Session 1B: Edge/intermittent
computing support — Life is too short!

Time-sensitive Intermittent Computing
Meets Legacy Software

Vito Kortbeek
Delft University of Technology
Delft, The Netherlands
v.kortbeek-1@tudelft.nl

Jacob Sorber
Clemson University
Clemson, SC, USA
jsorber@clemson.edu

Abstract

Tiny energy harvesting sensors that operate intermit-
tently, without batteries, have become an increasingly ap-
pealing way to gather data in hard to reach places at low cost.
Frequent power failures make forward progress, data preser-
vation and consistency, and timely operation challenging.
Unfortunately, state-of-the-art systems ask the programmer
to solve these challenges, and have high memory overhead,
lack critical programming features like pointers and recur-
sion, and are only dimly aware of the passing of time and
its effect on application quality. We present Time-sensitive
Intermittent Computing System (TICS), a new platform for
intermittent computing, which provides simple program-
ming abstractions for handling the passing of time through
intermittent failures, and uses this to make decisions about
when data can be used or thrown away. Moreover, TICS
provides predictable checkpoint sizes by keeping checkpoint
and restore times small and reduces the cognitive burden of
rewriting embedded code for intermittency without limiting
expressibility or language functionality, enabling numerous
existing embedded applications to run intermittently.
CCS Concepts. - Computer systems organization — Em-
bedded software; -« Hardware — Emerging architectures;
Impact on the environment; » Software and its engineering
— Runtime environments; Source code generation.

*Also with Ege University, [zmir, Turkey.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS °20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378476

Kasim Sinan Yildirim*
University of Trento
Trento, Italy
kasimsinan.yildirim@unitn.it

Josiah Hester
Northwestern University
Evanston, IL, USA
josiah@northwestern.edu

85

Abu Bakar
Northwestern University
Evanston, IL, USA
abubakar@u.northwestern.edu

Przemystaw Pawelczak
Delft University of Technology
Delft, The Netherlands
p-pawelczak@tudelft.nl

Keywords. Legacy Code, Compiler, Source Transformation,
Runtime, Energy Harvesting, Intermittent, Batteryless

ACM Reference Format:

Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber,
Josiah Hester, and Przemyslaw Pawelczak. 2020. Time-sensitive
Intermittent Computing Meets Legacy Software. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS °20),
March 16-20, 2020, Lausanne, Switzerland. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3373376.3378476

1 Introduction

Tiny embedded computing systems and sensor networks
have created a revolution [41]—changing how we monitor
buildings and other infrastructure, treat disease, and protect
endangered wildlife—but, the decades-old vision of ubiqui-
tous computing (and now the Internet of Things [4]) are
frustrated by energy storage issues. Today, most untethered
devices rely on batteries—fragile, short-lived, bulky, rela-
tively expensive chemical energy stores [24, 35]. Enabled by
improvements in energy harvesting technologies and low-
power circuit design, as well as the commercialization of byte-
addressable non-volatile memories (like FRAM, MRAM, and
ReRAM [8]), batteryless devices with minimal energy stor-
age that run solely off ambient scavenged energy, promise a
more scalable and sustainable alternative [19, 40, 46, 47].

Reducing energy storage to near-zero comes with conse-
quences across the stack, from the architecture to the pro-
grammer and user [27]. As energy harvesting conditions
fluctuate, power failures can occur frequently—as often as
many times per second [43, Fig. 1], [39, Fig. 1]. Power fail-
ures clear the volatile state of the processor; i.e. call stack,
program counter, heap and volatile registers, making it dif-
ficult to ensure forward progress (see Figure 1) and in some
cases endangering memory consistency [38]. As power out-
ages increase, data gathered and processed before a power
failure may no longer be relevant when a device turns back
on [20, 46], as the length of power failures can vary sig-
nificantly. Punctual computing is difficult when operation
is intermittent and clocks are imprecise. These issues have

https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3373376.3378476
https://www.acm.org/publications/policies/artifact-review-badging#available

Session 1B: Edge/intermittent
computing support — Life is too short!

Ideal Intermittent '
Computing System |

int data[N];
int activity, i=0; No manual

features_t f; porting effort 1
activity_t aa ~

void main(){
while(1){
for(i=0; i<N; i++){
data[i] = sample();

transform(data);

f= featurize(data);
a = classify(data);
send(a);

Energy

Activity Recognition
Legacy Code
(Battery Powered)

On Time

‘ Time (s)

Figure 1. An ideal programming model for intermit-
tent computing systems should remove the cognitive
burden of porting legacy software.

motivated numerous approaches for building power failure
resilient programs [27].

Today’s intermittent computing systems are either: (i)
traditional standard C programs paired with automatic or
manual checkpointing, e.g. [28, 39, 45], where the volatile
state of the processor is logged into non-volatile memory
and upon recovery from a power failure the computation is
continued from the latest logged volatile state, and (ii) task-
based programs, e.g. [6, 23, 31, 46], where developers break
programs into idempotent and atomic tasks (that can be
restarted when interrupted by a power outage) and describe
the control and data flow between tasks.

Unfortunately, with the aforementioned approaches, port-
ing the massive set of legacy software that runs on continu-
ous power to work with intermittent power, e.g. TinyOS [25]
programs from the past two decades of wireless sensor net-
work deployments, is cumbersome and requires massive
re-engineering. First, task-based programming requires sig-
nificant developer effort to transform a program to fit the
programming model [10]—developers are forced to decom-
pose logical operations (e.g. “classify activity”) into multiple
sub-tasks which are executable with the available energy
storage. This procedure is difficult for developers, especially
non-experienced ones—porting old code (or developing new
code) becomes time-consuming and applications become
incomprehensible and hard to debug due to task count ex-
plosion. Second, task-based programming does not allow
common programming language constructs, such as pointers
since it enforces a static memory model [46] —making auto-
matic (even non-automatic) transformation of legacy code
into task-based model impossible. On the other hand, check-
pointing systems remove the cognitive burden of porting,
but have high memory overhead and performance penalties
due to large checkpoints [9, 45]. Moreover, these systems
cannot execute all C-programs: in particular, pointers and
recursion might lead to checkpoints that will not fit into
the available energy storage and prevent the progress of
computation [10]— causing a system starvation. Even worse,
checkpointing systems do not allow semantics to handle
elapsed time and in turn they cannot handle time-sensitive

86

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

data that might be expired after a long power failure. De-
velopers have no way to easily inject decision points into
legacy software based on the time elapsed since failure can
occur in-between any lines of the code.

These issues beg the question: is there a way to bridge
the gap between time-sensitive intermittent computing and
legacy software designed for continuously-powered sys-
tems? As of now we are still far from an ideal intermittent
computing system that (i) removes the cognitive burden of
porting legacy software and enables unaltered C programs
(with standard programming constructs and any typical com-
piler optimizations enabled) to be executed on intermittent
power; (ii) provides semantic and syntactic mechanisms to
handle data freshness (and passing of time in general) for
timely execution of the application; and (iii) introduces low
memory impact and little performance penalty. These re-
quirements are necessary to enable widespread adoption of
intermittent computing.

In this paper, we propose TICS (Time-sensitive Intermit-
tent Computing System), a new intermittent computing sys-
tem designed with the goal of running time-sensitive code
on intermittent platforms via automatic checkpoints. TICS
enables programmers to (i) execute any kind of unaltered C
program (including pointers and recursion) by greatly reduc-
ing, as well as bounding, the overhead of checkpoint/restore
times—eliminating system starvation, and (ii) optionally an-
notate the program with structures to specify custom timing
requirements—protecting against timing errors that are never
seen in continuously-powered programs. The core scientific
contributions of this work are:

o Time sensitivity semantics for checkpoint-based inter-
mittent systems—enabling, for the first time, declara-
tive annotations for intermittent applications to han-
dle the passing of time in-between power failures and
to eliminate time consistency violations particular to
intermittent systems;

e Memory consistency management for checkpoint-based
intermittent systems by combining data versioning and
stack segmentation to bound checkpoint/restore times—
enabling, for the first time, execution of unaltered C-
programs—including pointers and recursion-without
system starvation and endangering memory consis-
tency, and providing foundation for memory isolation,
I/O access and interrupt handling;

e An open source portable runtime for developers (re-
leased via [2])—enabling, for the first time, widespread
adoption of intermittent computing by allowing port-
ing of several unmodified, as well time annotated legacy
code, to the intermittent computing platforms.

2 Battery-free Intermittent Systems

The community around wireless sensor networks has
worked together to enable long-term, affordable, sustain-
able sensing across many application domains, ranging from

Session 1B: Edge/intermittent
computing support — Life is too short!

wildlife tracking [15, 42, 48] to infrastructure monitoring [7,
14], health and human sensing [17, 26, 34], autonomous vehi-
cles [13], and even space exploration [33]. Recently, wireless
sensing devices that work without batteries have become vi-
able [18,40] due to advances in miniaturization of energy har-
vesters for solar, RF, and kinetic energy, and energy-efficient
microcontrollers with non-volatile memory [44]. Making
these devices work is challenging, because of power failures
caused by unreliable and sporadic energy sources as shown
in Figure 1. However, the benefits are well worth it—besides
reduced cost, size, and weight, these devices promise decade
long lifetimes in the field without requiring maintenance or
replacement [19].

Batteryless platforms like WISP [40], Capybara [11], and
Flicker [18] use ultra-low-power micro-controllers (MCUs);
e.g. MSP430FR* [44], whose main architectural components;
e.g. registers and main memory, are volatile, while the code
and data retained from power failure to power failure are held
in non-volatile byte addressable RAM (e.g. FRAM). These
platforms harvest and then store energy in small capacitors
for all tasks. When the energy stored is depleted, the device
dies—computation cannot progress and output correct re-
sults. The naive approach to solve this would be to save the
entire volatile memory and registers to non-volatile right
before a power failure, but this has high memory and perfor-
mance penalty, requires reliable brownout detection and does
not solve consistency issues described in prior work [28].
Instead, smaller checkpoints at compiler or programmer-
defined boundaries like in Figure 1 reduce wasted computa-
tion and allow programs to complete. Many systems have
been explored [5, 6, 23, 28, 32, 39, 45] which checkpoint at
statically defined or dynamically decided points. Of course,
the main challenge is to determine what to backup and when.
The alternative is to change the programming model com-
pletely, asking programmers to decompose a C program into
atomic and idempotent sections called tasks! with defined
control and data input and output variables that are shared
by tasks connected in a task graph. Only the state of the
active task is backed up at each task transition to ensure
forward progress [9, 20, 31, 46].

2.1 The Big Jump to Legacy Software

In a perfect world, the developer of a battery-powered plat-
form would just recompile the application for intermittent-
power. However, so far no existing systems enable this.

2.1.1 Task Decomposition. There is a massive set of ex-
isting applications and legacy code written e.g. TinyOS [25]
or Contiki [12] in the past two decades of wireless sensor
network deployment. Unfortunately, the existing corpus of
applications is difficult, or impracticable, to port to work with

!t should be noted that tasks in intermittent computing must not be con-
fused with the tasks in TinyOS [25]. Tasks of TinyOS define self-contained
work to be undertaken, while tasks in intermittent domain define a piece of
code that is atomic and idemponent [9].

87

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Legacy Code (C)

New Task Graph

Manual
Porting

Timing
Constraints

NV accel[N];
NV res,ndx=0;

|
|
main() { !

. —
for(;;) { = 8
while(ndx < N) { - 3
accel[ndx++] 57 5
sample();-~ %

P
_-

a-
transform(accel) ;-
featurize(accel);-d_L__
classify(accel);<

~

res=stats(accel);o .
Y

]
]
]
]
I
I
|
I
|
]
— |
|
]
]
]
|
1
|
|
|
)

| ————— -

~
~
~

send(res); AN

N
N

return 0; \

I S

| Tinyos / Contiki

N

]
|
I
I
I
i
I
I
I
I
I
I
|
I
|
I
|
I
N
|
I
I
|
!]
!]
|)

I __~

—_—
control flow
(data flow not shown)

Figure 2. Porting legacy code to a task graph is not triv-
ial. Left: an activity recognition program, Right: one possible
port to a task graph, with timing constraints defined. The
final task graph does not always match the original program
as tasks must be small enough to allow forward progress;
reducing readability, and increasing graph complexity. Tim-
ing constraints, control flow, and data flow must also be
determined.

battery-free platforms and applications—especially when
porting to a task-based programming model. Figure 2 il-
lustrates these challenges. Task decomposition is hard [10],
as task boundaries are not defined by logical breaks in a
program (such as those shown on the left part of Figure 2:
classify(), transform(), etc.) but are best set based on the
energy cost of blocks of code, and/or data interconnections
between code. Moreover, task-based programming models
are static in their memory model, as they allow data ex-
change among the tasks by using only data interconnections
to ensure memory consistency. This prohibits pointers. That
is, porting programs with pointers is difficult (or sometimes
even impossible).

2.1.2 Automatic Checkpointing. Checkpointing systems
do not occupy the programmer with the decomposition of
legacy code into intermittent tasks, and there is no need to re-
implement original libraries. However existing checkpoint-
ing systems sacrifice memory overhead, and language fea-
tures to allow for automatic insertion of checkpoints [32, 45].
Current practice is to over-instrument a program with po-
tential places to checkpoint, and these are triggered based

on some signal, e.g. low energy interrupt. Storing copies of
the stack and global data in multiple versions of checkpoints,
as well as this over-instrumentation, leads to high memory
impact for resource-constrained MCUs [28]. What is worse,
since dynamic memory manipulations via pointers cannot be

Session 1B: Edge/intermittent

computing support — Life is too short!

Write-after-read

Timely Branching

Time Misalignment

Data Expiration

[y ———) t1 = _time() tl = time()
'1:1__:_1_eF1_o tl = time() d= Sense()do d =_sense()

iF(t1 < T) [lnietalis ‘D
len = ri+l

do_x()
d = sense() @ |[r1 =
= e classify(t1,d) classify(d)
len = r1+1€Y tl = tirHG()0 Violation: timestamp send(rl) €@
Violation: incorrect if(tl < T) is older than implicitly Violation:
value of len. do_y() €3] associated data. n:aotlitslgfttdh%jr‘ss
value of len N .

Violation: both later yet compute
branches are taken continues.
[o [1]

(a) (b) (©) (d)

Figure 3. Four types of consistency violations encoun-
tered with automatic checkpointing. These violations
occur because of incorrect execution caused by bad check-
point placement, leading to an execution that is not possible
on a continuously powered device. With this work we in-
troduce a new class of violations, i.e. time-based violations,
that have not been previously explored in checkpointing
systems—refer to figures (b)-(d).

determined at compile time, the whole main memory should
be checkpointed after each pointer manipulation—the check-
pointed state grows with the size of the main memory and
unfortunately leads to a system starvation since it might not
fit into the device’s energy reservoir. Supporting full C lan-
guage functionality is non-trivial and crucial to port/reuse
legacy software.

2.1.3 Time Consistency. Consistency violations identi-
fied in previous work [28] include only memory consistency
violation; see Figure 3(a): after a checkpoint, non-volatile
global variable 1len is changed, but these actions are not in-
cluded in the checkpoint. When the checkpoint is restored,
len is again updated, leading to an incorrect value of len
due to the Write-After-Read (WAR) dependency. We identify
three other types of consistency violations, all having to do
with time. The errors stem from the fact that clocks internal
to the MCU are reset after each power failure, meaning that
devices have difficulty tracking how long they have been
off [21, 37]; even when using external timekeepers, time-
sensitive portions of a program must be handled differently
in checkpointing systems by careful checkpoint placement
or time management.

1. Timely Branching. If a checkpoint is placed in a line
of code before a timestamp is gathered, and that times-
tamp is used in a predicate statement, execution can
execute both branches if the timestamp elapses; see Fig-
ure 3(b);

2. Time and Data Misalignment. Often in embedded
programs, a timestamp is gathered every time sensor
data is obtained. If a checkpoint is placed between the
timestamp and the data gathering, the timestamp will
be inaccurate. After a power failure recovery at that
checkpoint, new data will be gathered associated with

88

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Intermittently
Executable

Time-annotated C source

Qexpires_after=5 seconds
int temp;

01010010101010101016
01010101011010101010
10011111011010161161
10101011101010116161
010100101010101010160

temp @= read_sensor();
Qexpires(temp){

1”(;‘{@;3?) ds() 01010101011010101010

ink_leds(); 10011111011010101101

¥ 10101011101010110101

Target
Compiler

L Timely
Execution

Segment +

size
Instrumentation

PRI . PR g———

: int temp_timestamp;

Icheckpoint(); Mgmt.
| LOG(temp)= read_sensor();
1if(temp_timestamp-time()<5)

1
1
| if(temp>30) |
1
1

%Checkpomt i Segmentation |

! blink_leds();

| : .
CheckpointQy; _ _ __ _____ s

TICS Library

Figure 4. TICS overview: A runtime combined with code
instrumentation ensures memory consistency via data ver-
sioning and stack segmentation; progress of computation via
checkpointing; and timely execution via time annotations.

an old timestamp—causing incorrect execution of the
program; see Figure 3(c);

3. Data Expiration. Data gathered in one power cycle
may not be fresh enough for the next power cycle. This
phenomenon [20] has not been handled by any auto-
matic checkpointing systems to date; see Figure 3(d).

3 TICS: System Design

TICS consists of a runtime combined with code instru-
mentation for the C language—Figure 4 presents the logical
flow and the main components of the TICS system. The
main motivation behind TICS is to provide the view of a
continuously-powered system to the programmer—so that
legacy C code can be run without any modification to the pro-
gram source. TICS allows the programmer (i) to focus on the
correct and timely execution of the application—eliminating
the explicit need for intermittency handling, and (ii) to per-
form few modifications to the original program, specifically,
to annotate their code only to define timing constraints.

Task-based versus Checkpointing. Conversion of a C
program into a task-based program requires significant man-
ual labor (as discussed in Section 2); automatic transforma-
tion of a pointer-based C program is incredibly difficult due
to memory burden created by a multitude of versions of
memory locations/variables. Therefore, instead of task-based
transformation, TICS uses checkpointing in order to get rid
of manual code transformation and its limitations.

Building an Efficient Stack. As the amount of state that is
checkpointed grows, the checkpoint overhead increases, po-
tentially leading to overheads that may exceed the device’s
capabilities and energy budget. Since functions often manip-
ulate local variables in their stack frame, there is no need to

Session 1B: Edge/intermittent
computing support — Life is too short!

checkpoint the whole stack. TICS employs a novel strategy
by segmenting the stack into fixed and predetermined size
blocks. The stack segment that is directly manipulated at
a time instant by the program is called the working stack
and it will be the only one among others that needs to be
logged into a segment checkpoint—since other segments are
not modified. By segmenting the stack TICS can provide a
fixed worst-case checkpoint time, as the variable stack size
is fixed to the size of a stack segment. It is worth mentioning
that the programmer is completely unaware of the underly-
ing stack segmentation but the desired size of stack segments
can be chosen at compile time for the sake of performance—
see Section 5.

Pointer Handling. As pointer access cannot be determined
at compile time, existing systems need to checkpoint the
whole main memory in order to keep memory consistent—
leading to huge checkpoints and in turn system starvation
due to limited energy reservoir. TICS implements a data
versioning scheme to handle pointers and ensure memory
consistency: it keeps track of only manipulated memory lo-
cations by keeping the original values in a non-volatile undo
log. The undo log is cleared upon a successful checkpoint,
otherwise TICS restores the original contents of the mem-
ory using the undo log—ensuring the memory consistency
despite power failures.

Memory Impact. Checkpointing the device’s volatile state
requires an atomic two-phase commit operation to ensure its
consistency [31]: in the first phase the checkpointed data is
copied to a temporary buffer in non-volatile memory; then
in the second phase the buffered data is committed to the
original location. Existing checkpointing systems double
buffer the stack, .bss and .data sections—their memory
requirements increase with the volatile state. On the other
hand, TICS only requires the segment checkpoint and the
modified memory locations in . bss and . data sections to be
double buffered—significantly reducing the memory impact.

Timely Execution. C does not provide any keyword/state-
ment to express time constraints of the data and handle
it—programmers must explicitly timestamp data and handle
data expiration. This complicates application development
as well as might lead to bugs due to manual timing and expi-
ration checks, control flow delivery and recovery due to data
expiration—as given in Section 2.1.3. TICS provides annota-
tions to relate data and time as well as special statements
to change control flow and perform recovery upon data
expiration—all underlying time management is performed
at run-time without programmer intervention.

3.1 Efficient Automatic Checkpoints

Existing works, e.g. [6, 22, 45] exploit architectural support
and ensure constant and scalable checkpointing overhead.
For example, Ratchet [45] uses non-volatile memory as the
main memory so that stack and global variables are already

89

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

persistent—leading to constant checkpoint time since only
the volatile registers of the processor are checkpointed. This
requires decomposing programs into idempotent code sec-
tions via the compiler using static analysis at the instruction
level and gluing them together with checkpoints. However,
dynamic memory manipulations that cannot be determined
at compile time, e.g. write operations via pointers, require a
checkpoint after each instruction, leading to a considerable
checkpointing frequency and, in turn, overhead. TICS tar-
gets devices with non-volatile main memory—a checkpoint
operation logs only the registers and the stack in a dedicated
double-buffered area in non-volatile memory via a two-phase
commit. Since stack grows/shrinks dynamically, checkpoint-
ing overhead grows with the size of the stack. Moreover,
recovery time, i.e. restoring the state after a power failure,
is not fixed and might exceed the device’s energy budget—
leading to system starvation. TICS remedies this with stack
segmentation and data versioning.

3.1.1 Stack Segmentation. The stack allocation within
the execution of the applications might vary significantly, in
particular when a lot of memory space is allocated/deallo-
cated at function entries/returns. The stack size requirement
depends on dynamic program flow (that might be unknown
at compile time) and in turn, it is not possible to guaran-
tee a worst-case checkpoint size. TICS segments the stack
into blocks of fixed size selected at compile time—maximum
stack frame in a program (determined during compilation)
dictates the minimum block size. TICS maintains the seg-
mented stack of a program as a segment array in non-volatile
memory—see Figure 5. The size of the stack array is fixed
at compile time by considering the stack requirements and
exceeding the size at runtime leads to a stack overflow. The
program interfaces with the top segment of the segmented
stack; so-called the working stack: the program modifies only
the working stack, and upon a checkpoint, only the work-
ing stack is two-phase committed into the double-buffered
segment checkpoint—this enables a fixed checkpoint time.
Moreover, recovering from a power failure only requires the
working stack to be restored from the segment checkpoint,
instead of restoring the whole stack.?

During program execution, the stack grows/shrinks make
the working stack point to different segments in the segment
array. When a function is entered, the stack pointer is ad-
justed: TICS inserts a check before the modification of the
stack pointer to determine whether there is enough space
in the working stack to execute the function. When enough
space is in the working stack, the execution resumes and
the function interfaces with the working stack. Contrary, if
there is not enough space left on the working stack, a stack
grow procedure is initiated so that the working stack points

“Differential checkpoints [3] log only modified part of the stack—but they
can still be large for nested function calls each using a lot of stack.

Session 1B: Edge/intermittent
computing support — Life is too short!

Application

int temp;

void read(int *ptr){
int val=read_sensor();

if(val>30)
S t N
*ptr = val; ! S !
work-ingi Segment N-1 i
¥ Local stack |
>|Segment N-2| !
j vars | 1
Global Vérs, pointers I
e F . [YT S— s o
i Memory . i cP+Stack i[i[>esment-
[Mgmt. §TICS Runt-'meiSegmentatiom |
""""""""""" U"'”'f'””"“ i| segment3
‘r' ””””””””””””””””” 4 ”””””” s"""‘ Segment 2
I]
N] Segment Register
Segment“
segment
checkpoint area array
Non-volatile

Figure 5. TICS architecture. With TICS only the work-
ing stack and the registers during a checkpoint are logged—
ensuring deterministic worst-case overhead. Previously
checkpointed segments belonging to the lower parts of the
stack are maintained in a segment array. The global vari-
able and pointer access are handled by the memory manager
which implements undo logging to keep memory consistent.

to the next segment in the segment array. It is worth men-
tioning that a checkpoint after this point requires only the
new working stack to be saved into the segment checkpoint
since the previous segments remain unmodified. When a
function that triggered a stack grow returns, a stack shrink
is initiated so that the working stack points to the previous
segment in the segment array. TICS can enforce an implicit
checkpoint if the current working stack was not saved into
the segment checkpoint yet. This is because if the currently
checkpointed segment is out of program stack, the working
stack should be checkpointed first so that the modifications
can be rolled back upon power failures and the stack consis-
tency is ensured.

It is worth mentioning that no special attention is needed
when TICS executes recursive functions. However, as in gen-
eral embedded systems, the depth of the recursive calls is
limited by the size of the stack memory, which is represented
by the fixed size of the segment array in TICS architecture.

3.1.2 Memory Management and Pointers. TICS main-
tains global variables; i.e. .data and .bss sections in non-
volatile memory. Intermittent execution might create incon-
sistencies if the application modifies non-volatile memory
directly and the modified locations are not versioned, i.e. dou-
ble buffered [28, 38]. TICS instruments non-volatile memory
write operations and enables on-demand versioning: undo
logging is employed so that if any memory location outside
of the working stack has been modified, the original version
is saved in an undo log. After a successful checkpoint, the
undo log is cleared. Upon power failure, the contents of the
undo log are written back to the original locations. Since the
undo log is also fixed in size, TICS forces a checkpoint when

90

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

@expires_after=1s /* data expires in 1 second */
int temperature[WINDOW_SIZE];

/* data & timestamp alignment (assign timestamp)
*/
temperature[i] @= read_sensor();

/* catch data expiration */
@expires (temperaturel[i]){
if(temperature[i] > max) {max =

1},
3

);.branch in time (before the send deadline) =*/
@timely (SEND_DEADLINE){ send(max); } else {...}

temperaturel[i

Figure 6. An overview of TICS annotations for timely
execution of intermittent applications. TICS supports
timely branches, ensures data and time alignment and
catches data expiration.

the undo log is full to eliminate the overflow and ensure
forward progress.

In TICS, pointer writes to global variables within the
.data and .bss sections in non-volatile memory are man-
aged at runtime. Additionally, pointers to the stack can ma-
nipulate memory locations, in particular, stack segments
other than the working stack. A pointer to the working stack
can directly modify its contents since the working stack is
checkpointed separately. Conversely, if it points to other
segments in the segment array or global variables in .data
and .bss, the memory manager employs undo logging.

3.2 Semantics for Timely Execution

TICS provides annotations; i.e. @expires_after, to de-
note the expiration constraints of the data and necessary
keywords for checking if time constraints are met—see Sec-
tion 6. A timestamp value is associated with each program-
mer annotated variable and the write operations on these
variables are instrumented by the compiler. TICS can up-
date the value of the timestamp automatically upon writes
using a persistent timekeeper which keeps track of time
across power failures [20]—see Section 4 for details. Program-
mers can check the expiration of the data using @expires
block—TICS compares the current time with the timestamp
to identify if programmer-defined timing constraints are met.
Programmers can also use @expires_after=0s statement
for any variable that requires a timestamp associated with it
but does not have any expiration constraint. It is the respon-
sibility of the programmer to provide necessary logic within
these syntactic structures.

3.2.1 Supporting Timely Branches. In order to prevent
timely branch violations as depicted in Figure 3(b), TICS
introduces @timely/else block that takes a time value as
an input. This block disables automatic checkpoints, reads
the current time using the (persistent) timekeeper and checks
if the given time value is greater than the current time. If
this is the case, the branch is taken, a checkpoint is placed

Session 1B: Edge/intermittent
computing support — Life is too short!

at the end of the branch and automatic checkpoints are en-
abled. Otherwise, the branch is not taken and automatic
checkpoints are enabled.

3.2.2 EnsuringDataand Time Alignment. Asdepicted
in Figure 3(c), if a checkpoint is placed between the times-
tamp assignment and the data gathering (or vice versa), the
timestamp can be inaccurate after a power failure. In particu-
lar, this issue is problematic if checkpoints are done automat-
ically, e.g. with a periodic timer. To remedy this, timestamp
assignment and data gathering operations should form an
atomic block. TICS ensures the atomicity by (i) disabling au-
tomatic checkpoints so that timestamp assignment and data
gathering cannot be split; and (ii) placing a checkpoint right
after these operations (and enabling automatic checkpoints
thereafter, if needed) so that the consistency of timestamp
and data is guaranteed despite a power failure.

TICS introduces operator @= for the atomic assignment
of the data and timestamp—see Figure 4. TICS makes this
assignment explicit via @= since there is no need to update
the timestamp of the associated data per each write, e.g.
the sensed temperature value can be converted from the
raw ADC value to the degree in Celsius and this conversion
should not lead to the update of the associated timestamp.

3.2.3 Catching Data Expiration. In TICS, @expires and
@expires/catch blocks are used to work with the data
within a certain time frame and to catch data expiration—
Figure 3(d). For the sake of implementation simplicity, we
remark that these blocks consider only one variable.

Conditional-based @expires. TICS implements @expires
block by using an if statement at the beginning that checks if
the data is still valid; see Figure 4. If the condition is met, the
rest of the operations will be executed within this block. Due
to automatically-inserted checkpoints and arbitrary power
failures, @expires block might not be atomic. If a checkpoint
is placed inside an @expires block, a power failure might
lead to data expiration—TICS disables automatic checkpoints
at the beginning of the @expires block so that computation
starts from the if statement after each power failure. TICS
places a checkpoint at the end of @xpires block and enables
automatic checkpoints thereafter. It is worth mentioning that
these operations ensure the atomicity, but data can still ex-
pire since the instructions within the @expires block can be
long enough to violate data freshness constraints.

Exception-based @expires/catch. In order to catch data
expiration while executing an @expires block, TICS sets a
timer at the beginning that fires when the data expires. Upon
timer fire and in turn data expiration, TICS restores the orig-
inal contents of the modified variables inside the @expires
block by using the original values in undo log. TICS delivers
the control flow to the catch block that handles specific logic
to handle data expiration. Since undo logging is required for

91

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

[ttt 1| foobaris called [7===--= '
i ! (Line 5) i !
int foo(int x){ : U- -~ i !
1 R ~
2 Working ~ “Wl-rogar
3 stack_grow(); foo Stack foo
4 char bar[128];] P
5 % = foobar(x,bar); Checiooin o -
6 stack_shrink(); | catter e ey
7 return x; _ -7 . ’
} - -—- . ’
< . ’
7 function entry - / -
, (Lines 1-4) full / full
,,,,,,,, / segment 1 segment
i ' ’ stack grow \
' HR4 segment | Sesment \ segment | Segment
1 ! // checkpoint™—2ray J Y checkpoint\—2rray J
Fomstees | s S e b PN .
| empty /! i ! Fom- ,)
1
| segmenk ! ' '| restore caller stack, |! i ,
L ! i . i ' -
. [1 stack shrink, ! i @
Working ! i . -
Stack | ! enforced checkpoint| 4~
caller ac ' i (Line 6) and return from
i
return (Line 7) foo foobar and
e — — - @ checkpoint
- caller \ ’
full -~ caller
segment
segment segment .
_array Jcheckpoint e .
segment caller L
- segment foo
segmen Segment Segment
_array Jcheckpoint SCENeNt | checkpoint

Figure 7. TICS stack segmentation and checkpointing.
In pseudocode: lines in light gray and red colors represent
the code inserted during the compiler pass; the red lines only
execute when the working stack needs to grow or shrink.

exception-based implementation, its implementation is par-
allel to the rest of TICS for the sake of memory consistency.

4 TICS: Implementation

TICS is built around the MSP430FR5969 [44] MCU with
64 KB non-volatile (FRAM) and 2 KB volatile (SRAM) mem-
ory. The compiler back-end instruments the assembly to
support stack segmentation. The code instrumentation is
done via the LLVM utility library LibTooling [1], which is in-
tended for both static analysis and code transformations. We
employed code transformation rather than compiler support,
to allow for portability, enabling the use of multiple compil-
ers, and in turn eliminating the need for re-implementing
the instrumentation. In order to produce the target binary,
we used MSP430-GCC version 7.

Stack Segmentation. In TICS, the stack segmentation is em-
ployed at function entries and exits. Before the stack grows
or shrinks, TICS checks the stack frame size of the corre-
sponding function (known at compile time) to determine if
the function can be executed by using the current working
stack. If there is not enough space in the working stack, a
stack grow procedure is initiated so that the working stack
points the next segment in the segment array. Since the ar-
guments of the function remain in the previous segment,
these arguments are copied from this segment to the empty
working stack. If a stack shrink is needed, the caller stack
is restored, the working stack is changed and a segment
checkpoint is performed if the previously checkpointed data
belongs to a segment lower than the current working stack.

Session 1B: Edge/intermittent
computing support — Life is too short!

All these operations are depicted by steps 1-3 in Figure 7. To
enable these operations, we modified the compiler back-end
to insert the required stack availability check and argument
copying operations—the size of a stack segment is deter-
mined at compile time and its minimum size depends on the
minimal stack requirements of the functions in the source.

Memory Consistency Management. To implement undo
logging so that the changes in non-volatile memory locations
(other than the working stack) can be undone, global variable
and pointer manipulations are instrumented. Since pointers
can point not only to global data but also to the working
stack or segment checkpoint in non-volatile memory, the
instrumentation is done by checking if the physical address
is in the working stack or not. If so, the memory manager
logs the contents of the memory cell in the undo log>.

Automatic Checkpoints. To keep consistency of check-
pointed data—as the system can die while performing a
checkpoint—the checkpoint data is double buffered in non-
volatile memory. A flag is used to provide an exact barrier af-
ter which the checkpoint is ready to be used as a restore point.
These enable checkpoint operations to be atomic. Checkpoint
restoration happens when the system reboots due to a power
failure. Current implementation supports: (i) timer-driven
checkpointing; where the runtime interrupts program ex-
ecution and checkpoints the system state periodically at a
given frequency; (ii) hardware-assisted checkpointing, e.g. [5]
where a voltage level based interrupt triggered upon a low-
energy state to perform a checkpoint; and (iii) manual check-
points. It is worth mentioning that TICS disables (automatic)
checkpoints before interrupt service routines and places an
implicit checkpoint right after return-from-interrupt (ISRs) in-
struction. This is sufficient to prevent memory inconsistency
while servicing interrupts—if a power failure prevents the
completion of an ISR, the system will continue as if interrupt
did not occur (the corresponding ISR will not be executed
again) right after the recovery from the power failure.

Time Annotations. Each write to a time-annotated variable
is instrumented so that the timestamp value associated with
the variable is updated. To implement exception-based time
annotations, we instrumented @expires/catch block so
that a timer is set considering the data expiration constraints.
Moreover, we instrumented necessary instructions for undo-
logging the memory modifications and changing the control
flow upon data expiration. TICS with time-sensitive pro-
grams requires the ability to measure time across power
outages using a remanence-based timer [21, 37] or a Real-
Time Clock with a small capacitor [18]—persistent timekeep-
ing is mandatory to update timestamps and to handle time
annotated source files.

3Memory management is implemented fully in software as microcontrollers,
e.g. MSP430FR59* [44], do not have a memory management unit.

92

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

‘Greenhouse monitoring’ routines
Sense Sense
Intermitt. Moisture Temp. Compute Send | Consist.

plain C 9 9 9 0 X
47 plain C + TICS 0 0 0 0 v
‘ TinyOS 0 0 0 0 v
TinyOS + TICS 0 0 0 0 v
plain C 29 29 29 20 X
48% plain C + TICS 20 20 20 20 v
° TinyOS 29 29 29 20 X
TinyOS + TICS 20 20 20 20 v
plain C 47 47 47 47 4
100% plain C + TICS 45 45 45 45 v
g TinyOS 47 47 47 47 v
TinyOS + TICS 44 44 44 44 v

Table 1. Real-world program with TICS on intermit-
tent power (4%, 48% and 100% intermittency rate). We
ran four applications implementing greenhouse monitor-
ing (GHM): in C and in TinyOS (with and without TICS
instrumentation). We measured how many times each GHM
routine executed. Only these programs that consistently exe-
cuted the same number of routines were considered correct.

5 Evaluation

We investigate the execution overhead of TICS for various
applications, comparing to the state-of-the-art intermittent
runtimes. We demonstrate how TICS enables porting of arbi-
trary C programs as well as TinyOS code—for the first time
we demonstrate successful execution of legacy code for sensor
networks into intermittently-powered domain. We also show
results from a user study we conducted comparing TICS to
task-based programming. We found that TICS has compa-
rable overhead to state-of-the-art runtimes while providing
a complete set of features available to the regular C
programmer.

5.1 Porting Legacy Code: TinyOS to Intermittent
World

To prove the claim that TICS enables automatic porting
of existing/legacy C code for non-intermittently powered
systems, we instrument an unmodified TinyOS program for
Greenhouse Monitoring (GHM). GHM executes in an infi-
nite loop sense moisture of soil, sense temperature of ambient,
Compute measurement averages and Send over a wireless
interface. We compare Plain C and TinyOS [25] versions
of GHM with and without TICS instrumented checkpoints.
Both apps were executed on the same microcontroller as be-
fore (MSP430FR5969 [44] evaluation board) with artificially
generated power intermittency traces, i.e. MCU was brought
to hardware reset following a pre-programmed pattern. We
compare the results of executing the Plain C and TinyOS ver-
sions of GHM in Table 1 for varying levels of intermittency.
We measured how many times each GHM routine executed
successfully. Only these programs that consistently executed
the same number of all routines were considered correct.

Results. We observe that TICS allows to work at any inter-
mittency conditions and it executes legacy code correctly.
This shows that TICS can run semi-sophisticated legacy

Session 1B: Edge/intermittent
computing support — Life is too short!

Sense() AR Application Execution Trace

Classify()

dexpires_after=200ms .
unsigned int accell[6]; Featuized activity = classify(f);

Qexpires(accel){

atimely(206ms){
f = features(accel); b

ALERT(activity);

for(i=0;i<WINDOW<i++){
accel[i] @= read_acc();

T TTII

}

\/

bode— e m

Activity Change
Fresh Data 4 Y GLEET

Sensed Data 000 D o Detection '
(Processed) ' 200 ms')
I 1 ! R ! >
T T T T >
100 250 \ 500 1000 Time (ms)

Expired Data (Discarded) Timely Alert (Before 200 ms)

Figure 8. Timely execution of the sample AR applica-
tion: TICS catches data expiration, discards stale data and
ensures timely branches by following the programmer an-
notations.

TinyOS programs without any manual program porting need.
It is worth mentioning that TinyOS is an event-based op-
erating system and porting event-based legacy code might
require some manual modifications for the sake of the se-
mantically correct execution of the application—in partic-
ular, timely-sensitive handling of the events should be im-
plemented by the time annotations provided by the TICS
in order to guarantee semantically correct results. However,
if the programmer omits such manual modifications, TICS
still guarantees forward progress of the computation as well
as the memory consistency of the event-based applications.
In Section 5.3, we also demonstrate the porting of existing
computation-based benchmarking applications. Apart from
injecting time annotations (if required), all porting is han-
dled by TICS automatically without any manual intervention.
Therefore, the evaluation results later on support and com-
plement this result.

5.2 Time-sensitive Intermittent Computation

For the evaluation of time-sensitive execution of intermit-
tent programs, we considered an existing activity recognition
(AR) application used in prior work [9, 28, 31] (this appli-
cation is also used for benchmarking in Section 5.3). The
AR application obtains a window of three-axis accelerom-
eter sensor readings and determines whether the device is
moving or stationary. In the training phase, the mean and
standard deviation features of a window of samples are ex-
tracted. Then, in the recognition phase, the activity is deter-
mined by performing a nearest neighbor classification. In
order to observe the time consistency violations described
in Section 2.1.3, we provided two versions of the AR applica-
tion: (i) manual management of time (and using MementOS-
like checkpoints); and (ii) TICS annotated application. We
run these applications by powering our MSP430FR5969 [44]
wirelessly with 915 MHz Powercast TX91501-3W transmit-
ter [36]. The microcontroller was connected to a Powercast
P2110-EVB receiver (with on-bard 10 yF storage capacitor).
We tested the execution of these applications at the same
distances resulting in almost the same (i) power failure rates,

93

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Time Consistency ‘ Potential Count | Observed Violations

Violation | (during experiment) | w/o TICS | w/ TICS
Timely Branch 256 32X 0V
Time Misalignment 870 78 X 0V
Data Expiration 870 173 X 0v

Table 2. Time consistency violation statistics for the
AR application running intermittently. Our results in-
dicate that TICS eliminates these violations by demanding
little modifications on the legacy software.

(ii) charging and (iii) off-time. We observed the number of
time consistency violations.

The lines of code where the accelerometer is sampled
and the corresponding timestamp is assigned are the po-
tential points for time misalignment violation. Specifically,
a timestamp can be assigned to the sensed data relatively
long time after the sensor sampling, due to a power failure
and long charging time—in both applications there were 870
accelerometer sampling where time misalignment violations
could potentially occur. The obtained samples are also sub-
ject to data expiration violation while they are consumed
for training and classification. In these applications, we con-
sidered data to be fresh and useful if it is consumed within
200 ms time window—it is considered to be stale otherwise
(see Fig. 8). In order to keep track of the duration of the
recognized activities, both applications maintain timestamp.
A timely branch that uses this timestamp is required to alert
about activity changes; e.g. if the duration of the activity is
less than 200 ms this indicates an activity switch. There were
256 points in the execution where a potential timely branch
violation could occur.

Results. Table 2 summarizes our results. We observed that
TICS prevents all time consistency violations, thanks to eas-
ily injected time annotations, where the other application
led to 32 timely branch violations, 78 time misalignment
violations and 173 data expiration violations. Our results
indicate that TICS ensures timely intermittent execution by
providing little modifications on the legacy software via its
time annotations.

5.3 TICS System Efficiency

TICS supports all C language features—including pointers
and recursion— thanks to its memory consistency manager.
This implementation eliminates system starvation by allow-
ing porting any kind of legacy software to the intermittent
computing world—breaking the limitations of the prior work.
Here we provide a performance comparison of TICS with
the prior work to explore its execution overhead.

We have compared TICS against three state-of-the-art
task-based systems: InK [46], MayFly [20] and Alpaca [31].
In addition, we compared TICS against naive checkpoint-
based system that logs the complete stack and all global
variables (which closely resembles what MementOS [39]
does) and Chinchilla [32]—state-of-the-art checkpoint-based

Session 1B: Edge/intermittent
computing support — Life is too short!

system that promotes all variables to global data and stati-
cally logs these. Chinchilla was re-compiled from its GitHub
source [32] with LLVM version 3.8 (the strict requirement
for Chinchilla). InK, MayFly, and Alpaca were compiled with
the standard GCC compiler (msp430-gcc version 6.2.1.16).
Finally, for completeness, we compare all systems to plain C.

Application Benchmarks. We chose three representative
applications, used earlier by most studies on systems for
intermittently-powered devices: (i) bitcount (BC), (ii) Cuckoo
filter (Cuckoo) and (iii) Activity Recognition (AR) (as indi-
cated in Section 5.2) [16]. BC implements bit counting in
a random string with seven different methods (including
recursion), later cross-verifying for correctness; Cuckoo im-
plements cuckoo filter over a set of pseudo-random num-
bers, then performing sequence recovery using the same
filter; AR implements physical activity recognition based
on machine learning with locally stored accelerometer data.
For a fair comparison, the experiments were conducted us-
ing a continuously-powered TI MSP-EXPFR5969 evaluation
board [44]. Each application was verified for correctness at
the end of each execution. Cuckoo cannot be implemented in
MayFly since loops are not allowed in a MayFly task graph.
Also, BC used for the evaluation of Chinchilla, see e.g. [32,
Fig. 8-10], was not the original one, as the authors have
manually removed the recursion to make it work with their
system.

5.3.1 TICS against Chinchilla. Chinchilla converts each
local variable of a function to a corresponding global vari-
able in non-volatile memory at compile time. This conver-
sion prevents stack manipulation via pointers and in turn
checkpointing the whole stack due to pointer manipulations.
Chinchilla must know in advance the local variables in order
to allocate corresponding global variables in non-volatile
memory—recursive function calls and in turn, existing ap-
plications that exploit recursive implementations cannot be
supported. Moreover, due to the local-to-global conversion
via bypassing stack allocation of local variables, there is an
explosion in the number of global variables—decreasing the
scalability of memory requirements. Inline functions further
complicate this issue: the corresponding global variables are
needed to be allocated per every line where the function is
inlined. As an example, if an inline function of one local vari-
able is called 100 times, then 100 different global variables
need to be created. These issues are the major limitations
of Chinchilla, making it an incomplete system. Inspecting
our results presented in Figure 9, TICS is able to execute all
benchmarks, while Chinchilla cannot run recursion-based
code, i.e. BC. Due to the dynamic memory logging employed
by TICS, the execution time overhead will vary per bench-
mark. Additionally, the compiler optimization level has a
significant effect because the runtime code is also affected
by the lack of optimization.

94

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

InK
text .data

Chinchilla
.text .data

TICS
text .data

AR 3442
BC 2922
CF 2648

4459
4433
4693

12870 8986
10902 8658
12128 9050

6878 1364
5944 1488
7178 1948

Table 3. The memory consumption (in B) for three ap-
plications written in InK, Chinchilla and TICS.

5.3.2 Micro-benchmarking TICS. The execution time
overhead of TICS with the number of checkpoints for dif-
ferent working stack sizes is given in Figure 9 (center row).
As working stack size gets bigger, the number of working
stack change driven checkpoints decreases since on-demand
stack requirement of the applications are fulfilled—S2 config-
uration did not lead to a working stack changes and in turn
checkpoints and S1 led to considerable number of working
stack changes and therefore also more checkpoints. On the
other hand, increasing the working stack size also increases
the overhead of a single checkpoint since the logged data
is bigger—there will be always a trade-off. Among bench-
marking applications, AR led to a considerable amount of
working stack change driven checkpoints with configura-
tion S1 due to its varying stack size requirements. We also
enabled timer-driven checkpoints with a frequency of 10 ms
that ensure the forward progress—configurations S1* and
S2* indicate the configurations S1 and S2 with timer-driven
checkpoints enabled. TICS checkpoints do not introduce sig-
nificant overhead since only the working stack and registers
are logged.

5.3.3 TICS Against Task-based Systems. We selected
configurations S1* and S2* to asses the execution time perfor-
mance of TICS considering the task-based runtimes—right
column of Figure 9. For the fairness of comparison against
task-based systems, apart from timer-driven checkpoints
in S1* and S2*, we placed checkpoints to configuration S2
at task-boundaries for TICS (shown as ST) and our naive
MementOS-like [39] implementations. We observed that se-
lecting a reasonable working stack size, TICS reaches almost
the performance of existing task-based systems.

5.3.4 TICS Memory Overhead. Table 3 presents a com-
parison of memory overhead of the benchmarking applica-
tions implemented in InK (task-based system), Chinchilla
(checkpoint-based system) and TICS. The . data section over-
head of TICS depends on the size of the configurable stack
segment array (which was 2048 B) and undo log (which was
2048 B) both are excluded from the .data section. The code
size in selected applications is dependent on not only the
application source but also on the stack segmentation and
memory consistency management implementations in TICS.
Overall, we see that for all benchmarks TICS has significantly
lower memory overhead than Chinchilla—more than twice
.text and more than six times for . data. Comparing to InK,
TICS.data is also significantly lower, except for . text.

Session 1B: Edge/intermittent
computing support — Life is too short!

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

- Cuckoo - Cuckoo c Cuckoo
2] 300 2
£ 1000+ £ s ms cp £ E100
- < 200 ° ¢
c c]
£ s00 2 20§_ g
§ § 100 10§ g 0
=

E o X E 0 Lo ¥ s o0 X

V(LO0) V(LO2) V(GO2) CH(LOO) CH(L¥) s1 s2 S1* S2* z PlainC ST S1* S2* InK Alp MF Naive
- AR - AR c AR
2 2 o] ™ 2 g

]

£ 75001 < 4000 ms P7s0E 3
c c o 9
9 5000] 500 & X
s] X 02
5 5 2000 v ¢
© 2500 o 2509 g
Q Q £ £
8 ol X d o 0o Y So

V(LOO) V(LO2) V(GO2) CH(LOO) CH(L¥) s1 s2 S1* S2% 2" PainCc ST S1* S2* InK Alp MF Naive
— BC - BC c BC
M @ 400 c0n 8,5
£ 200 £ s ms cp E 7
c c 5 ©
K] 2 200 g gso
£ 100 s < o
: : 0§ g2
]]
X X X 3 o 0% Soo

V(LOO) V(LO2) V(GO2) CH(LOO) CH(L¥) s1 s2 S1* S2% = PlainC ST S1* S2* InK Alp MF Naive

Figure 9. Benchmark performance. Left column: TICS to Chinchilla comparison; Center column: micro-benchmarking of
TICS; Right column: TICS to task-based systems comparison. T, CH, Alp, MF: TICS, Chinchilla, Alpaca, MayFly; LO0, LO2:
LLVM-compiled code with —00, and —~O2 optimization. L*: all compilations options of GCC and all of LLVM except —00. GO2:
GCC-complied code with —O2 optimization. S1, $2: configurations with different working stack sizes imposing a different
checkpoint frequency and checkpoint time—S1=50B, $2=256 B; S1%, §2*: the same stack configurations as $1, S2 but with
an additional timer checkpointing every 10 ms if there was no checkpoint due to the working stack. ST denotes $2 with
checkpoints at the task boundaries. Red cross (X) denotes the code did not compile with the chosen compiler/optimization.

Operation Configuration Variables Duration (us)

Stack grow/shrink max 345
Checkpoint logic 0B seg. | 64B seg. | 256 B seg. 264 | 464 | 656
Restore logic 0B seg. | 64B seg. | 256 B seg. 273 | 475 | 664
Pointer access no log | log 4B (64 B) 13| 308 (371)

Roll back from undo log 4B | 64B 234294

Table 4. TICS overhead, split per runtime operation.
Results obtained with GCC (optimization -O2) at 1 MHz.

5.3.5 TICS Point-to-point Overheads. Table 4 presents
the detailed overhead of TICS runtime operations. The check-
point and restore operations include saving registers and
working stack in non-volatile memory using a two-phase
commit operation—the working stack size has a direct impact
on the checkpoint overhead. The constant checkpoint over-
head without saving the working stack segment is depicted
as 0B size in the table. The stack grow/shrink operations
update the working stack to point another segment in the
segment array. During pointer manipulation, TICS checks
the pointer address to see if the working stack is targeted.
If this is the case, there is no need for the undo logging and
the working is stack directly manipulated. Otherwise, TICS
logs the original value in undo log—the overhead of different
variable sizes are depicted in the table. The time it takes to
recover the original value of a variable from the undo log
depends on the variable sizes.

5.4 User Study and Developer Effort
We have designed a large online user study. The goal was
to objectively assess the time to design a TICS application.

95

Methodology. At the beginning of an online survey each
participant was given an introduction to intermittent exe-
cution and to TICS and InK [46]. Then, we have then asked
participants to find bugs in three simple programs: (i) swap of
two variables (with no use of a temporary variable), (ii) bubble
sort, and (iii) program that considers variable expiration based
on time. Each program was written separately in TICS and
in InK and had exactly the same type of bug, at exactly one
line of the program. Users were asked to point to a line that
contained that bug and specify the correct statement.

Each program with a bug was presented to a user on a
separate page. Additionally, time spent on finding a bug in
each of the programs was measured. No corrections of the
given answers were possible once the answer was submitted.
We randomized the order in which each program appeared
at the respondent’s screen in order to remove presentation
bias against one language and objectify bug finding time.

User Pool. At the time of writing this paper, a total of 90
responses were collected. 78% of all respondents had at least
two years of programming experience. Almost 83% of respon-
dents had average or below average knowledge of embedded
systems powered by energy harvesting technologies.

Result. Results are shown in Figure 10. We observe that in
all cases it was (i) harder to find a bug and (ii) users were
more prone to error when exposed to a task-based language.
Statistically, Wilcoxon T Test on all programs’ bug search
time rejected the hypothesis that TICS/InK results were the
same with p-value below 0.001. In other words, TICS is a more

Session 1B: Edge/intermittent
computing support — Life is too short!

100 mm TICS

7.5 HER InK

5.0

. TICS
. InK

2.5

Correct expressions (%)
IS
3

Time to find a bug (min)

Swap Bubble Timekeeping Swap Bubble Timekeeping

Figure 10. TICS user study results. For all three test pro-
grams, Swap, Bubble and Timekeeping, users found that it is
easier with TICS to identify a bug and were more accurate in
correcting the TICS program than that of InK [46]. Whiskers
in the right-hand side figure denote standard deviation.

Runti Pointer Recursion Timely Porting
untime Support Support Scalability Execution Effort
Mayfly [20] No X No X Poor X Yes v/ High X
Alpaca [31] No X No X Poor X No X High X
Ratchet [45] Yes v/ No X Poor X No X High X
Chinchilla [32] Yes v No X Poor X No X None v/
Ink [46] No X No X Poor X Yes v/ High X
TICS (this work) Yes/ Yes v/ High v/ Yes / None v/

Table 5. State of the art programming models.

user-friendly system than a task-based one. As the complexity
of a program increased users had difficulty finding a bug in
an InK program (for Bubble Sort in half of the cases users
were wrong). Regarding the subjective evaluation of TICS
against InK, participants considered TICS to be more intuitive,
easier and conciser than InK.

6 Related Work

In Table 5 key characteristics of TICS are compared to
those of Mayfly [20], Alpaca [31], Ratchet [45], Chinchilla [32]
and InK [46]. In this section we compare some of these char-
acteristics from the state of the art to TICS.

Checkpointing Systems. Systems that automatically de-
termine checkpoint placement at compile-time like [6, 32, 45]
are most closely related to this work. HarvOS parses the con-
trol flow graph of a program and instruments with energy-
aware checkpoints, requiring a small amount of programmer
intervention to place effectively. Ratchet functions by plac-
ing checkpoints at the boundaries of idempotent sequences
of instructions. Chinchilla over-instruments programs with
checkpoints by storing some variables in non-volatile mem-
ory, and disabling/enabling checkpoints heuristically. Apart
from the aforementioned studies, Mementos [39] was the
first checkpointing scheme, using intermittent voltage checks
to decide when to save state. QuickRecall [23] and Hiber-
nus [5] extended this work with newer non-volatile mem-
ories. DINO [28] laid out the memory consistency prob-
lems that will arise with intermittent computing for mixed-
volatility processors. TICS builds on these early techniques,
however, these systems do not consider timely execution of
the applications.

Task-based Programming Models. Alpaca [31] and re-
lated works [9] focus on providing control flow and data

96

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

flow mechanisms while reducing the memory footprint from
multi-versioning. Mayfly [20] provides explicit semantics
for specifying timing constraints on sensor data in a task-
based language. InK [46] provides a way to handle events
and interrupts from clock sources, sensors, and energy in
the environment, despite power failures. Task-based systems
require a custom programming model, which leads to added
programmer intervention and complexity. Task decomposi-
tion is a manual process that is error-prone and not resilient
to changes in the availability of energy in the environment.

Non-volatile Processors. Integration of non-volatile com-
ponents, e.g. non-volatile registers, to the processor architec-
ture provides automatic management of forward progress
and memory consistency [29, 30]. This eliminates the need
for handling these properties explicitly by the programmer.
However, non-volatile architectures consume more power,
they have increased area and decreased frequency as com-
pared to general-purpose volatile processors with SRAM-
based flip-flops [22]. TICS targets off-the-shelf processors
with hybrid volatile and non-volatile memory in the market.

7 Conclusion and Future Work

TICS is a runtime for intermittently powered systems that
enables full use of C features like pointers and recursion
through a memory consistency management scheme (data
versioning and stack segmentation) and provides semantics
for easily porting time-sensitive programs to the intermittent
domain while maintaining correctness. Guarantees on worst
case checkpointing time are provided, ensuring TICS scales
as applications become more complex. We evaluated TICS
against the state of the art, showing reasonable overhead
nearly matching the performance of task-based systems. We
conducted a user study, where participants found TICS more
intuitive than the task-based approach. In the future, we
anticipate exploring ways to automatically import or infer
timing semantics and rules from legacy code in TinyOS or
other systems. Virtualizing the I/O interface across power
failures could also lead to better ported applications.

8 Acknowledgments

We thank our anonymous reviewers for their useful com-
ments. This research was supported by Netherlands Organ-
isation for Scientific Research, partly funded by the Dutch
Ministry of Economic Affairs, through TTW Perspectief pro-
gram ZERO (P15-06) within Project P4, and by National
Science Foundation through grants CNS-1850496 and CNS-
1453607. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

Session 1B: Edge/intermittent

computing support — Life is too short!

References

(1]
(2]
(3]

(7]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

Clang 7 libtooling. https://github.com/llvm-mirror/clang/blob/master/
docs/LibTooling.rst, March 2019. Last accessed: Jan. 20, 2020.

TICS website. https://github.com/tudssl/tics, January 2020. Last ac-
cessed: Jan. 16, 2020.

Saad Ahmed, Muhammad Hamad Alizai, Junaid Haroon Siddiqui,
Naveed Anwar Bhatti, and Luca Mottola. Towards smaller check-
points for better intermittent computing. In Proc. IPSN, pages 132-133,
Porto, Portugal, 2018. ACM/IEEE.

Ala Al-Fugaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed
Aledhari, and Moussa Ayyash. Internet of things: A survey on enabling
technologies, protocols, and applications. IEEE Commun. Surveys Tuts.,
17(4):2347-2376, Fourth Quarter 2015.

Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and
Luca Benini. Hibernus++: a self-calibrating and adaptive system for
transiently-powered embedded devices. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 35(12):1968-1980, 2016.

Naveed Bhatti and Luca Mottola. HarvOS: Efficient code instrumenta-
tion for transiently-powered embedded devices. In Proc. IPSN, pages
209-219, Pittsburgh, PA, USA, 2017. ACM/IEEE.

John Burgess, Brian Gallagher, David Jensen, and Brian Neil Levine.
MaxProp: routing for vehicle-based disruption-tolerant networks. In
Proc. INFOCOM, Barcelona, Spain, 2006. IEEE.

An Chen. A review of emerging non-volatile memory (NVM) tech-
nologies and applications. Solid-State Electronics, 125:25-38, November
2016.

Alexei Colin and Brandon Lucia. Chain: Tasks and channels for reliable
intermittent programs. In Proc. OOPSLA, pages 514-530, Amsterdam,
The Netherlands, 2016. ACM.

Alexei Colin and Brandon Lucia. Termination checking and task de-
composition for task-based intermittent programs. In Proc. Conference
on Compiler Construction, pages 116-127, Vienna, Austria, 2018. ACM.
Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable
energy storage architecture for energy-harvesting devices. In Proc.
ASPLOS, pages 767-781, Williamsburg, VA, USA, 2018. ACM.

Adam Dunkels, Bjérn Grénvall, and Thiemo Voigt. Contiki - a light-
weight and flexible operating system for tiny networked sensors. In
Proc. LCN, pages 455-462, Tampa, FL, USA, 2004. IEEE.

Salma Elmalaki, Huey-Ru Tsai, and Mani Srivastava. Sentio: Driver-in-
the-loop forward collision warning using multisample reinforcement
learning. In Proc. SenSys, pages 28-40, Shenzhen, China, 2018. ACM.
Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden,
and Hari Balakrishnan. The pothole patrol: Using a mobile sensor
network for road surface monitoring. In Proc. MobiSys, pages 29-39,
New York, NY, USA, 2008. ACM.

A. Fioravanti-Score, Sarah V. Mitchell, and J. Michael Williamson. Use
of Satellite Telemetry Technology to Enhance Research and Education
in the Protection of Loggerhead Sea Turtles. In Proc. Annual Symp.
on Sea Turtle Biology and Conservation, South Padre Island, TX, USA,
1999. NOAA.

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In Proc. Workload Charac-
terization Workshop, pages 3-14, Austin, TX, USA, 2001. IEEE.

Josiah Hester, Travis Petersy, Tianlong Yuny, Ronald Petersony, Joseph
Skinnery, Bhargav Golla, Kevin Storer, Steven Hearndon, Kevin Free-
man, Sarah Lordy, Ryan Haltery, David Kotz, and Jacob Sorber. Amulet:
An energy-efficient, multi-application wearable platform. In Proc. Sen-
Sys, pages 216-229, Stanford, CA, USA, 2016. ACM.

Josiah Hester and Jacob Sorber. Flicker: Rapid prototyping for the
batteryless internet-of-things. In Proc. SenSys, pages 19:1-19:13, Delft,
The Netherlands, 2017. ACM.

97

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Josiah Hester and Jacob Sorber. The future of sensing is batteryless,
intermittent, and awesome. In Proc. SenSys, pages 21:1-21:6, Delft, The
Netherlands, 2017. ACM.

Josiah Hester, Kevin Storer, and Jacob Sorber. Timely execution on
intermittently powered batteryless sensors. In Proc. SenSys, pages
17:1-17:13, Delft, The Netherlands, 2017. ACM.

Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel
Holcomb, Kevin Fu, Wayne P. Burleson, and Jacob Sorber. Persistent
clocks for batteryless sensing devices. ACM Trans. Embed. Comput.
Syst., 15(4):77:1-77:28, August 2016.

Matthew Hicks. Clank: Architectural support for intermittent com-
putation. In Proc. ISCA, pages 228-240, Toronto, ON, Canada, 2017.
ACM.

Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghu-
nathan. Quickrecall: A HW/SW approach for computing across power
cycles in transiently powered computers. J. Emerg. Technol. Comput.
Syst., 12(1):8:1-8:19, July 2015.

Fredrik Larsson and Bengt-Erik Mellander. Abuse by external heating,
overcharge and short circuiting of commercial lithium-ion battery
cells. Journal of The Electrochemical Society, 161(10):A1611-A1617,
2014.

Philip Levis, Sam Madden, Joseph Polastre, Rober Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
and David Culler. TinyOS: An operating system for sensor networks.
In Werner Weber, Jan M. Rabaey, and Emile Aarts, editors, Ambient
intelligence, pages 115-148. Springer, Berlin, Germany, 2005.

Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane, Tanzeem Choud-
hury, and Andrew T. Campbell. The jigsaw continuous sensing engine
for mobile phone applications. In Proc. SenSys, pages 71-84, Ziirich,
Switzerland, 2010.

Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily
Ruppel. Intermittent computing: Challenges and opportunities. In
Proc. SNAPL, pages 8:1-8:14, Alisomar, CA, USA, 2017.

Brandon Lucia and Benjamin Ransford. A simpler, safer programming
and execution model for intermittent systems. In Proc. PLDI, pages
575-585, Portland, OR, USA, 2015. ACM.

Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng,
Shuangchen Li, Yongpan Liu, Yuan Xie, John Jack Sampson, and Vi-
jaykrishnan Narayanan. Nonvolatile processor architectures: Effi-
cient, reliable progress with unstable power. IEEE Micro, 36(3):72-83,
May/Jun. 2016.

Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueging Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. Architecture exploration for ambient energy harvesting
nonvolatile processors. In Proc. HPCA, pages 526-537, Burlingame,
CA, USA, 2015. IEEE.

Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent
execution without checkpoints. In Proc. OOPSLA, pages 96:1-96:30,
Vancouver, BC, Canada, 2017. ACM.

Kiwan Maeng, Alexei Colin, and Brandon Lucia. Adaptive dynamic
checkpointing for safe efficient intermittent computing. In Proc. OSDI,
Carlsbad, CA, USA, 2018. USENIX.

Sujay Narayana, R. Venkatesha Prasad, Vijay S. Rao, and Chris Ver-
hoeven. SWANS: sensor wireless actuator network in space. In Proc.
SenSys, pages 23:1-23:6, Delft, The Netherlands, 2017. ACM.

Anh Nguyen, Raghda Alqurashi, Zohreh Raghebi, Farnoush Banaei-
Kashani, Ann C. Halbower, and Tam Vu. A lightweight and inex-
pensive in-ear sensing system for automatic whole-night sleep stage
monitoring. In Proc. SenSys, pages 230-244, Stanford, CA, USA, 2016.
ACM.

M. R. Palacin and A. de Guibert. Why do batteries fail? Science,
351(6273), 2016.

https://github.com/llvm-mirror/clang/blob/master/docs/LibTooling.rst
https://github.com/llvm-mirror/clang/blob/master/docs/LibTooling.rst
https://github.com/tudssl/tics

Session 1B: Edge/intermittent

computing support — Life is too short!

[36] Powercast Corp. Powercast hardware development kits website. https:

[37

(38

(39

(40

[41

(42

[43

(44

[45

[46

(47

[48

]

]

]

]

]

]

—

= =

]

—

[t

/[www.powercastco.com/products/development-kits/, 2014. Last ac-
cessed: Jan. 20, 2020.

Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber,
Wayne P. Burleson, and Kevin Fu. TARDIS: time and remanence decay
in SRAM to implement secure protocols on embedded devices without
clocks. In Proc. Security Symposium, pages 36-36, Bellevue, WA, USA,
2012. USENIX.

Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a bro-
ken time machine. In Proc. Workshop on Memory Systems Performance
and Correctness, pages 5:1-5:3, Edinburgh, Scotland, 2014. ACM.
Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System
support for long-running computation on RFID-scale devices. In Proc.
ASPLOS, Newport Beach, CA, USA, 2011. ACM.

Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexan-
der V. Mamishev, and Joshua R. Smith. Design of an RFID-based
battery-free programmable sensing platform. IEEE Trans. Instrum.
Meas., 57(11):2608-2615, November 2008.

Mahadev Satyanarayanan, Wei Gao, and Brandon Lucia. The com-
puting landscape of the 21st century. In Proc. HotMobile, pages 45-50,
Santa Cruz, CA, USA, 2019. ACM.

Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D. Corner, and Emery D. Berger. Eon: A language and
runtime system for perpetual systems. In Proc. SenSys, pages 161-174,
Sydney, Australia, 2007.

Jethro Tan, Przemystaw Pawelczak, Aaron Parks, and Joshua R. Smith.
Wisent: Robust downstream communication and storage for compu-
tational RFIDs. In Proc. INFOCOM, San Francisco, CA, USA, 2016.
IEEE.

Texas Instruments. MSP430FR5994 launchpad development kit. http:
//www.ti.com/tool/MSP-EXP430FR5994. Last accessed: Jan. 20, 2020.
Joel Van Der Woude and Matthew Hicks. Intermittent computation
without hardware support or programmer intervention. In Proc. OSDL,
pages 17-32, Savannah, GA, USA, 2016. ACM.

Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemystaw Pawelczak, and Josiah Hester. InK: Reactive ker-
nel for tiny batteryless sensors. In Proc. SenSys, pages 41-53, Shenzhen,
China, 2018. ACM.

Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu.
MOQO: A batteryless computational RFID and sensing platform (tech-
nical report um-cs-2011-020). https://web.cs.umass.edu/publication/
docs/2011/UM-CS-2011-020.pdf, 2011. Last accessed: Jan. 20, 2020.
Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Margaret
Martonosi. Hardware design experiences in ZebraNet. In Proc. SenSys,
pages 227-238, Baltimore, MD, USA, 2004. ACM.

98

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

https://www.powercastco.com/products/development-kits/
https://www.powercastco.com/products/development-kits/
http://www.ti.com/tool/MSP-EXP430FR5994
http://www.ti.com/tool/MSP-EXP430FR5994
https://web.cs.umass.edu/publication/docs/2011/UM-CS-2011-020.pdf
https://web.cs.umass.edu/publication/docs/2011/UM-CS-2011-020.pdf

Session 1B: Edge/intermittent
computing support — Life is too short!

A Artifact Appendix

A.1 Abstract

TICS is a framework that allows for C programs to be
executed on intermittent power harvested from the environ-
ment. TICS consists of multiple components that together
make sure that the program that is being executed contin-
ues where it left off after a power failure. Additionally, TICS
does this in a way that leads to checkpoint times that can
be bounded to a reasonable upper limit, making reasoning
about checkpoint placement dynamically possible (although
this is not explored in the current version).

TICS is intended to be used with the MSP430FR5969 micro-
controller but can be adapted to work with any MSP-based
microcontroller that consists of non-volatile main memory.

The main components of TICS are:

o TICS runtime for memory logging and checkpoint
management;

e TICS compiler backend (GCC and LLVM) for stack
segmentation management;

e TICS source instrumentation for variable instrumenta-
tion.

A.2 Artifact Check-list (Meta-information)
e Program: msp430-gcc, llvm, memlog, benchmarks
e Compilation:

Building GCC

Required packages:
build-essential flex bison texinfo
ncurses-dev zliblg-dev bash curl

Build commands:
$ cd msp430-gcc-tics
$./build.sh

Building LLVM
Required packages:
make gcc cmake python zliblg-dev

Build commands:
$ cd llvm-tics
$./build.sh

Building Source Instrumentation Tool

Build commands:

$ cd tics/source-instrumentation/\
memory-log-instrumentation

$ mkdir build

$ cd build

$ cmake ../

$ make

e Transformations:

memlog <benchmark>.c

Binary:

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

e Hardware: Texas Instruments MSP430FR5969 launchpad
development kit

e Experiments: Hardware breakpoints and cycle counter

¢ How much disk space required (approximately)?: 30 GB
(compilers)

e How much time is needed to prepare workflow (ap-
proximately)?: one day

e How much time is needed to complete experiments
(approximately)?: 2 hours

e Publicly available?: yes

e Code licenses (if publicly available)?: MIT

e Archived (provide DOI)?: Yes
10.5281/zenodo.3563082 (https://doi.org/10.5281/zenodo.3563082).

A.3 Description
A.3.1 Hardware Dependencies

Texas Instruments MSP430FR5969 launchpad development kit.

A.3.2 Software Dependencies

Download and extract the MSP430 GCC support files from Texas
Instruments website.

Further instructions described in README.md in archive (DOI):
10.5281/zenodo.3563082 (https://doi.org/10.5281/zenodo.3563082).

A.3.3 Data Sets

A.4 Installation
Described in README.md in archive (DOI): 10.5281/zenodo.3563082
(https://doi.org/10.5281/zenodo.3563082).

A.5 Experiment Workflow
Described in README.md in archive (DOI): 10.5281/zenodo.3563082
(https://doi.org/10.5281/zenodo.3563082).

A.6 Evaluation and Expected Result
Described in README.md in archive (DOI): 10.5281/zenodo.3563082
(https://doi.org/10.5281/zenodo.3563082).

ftest_cuckoo, ftest_ar, ftest_bitcount, greenh_temp_tinyos

	Abstract
	1 Introduction
	2 Battery-free Intermittent Systems
	2.1 The Big Jump to Legacy Software

	3 TICS: System Design
	3.1 Efficient Automatic Checkpoints
	3.2 Semantics for Timely Execution

	4 TICS: Implementation
	5 Evaluation
	5.1 Porting Legacy Code: TinyOS to Intermittent World
	5.2 Time-sensitive Intermittent Computation
	5.3 TICS System Efficiency
	5.4 User Study and Developer Effort

	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result

