 5. (2) From April 1 to June 11, 2019 at Livingston and from April 16 to June
11, 2019 at Hanford, the complete complex values for all actuator TDCFSs, k1, kp, and
ky, rather than only the real values were applied to h. Applying the complex actuator
TDCFs was found to cause an overall increase in the systematic error in h. For all other
time periods in O3A, only the real part of k7, kp, and Ky, were applied to h. The
impact of (2) is discussed as follows.

By design, all of the actuator TDCFs at the reference time equal 1 + 0i. At other
times, the actuator TDCFs can take different values, typically with the real term 14 0.05
and imaginary term (0 £ 0.01)i. Non-zero imaginary terms may arise due to small



26

physical effects that change during the observing period or because approximations used
to estimate the TDCFs break down [35]. If the former is the case, then we expect that
applying the full complex-valued TDCFs should reduce the measured systematic error
in h. If the latter, then applying the full complex-valued TDCFs does not correctly
compensate since there was no actual physical change, so we expect the systematic
error in h to increase. The application in early O3A described above was found to
have typically increased measured systematic error, indicating that the latter is the
problematic element during this period.

We characterize the response function systematic error in two cases: the full complex-
valued actuator TDCFs are applied and only the real-valued actuator TDCFs are
applied. The method for computing the response function systematic error and associated
uncertainty is described in section 5. For those results presented in section 5, we have
only considered the actuator TDCF's as real-valued. Figures showing side-by-side results
from applying only real-valued and full complex-valued actuator TDCFs are provided
in Appendix B. The impact on the systematic error alone is < 1% in magnitude and
< 0.2 deg in phase, and remains within the overall associated uncertainty. Work is
underway to implement an improved method of computing the actuation TDCF's that
does not suffer this breakdown of approximations so that the full complex-value may be
trusted to reflect true physical effects [35].

4.2. Deficiencies in the sensing function model at low frequencies

Understanding the results from weekly measurements of the Hanford sensing function
below 20 Hz has posed a challenge unique in the advanced detector era. This section
describes the results observed.

In the previous O1 and O2 observing runs, measurements at Hanford showed
evidence for slight detuning of the SRC with respect to the arm cavities [15]. Detuning of
the SRC can be caused by either misalignment or mode mismatch with the arm cavities;
both misalignment and mode mismatch can change as the thermal lenses in the input
test masses change [36]. To account for the impact on the sensing function, an invertible,
phenomenological, analytic representation of an optical spring was included in the model,
parameterized by fs; and @, as in (5) (see derivation in [23]; also see discussions about
the time-dependent f, and Q in section 4.1). A fixed, positive value of f? was sufficient
to describe the ensemble of sensing function measurements at Hanford throughout O1
and O2. The measurement ensemble of the Livingston detector in O1 and O2 showed
some evidence of detuning but at sufficiently low frequency, and hence f; was set to 0 Hz.
In O3A, a fixed, negative value of f2 was sufficient to describe detuning in the Livingston
detector. The Hanford detector measurements, however, now show clear evidence for
detuning responses with both f2 > 0 and f2 < 0.
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There is also evidence for two-way cross-coupling between the DARM and angular
control systems at Hanford in O3A, further modifying the response below 20 Hz. To
avoid point defects [37], the Hanford detector alignment scheme has been modified to
position the laser light impinging on arm cavity optics away from the center of the
optics. Angular motion of the optics will therefore be sensed as DARM length change,
and actuators used for angular control create DARM length change. When there is a
second cross coupling from DARM length to the angular sensors, the angular control
loop response impacts the measured sensing function. In that case, C™) shows a
complex, low-frequency response inconsistent with detuning and (5).

While the Hanford sensing function is more complicated than (5) in O3A, we
nevertheless use continuous measurements of fs to monitor changes in the sensing function.
These measurements show a consistent evolution of f2 from positive to negative over the
first ~2 hours after the detector achieves “observation-ready” performance but before
reaching thermal equilibrium. Once thermal equilibrium is achieved, the continuously
monitored value stabilizes and shows only small variations at the level of |Af?] < 1 Hz%
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Figure 10. Examples of O3A weekly sensing function measurements at Hanford in
magnitude (top) and phase (bottom). The left panels show two measurements that
behave like (5), with positive and negative f? values indicated in the legend. The
right panels show a measurement that cannot be explained by (5). Vertical error bars
crossing the markers indicate uncertainties of the measurements, most of which are too
small to be seen by eye.
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Figure 10 shows several examples of sensing function measurements at Hanford in
O3A. The left panels show the comparison between (5) and two response measurements
dominated by detuning. The right panels show an example measurement in which the
low frequency response is dominated by angular cross-coupling.

We conclude that the Hanford sensing function low-frequency response depends on
the complicated interaction between detuning, cross-coupling, and the thermal state of
the detector as exemplified by the measurements presented in this section. Since these
effects are not modeled and poorly monitored, we use the discrepancy between model
and the collection of weekly measurements to represent this deficiency as an unknown
systematic error below 20 Hz using GPR described in section 4.3. Further limitations of
(5) at frequencies above 20 Hz are discussed in section 4.4.

4.8. Accounting for unknown static frequency dependence

Unknown systematic errors are accounted for by computing the complex-valued residuals
between the model and measurements of the sensing and actuation functions. Weekly
measurements taken throughout each epoch, including data at frequencies above 1 kHz
and over relevant frequency bands (discussed in further detail below), are taken into
consideration. Each measurement of these interferometer components has all known loop
sub-components and all known TDCFs applied such that only unidentified systematic
and measurement statistical uncertainty remain, resulting in measures of 7o and n4,. The
complex-valued frequency dependence and uncertainty of these residuals are characterized
using the GPR method [38, 39]. The posterior results from the GPR are then used as
part of the overall response function uncertainty calculation [15].

The GPR trains on the residual data using a physically motivated covariance kernel,
defined as

b (log().og(/)) = 7+~ exp (— Sutiisb 8 ) , 21

where {v1,7,, ¢} are the hyperparameters of the covariance kernel with the following
bounding values [39]; v; € [0.9,1.1], 72 € [0.1,2.0], and ¢ € [0.5, 1.5], which respectively
represent the magnitude scale of the residual (ideally unity), the amount of frequency-
dependent correlation (ideally none), and if present, the “length” (in log scale) over which
adjacent frequency points are correlated. Previous analysis in O1 and O2 determined
the covariance kernel hyperparameters via GPR of the magnitude and phase residuals
separately for each of the sensing and actuation functions [15]. For O3, we determined
the covariance kernel for the complex-valued residuals such that correlations between
magnitude and phase are preserved in the residuals for a given model. In addition,
previous analysis provided more hyperparameters of the covariance kernel and did
not restrict the parameter values away from unphysical regions of parameter space
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(e.g., covariance between complex-valued residuals of nearby frequency points should
be preserved whereas residuals from widely spaced frequencies should have very small
covariance). This updated kernel, hyperparameter ranges, and use of the complex-valued
residuals addresses all of these issues.
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Figure 11. Gaussian Process Regression results of the systematic error in Hanford
sensing model [O3A Epoch (c¢)]. The red markers are the residuals between all the
sensing measurements and the model in magnitude (top) and phase (bottom). The
dark grey curve is the best prediction of the systematic error. The light grey shaded
region indicates the 1o uncertainty on the systematic error. Only the residual data
points to the right of the dashed vertical line are used in the GPR process.

Measurements of the Hanford sensing function during O3A have shown significant
deviations from the reference model at frequencies <20 Hz (see section 4.2). It has
proven difficult to model and track these changes a priori, so the variations are included
as part of the residuals. Figure 11 shows the measured residuals together with the
GPR posterior confidence intervals. Regular measurements shown in figure 11 are taken
after the Hanford detector reaches thermal equilibrium so that they are not under
special conditions with the presence of the extreme low-frequency response discussed
in section 4.2. In other words, these regular measurements cannot fully represent the
Hanford low-frequency response. Data points below 20 Hz (to the left of the black dashed
vertical line) are therefore excluded from the GPR process so that the sensing response
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in that frequency range is treated as entirely unknown. In addition, for the Hanford
sensing function residuals only, the allowed range for the frequency correlation length (in
log scale) is modified to be shorter (¢ € [0.01,0.5]) so that the low-frequency uncertainty
appropriately represents the expected features as seen in section 4.2.

Although the Hanford sensing function residuals and, in turn, the posteriors from
the GPR, are larger at frequencies below 20 Hz, the actual impact on the response
function uncertainty is small. This is because the contribution to the response function
by the sensing function is smaller at low frequencies than the contribution from actuation
stages [i.e., below 20 Hz, the values of the purple curve in figure 4(a) are at least a factor
of 2 times smaller than the total A curve]. The Hanford actuation measurements do
not show such residual variations as those seen in the sensing measurements. No such
variation is seen in any interferometric measurements of the Livingston detector.
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Figure 12. Gaussian Process Regression results of the systematic error in Hanford
UIM actuation model [O3A Epoch (c¢)]. The panels on the right are zoomed in on
the vertical axis to display the error and uncertainty in the band of interest. The red
markers are the residuals between all the UIM actuator measurements and the model
in magnitude (top) and phase (bottom). The dark grey curve is the best prediction
of the systematic error. The light grey shaded region indicates the 1o uncertainty on
the systematic error. Only the residual data points in between the two dashed vertical
lines are used in the GPR process.

In addition to the sensing function, it is instructive to consider the GPR for the
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UIM stage. Measurements for UIM actuation stages at both detectors are consistent
with model expectations between 6 and 50 Hz, so only data within this frequency range
are used by the regression (see, for example, Hanford results in figure 12). Similar to the
sensing function below 20 Hz, the UIM contribution to the response function above 50 Hz
is negligible (see figure 4). Outside this band, especially above 50 Hz, measurements do
not agree with the model. Restricting the regression from 6 to 50 Hz may not accurately
reflect the potentially large systematic error between the model and measurements above
50 Hz. The impact of neglecting this systematic effect above 50 Hz, however, is negligible
because of the small UIM contribution. This is discussed further in section 4.4.

4.4. Quantifying uncompensated systematic errors

Some features of the detector response are known but excluded, even in the most-accurate,
offline production of h. The resulting errors from excluding these features are small
enough that they do not significantly contribute to the systematic error in the response
function at frequencies between 20 and 2000 Hz, and only contribute appreciably at
frequencies above 2000 Hz, or in narrow frequency bands within the 20-2000 Hz region.
We discuss and quantify these features in this section for completeness and potential
future importance, but do not include their impact in the final numerical estimate of the
systematic error and uncertainty in h for simplicity.

We name and enumerate the negligible sources of errors as follows: (a) FIR filters
used to reproduce the offline h data stream do not perfectly recreate the model at all
frequencies; (b) intentionally applied low-pass and high-pass filters for improved data
handling distort the data below 10 Hz; (c) the cross-coupling with auxiliary degrees
of freedom in the actuation or sensing models is excluded; (d) the model of the UIM
force-to-displacement transfer function is imperfect; (e) there are not well quantified
residual time delays between actuator stages; (f) the amount of SRC detuning may
impact the approximated coupled-cavity-pole-like response; (g) the periodic response
of the Fabry-Pérot cavities to length changes is excluded; (h) measurements of the
sensing function can be confused by the non-rigid-body displacement of the test masses
in the presence of Pcal forces; (i) the uncertainty in the timing synchronization between
multiple elements of the DARM control system is excluded.

(a) FIR filters cannot perfectly reproduce all details of the DARM loop model across
all frequencies. In the frequency band from 10 Hz to 6 kHz, however, these errors
are generally less than 0.1% in magnitude and 0.1 deg in phase. Figure 13 shows
a comparison between the FIR filter implementation of R(™m°dD(f) in the offline
calibration pipeline and the frequency-domain DARM model. Some narrow-band
systematic errors can be seen in the residual (right panels), caused by sharp spectral
features that are difficult to resolve using FIR filters only a few seconds in duration.
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Figure 13. Comparison between the effective response function implemented by the
FIR calibration filters (blue) and the frequency-domain model of the response function
(red) at Hanford. The left panels show the response functions, and the right panels show
the residuals. The top and bottom panels are for magnitude and phase, respectively.
Note that the sharp, narrow-band feature from the UIM actuator dynamics (e.g., at
~150 Hz) is difficult to model with short FIR filters (see detailed discussion in text).

A Kaiser window is applied to the FIR filter in the time domain, resulting in
a frequency resolution of ~3 Hz. Such errors mostly originate from the filters
that model the actuation system, especially the UIM stage at Hanford. Figure 14
displays the comparison between the frequency response of the UIM FIR filter and
the frequency-domain model at Hanford. Narrow-band systematic errors caused
by the limitation of short-duration FIR filters are left uncompensated. This is a
compromise between the data-loss due to FIR impulse response settling and the
accuracy of reproducing the sharp spectral features.

Below 10 Hz and above 6 kHz, the detector sensitivity degrades rapidly, and the data
become dominated by AL that is not of astrophysical origin. For convenience in
data handling, as well as the prevention of spectral leakage or aliasing, aggressive
high-pass and low-pass FIR filters (with corner frequencies of 9 Hz and 6 kHz,
respectively) are applied in post-processing in both the low-latency and high-latency
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Figure 14. Comparison between the frequency response of the UIM actuation filter
(blue) and the frequency-domain UIM model (red) at Hanford. Panels on the left and
right display the two UIM transfer functions and the fractional residual between them,
respectively. The top and bottom panels are for magnitude and phase, respectively.
The sharp features from ~100-500 Hz are difficult to resolve with short FIR filters.

calibration pipelines. The well-understood systematic error resulting from these
additional FIR filters only impacts these extreme frequency regions.

The physical construction of the detectors minimizes the cross-coupling between
auxiliary control loops and the DARM loop. The auxiliary loop control designs are
adjusted to further reduce this cross-coupling as the detectors sensitivity is improved.
Section 4.2 describes the first evidence of undesirable interactions between auxiliary
control loops and the DARM loop during an observation period. While more
sophisticated models that account for these interactions are academically interesting,
future improvements to the detector hardware and control system parameters will
render complex models unnecessary. Residual errors from cross-coupling effects are
accounted for with techniques described in section 4.3.

The UIM-to-TST, force-to-displacement (i.e., force from UIM stage to displacement
at TST stage) transfer function shows a number of resonant features above 50 Hz
(as discussed in section 4.3; see figure 12). In the mid-frequency band (50-250 Hz),
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the features result from the twisting and/or bending of the UIM stage vertical
blade springs in the longitudinal direction as a result of the force producing AL,
Between O2 and O3, damping mechanisms were modified on the UIM vertical
isolation blade springs (see [40] for details). The increased weight of these improved
dampers lowered the bending mode frequencies of the blades, changing the force-to-
displacement transfer function for the UIM. While these improved dampers change
the bending modes in similar ways for both Hanford and Livingston detectors, the
impact is only significant on the Hanford response function because of different
choices in Fy; between two detectors [compare figures 4(a) and 4(b)]. These changes
were not included in the UIM actuator model, resulting in an underestimate of the
contribution from Ay to R around the frequency of the bending mode resonances.
This results in three narrow, resonant features appearing in spectra of the Hanford
calibrated data stream in the band 150-155 Hz. These narrow features have a
maximum excursion (~1 Hz width) of £3% in magnitude and 3 deg in phase. Careful
inspection of figure 15 (discussed later in section 5) at ~150 Hz hints at this error
but does not resolve it in the overall systematic error estimate. Recent investigations
and efforts (after O3A finished) have resolved this error. The correction will be
applied in the UIM actuator model after O3A. But it remains an uncompensated
systematic error in the Hanford O3A data.

The estimate of the overall residual time delay from each actuation stage is
determined by the MCMC fit. However, as shown in figure 12 and discussed
above, the data input to the MCMC may include discrepancy between the model
and measurement unrelated to a time delay. In that case, fitting for only a scalar H;
and a delay 7; is incorrect. We thus, after accounting for all understood time delays,
restrict the frequencies of the MCMC to a band where an actuator transfer function
appears to be frequency-independent in order to determine H;. Any remaining
uncertainty in timing for each actuator stage (7;) or in the sensing function (7¢) is
determined via GPR as described in section 4.3.

In (5) we assume the SRC detuning effect is small enough that the coupled-cavity,
single-pole response of the coupled arm and SRC cavities (the first parenthetical term)
and the detuned SRC response (the second parenthetical term) can be separated
and parameterized independently by f.. and f;. The physical model from which (5)
was derived [23, 41], however, suggests that the response at frequencies ~300 Hz and
above may no longer be described by f.. alone when SRC detuning is sufficiently
large. The amount of detuning is proportional to any modification between the
GW signal phase and the phases determined by two physical quantities: (a) the
homodyne phase ¢, which could deviate from its nominal value due to unintended
small imperfections in the instrument, and (b) the signal extraction phase ¢sgrc
determined by the SRC cavity length. Both ¢ and ¢ggrc are nominally 90 deg. The
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residual between the physical model response and the approximate model response
in (5) shows the systematic error is frequency dependent, but does not exceed 1% in
magnitude or 1 deg in phase at frequencies below 1 kHz for the measured extremes
of detuning, |f?| < 75 Hz? (or equivalently, |¢src — 90°] < 1° and |[¢ — 90°] < 3°).

The above mentioned single-pole response is also an approximation to the complete
response of the Fabry-Pérot arm cavities fluctuation in their lengths [42]. This
approximation leads to errors in the sensing function at high frequencies above
1 kHz in both magnitude and phase (larger in phase). The resulting phase error is
compensated by an artificial time delay of —11.7 microseconds, included in 7¢ [the
last term in (5)]. The magnitude error, increasing with frequency up to 4% at 5 kHz,
is left uncompensated [43]. The systematic errors in magnitude and phase resulting
from these two approximations [(f) and (g)] of the detector full opto-mechanical
response are accounted for in the uncertainty of unknown systematic error via GPR.

During Pcal excitation (zpc), the actuation forces deform the test masses in
their natural bending modes, producing a deformation-induced, arm cavity length
variation (not equivalent to the displacement of center of the mass) sensed by the
interferometer. This phenomenon impacts the accuracy of ALp., at high frequencies
(2 1 kHz) to a level depending on the positions on the test mass surface where the
Pcal beams reflect [13, 25]. We estimate that the reflecting positions are within
+2 mm of their optimal locations (close to the nodal circle of the dominant mode).
The magnitude error in the estimate of Hp., due to the deformation is < 0.1%
below 1 kHz, increases with frequency, and reaches at most ~ 5% at 5 kHz [25]. The
phase error may also increase with frequency, but is expected to be less than 0.5 deg
even at 5 kHz. This may limit the accuracy of the long-duration measurements used
to characterize the sensing function. We see no evidence for this error exceeding all
other known and unknown systematic errors above 1 kHz (e.g., see figure 11). As
such, this effect has been excluded from Hp.y.

Finally, within a given detector, the analog and digital components of the DARM
loop are synchronized via a sophisticated timing system [44]. The uncertainty in
synchronization of these components is less than 1 microsecond throughout O3A [45].
The frequency-dependent phase impact from timing uncertainty on an individual
detector is believed to be within the bounds of the unknown systematic error, nc
or na, estimated via GPR, and hence is not explicitly accounted for. The GW
detectors within the network are synchronized to each other via the GPS receivers
of the timing systems. The network timing uncertainty, estimated to be at the level
of 10 microseconds [46], is negligible compared to the uncertainty in estimates of
the time-of-arrival for any GW event (typically at the level of 1 millisecond).
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5. Combined error and uncertainty estimate

In this section, we quantify the overall combined systematic error and uncertainty present
in the detector response via a numerical approach. As a reminder, systematic errors
presented here are not corrected in the final estimated h data stream (see section 1).
Section 5.1 describes the method of estimating the combined error and uncertainty at
a given time. With the collection of time-specific statistics obtained using the method
described in section 5.1 at a 1-hour cadence throughout the observing run, we evaluate the
variation of the combined error and uncertainty over time in section 5.2. In section 5.3,
we discuss the features seen in the numerically estimated error and uncertainty, and
briefly describe how the calibrated data stream and these estimated error and uncertainty
are used in astrophysical analysis.

5.1. Estimate at a given time

We numerically estimate the combined estimate of systematic error and uncertainty,
nr(f;t), in each detector’s response function at a given time ¢ as follows.
Ten thousand response functions, R;(f;t), are constructed with
1
Ri(f:t) = pca, + 14, (F)ANS f:)D(f) | - (25)
ne,(f)C(AL; fit)

Here, i indexes each response function and all draws associated with it. The ith

sensing and actuation functions C'(A{; f;t) and A(A#; f;t) are constructed using (7)
and (8), with the ith draw from the MCMC posterior distributions of the reference
model parameters, A and A (section 3.3). Within the time-dependent C(AY; f,t) and
A(XD; f,t), TDCFs at time ¢ are applied (section 4.1). To account for the uncertainties
of the TDCF's, we draw TDCF samples from normal distributions centered at the values
recorded at time ¢t with 1o standard deviation calculated using (19). The complex-valued,
fractional, frequency-dependent residual functions, n¢,(f) and n4,(f), are drawn from
the sensing and actuation GPR posterior distributions, respectively (section 4.3). Note
that here we do not explicitly split out the three stages in A, and use 7 in 74, to index
the samples of the residual in total A. By drawing samples from the MCMC and GPR
posterior distributions, the covariance between parameters in A® or A4, and covariance
between frequency points of 7¢, (f) or na,(f), is preserved. Finally, npca), is an overall
multiplicative real-valued scale factor drawn from a normal distribution centered at
Npeal for each detector, with 1o standard deviation equal to the Pcal system uncertainty
(section 3.1). This factor accounts for the Pcal uncertainty and systematic error common
to all interferometric measurements and TDCF computations for a given detector.
Therefore it is convenient to apply 7pca, to each R;(f;t) rather than equivalently to
Hp.a, or to each interferometric transfer function and TDCF calculations that involve
ALpca.
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The time-dependent MAP response function Ryap(f;t) is constructed with the
MAP parameters of the sensing and actuation functions (A{;,p and Afy,p), similar to (3),
given by

Ryvap(fit) = m + A(Map: [0 D(f)- (26)

At time ¢, if the time-dependent systematic error is removed from the estimated h data
stream, it is equivalent to having a corrected Ryap function with the TDCFs recorded
at that time applied to C(A{ap; fit) and A(Aap; f;t). Otherwise the reference TDCF
values are used when computing (26), i.e., systematic errors due to the uncorrected
TDCFs are left in the estimated h for that time.

We then divide each R;(f;t) by Rmap(f;t) to create the probability distribution of
nr(f;t). At any given time ¢ and frequency f, the median (50th percentile) value of the
distribution ng(f;t) represents the total systematic error in R™°d°)(f:¢) at that time
and frequency (generally not expected to equal zero due to the residual systematic error).
The 16th and 84th percentiles represent the lower and upper bounds, respectively, of
the combined systematic error and 1o statistical uncertainty in R™°%(f;¢). As such,
these percentiles of ng(f;t) represent the complex-valued, frequency-dependent, overall
uncertainty and systematic error bounds of h at time ¢.

An example of the combined uncertainty and error estimate, ng(f;t), for the Hanford
detector is shown in figure 15. The vertical axes indicate the excursions of ng(f;t) from
zero systematic error, i.e., unity magnitude (top panel) and zero phase (bottom panel).
The solid curve shows the median value of ng(f;t), indicating the best estimate of the
frequency-dependent systematic error in the response function at that time. The dashed
curves bounding the shaded region represent the collection of 1o uncertainties, including
that of the systematic error. The red dots show a swept-sine measurement of hL/A Lpea
taken on September 16, 2019, that aligns with the estimate of ng(f;t) at that time
within the frequency band 20-1000 Hz. Some measured data points at frequencies below
20 Hz deviate from the median curve and exceed the 1o uncertainty bounds. This is a
hint of the systematic error induced by, e.g. detuning between the SRC and the arm
cavities (see section 4.2), or resonant modes of the quadrupole suspension actuator stages
that are not sufficiently accounted for when estimating ng(f;t). The single outlying
data point around 150 Hz is caused by the imperfect dynamical model of the UIM stage
at Hanford (see section 4.4). The distribution of ng at any given frequency and time
is generally Gaussian. In Appendix C, we show the ng distribution at a cross section
of 20.57 Hz in figure 15, close to the lower end of the 20-2000 Hz band. The median
and mean values of ng overlap each other, as shown in figure C1. Other sample cross
sections at 99.58 Hz and 509.15 Hz are examined and the distributions are similar. We
show one example in Appendix C for brevity.
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Figure 15. Combined error and uncertainty estimate at the reference time of Epoch (c)
for the Hanford detector. The top and bottom panels show the frequency-dependent
excursions of the response from unity magnitude and zero phase compared to Ryap,
respectively. The dashed curves indicate the 16th and 84th percentiles of the ng
distribution. The solid curve is the median of the ngr distribution, indicating the
best estimated frequency-dependent systematic error in R(™°9¢D)  The shaded region
bounded by the dashed curves represents the 1o uncertainty bounds on the systematic
error. The red dots show a set of validating measurement taken on September 16, 2019,
which are generally consistent with the overall uncertainty estimate. Vertical error bars
crossing the markers indicate uncertainties of the measurements, most of which are too
small to be seen by eye.

5.2. Estimate over time

Estimates of the combined systematic error and uncertainty over longer periods are
generated using the collections of time-specific estimates described in section 5.1. To
quantify the final calibration accuracy and precision in O3A, the entire duration is split
into three epochs for Hanford, and two for Livingston (see table 1). Each epoch is defined
by a physical configuration change in the detector. Within each epoch only TDCFs
vary. Previous shorter-duration observing runs did not require intra-run epochs, hence
estimates of systematic error and associated uncertainty were constructed for those entire
observing runs [15]. In O3A, the combined uncertainty and systematic error for each
epoch is quantified using the collection of percentile curves of ngr(f;t) described above,
and shown in figures 16 and 17.
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The procedure of calculating these results is as follows. First, the distribution of
nr(f;tx) is computed with a 1-hour cadence during observing periods, i.e., t; takes
discrete values with 1-hour cadence. Second, we compute the 16th, 50th, and 84th
percentile curves from each of these distributions representing the systematic error and
1o uncertainty bounds at that time (i.e., the lower, median, and upper curves shown in
figure 15). We denote the 16th, 50th, and 84th percentile curves at time t;, by —o,,, (f; tx),
nr(f;tk), and +0,,(f;tr). Third, all hourly percentile curves within an epoch form
a complex-valued, frequency-dependent “epoch distribution” of systematic error and
uncertainty estimates (the medians and the upper and lower uncertainty bounds). For
computational reasons, we make use of the condensed statistics, i.e., —o,, (f;tx), Tr(f;tk),
and +0,,, (f; tx), rather than saving all 10* samples collected at each ¢;. Finally, within
each epoch, the median of 7z (f;tx) and the distribution of +o,,,(f;t) for all ¢; are used
to determine the variability of those hourly condensed statistics and the rate that the
upper and lower bounds exceed a given value (frequency-dependent; in magnitude and
phase). For the rest of the paper, we call these distributions constructed from hourly
condensed statistics, “epoch distributions”.

In the left panels of figures 16 and 17, the white curves, i.e., the median of 7r(f; ),
indicate the estimated frequency-dependent systematic error for each epoch. The 68%),
95%, and 99% confidence intervals of the 1o uncertainty boundaries in the epoch
distributions are shown as dark, moderate, and light shaded regions, respectively. The
upper and lower bounds of the 68% shaded region are, respectively, the 84th percentile
of +0,,(f;t;) and the 16th percentile of —o,,(f;t;). Similarly, the 95% and 99%
shaded regions can be constructed from the distributions of o, (f; ). These epoch
distributions quantify the time-dependent variation of the combined uncertainty and
systematic error bounds over the entire epoch. Figures 16(b), 16(c), 17(a), and 17(b)
show that the variation of the overall uncertainty bounds is generally negligible (i.e., the
68%, 95%, and 99% interval boundaries almost overlap in each epoch). Figure 16(a),
however, shows that the variation of the uncertainty bounds during the first epoch of
O3A for the Hanford detector is not negligible. The 95% and 99% intervals deviate from
the 68% interval due to uncorrected ry(t) and kp(t) variations during the first 16 days
of the first epoch at Hanford (see section 4.1).

In the right panels, we introduce a simplified presentation of the results, for the
convenience of discussions and comparisons in astrophysical communities. For brevity,
the systematic error and uncertainty estimate for a given epoch across a given frequency
band is quoted by two numbers (one for magnitude and the other for phase), which
indicate the maximum excursions from zero systematic error in that band. The maximum
excursion values are determined as follows. First, in each epoch and at all frequencies, the
absolute values of both the upper and lower bounds of the 68% epoch-distribution interval
(dark shaded region in the left panels) are computed. Then, a frequency-dependent
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curve (dashed) is formed by taking the larger of the two absolute values at any given
frequency. The solid curve in each of the right panels represents the absolute values of
the white median curve on the left. Finally, the maximum value of these curves in the
right panels is determined within a frequency band, over which a given GW analysis is
conducted. We give an example in this figure for the most sensitive frequency band of
20-2000 Hz. The star and dot markers indicate the maximum excursions in the frequency
band 20-2000 Hz, corresponding to the 68% bounds and median value of the epoch
distribution at the indicated frequencies, respectively. The values of these markers in
each epoch for each detector are listed in table 3. The maximum median values represent
the best estimate of the systematic error bounds in the band 20-2000 Hz.

Table 3. O3A calibration epochs and the maximum 1o and median excursions of
response from unity magnitude and zero phase compared to Ryap, in the frequency
band 20-2000 Hz. The maximum median values represent the best estimate of the
systematic error bounds.

Hanford epoch Max 1o Max 1o Max median Max median
magnitude [%] phase [deg] magnitude [%] phase [deg]

(a) Mar 28-Jun 11  6.96 3.79 1.58 0.86
(b) Jun 11-Aug 28 4.11 2.34 1.15 0.92
(c) Aug 28-Oct 1 3.33 1.53 1.42 1.00
Livingston epoch Max 1o Max lo Max median Max median

magnitude [%] phase [deg] magnitude [%] phase [deg]

(a) Mar 28-Jun 11 6.37 3.49 1.13 1.59
(b) Jun 11-Oct 1 5.99 3.68 1.09 2.09

As detectors have become more sensitive and more transient GW events are observed,
it is desirable to frequently deliver offline-calibrated data and estimates of the systematic
error and uncertainties to GW analyses. Therefore, in O3A (and for future observing
periods), that data and the overall uncertainty for collections of epochs as described
above are delivered in ~3-month intervals, the boundaries of which are coincidentally
aligned with those of the Hanford epochs. Balancing the requirements of (a) delivering
high-quality data and uncertainty estimates quickly and (b) maintaining systematic error
at a level that does not impact astrophysical parameter estimation requires that we do
not intend to revise data or estimates of previously vetted intervals, unless circumstances
are extraordinary.

5.3. Interpretation and discussion

Astrophysical parameter estimation for any GW event in O3A has used the most accurate,
offline-calibrated data [5, 6, 7, 8]. The calibration systematic error and uncertainty folded
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into the parameter estimation is informed by the single hourly ng(f;t) distribution for
the time closest to the event (e.g., figure 15). A five-point interpolation of the frequency-
dependent 68% confidence boundaries is used as an approximation to the full ng(f;t)
distribution at the sample time closest to the event [47, 48]. In searches for persistent
astrophysical signals, the offline calibrated data and the 68% confidence bounds from
each epoch distribution is used as representative of the uncertainty and systematic error
estimate for the entire duration of the search (e.g., figures 16 and 17).

Throughout all epochs of O3A, the systematic error is less than 2% in magnitude
and 2 deg in phase in the band 20-2000 Hz at both detectors (as indicated by the
solid curves in the right panels of figures 16 and 17; see table 3 also). As discussed in
section 5.2, we expect GW events within a given epoch to have the same estimated
systematic error defined by the physical configuration of the detector. In the first epoch
at Hanford [figure 16(a)], the uncertainty on the systematic error is larger than usual
in the 1-4 kHz frequency band because no measurement had yet been made in that
band. The uncertainty estimate is also larger in the first epoch at Livingston because
measurements in the 1-4 kHz band were sparse [figure 17(a)]. Also at Livingston, the
increase in the contribution of the TST actuator to the response function at ~50 Hz
that occurred between O2 and O3A [as shown in figure 4(b)] leads to the relatively
higher uncertainty around 50 Hz, as shown in figure 17. We anticipate reduction of this
uncertainty at ~50 Hz in future observing runs.

The LIGO Scientific Collaboration and Virgo Collaboration use near real-time
analyses to quickly process data in search of transient GW sources, enabling multi-
messenger astrophysics [49]. These analyses use the low-latency estimate of h for
detection of GW events and preliminary parameter estimation. Low-latency data,
however, occasionally contains increased systematic errors due to a variety of factors.
The increased systematic errors are often reduced after a short period (~weeks). The
maximum systematic error in the low-latency data does not exceed 6% in magnitude
and 5 deg in phase at Hanford, and does not exceed 10% in magnitude and 6 deg in
phase at Livingston across the frequency band 20-2000 Hz at any time during O3A.
This is verified by comparing the low-latency product hL to ALp., during various forms
of Pcal measurements in the 5-1200 Hz band made periodically throughout O3A (e.g.,
as shown in figure 15). Although the systematic error and associated uncertainty is
larger in the low-latency calibrated data than in the high-latency data, analyses using
the low-latency data can nevertheless confidently detect GW events and make rapid
astrophysical parameter estimates. Near real-time analyses have been shown to be robust
against calibration errors of this scale [50].
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6. Conclusion

In this paper, we (1) review the procedure for creating a model of the DARM loop used
to produce the calibrated data streams, h, for the Advanced LIGO detectors; (2) present
the systematic errors incurred at each stage of that procedure; and (3) quantify the
resulting overall accuracy and precision for the most accurate, offline version of h used
for GW astrophysical parameter estimation in O3A. The discussion of systematic error
includes all known sources, and, where possible, how they have been accounted for in h or
in the overall systematic error and uncertainty estimate. In O3A, the overall, combined
systematic error and associated uncertainty of the most accurate, offline-calibrated data
is within 7% in magnitude and 4 deg in phase in the frequency band 20-2000 Hz. In this
same band, the systematic error alone is estimated to be below 2% in magnitude and
2 deg in phase. This is similar to the accuracy and precision as achieved by LIGO in
02 [15]. Current detection of GW events and estimation of their astrophysical parameters
are not yet limited by such levels of uncertainty and systematic error [8, 47].

As the global GW detector network sensitivity increases, however, detector
calibration systematic error and uncertainty plays an increasingly important role.
Limitations caused by calibration systematics on estimated GW source parameters,
precision astrophysics, population studies, cosmology, and tests of general relativity are
possible. For example, correlated systematic errors in the estimated luminosity distance
of high-SNR GW events due to calibration systematic errors could bias estimates of
the cosmological Hubble constant, Hy. Efforts to better integrate the work presented
in this paper into future GW event astrophysical parameter estimation are ongoing,
including the use of the full, numerically evaluated, distribution of systematic error and
uncertainty. These efforts will enable quantifying the impact of calibration systematics
on individual GW events as well as studies that rely on a population of GW events.
Additionally, these efforts guide research and development of new techniques currently
underway to further reduce combined calibration systematic error and uncertainty below
the 1% level, a key milestone towards minimizing impacts of calibration systematics on
astrophysical and cosmological results.
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Figure 16. Variation of the combined systematic error and uncertainty (left) and the
maximum bounds (right) for Hanford. The three subfigures correspond to Hanford
epochs (a)—(c) in table 3. The top and bottom panels of each subfigure show the
frequency dependent excursions of response from unity magnitude and zero phase
compared to Ryap, respectively. The percentiles are obtained from all the hourly
evaluated ngr(f;tx) over each epoch. In the left panels, the colors represent lo
uncertainty for 68%, 95%, and 99% of the run time, as indicated in the legend. The
white curve indicate the median excursion. The absolute values of the boundaries
(median and 68%) in the left panels are plotted on the right. The star and dot markers
indicate the median and 1o maximum excursions in the frequency band 20-2000 Hz,

respectively.
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Figure 17. Variation of the combined systematic error and uncertainty (left) and the
maximum bounds (right) for Livingston. The two subfigures correspond to Livingston
epochs (a)—(b) in table 3. The top and bottom panels of each subfigure show the
frequency dependent excursions of response from unity magnitude and zero phase
compared to Ryap, respectively. The percentiles are obtained from all the hourly
evaluated ngr(f;tx) over each epoch. In the left panels, the colors represent lo
uncertainty for 68%, 95%, and 99% of the run time, as indicated in the legend. The
white curve indicate the median excursion. The absolute values of the boundaries
(median and 68%) in the left panels are plotted on the right. The star and dot markers
indicate the median and 1o maximum excursions in the frequency band 20-2000 Hz,
respectively.
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Appendix A. Impact of uncorrected TDCF's

The figures in this appendix show the impact of uncorrected TDCFSs, f.., k1, kp, and

ku, on Hanford detector response (see details in section 4.1).
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Figure Al. Magnitude (top) and phase (bottom) of the fractional error ng,c — 1
in the Hanford detector response [O3A Epoch (¢)] as a function of frequency due to
uncorrected time-dependent coupled cavity pole frequency, f... The reference value of

fec 18 410.6 Hz.
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Figure A2. Magnitude (top) and phase (bottom) of the fractional error ng. 4, — 1
in the Hanford detector response [O3A Epoch (c)] as a function of frequency due
to uncorrected gain variations in the TST actuation stage, tracked by the scalar

time-dependent factor, K.
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Figure A3. Magnitude (top) and phase (bottom) of the fractional error ng,4, — 1
in the Hanford detector response [O3A Epoch (c)] as a function of frequency due
to uncorrected gain variations in the PUM actuation stage, tracked by the scalar

time-dependent factor, kp.



1.10
1.05 é
21.00
-
~ /J
0.95{ - 2
1 l
090 10" 102 10°
Frequency (Hz)
110 pr : ‘
2 \
1.05{= U/ i
21.000
0.95
|| & T
0.90 : \

[FH10

ot

0

ot

0

Frequency (Hz)

10°

Magnitude (%)

Phase (deg)

49

Figure A4. Magnitude (top) and phase (bottom) of the fractional error ng, 4, — 1
in the Hanford detector response [O3A Epoch (c)] as a function of frequency due
to uncorrected gain variations in the UIM actuation stage, tracked by the scalar
time-dependent factor, Ky .

Appendix B. Impact of complex-valued actuator TDCFs in early O3A

The figure in this appendix shows the estimates of systematic error and associated
uncertainty using the collection of percentile curves of ng(f;t) in the first epoch. The
comparison of two cases are shown side-by-side: only the real-valued actuator TDCF's
are applied (left) and the full complex-valued actuator TDCFs are applied from April 16
to June 11, 2019 at Hanford and from April 1 to June 11, 2019 at Livingston (right).

See discussions in section 4.1.
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Figure B1. Variation of the combined systematic error and uncertainty for (a) Hanford
and (b) Livingston in the first epoch in O3A. The top and bottom panels of each
subfigure show the frequency dependent excursions of response from unity magnitude
and zero phase compared to Ryap, respectively. The percentiles are obtained from
all the hourly evaluated ngr(f;tx) over the first epoch. In the left panels, the results
are obtained when only the real-valued actuator TDCFs are applied [equivalent to
figures 16(a) and 17(a) in section 5.2]. In the right panels, the results are obtained
when complex-valued actuator TDCF's are applied from April 16 to June 11, 2019 at
Hanford and from April 1 to June 11, 2019 at Livingston. The colors represent 1o
uncertainty for 68%, 95%, and 99% of the run time, as indicated in the legend. The

white curve indicate the median excu

rsion.

Appendix C. Distribution of nz at a given time and a given frequency
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Figure C1. Distribution of nr at a cross section of 20.57 Hz at the reference time of
Epoch (c) for the Hanford detector. The left and right panels show the excursions of
the response from unity magnitude and zero phase compared to Ryap at 20.57 Hz,
respectively. The red solid and dashed lines indicate the median and 1o values of the
distribution. The black dashed line indicates the mean value of the distribution. The
median and mean values generally overlap each other. This figure is equivalent to the
ng distribution at a cross section of 20.57 Hz in figure 15.
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