
Deepstitch: Deep Learning for Cross-Layer Stitching
in Microservices

Richard Li∗
Facebook

Min Du†
Palo Alto Networks

Hyunseok
Chang

Nokia Bell Labs

Sarit
Mukherjee
Nokia Bell Labs

Eric Eide
University of Utah

ABSTRACT
While distributed application-layer tracing is widely used
for performance diagnosis in microservices, its coarse gran-
ularity at the service level limits its applicability towards
detecting more fine-grained system level issues. To address
this problem, cross-layer stitching of tracing information has
been proposed. However, all existing cross-layer stitching
approaches either require modification of the kernel or need
updates in the application-layer tracing library to propagate
stitching information, both of which add further complex
modifications to existing tracing tools. This paper introduces
Deepstitch, a deep learning based approach to stitch cross-
layer tracing information without requiring any changes to
existing application layer tracing tools. Deepstitch leverages
a global view of a distributed application composed of mul-
tiple services and learns the global system call sequences
across all services involved. This knowledge is then used
to stitch system call sequences with service-level traces ob-
tained from a deployed application. Our proof of concept
experiments show that the proposed approach successfully
maps application-level interaction into the system call se-
quences and can identify thread-level interactions.

1 INTRODUCTION
As the software architecture of cloud applications increas-
ingly migrates from monolithic designs to the container-
based microservices architecture, new challenges are arising

∗Work performed while at the University of Utah and Nokia Bell Labs.
†Work performed while at UC Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
WOC’20, December 7–11, 2020, Delft, Netherlands
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8209-0/20/12. . . $15.00
https://doi.org/10.1145/3429885.3429965

from their deployments. Among the most prominent chal-
lenges is performance diagnosis. Real-world microservice
deployments often include more than hundreds of microser-
vice instances with highly complex and dynamic interaction
patterns. To better understand and diagnose such large-scale
and complex microservices-based applications, most existing
microservice development frameworks are equipped with
distributed application-layer tracing capability [13, 19].
While distributed application-level tracing is useful to

identify service-level dependencies and diagnose application
performance at service granularity, the lack of kernel-level
information hinders more fine-grained performance diagno-
sis within each service. For example, a particular application
transaction may slow down due to lock contention, ineffi-
ciency in network communication, or I/O bottlenecks. These
types of anomalous behaviors at lower levels are not visible
to application-layer tracing.
There are three reasons why kernel-level information

is missing in existing distributed application-level tracing.
First, the majority of modern tracing tools follow Dapper’s
approach [19] that only logs high-level events, e.g., RPCs,
which is sufficient to diagnose most but not all service-level
behaviors. Second, instrumenting trace context that resides
in userspace to collect kernel-level information would intro-
duce much complexity to the kernel. Third, for a production
system, it is impractical to propagate operational contexts
across all the layers of the software stack down to the kernel,
as it would introduce too much performance overhead.

On the other hand, without application-level contexts, ker-
nel tracing alone cannot deduce useful application-specific
performance insight. For example, a pure system-call-based
approach (e.g., Khadke et al. [15]) can only derive whether
a particular server process is under a heavy disk/network
workload, with no way of attributing the workload to partic-
ular application-level behaviors.
This motivates people to enrich distributed application-

level tracing with kernel-level information. For example,
Ardelean et al. [1] propose propagating RPC-level context
information to a kernel trace by injecting artificial system
calls from applications. Sheth et al. [18] incorporate a system-
call tracing layer within application-level tracing by leverag-
ing a custom kernel module. These approaches all require

https://doi.org/10.1145/3429885.3429965

WOC’20, December 7–11, 2020, Delft, Netherlands Richard Li, Min Du, Hyunseok Chang, Sarit Mukherjee, and Eric Eide

modifying the tracing library to some extent, which can be
burdensome especially because the tracing library is devel-
oped in multiple programming languages. In addition, they
are purpose-designed to stitch only system-call traces with
application-layer traces, making it infeasible to generalize
for other kernel-layer information (e.g., I/O operations, stack
traces, and CPU scheduling events). This weakness impedes
them from embracing richer kernel-layer traces enabled by
dynamic tracing technologies such as eBPF [4] to construct
a more holistic view across kernel and application layers.

However, cross-layer stitching can be very challenging for
several reasons. Take system call tracing as an example. First,
typical microservices are multi-threaded, while application-
level tracing only provides process-level information for in-
dividual application transactions. Within a process, multiple
threadsmay perform different transactions concurrently. Sec-
ond, the volume of system call traces grows very quickly, and
it is difficult to find patterns to match the upper-layer events
efficiently. A particular system call sequence pattern may
be matched with multiple different application transactions.
Third, time granularity may be different across tracing lay-
ers, complicating accurate stitching. These challenges make
cross-layer trace stitching very difficult even for a single
process [1].

In this paper, we tackle the cross-layer stitching problem
with a deep learning based approach called Deepstitch. In
a controlled environment, Deepstitch constructs a global
view of a distributed application composed of multiple ser-
vices. It learns the system call sequence patterns across all
services involved using Long Short-Term Memory (LSTM)
networks [12]. This knowledge is used to stitch system call
sequences with service-level traces obtained from a deployed
application. We demonstrate that with a global view of sys-
tem call traces, the application-layer’s operational context
can be naturally embedded into the system call traces, thereby
enriching tracing knowledge for further learning and rea-
soning. A feasibility study shows that this new perspective,
together with deep learning, successfully stitches application
and system call layer traces without modifying the tracing
library or customizing the kernel.

We make the following contributions. (1) We articulate the
trade-off between different kinds of cross-layer stitching tech-
niques and highlight the practical need in a non-intrusive
alternative approach. (2) We build Deepstitch, the first sys-
tem to perform cross-layer stitching without patching any
components in deployed microservices, tracing utilities and
the kernel. (3) We evaluate Deepstitch with an e-commerce
microservices-based application running on a real-world
cloud deployment and report its stitching accuracy.

Figure 1: Trace and Spans in distributed application-
level tracing.

2 BACKGROUND
Distributed application-layer tracing. Distributed trac-
ing at the application layer allows IT and DevOps to monitor
application transactions that traverse multiple microservices.
It works by collecting application events in the form of Traces
and Spans. As defined by OpenTracing [17], a Trace repre-
sents a particular application-level transaction triggered by
an external event (e.g., a user’s access request). A Span rep-
resents a particular action (e.g., an RPC call or a function
call) that is executed as part of a Trace. A single Trace typi-
cally involves multiple Spans that are executed by different
microservices. Conceptually, a Trace is represented by a
directed acyclic graph (DAG) of Spans. Each Span records
an application-level context including API name, start/end
timestamps, and its relationship with other Spans. A directed
edge between a Span and its child Span in the DAG indicates
a caller-callee relationship. For example, Figure 1 shows a
Trace composed of a nested call chain of Span1 → Span2 →
Span3.

Kernel-layer tracing. Tracing at the kernel layer [8] has
been instrumental in many use cases, including performance
troubleshooting, integrity testing, anomaly root cause analy-
sis, security assessment, etc. The emergence of non-intrusive,
flexible, and efficient tracing technology such as eBPF has
made kernel-layer tracing readily deployable in production
systems [9]. The available kernel-layer tracing techniques,
however, have not been fully exploited in the distributed
and dynamic microservice contexts. Common usage of the
kernel-layer trace information is limited to a single-host
analysis with raw data [10] or aggregated statistical analysis
when collected for distributed systems [2, 16]. It is inher-
ently difficult to stitch kernel-layer traces with userspace
operational context in a general and unobtrusive way.

3 SYSTEM CALL SEQUENCE ACROSS
SERVICES

System call tracing has been used for microservices in several
different contexts. For example, the system-call-level behav-
ior of each microservice can be profiled to detect and block
any abnormal system calls possibly generated by malicious
behaviors [21]. Tahir et al. [20] applied machine learning to
system call traces to enable effective security monitoring.

Deepstitch: Deep Learning for Cross-Layer Stitching in Microservices WOC’20, December 7–11, 2020, Delft, Netherlands

Traditional malware analysis approaches [7] use system call
traces to understand how malware infects a service instance.

What these existing works have in common is that system
calls are examined from a single service’s perspective, not
as part of a pattern that extends beyond the boundary of a
single service or a host. We refer to this single-service view
of system call sequence as a local view. However, we find that
there is a value in considering system call sequences across
different services that communicate with each other. We re-
fer to the combined set of system call traces generated across
different services for application transactions as a global view.
From the test runs of an actual microservices-based appli-
cation, we find that the local view is hardly useful to char-
acterize the system call behavior of individual services and
their Spans. For example, the “GET /user” and “GET /login”
operations handled by a particular web service all receive an
HTTP request from another service, perform service-specific
computation in userspace, and then send back a response.
At the system call level, these two operations are not very
differentiable.
We use an example to demonstrate why the global view

of system call traces can help with pattern identification.
Figure 2 shows a hypothetical applicationwith three services,
A, B, and C. Each service has three active threads represented
as vertical lines, which serve requests. Time advances from
top to bottom. The horizontal dashed lines represent the
start/end times of three Spans belonging to a sample Trace T.
Black blocks indicate system calls triggered by the Trace,
while gray blocks indicate system calls of other irrelevant
Traces. We use W to represent write(), R for read(), and X for
other system calls. The number after R/W/X indicates the
time of the system call. The goal in this example is to figure
out which thread in each service is contributing to the Trace T,
i.e., find the threads with black blocks.

To better characterize threads that belong to a Span based
on their system calls, a natural approach would be to collect
additional metadata (e.g., system call arguments) to enrich
the Traces, so that any distinct pattern in individual local
views becomes more pronounced. However, this approach
would add more overhead to system call collection, and can-
not be generalized for other types of kernel-level traces. An
alternative approach would be to use machine learning to
learn the threads that could be triggered by a Trace. How-
ever, if we train a model merely by reading the system call
sequences along the vertical lines of each service, the learned
patterns would be either {R-W} or {W-R}, which is hardly
sufficient to differentiate the threads with black blocks from
other threads. For example, both the first and second threads
in service C have {R-W} within the Span, and thus both can
possibly be considered the thread of interest.
Instead, our solution is to make use of the global infor-

mation provided by application-layer tracing, and learn the

Figure 2: Hypothetical system call sequences of a trace
in multi-threaded services A, B, and C.

Table 1: Enumerate possible sequences for each com-
bination.

Combination Global system call sequence
A1-B1-C1 Aw-Bw-Bx-Cr-Cw-Bx-Ar
A1-B1-C2 Aw-Bw-Bx-Cr-Bx-Cw-Ar
A1-B1-C3 Aw-Bw-Bx-Bx-Cx-Ar
A1-B2-C1 Aw-Br-Bw-Cr-Cw-Br-Bw-Ar
A1-B2-C2 Aw-Br-Bw-Cr-Br-Cw-Bw-Ar

.
A3-B3-C3 Ar-Br-Bw-Aw-Br-Cx

global system call sequence S triggered by Trace T. Let’s
assume that we have already learned in advance S = {Aw-Br-
Bw-Cr-Cw-Br-Bw-Ar}. Also assume that we know this Trace
consists of three Spans, each of which is associated with a
thread in a service. The learning phase is one of our major
contributions, which we will elaborate in Section 4.
According to the start/end timestamps of the Spans pro-

vided by application-layer tracing, we slice the system call
sequences of threads belonging to each service. We then take
one thread from each service to construct a potential global
system-call sequence. By enumerating all possible combina-
tions of thread selection for different services, we can build
Table 1. In Table 1, we read system call sequences according
to timestamps of system calls across multiple services: on
the left column, “A1” represents the first thread in service A,
considered as the thread serving the request; on the right,
“Aw” indicates a write() system call issued by the service A.
The global system call sequence is read according to times-
tamps associated with the system calls. From this table, we
can see that, when sorted by time, the system-call sequence
of the combination of A1, B2, and C1 matches the expected
global system call sequence S the best, so we can infer that
A1, B2, and C1 are most likely the threads contributing to the
Trace T. In reality, any single Span may have a much larger
set of system calls and there may be deeper DAGs of many
Spans. This observation still holds in those environments.

WOC’20, December 7–11, 2020, Delft, Netherlands Richard Li, Min Du, Hyunseok Chang, Sarit Mukherjee, and Eric Eide

4 FEASIBILITY STUDY
In this section, we describe how Deepstitch uses deep learn-
ing to learn global system-call sequence patterns for different
types of Traces, which in turn are used to perform cross-
layer stitching for a live application. In a nutshell, Deepstitch
works as follows: (i) We first train an idle model for each
service, which characterizes its system call behavior when
the service is idle. (ii) In an isolated environment, we then
systematically load the application (e.g., with a workload
generator) to collect global system-call sequences for differ-
ent types of Traces, and perform sanitization on the collected
sequences. (iii) For each type of Trace, we train a separate
model, called a trace model, to characterize the sanitized ver-
sion of its global system-call sequences. (iv) Finally, in a live
application deployment environment, we use the idle models
and trace models together to perform thread prediction and
cross-layer stitching.

As a proof-of-concept model construction and validation,
we use an e-commerce application called Sock Shop [22],
which is composed of 14 microservices developed in multiple
languages (Java, Python, Go, and Node.js). We trace Sock
Shop at the application layer as well as at the system call
layer by using Jaeger [13] and vltrace [3], respectively. We
generate workload for Sock Shop using Locust [11], and use
Kubernetes for container orchestration.
The Sock Shop services are deployed across three Dell

PowerEdge R430 servers, eachwith two Intel Xeon E5-2630v3
8-core CPUs, provisioned within Emulab [6]. The deep learn-
ing training and prediction by Keras [14] are performed on a
Cisco UCS C240 M5 Rack Server with two Intel Xeon Silver
4114 10-core CPUs and one NVIDIA 12GB PCI P100 GPU,
within CloudLab [5]. All machines are running Ubuntu 16.04.

4.1 Learn Idle Sequences
As a baseline, we need to learn the system call behavior of
an application in idle status (i.e., while not handling any
workload). For example, the Sock Shop application generates
1.2 million system calls during 5 minutes of idle time. These
so-called idle sequences are attributed to application-specific
routines, e.g., periodic health check, port polling, thread
yielding, garbage collection, TCP keepalive, etc. These idle
sequences have their own patterns when viewed on a thread
granularity. One thread in the user service in Sock Shop, for
example, periodically generates a few read() and write() calls
with sched_yield() in between to generate TCP keepalive for
the frontend service.
So as the first step, we collect idle sequences of each ser-

vice and train a corresponding LSTM neural network model
to learn all possible patterns of its idle sequences. The system-
call sequence in each thread typically follows specific pat-
terns that can be learned by the LSTM model. As input to

the LSTM model, we use 𝑛-grams that are extracted from the
original idle sequences with a sliding window of length 𝑛,
and label the 𝑛-grams with the (𝑛+1)-th system call. In case
there are multiple idle threads running within a service, we
obtain 𝑛-grams from the idle sequence of each thread, and
shuffle them up. To train a robust LSTM network, we keep
the services under idle load for 48 hours to collect enough
training data (more than half a billion system calls in total).
These idle models are later used by Deepstitch to elimi-

nate idle sequences from collected system call traces. This is
essential to detect whether a thread is idle or actively serving
a request during particular Span periods.

4.2 Profile Trace
The next step is to profile the representative behavior of
Traces at the thread level (i.e., which threads are involved
for a particular Trace). To this end, we deploy Sock Shop in
an isolated environment, inject different types of requests
(e.g., “GET /login”, “GET /orders”), one at a time, and collect
Trace/Span information as well as system call traces for
each request. Given the collected system call traces, we first
eliminate non-Span-related idle sequences as follows. For
each Span, we obtain the system call sequences of each thread
in processes associated with a service. We then feed those
sequences to the corresponding idle model of the service.
The Keras prediction API produces a probability array that
predicts the next system call after a given sequence. We
use the probability of the system call that actually comes
as a prediction score. If there is any system call within the
sequence that gets a prediction score lower than a threshold,
we consider the corresponding thread to be active. We call
those system calls whose prediction scores are lower than
the threshold (and thus can help identify active threads)
signal system calls. We filter out all the system calls whose
prediction scores are above the threshold as background
activities.
Even after filtering out idle sequences, profiling a Trace

is still non-trivial. The main challenge comes from the fact
that there can be multiple active threads in the period of a
Span. This is because multiple Spans of a Trace can be han-
dled by different threads in parallel. So when we get active
threads for a Span, some of them may actually be serving
other Spans, which we call false active threads. To prevent the
false association of threads and discount irrelevant threads
from the global system-call sequences, we exploit the times-
tamps of individual signal system calls. More specifically,
we refine the active time range of a thread by using system
call timestamps. Imagine that SpanA and SpanB both detect
thread1 to be active. Suppose SpanA happens during [20𝜇s,
30𝜇s], while SpanB occurs during [25𝜇s, 35𝜇s]. Suppose that
thread1 generates the first signal system call at 22𝜇s+100𝑛s,

Deepstitch: Deep Learning for Cross-Layer Stitching in Microservices WOC’20, December 7–11, 2020, Delft, Netherlands

and the last call at 29𝜇s+70𝑛s. In this scenario, Deepstitch
considers thread1 to be associated with SpanA only, because
its active range is not within SpanB. Thus this thread is con-
sidered a false active thread for SpanB and excluded. With
nanosecond timestamp precision, the thread active range
effectively excludes most of the false active threads from
Spans.
There are also cases where multiple Spans are processed

within the same thread. For example, within a service, the
call chain of func𝐴 → func𝐵 → func𝐶 can be represented
by three Spans in the application-layer trace. In this case,
there is actually only one thread active in the profiling stage,
shared by all the three Spans. Since in terms of system call
sequence, the active thread covers the duration from the
beginning of func𝐴 to the return of func𝐶 , we merge these
three Spans into one and associate it with the thread. In this
way, we also get a precise profile of Traces specifying how
many Spans are associated with each thread in a service.
To ensure the representativeness of the profiling result,

we generate, for each type of Trace, one thousand Trace
instances and get a statistically stable profile.

4.3 Train Global System Call Sequences
Once we correctly identify threads that are associated with
the individual Spans of a Trace, the next step is to build a deep
learning model for each type of Trace. As input to the model,
we create the global system-call sequences of each Trace by
combining and sorting (based on timestamp) the system-call
sequences from different services and threads involved. Here
system calls are encoded with their service names prepended.
For example, if the orders service generates sendto(), we
encode it as orders_sendto() and map it into a numeric space.
That way, we incorporate service-level interaction in the
system-call sequences. We generate training data with this
global system-call sequence in the same way we do with idle
sequences (i.e., 𝑛-grams labeled with (𝑛+1)-th system call).
For each type of Trace (e.g., generated by “GET /user”, “GET
/catalogue/id”, etc.), we train a corresponding LSTM model
based on encoded global system-call sequences.
Clock drift does not appear to be a problem in this ap-

proach, mainly because in typical microservices, network
latency is a dominant factor in application delay, and the
default time synchronization protocol (e.g., NTP) can handle
it well at that granularity. This observation is in line with
that of previous work [1].

4.4 Identify Target Threads
The idle models and trace models presented so far are trained
in an isolated environment. The final step is to utilize these
models to identify threads and perform cross-layer stitch-
ing in an actual deployment environment, where multiple

Table 2: Prediction accuracy for different traces.
Trace # Services Involved Accuracy
GET /orders 7 91.38%
GET /catalogue/{id} 3 89.47%
GET /customers 3 89.31%
GET /login 3 84.54%
GET /health 1 74.25%

requests are concurrently served in Sock Shop. In this real-
istic environment, we can no longer assume that only one
Trace is generated at a time, so we need to slice and detect all
the active threads according to timestamp data provided by
application-layer Spans. Since there can be multiple active
Traces, the number of active threads available can be more
than the count of threads of a specific Span in its profile.
Among those active threads, we construct all possible com-
binations of them according to the Trace profile, making a
table similar to Table 1. Among the listed candidates, we pick
the most likely combination by using a likelihood metric,
which is defined as the average prediction scores of all sys-
tem calls within a sequence. Since the threads that do not
belong to this specific Trace could have many system calls
that get much lower prediction scores than others, they will
get much lower average scores than the correct one.

4.5 Verify Results
To verify the correctness of the thread prediction, we need
labeled ground-truth data about which threads are associ-
ated with individual Spans. However, no existing application-
layer tracing tools are available for this purpose, supporting
multiple languages (Go, Java, Python, Node.js).
As a workaround, we use the PID information of Spans

(which is already available in application-layer tracing) as
label data instead. If a service is realized with multiple con-
tainer replicas to serve requests, Jaeger can report which PID
instance is serving which request. As verification, we ignore
this ground-truth PID information provided by Jaeger, and
check which process Deepstitch considers to be involved in
each request. In the experiment, we spawn two instances for
each service and let the Locust load generator send requests
with a concurrency level of two to ensure that two instances
of each service actively handle incoming requests concur-
rently. For each type of Trace, we run 100 experiments and
get average prediction accuracy. The result is summarized
in Table 2. It shows that Deepstitch can achieve reasonably
accurate predictions. It also shows that the more services
are involved in a Trace, the more accurate the prediction
is. Prediction for “GET /health” is relatively less accurate
because it is a periodic health-check routine that involves
only a single service, and the global system call view is not
applicable in this case. Essentially, Deepstitch works better
when there is richer inter-service communication.

WOC’20, December 7–11, 2020, Delft, Netherlands Richard Li, Min Du, Hyunseok Chang, Sarit Mukherjee, and Eric Eide

5 USE CASES
Section 4 shows that a global view of service-level interaction
can be helpful for learning the patterns within the system call
sequences of a Trace. This learning can in turn be used for
other tasks such as cross-layer trace stitching, but without
extending existing tracing tools.

Microburst troubleshooting. Performance anomalies
in production systems are often caused by microbursts in
resource usage. Troubleshooting microbursts is challenging
because a microburst typically lasts for a very short dura-
tion (a few milliseconds), and yet it can cause non-negligible
performance degradation. Cross-layer stitching is one viable
approach to detect and explain microbursts. For example,
Ardelean et al. [1] stitched system calls and application layer
traces to identify what events led to a microburst in CPU
utilization, which in turn introduced abnormal latency to
end-to-end requests in a large production system. To do that,
they had to patch both the applications and tracing libraries.
With Deepstitch, an analyst can easily get the system-call
sequences associated with the Trace/Span of interest, and
then further understand the behavior of this particular per-
formance anomaly at the system-call level. It is worth noting
that to achieve the same goal, Deepstitch requires no modifi-
cation in the kernel or tracing utility software. Deepstitch
can also easily be extended to support pushing the extracted
system call sequences as the value of a tag in an application-
layer Span, which can be shown in the WebUI of Jaeger in a
user-friendly way for analysis purposes.

Performance tuning. The system call sequences sani-
tized by service-specific idle models can be used as a mag-
nifier to help application developers better understand the
kernel-level interactions for individual Spans and find op-
portunities to optimize an existing application. For example,
if one sees within a Span multiple sendto() and recvfrom()
pairs between two services, one might consider batch opera-
tions or pipeline optimization to avoid unnecessary network
round trips. This kind of optimization can be critical because
many microservices-based applications are refactored from
a monolithic version, in which circumstance this type of
suboptimal interaction is not uncommon.

6 CONCLUSION
Cross-layer stitching is an emerging technology in the mi-
croservices world, where observability is one of the pil-
lars to support highly reliable and efficient distributed sys-
tems. We argue that evolvability should be taken into con-
sideration in existing tracing solutions to enable kernel-
layer and application-layer stitching, and to embrace emerg-
ing dynamic kernel tracing. By using deep learning and a
new perspective—a global view of kernel tracing aided by

application-layer tracing—Deepstitch makes a first step to-
wards a general, evolvable, data-oriented, cross-layer stitch-
ing solution.

ACKNOWLEDGMENTS
We thank Jingwen Peng at QingCloud Inc. for providing help
on Kubernetes deployment. This material is based upon work
supported in part by the National Science Foundation under
Grant Numbers 1642158 and 1743363.

REFERENCES
[1] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Performance

Analysis of Cloud Applications. In Proc. USENIX NSDI.
[2] Cloudflare, Inc. 2020. Prometheus exporter for custom eBPF metrics.

https://github.com/cloudflare/ebpf_exporter.
[3] Lukasz Dorau. 2018. vltrace: Syscall Tracer using eBPF. https://github.

com/pmem/vltrace.
[4] Matt Fleming. 2017. A thorough introduction to eBPF. https://lwn.net/

Articles/740157/.
[5] The Flux Research Group. 2020. CloudLab. https://cloudlab.us/.
[6] The Flux Research Group. 2020. Emulab. https://emulab.net/.
[7] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. 2008. The

Evolution of System-call Monitoring. In Proc. ACSAC.
[8] Mohamad Gebai and Michel R. Dagenais. 2018. Survey and Analysis

of Kernel and Userspace Tracers on Linux: Design, Implementation,
and Overhead. Comput. Surveys 51, 2 (2018).

[9] Brendan Gregg. 2016. Linux 4.x Tracing Tools: Using BPF Superpowers.
In Proc. USENIX LISA.

[10] Brendan Gregg. 2018. Linux Extended BPF (eBPF) Tracing Tools.
http://www.brendangregg.com/ebpf.html.

[11] Jonatan Heyman, Carl Byström, Joakim Hamrén, and Hugo Heyman.
2018. Locust – A Modern Load Testing Framework. https://locust.io/.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural computation 9, 8 (1997), 1735–1780.

[13] The Jaeger Authors. 2020. Jaeger. https://jaegertracing.io.
[14] Keras Team. 2019. Keras. https://keras.io/.
[15] Nikhil Khadke, Michael P. Kasick, Soila P. Kavulya, Jiaqi Tan, and

Priya Narasimhan. 2012. Transparent System Call Based Performance
Debugging for Cloud Computing. In Proc. USENIX MAD.

[16] Alex Maestretti and Brendan Gregg. 2017. Security Monitoring with
eBPF. Proc. BSidesSF.

[17] OpenTracing Specification Council. 2017. The OpenTracing Semantic
Specification. https://opentracing.io/specification/.

[18] Harshal Sheth and Andrew Sun. 2018. Skua: Extending Distributed
Tracing Vertically into the Linux Kernel. In Proc. DevConf.

[19] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010.
Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Google
Technical Report.

[20] Rashid Tahir, Matthew Caesar, Ali Raza, Mazhar Naqvi, and Fareed
Zaffar. 2017. An Anomaly Detection Fabric for Clouds Based on Col-
laborative VM Communities. In Proc. CCGrid.

[21] Chenxi Wang. 2016. Protect Containerized Applications with System
Call Profiling. AppSec USA.

[22] Weaveworks, Inc. 2018. Sock Shop. https://microservices-demo.github.
io.

https://github.com/cloudflare/ebpf_exporter
https://github.com/pmem/vltrace
https://github.com/pmem/vltrace
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://cloudlab.us/
https://emulab.net/
http://www.brendangregg.com/ebpf.html
https://locust.io/
https://jaegertracing.io
https://keras.io/
https://opentracing.io/specification/
https://microservices-demo.github.io
https://microservices-demo.github.io

	Abstract
	1 Introduction
	2 Background
	3 System Call Sequence Across Services
	4 Feasibility Study
	4.1 Learn Idle Sequences
	4.2 Profile Trace
	4.3 Train Global System Call Sequences
	4.4 Identify Target Threads
	4.5 Verify Results

	5 Use Cases
	6 Conclusion
	Acknowledgments
	References

