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ABSTRACT. We complete the classification of Hamiltonian torus and circle actions on symplectic four-
dimensional manifolds. Following work of Delzant and Karshon, Hamiltonian circle and 2-torus actions
on any fixed simply connected symplectic four-manifold were characterized by Karshon, Kessler and
Pinsonnault. What remains is to study the case of Hamiltonian actions on blowups of S2-bundles over
a Riemann surface of positive genus. These do not admit 2-torus actions. In this paper, we characterize
Hamiltonian circle actions on them. We then derive combinatorial results on the existence and counting
of these actions. As a by-product, we provide an algorithm that determines the g-reduced form of a
blowup form. Our work is a combination of “soft” equivariant and combinatorial techniques, using
the momentum map and related data, with “hard” holomorphic techniques, including Gromov-Witten
invariants.

1. INTRODUCTION

In this paper we complete the classification of Hamiltonian torus and circle actions on symplectic
four-dimensional manifolds. It is in this dimension that there are abundant examples (indeed, Gompf has
shown that any finitely presented group may be the fundamental group of a four-dimensional symplec-
tic manifold [7]), and yet powerful holomorphic techniques (J-holomorphic curves and Gromov-Witten
invariants) are developed enough to make classification problems tractable.

A symplectic action of a T™ = (S!)" on a symplectic manifold (M,w) is Hamiltonian if it admits a
moment map: an equivariant smooth map ®: M — t* such that the components ®¢ = (®, ) satisfy
Hamilton’s equation d®¢ = —u(&y7)w, for all € € t. Here &) is the vector field that generates the action
on M of the one-parameter subgroup {exp(s§)|s € R} of T. The actions we consider are effective and
the manifolds are compact and connected. By the Convexity Theorem [2, 9], the image of the momentum
map A = ®(M) C t* = R" is a convex polytope. We say that two Hamiltonian T" actions are equivalent
if they differ by an equivariant symplectomorphism and a reparametrization of 7. For an effective
Hamiltonian action T™ C M, we are forced to have dim(7T) < %dim(M). Thus, if M is four-dimensional,
the only tori that can act effectively are S' and T2.

Delzant [6] has classified symplectic manifolds equipped with a Hamiltonian action of a torus of half
the dimension in terms of their momentum polytopes, up to equivariant symplectomorphism. Building
on work of Audin [3] and Ahara and Hattori [1], Karshon [13] has classified symplectic four-manifolds
with Hamiltonian S! actions in terms of decorated graphs. In particular, the only four-manifolds that
admit Hamiltonian S* actions are blowups of S2-bundles over Riemann surfaces and CP2. [13, §6].

Delzant’s Theorem and Karshon’s Theorem leave open questions about inequivalent actions on the
same manifold. Explicitly, given a compact connected four-dimensional symplectic manifold (M,w),
what Hamiltonian actions does it admit? The difficulty lies in determining exactly which Hamiltonian
spaces S' C (M, w) have symplectomorphic underlying manifolds (M,w). The question of characterizing
Hamiltonian 2-torus and circle actions on simply connected symplectic four-manifolds was answered by
Karshon, Kessler and Pinsonnault in [17, 18].

To complete the characterization of Hamiltonian actions on symplectic four manifolds, it remains to
study the case of Hamiltonian actions on blowups of S2-bundles over a Riemann surface of positive
genus. These do not admit Hamiltonian 2-torus actions. In what follows, we characterize Hamiltonian
circle actions on them, up to (possibly non-equivariant) symplectomorphism (Theorems 2.13 and 2.14).
We prove that a reduced symplectic blowup of an irrational ruled symplectic four-manifold is compatible
with all the Hamiltonian circle actions: there are no “exotic actions”.
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We give an algorithm in pseudo-code in Appendix B, written by Tair Pnini, to count the (inequivalent)
Hamiltonian circle actions on blowups of irrational ruled symplectic manifolds. We use the algorithm to
derive results on the existence and number of such actions in Section 3. Along the way, we also provide an
algorithm that determines the reduced form corresponding to a symplectic form on a blowup of a ruled
symplectic manifold (Algorithm 6.5). The proofs combine “soft” combinatorial techniques and “hard”
holomorphic techniques.
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2. STATEMENT OF MAIN RESULTS

We now turn to the full statement of our main results. We begin by setting our notation.

2.1. Notation. Let (X, ) be a compact connected Riemann surface endowed with a complex structure
j. Up to diffeomorphism, there are two S2-bundles over ¥. We fix a smooth structure on the trivial
bundle ¥ x 52 and on the non-trivial bundle Ms,. We equip ¥ x S2 and My, with a complex structure
such that each fiber is a holomorphic sphere. We fix basepoints * € S? and % € ¥. For the trivial
S2-bundle ¥ x S? over ¥, we denote F := [x x S?], B := [¥ x x|, classes in the homology group
Ho (X x §2;7). When we consider the non-trivial S?-bundle My = ¥, denote the homology class of the
fiber by F' = [~ !(%)] € Hy(Msx;Z). For each ¢, the trivial bundle admits a section o9, : ¥ — ¥ x S?
whose image o9,(X) has even self intersection number 2¢. Similarly, for each ¢, the non-trivial bundle
admits a section o9p11 : ¥ — My whose image og/41(2) has odd self intersection number 2¢ 4+ 1. We
denote B,, := [0,(X)] € Hy over Z. For every n € Z, we have the classes B, = B_,, + nF.

For a non-negative integer k, denote by (X x 5?); the manifold obtained from the trivial S?-bundle over
¥ by k complex blowups at k distinct points, and by (Ms) the manifold obtained from the non-trivial
S2-bundle over ¥ by k complex blowups at k distinct points. Let E1,. .., Ej denote the homology classes
of the exceptional divisors. We fix the labeling of the exceptional divisors.

Let M = (¥ x S2), or M = (My);. We say that a vector (Ap, Ag;é1,...,0;) in R2** encodes a
degree 2 cohomology class Q € H?(M;R) if

[ ] i <Q, F> = )\F;
. %(Q,Eﬁ = for j=1,...,k; and
e Either
o 3= (Q,B) = Ap when M = (X x 5%);; or
o 5 ((,B_1) + 3 (2, F)) = Ap when M = (Mx)y.

For k > 2, let M = (¥ x S?); or M = (My). we say that a cohomology class Q2 € H?(M;R) encoded

by a vector (Ap,Ap;d1,...,0;) is in g-reduced form or is g-reduced if
(2.2) 0 >...20,, 61+6<Ap,

and, if g(¥) =0 and M = (X x §?);,

(2.3) Ar < Ap,

and, if g(¥) =0 and M = (Myx)y,
1
(2.4) (2>\F + 51) < Ap.

2.5. Remark. We can realize (Mg2), as a complex blowup of the complex projective plane CP?, the
class B_; with the class E of the exceptional divisor, and the class B; with the class L of a line CP! in
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CP2. In this notation, F = L — E. A cohomology class on (Mg2); encoded by (Ar,Ap;d1,...,d0;) may
be identified with a cohomology class on a (k + 1)-fold blowup of CP? encoded by (\; 4,61, ..., d), where

1
(26) )\F:)\—éand)\B:2<)\+6).

In this case, our definition of O-reduced coincides with the notion of reduced given in [16, 17, 18]. That
is, a class € H?((Mg2)y; R) is in O-reduced form if and only if the vector (Ag, Ag;dy,...,d;) encoding
it determines, by (2.6), a vector ()\;4,01,...,0,) which satisfies § > 61 > ... > d and 6 + 01 + d2 < A
In the positive genus case, our notion of g-reduced does not coincide with the notion of reduced given in
[22, 24]. An explanation of the difference is in Remark 2.16.

2.7. Definition. We assume g(X) > 0. A blowup form on (3 x S?); or (Ms); is a symplectic form for
which there exist disjoint embedded symplectic spheres (oriented by the symplectic form) in the homology
classes F, F1, ..., Ey.

2.8. Remark. Blowing down symplectically along k disjoint w-symplectic embedded spheresin E, ..., Ej
in M = (X x §%), or M = (Ms), with a blowup form w yields a symplectic manifold (M’,w’) with
an w’-symplectic embedded sphere C in a simple homology class F' with self intersection zero. Then,
by [25, Proposition 4.1], there is a smooth S2-fibration of the obtained manifold M’ over a compact
2-manifold ¥’ which is compatible with w’ (i.e., is nondegenerate on each fiber), and has a fiber equal
to C. By homology considerations, ¥/ = ¥, and the obtained manifold is a trivial S2-bundle over ¥ if
M = (X x5?%); and a nontrivial S%-bundle over X if M = (Ms);. Moreover, by [20, §6], the two quantities
[w]? and ([w'], F) uniquely determine the symplectic form on M’, up to isotopy; see [30, Example 3.6].

2.9. Remark. In Definition 2.7 we have restricted to case when ¥ has positive genus. When ¥ = 2,
Karshon and Kessler [16] have defined a blowup form on (Mg2);: it is a symplectic form for which
there exist pairwise disjoint embedded symplectic spheres in L, E, F1,..., E).

2.10. Definition. We say that two symplectic forms w; and we on M are equivalent if there exists a
diffeomorphism f of M that acts trivially on the homology Ha(M) and such that f*ws can be connected
to wy through a continuous path of symplectic forms.

The following lemma follows from the work of Gromov [8], McDuff [25], Lalonde-McDuff [20, Theorem
2.4] and McDuff-Salamon [26, Proposition 7.21]. We give the proof in the positive genus case in [11]; the
proof in the genus 0 case is in [18].

2.11. Lemma. The set of blowup forms on M is an equivalence class of symplectic forms.

The set E(M) of exceptional classes in Ho(M) is the same for all the blowup forms, as discussed in
Lemma 4.5. An exceptional sphere in a symplectic four-manifold (M, w) is an embedded w-symplectic
sphere of self intersection —1. A homology class E € Hy(M) is exceptional if it is represented by an
exceptional sphere. For blowups of S?-bundles over a Riemann surface ¥ with a positive genus, there is
an explicit identification of the classes in £, by a holomorphic argument of Biran [4, Corollary 5.C].

(2.12) EM)={Ey,...,Ex,F— Ey,...,F — E}.

Pinsonnault [28, Proposition 3.13] showed that every Hamiltonian circle action on a k-fold blowup
of a ruled symplectic four-manifold can be obtained from an action on some ruled symplectic manifold
My by a sequence of k equivariant blowups of some sizes. For blowups of irrational ruled symplectic
manifolds, we use the identification of £(M) in order to derive, from the same holomorphic tools used
in the non-constructive result of Pinsonnault, a constructive characterization, in which we identify the
ruled manifold My and the sizes of the equivariant blowups.

2.13. Theorem. Let k > 1 be an integer, and let M = (X x S?);, (respectively M = (Ms);). Assume
that the genus of X is positive. Let w be a blowup form on M whose cohomology class is encoded by a
vector (Ap, Ap;01,...,0k); if k > 2, assume that [w] is in g-reduced form. Then every Hamiltonian circle
action is equivalent to

@ one that is obtained from a Hamiltonian circle action on ¥ x S? (resp. My,) with the symplectic

form whose cohomology class is encoded by (Ar,Ag) by a sequence of S*-equivariant symplectic
blowups of sizes 81,02, 93, ..., Ok, in this order,
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and to

® one that is obtained from a Hamiltonian circle action on Ms, (resp. ¥ x S?) with the symplectic
form whose cohomology class is encoded by (Ap, Ap + %/\F —01) by a sequence of S*-equivariant
symplectic blowups of sizes A\p — 01, 02, ..., Ok, in this order.

Moreover, Theorem 2.13 holds if we replace “Hamiltonian circle action” with “action of a compact Lie
group G that preserves w and induces the identity morphism on Hs(M).” To complete the characteriza-
tion we provide a description of the Hamiltonian circle actions on ¥ x S$? and on My, in Proposition 3.2.

Proof of Theorem 2.13. Counsider an action on (M,w) of a compact Lie group G that preserves w and
induces the identity morphism on Hy(M). Let Jg be a G-invariant w-tamed almost complex structure
on M. The structure Jg is the almost complex structure associated by the polar decomposition to the
invariant Riemann metric g obtained by averaging some Riemann metric ¢’ along the action of G with
respect to the Haar measure: g(u,v) := [, ¢/ (0axtt, 0a,v)da.

First assume k& > 2. By the identification (2.12) of £(M) and the g-reduced assumption, the class
Ej, is of minimal symplectic area in £(M). Hence, by Lemma [28, Lemma 1.2], Ej, is represented by an
embedded Jg-holomorphic sphere C. To see that C' is G-invariant, apply the positivity of intersections
[27, Proposition 2.4.4], the fact that E- E = —1, and the assumption that the action is trivial on Ha(M)
to get that for every a € G, the Jg-holomorphic sphere aC' equals the Jg-holomorphic sphere C.

Equivariantly blowing down along this sphere yields a G-action on (X x $2),_1 (or (Mx)x_1) with the
blow up form whose cohomology class is encoded by (Ap, Ap;d1,...,0k—1) and is in g-reduced form, as
assured by Lemma 4.12 (on blow downs).

We now let k¥ > 1. By k — 1 repeated applications of this blow down, we reduce the theorem to
the following claim: There exist embedded G-invariant symplectic spheres C' in Ey and D in F — E; in
(2 x §?%); (resp. (Ms)1), with the blowup form encoded by (Ar, Ap;d1), and blowing down equivariantly
along C yields a G-action on ¥ x S? (resp. Myx) with the symplectic form encoded by (A, Ap), and
blowing down along D yields a G-action on Ms (resp. ¥ x S?) with the symplectic form encoded by
(Ap, A + %)\ r — 01). This claim follows from the existence of embedded Jg-holomorphic spheres in F4
and in F— Ey, stated in Lemma 4.6, which is the positive genus version of the genus zero [29, Lemma 2.2],
and from Lemma 4.12 and Corollary 5.3 (on blow downs). O

Our second main result provides a unique representation for a blowup form on the k-fold blowup of a
ruled symplectic four-manifold ¥ x S2 or Ms.

2.14. Theorem. Let k > 2 be an integer, and let M = (X x §%); or M = (Ms)y,. Assume that the genus
9(X) is positive. Given a blowup form w on M, there exists a unique blowup form w’ whose cohomology
class is in g-reduced form such that (M,w) = (M,w’).

In fact, we prove even more than is stated in Theorem 2.14. We include an algorithm, Algorithm 6.5,
which puts a blowup form into its unique g-reduced form, by a composition of permutations of the §;s and
a map we denote the Cremona transformation (see Definition 5.7). The latter map is a positive genus
version of the (usual) Cremona transformation on blowups of Mge; it is motivated by the combinatorial
description of the transformation as interwining two ways to obtain the same Hamiltonian S'-manifold,
as shown in Figure 2.15.

Theorem 2.14 also provides a way to determine when two symplectic forms on the same manifold,
on (¥ x S?); or on (Ms)g, are diffeomorphic: they must have the same g-reduced form. In the case
when ¢(¥) = 0 and M = (Myx);, the existence and uniqueness of a g-reduced form is proved in [16,
Theorem 1.4].

2.16. Remark. Li-Li [22] and Li-Liu [24], in the context of relating the symplectic genus of an integral
cohomology class to its minimal genus, define reduced forms for blowups of S? x ¥ (with g(¥) > 0) by
different conditions. First, they work with homology classes with Z coefficients whereas we work with
cohomology classes over R. More significantly, their conditions translate (by Poincaré duality) to the
conditions on an integral 2-cohomology class:

Ap>01>...20,>0.

By contrast, we require A\g > 1 + d2, and neither require A\g > d; nor positivity. Note that the vector
(3,3;2,2) from Figure 2.15 is reduced in the sense of [22, 24]. The Cremona transformation turns it into
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(=, )=3,Area=3,g (=, )=3,Area=1,g D(E,.)=3,Area=2,g
\a R E'AA
@ o(p) =1
(=,;)=0,Area=3,g ®(E,,)=0,Area=1,g D(=,;)=0,Area=2,g

FIGURE 2.15. On the left, the same toric manifold, with the purple hexagonal moment image,
can be seen in two ways as a 2-fold blowup of CP! x CP', with different symplectic forms and
blowup sizes. In this case, the Cremona transformation turns the vector (3,3;2,2) (the blowup
of the blue square) into (3,2;1, 1) (the blowup of the red parallelogram).

On the right we can see the S'-manifold represented by the middle decorated graph as a
blowup from the left (3, 3) with size 2 blowups, one each from the top and bottom; or from the
right (3, 2) with size 1 blowups, one each from the top and the bottom. As before, the Cremona
transformation turns the vector (3,3;2,2) into (3,2;1,1).

(3,2;1,1), which encodes a blowup form diffeomorphic to (3,3;2,2) that is g-reduced. The requirement
Ap > 01 + 09 is essential for the key claim that the class Ej is of minimal symplectic area in our proof of
Theorem 2.13.

Li and Li [22, Lemma 3.4] prove that any class in Hy over Z of nonnegative square is equivalent
to a reduced class under the action of orientation-preserving diffeomorphisms; they provide an algo-
rithm to find the reduced class using reflections along integral homology classes that are realized by
orientation-preserving diffeomorphisms. In Li-Li’s terminology, the Cremona transformation and the
(03, 0;)-transpositions we use in Algorithm 6.5 correspond to reflections along F' — Ey — E5 and along
E; — Ej, respectively. However Li and Li’s algorithm uses other transformations which we do not allow,
e.g., —1 and the reflections along r; F' + €; F;. Their reflections represent diffoemorphisms, but possibly
not symplectomorphisms. Their algorithm might send a vector encoding (the dual of) a blowup form
w to a vector that cannot encode a blowup form, or to a vector encoding a blowup form w’ that is
not diffeomorphic to w. For example, Li and Li’s algorithm sends the (g-reduced) vector (6,1;2,1) by
reflection over F' — Fj to (4,1;1,0), which does not represent a blowup form. Their algorithm sends the
(g-reduced) vector (12,2;3,3) by reflections over F' — E; and over F — E5 to (10,2;1,1). Those vectors
represent manifestly different symplectic forms: the former admits no Hamiltonian circle actions, while
the latter does admit a Hamiltonian circle action.

We conclude this section with a brief outline of the rest of the paper. In Section 3, we recall the notion
of the decorated graph associated to a Hamiltonian circle action, and describe the effect of an equivari-
ant symplectic blowup on the graph. We then derive from Theorem 2.13 results on the existence and
number of Hamiltonian circle actions on a fixed symplectic four-manifold. Section 4 examines symplectic
blowups of ruled symplectic four-manifolds and highlights the symplectic facts and techniques we need to
prove the main theorems. We deduce from Li-Liu’s characterization of symplectic forms [24] a necessary
and sufficient condition for a vector to encode a cohomology class of a blowup form, and describe how
these techniques can compute certain symplectic invariants like Gromov width and packing number (see
Remarks 4.9 and 4.10). In Section 5, we use the correspondence between Hamiltonian circle actions and
decorated graphs to deduce results on symplectic manifolds from combinatorial observations. Finally, we
prove the existence portion of Theorem 2.14 in Section 6, and the uniqueness in Section 7.

3. COUNTING HAMILTONIAN CIRCLE ACTIONS ON BLOWUPS
OF IRRATIONAL RULED MANIFOLDS

Decorated graphs. If a circle action S*C(M,w) is Hamiltonian, then there is a real-valued momentum
map ¢ : M — R. This is a Morse-Bott function with critical set corresponding to the fixed points. When
dim(M) = 4, the critical set can only consist of isolated points and two-dimensional submanifolds. The
latter can only occur at the extrema of ®. To (M,w,®) Karshon associates the following decorated
graph [13, §2.1]. For each isolated fixed point p there is a vertex (p), labeled by the real number ®(p).
For each two dimensional component S of the fixed point set there is a fat vertex (S) labeled by two real
numbers and one integer: the momentum map label ®(S), the area label i fs w, and the genus g
of the surface S. A Zj-sphere is a gradient sphere in M on which S' acts with isotropy Zj. For each
Z-sphere containing two fixed points p and ¢, the graph has an edge connecting the vertices (p) and
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(q) labeled by the integer k; the size % fsw of a Zg-sphere S is 1/k of the difference of the moment
map values of its vertices. We note that vertical translations of the graph correspond to equivariant
symplectomorphisms, and flips correspond to automorphisms of the circle.

Hamiltonian circle actions on irrational ruled symplectic manifolds. Karshon’s results [13,
Theorem 6.3 and Lemma 6.15] and [14, Table in Proof of Lemma 1] imply that Hamiltonian circle actions
on a ruled symplectic four-manifolds over a closed Riemann surface of positive genus g correspond to
decorated graphs that consist of two fat vertices with the same genus label g. Moreover, Karshon’s
results yield the following characterization of Hamiltonian circle actions on irrational ruled symplectic
four-manifolds. See also [28, Corollary 3.12].

D2, ) =0+s, Area=1+nS, g D, ,)=0+s, Area=r1,g
e — ~—
< — ~—

DE,)=0,Area=r1,g D, )=0,Area=r+ns, g

FIGURE 3.1. Decorated graphs with exactly two fat vertices, differing by a flip.

3.2. Proposition. Let (M,w) be a ruled symplectic manifold over a Riemann surface ¥ of positive genus
g. Up to equivariant symplectomorphisms and automorphisms of the circle, the number of Hamiltonian

circle actions on (M,w) is R—jﬂ if M =Y x S% and {%—‘ if M = Ms.

Moreover, there is a one-to-one correspondence between inequivalent Hamiltonian S*-actions on (M, w)
and the nonnegative integers 0 < n < 23\\—2 such that

o the integer n is even if w: M — X is the trivial bundle; n is odd if m: M — X is the non-trivial
bundle.
o there exists r € R70 such that 1(r + (r + nAp)) = Ap.

3.3. Remark. Note that the enumeration of the inequivalent circle actions on a ruled symplectic manifold
over a Riemann surface ¥ of positive genus g is analogous to the enumeration of the inequivalent toric
actions on a ruled symplectic manifold over S? as in [14].

The effect of an S'-equivariant blowup on the decorated graph. Recall that we can think of
a symplectic blowup of size § = r2/2 as cutting out an embedded ball of radius » and identifying the
boundary to an exceptional sphere via the Hopf map. This carries a symplectic form that integrates
on the sphere to 27d. For more details see [10] and [26, Section 7.1]. If the embedding of the ball is
G-equivariant centered at a G-fixed point, then the G-action extends to the symplectic blowup, see details
in [15]. If the action is Hamiltonian, its moment map naturally extends to the equivariant symplectic
blowup.

In Figure 3.4, we describe all the possible effects of an S'-equivariant symplectic blowup of a ruled
manifold over a surface of positive genus, up to flips. If the surface is of genus 0, an S'-equivariant
symplectic blowup can have additional effects. For a complete description of Hamiltonian S*-blowups of
4-manifolds, see [13, §6]. We observe that flipping commutes with S!-equivariant symplectic blowup.

[} N m
D(p)=a+d o
/\/\/\* (I>(p2) =a+md
—— R AVAVAS men
OF,,;,)=a,Area=h,g DE )=, Area=A-d,g
<I>(pl) =a-nd

n
n

FIGURE 3.4. The effect on the decorated graph of an S'-equivariant blowup of size 6: at a
minimum surface on the left, and at an interior isolated fixed point on the right.



HAMILTONIAN CIRCLE ACTIONS 7

3.5. Remark. By [13, Proposition 7.2], a Hamiltonian S'-space admits an S!-equivariant blowup of size
0 > 0 centered at some fixed point if and only if one obtains a wvalid decorated graph after the blowup.
That is, the (fat or not) vertices created in the blowup do not surpass the other pre-existing (fat or not)
vertices in the same chain of edges, and the fat vertices after the blowup have positive size labels. For
quantitative description, see [15, Lemma 3.3].

An algorithm to count the (non-equivalent) Hamiltonian circle actions on a k-fold blowup
of an irrational ruled manifold. Let £ > 1. Let ¥ be a Riemann surface of positive genus. When the
cohomology class of a blowup form w = wx, xp:6,...6, 00 M = (8 x S?), (M = (My)y) is g-reduced,
Theorem 2.13 reduces the question of counting the number of Hamiltonian circle actions on (M, w) to a
combinatorial one. It is enough to count the number of possible ways to get valid decorated graphs by k
Sl-blowups of sizes 81,...,d; in descending order, starting from a decorated graph with two fat vertices,
the top of size Ap — 5 Ar and the bottom of size Ap + 5 Ar, for 0 <n < 2?\—? that is even if M = (X x S2);,
and odd if M = (Myx);. We count the resulting decorated graphs up to vertical translations and flips.

By Corollary 5.4, it is enough to count the Hamiltonian circle actions on symplectic k-fold blowups of
¥ x §2. The counting algorithm was implemented by Tair Pnini. Let wx, xp:5,,....5, be a blowup form on
(X x S2);, whose cohomology class is in g-reduced form and is encoded by a vector (A, Ag;61,...,0%). At
step 0 the program creates the set of graphs with two fat vertices determined by Ap, Ag, corresponding
to the even integers 0 < n < 2%’3. At step 4, for 1 <4 <k, it creates the set of graphs (up to equivalence)
which may be obtained by performing a valid blowup of size d; on a graph in the set created at step i — 1.
The output of the program is the number of graphs in the set obtained at step k.

This is a “greedy” algorithm. We use data structures designed to reduce the number of tests for
equivalence between pairs of graphs and to optimize the equivalence test. A detailed description of the
data structures and the pseudo-code of the algorithm is given in Appendix B by Tair Pnini.

3.6. Corollary. Let k > 1 and assume that we are performing k blowups of equal size:
0 =...=0 =¢.

o Assume 2 < Ap. The number of Hamiltonian circle actions on ((X X SQ)k,wAFAB;E ,,,,, <) equals

[32]-1/ & |5]
(3.7) S D Grecm—man)Sk—ie<trmanan) | |+ D Gje<rnOh—iecs:
n=1 §=0 §=0
where

1ifa<b
5a<b: .
0ifa>d

We count the possible ways to preform k blowups of size €, each at a fat vertex, starting from one
of the decorated graphs of two fat vertices listed in Proposition 3.2.
o Assume 2¢ = A\p. The number of Hamiltonian circle actions on ((X X S?)g, Wrp Ape,....c) equals

R*ﬂ_l k—2

(3.7) — Z Z Sjec(Ap—nrp) * O(k—2—j)e<(Ap-+(n—1)Ar)
n—=1 j=0

We have subtracted the equivalent actions, like those in Figure 3.9 where blowups of size ’\TF from
the top or bottom fat vertices will end up at the same height, resulting in the same decorated
graphs.

o Similarly, if 2 < Ap, the number of Hamiltonian circle actions on (Mx)k,WrpApie,....e) €quals
the sum

Ap—iArp 1
B

k
(38) Z Z5j6<()\372";1)\F)(S(kfj)5<(/\3+2n2+l)‘1’)
7=0

n=0
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If 2 = A\p, it equals

(38) - §j€<()\372"2+1 )\F) . 5(k727j)6<()\3+2(n_21)+1 )\F)

o In particular, if ke > 2\p then there are no Hamiltonian circle actions.

D(Z,,,) = 0+hy, Area =h-nhy, g D(Z,,,,) = Oy, Area =h-nh, g (3, = a+h, Area =,- (-1, , g
Two blowups of
size 2t from top
[ N ]
——— | TVOPIOWUPS Of | ———
O(F,) =0, Area= A+ kg |702 frombottom| gz y— o, Area = gt (-1, g O(Z,) =, Area = A+ (-1, g

FI1GURE 3.9. This figure shows coincidentally equivalent decorated graphs arising from blowups
of different graphs.

For example, for k > 2 there are no Hamiltonian circle actions on (X x S?); with a blowup form
Wo 1,2 2; by Lemma 4.8, such a blowup form exists. This lack of Hamiltonian actions also appears for
equal blowups in the simply connected case; see for example [15].

3.10. Corollary. Let k > 1. The number of Hamiltonian circle actions on (X X S%)k,Wxp Ap:6y1.....60) 1S
at most

o (122]- 1) sm

where [a] denotes the smallest integer greater than or equal to a. If
e YF 6 < Ap, and
° Zle d; < A — §AF for every even n < 2?—?, and
f:j-l,-l 0; < d;, and moreover
e for every j and s, we have Y ;_, Fiy18;4; < Fid;, where {F;} is the sequence of Fibonacci
numbers,

o for every j, the sum Y

then the number of Hamiltonian circle actions on (X X S?)k,wWxp rp:61.....00) €quals (3.11).

For example, if Ap € N, A\p = 1 and 9; = % for 1 < i < k, the number of Hamiltonian circle actions
is (Ag — %) (k+1)!. (By Lemma 4.8, there exists a blowup form on (X x $?); whose cohomology class
is encoded by this vector, for every k > 1.)

4. BLOWUPS OF RULED SYMPLECTIC FOUR-MANIFOLDS

Let ¥ be a compact connected Riemann surface. Fix an integer k > 0. Let M = (X x S?); or
M = (Ms),. As a smooth manifold, M is obtained by k iterations of a connected sum with CP2, CP?
equipped with the opposite orientation. In general, the connected sum construction N=N #CP? depends
on a number of choices, but if N’ is another connected sum obtained from different choices, then there
exists a diffeomorphism from N to N’ that respects the splitting Ha(N) = Hy(N) @& ZE induced by the
constructions. This follows from standard arguments in differential topology (see e.g., [5, Chapter 10]).
In particular, if M is obtained from X x S? or My, by blowing up at k distinct points and M’ is obtained
by blowing up at a permutation of the same points, then the two manifolds are the same, up to relabeling
the exceptional classes Fy, ..., Fg.

4.1. Lemma. Fiz a vector (A, Ap;d1,...,0r) and a permutation o € Sy. Suppose that there exists a
blowup form w on M whose cohomology class is encoded by this vector. Then there exists a blowup form
w" whose cohomology class is encoded by the vector (Ap, AB; 0x(1, - - -, 00 (k)) and (M,w), and (M,w") are
symplectomorphic.
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4.2. For any manifold M, an almost complex structure is an automorphism J: T'M — T M such that
J? = —1. An almost complex structure J on M is tamed by a symplectic form w if w(u, Ju) > 0 for
all nonzero tangent vectors u € TM. Let J,(M,w) denote the set of almost complex structures J that
are tamed by w. The space J,(M,w) is a nonempty contractible open subset of the space of all almost
complex structures [26, Proposition 2.51].

A (parametrized) J-holomorphic sphere is a map f: (CP!,j) — (M, J) that satisfies the Cauchy-
Riemann equations df o j = J o df at every p € CP!. An embedding is a one-to-one immersion which is
a homeomorphism with its image. An embedded J-holomorphic sphere C' C M is the image of a J-
holomorphic embedding f: CP! — M. If J is w-tamed then such a C is an embedded w-symplectic sphere.
We will refer to the genus zero Gromov Witten invariant (with point constraints) GW: Hy(M) — Z.
For the precise definition, see [27]. Fixing a symplectic form w, if GW(A) # 0, then for generic w-tamed
almost complex structure J there exists a J-holomorphic sphere in the class A.

Because the first Chern class of a complex vector bundle does not change under a continuous de-
formation of the fibrewise complex structure, the first Chern class ¢ = ¢1(T'M, J) is the same for all
J € J-(M,w). Tt follows from Lemma 2.11 that this first Chern class and the Gromov-Witten invariant
are the same for all the blowup forms on M = (¥ x S?), or M = (Msx);. We denote the first Chern class
and the Gromov Witten invariant associated to any blowup form on M by ¢ (TM) and GW.

4.3. Facts. We will make use of the following facts.

(1) The classes F, B, and E,...,E; form a basis of the homology group Ha((X x S?);). The
classes F', B_1 (B1), and Ej,..., Ey form a basis of Ho((Mx)g). Recall that we have classes
By, = [0,(2)] in Ha((X x 5?)1) when n is even and in Ha((Ms)x) when n is odd.

(2) The intersection numbers are given in the following table, where ¢ # j.

F|B|B,| E | E
Flol1] 1] of o
84 B [1]o] 2] of o
B, 1]z] n] of o
E|olo] ol-1] o
E;[olo] of ofl—1

Note also that B,, - B_,, = 0.

(3) For the first Chern class ¢; (T M) of a blowup form on M, M = (X x §%); or M = (Ms)y,
a(TM)(F)=2, ci(TM)(E;) =1V1<i<k.
In M = (X x S?);,
e (TM)(B) = 2 — 2¢(%).
In M = (Myx),
e (TM)(B_1) = 1 - 2g(%),

(4) The genus zero Gromov-Witten invariant GW(F') with respect to any blowup form is not zero.

The last item follows from [25, §4] and the fact that Gromov-Witten invariants are consistent under
the natural inclusions

H((X x §%)) = Ha((X x §%)j41) and Ha((Ms)i) = Ha((Ms)r+1),
as in [12, Theorem 1.4], [21, Proposition 3.5, and the explanation in [18, Appendix A].
Exceptional classes. We compile a number of results about exceptional classes on k-fold blowups of
ruled symplectic four-manifolds. The first lemma follows from McDuff’s “Cy lemma” [25, Lemma 3.1],

Gromov’s compactness theorem [8, 1.5.B], the adjunction formula [27, Cor. E.1.7], and Lemma 2.11. Full
details are in [18, Lemma 2.9].

4.5. Lemma. Let M = (X x S?);, (M = (Mx)). Let E € Ha(M) be a homology class. Then the
following are equivalent:
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(a) There exists a blowup form w on M such that the class E is represented by an embedded w-
symplectic sphere with self intersection —1.

(b) () er(TM)(E) =1;
(ii) E-E=—1; and
(iii) the genus zero Gromov-Witten invariant GW(E) # 0.

(¢) For every blowup form w' on M, the class E is represented by an embedded w'-symplectic sphere
with self intersection —1.

Lemma 4.5 guarantees that the set of exceptional classes is independent of the choice of a blowup form
w on M, and for every exceptional class E, we have ¢;(TM)(E) = 1 and GW(E) # 0, i.e., for generic
w-tamed almost complex structure J there exists a J-holomorphic sphere in the class E.

The next lemma guarantees the existence of a J-holomorphic sphere in exceptional classes for every
w-tamed J in the case of a single blowup of a ruled symplectic manifold over a Riemann surface of
positive genus. It follows from the adjunction formula [27, Cor. E.1.7], the positivity of intersections
[27, Proposition 2.4.4], and Gromov’s compactness theorem [8, 1.5.B]. This is analogous to a result of
Pinsonnault in the genus 0 case, see [29, Lemma 2.2], [18, Lemma 3.24]. We prove the positive genus
case in Appendix A.

4.6. Lemma. Let M = (X x S?); or M = (My),. Assume that g = g(X) > 0. Let w be a blowup form
on M. Then for every J € J(M,w) there exists an embedded J-holomorphic sphere in the class E1 and
there exists an embedded J-holomorphic sphere in the class F' — Ey.

The following lemma is a consequence of (2.12) and Facts 4.3 that we will need in the proof of the
uniqueness theorem.

4.7. Lemma. Let M = (X x S?);, or M = (Mx),. Assume that g(¥) > 0.

o When k =0, the class F is the unique class in Ho(M;Z) satisfying
(1) Its symplectic area with respect to a symplectic ruling of the S?-bundle is positive;
(2) Its self intersection number is zero; and
(3) Its coupling with the first Chern class c¢1(T'M) equals two.
o When k > 1, the class F is the unique class in Ho(M;Z) satisfying
(1) The intersection number of the class with every class in E(M) is zero; and
(2) Its coupling with the first Chern class ¢1(TM) equals two.

Proof. Denote B = B if M = (X x §2); and B = By if M = (Mx).

e In the case k = 0, a class A € Hy(M;Z) is written as A = pB + ¢F for p,q € Z. Assume that
A satisfies the three conditions. Since A - A = 0, we get, using Facts 4.3, that if M = ¥ x §?
then 2pg = 0, i.e., either p = 0 or ¢ = 0, and if M = Myx then 0 = p? + 2pq = p(p + 2q),
ie., either p = 0or p+2¢ = 0. If M = ¥ x S? and ¢ = 0 then by the third property
of A we have 2 = ¢;(TM)(A) = (2 — 2g)p. Similarly, if M = Ms and p + 2¢ = 0 then
2=0c(TM)A = (2-29)p+p+2¢ = (2— 2g)p. Since g is a positive integer, the equality
2 = (2 — 2g)p holds only if g = 2 and p = —1, however, if M = % x S? this (and ¢ = 0) yield
that w(A) = —w(B) < 0 contradicting the first condition; if M = My this (and p 4+ 2¢ = 0)
yield that 2¢ = 1 contradicting the fact that ¢ is an integer. We conclude that p = 0 hence
2q=c1(TM)(A) =2,ie,qg=1.

e Assume k > 1. Let A € Hy(M;Z). By item (1) in Facts 4.3, A = pB + qF — Zle r B
for p,q € Z. If A satisfies the first condition, then, by (2.12) and item(2) in Facts 4.3, for all
1<i<kwehaver; = A-E; = 0 hence A = pB + ¢F, so p = A (F - E;) = 0. Since
2=c1(TM)(A) = g1 (TM)(F) = 2q, we get ¢ = 1.

On the other hand, by (2.12) and Facts 4.3, the class F' satisfies the conditions.
([l

Necessary and sufficient conditions for a vector to encode a blowup form. We now turn to the
question of when a vector (Ap, Ap;d1,...,0,) € R2T* encodes the cohomology class of a blowup form.

4.8. Lemma. Assume that X is of positive genus. Let k > 0. A wvector (Ap,Ap;0d1,...,0k) encodes the
cohomology class of a blowup form w on M = (X x S?);, (M = (Mx)) if and only if
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e the numbers A, \g;01,...,0, are positive;
o \p > 0; for all i; and
e the volume inequality \pAp — 5(67 + ...+ 67) > 0 holds.

Proof. If the vector (Ap, Ap;01,...,dx) encodes the cohomology class of a blowup form w, then the
symplectic areas of the embedded w-symplectic exceptional spheres representing the classes in (M) =
{E1,...,Ex, F—F,..., F—FE}} and the symplectic volume of M are necessarily positive. This establishes
the fact that §; > 0, Ap > d; and the volume inequality. The definition of a blowup form requires Ap > 0,
including for the case kK = 0. Finally becuase the symplectic volume and Ar are positive, Ag > 0 as well.

The fact that the listed conditions on the vector (Ag, Ap;d1,...,d;) are sufficient to guarantee the
existence of a blowup form follows from Li and Liu’s characterization of symplectic forms with a standard
canonical class on blowups of ruled symplectic manifolds [24, Theorem 3]. They prove that for any
symplectic 4-manifold with T = 1 (which includes all blowups of ruled surfaces), the symplectic cone of
symplectic forms for which the first Chern class is the same as that of a blowup form (i.e., encoded as in
item (3) of Facts 4.3) is described by

CO:{QGHQ(M;[R) @ —a>0and }

a(E) >0V “exceptional class” E s.t. ¢;(TM)(E) =1

By “exceptional class” Li and Liu refer to a homology class F that is represented by a smoothly embedded
sphere with self intersection —1. The facts that

e aclass F is “exceptional” with ¢1(TM)(E) =1 if and only if E € £(M); and

e cvery symplectic form with first Chern class as that of a blowup form is a blowup form
follow from results that are given in [24, Lemma 3.5 Part 2], and [23, Theorem Al; see also the explanation
in [16, Section 6]. Thus, any cohomology class encoded by a vector (Ag, Ag;d1,...,d;) satisfying the
conditions of the lemma is in Cy and so is the cohomology class of some blowup form w. We will call Cy
the standard symplectic cone. ([l

4.9. Remark. Note that Lemma 4.8 may be used to determine the Gromov width of a symplectic
4-manifold M = (X x S?); or M = (Mx)g with g(X) > 0 and & > 0. To do so, we must determine
for which positive numbers « there is a symplectic embedding of a ball of capacity « into M. This
is equivalent to determining if there is a symplectic blowup of M of size a. We start with a vector
(AF,AB;01,...,0k) € [R}igz that encodes a blowup form on M. Lemma 4.8 tells us that there exists a
blowup of M of size « so long as 0 < @ < A and the volume inequality

k
1
AFAB — 5 <a2 + 2(572> > 0.

i=1
is satisfied. The Gromov width of M is the sup of all such «. Hence, the Gromov width will be determined
by Ar and the volume of M.

4.10. Remark. Lemma 4.8 may also be used to determine the packing number of a symplectic 4-
manifold M = (X x S?); or M = (My); with g(¥) > 0 and k£ > 0. Following [4, Definition 2.C], the
packing number of (M,w) is

Py = 1+ max{N € N | there does not exist a full packing of M by N equal balls}.

For such M with a blowup form encoded by the vector (Ag, Ap;d1,...,d;), it is straight forward to show
that

9. ()\F/\B S 57;2)
Prw) = ¥a

In the special case when k = 0 and M = S? x ¥, this is Biran’s result [4, Corollary 5.C].

Symplectic blow down. By Weinstein’s tubular neighborhood theorem [31], a neighborhood of an
exceptional sphere is symplectomorphic to a neighborhood of the exceptional divisor in a standard blowup
of C2. We can then blow down along C and get a symplectic manifold whose symplectic blowup is
naturally isomorphic to (M, w).
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4.11. Lemma (Uniqueness of blow-downs). Let (M,w) be a closed symplectic four-manifold. Let Cy and
Co be embedded w-symplectic spheres of self intersection —1. Assume that C1 and Cs are in the same
homology class. Let (Ny,w1) and (Na,ws) be symplectic four-manifolds that are obtained by blowing down
(M,w) along Cy and Cs, respectively. Then there is a symplectomorphism between (N1,w;1) and (Na,ws)
that induces the identity map on the second homology with respect to the decompositions

Hy(M) = Hao(N;) @ Z[Cy].

For a proof of the uniqueness of blow downs in four dimensions, see [19, Lemma A.1].
As a result of Lemma 2.11, Lemma 4.11, the definition of a blowup form, and Remark 2.8, we get the
following lemma.

4.12. Lemma. Let M = (X x S2);. (or M = (My)y), let w be a blowup form on M, and let the vector
(AF,AB;01,...,0k_1,0k) be the one encoding the cohomology class [w]. Then

(1) there exists a blowup form @ on (X x S?)x_1 (resp. (Ms)i_1) whose cohomology class is encoded
by the vector (Ap,A;01,...,0k_1);

(2) for every embedded w-symplectic sphere in the class Ey, blowing down along it yields a manifold
that is symplectomorphic to (X x S?)x_1,w) (resp. (Ms)g_1,0)).

5. HAMILTONIAN CIRCLE ACTIONS ON RULED SYMPLECTIC
FOUR-MANIFOLDS WITH ONE OR TWO BLOWUPS

In this section we use the correspondence between Hamiltonian circle actions and decorated graphs to
deduce results on symplectic manifolds from combinatorial observations. We first consider Hamiltonian
Sl-actions on a symplectic manifold obtained from a ruled symplectic manifold by a single blowup.

5.1. Lemma. Assume that 0 < e < min{r, s}.

(1) There is a Hamiltonian S*-action on (X x S?)1 with the blowup form encoded by (s,r;e), for
which there exists an equivariant sphere C in the class E1 and an equivariant sphere D in the
class F — Ey, and blowing down along C yields a Hamiltonian S*-action on ¥ x S? with the
compatible symplectic form encoded by (s,r), and blowing down along D yields a Hamiltonian
St-action on Ms with the compatible symplectic form encoded by (s,r + %s —e).

(2) There is a Hamiltonian S*-action on (Ms); with the blowup form encoded by (s,r;¢), for which
there exists an equivariant sphere C in the class E1 and an equivariant sphere D in the class
F — E,, and blowing down along C yields a Hamiltonian S* action on My, with the compatible
symplectic form encoded by (s,r), and blowing down along D yields a Hamiltonian S*-action on
¥ x S% with the compatible symplectic form encoded by (s, + %5 —e).

Proof. To each case of the lemma, it suffices to inspect the decorated graphs given in Figure 5.2.

D(Z,,) = a+s, Area =r-¢+s, g () =a+s,Area=r,g D(E, ) =a+s,Area=1,g
Blow up of size
s—¢ from top
()
@(p) = a+e ‘/\/\/\
—— ———— | DIOW UP OFSIZC | e —
D(E, ) =0,Area=1-¢,¢g DE,) =0, Area=r-¢,g ¢ from bottom DE)=a,Area=r1,g

FIGURE 5.2. A circle blow up of size s — ¢ at the maximal surface of (Mx,ws,45-c), on the
left, is isomorphic to a circle blow up of size € at the minimal surface of (X x S2,ws,.), on the
right.
([l

Together, Lemma 5.1 and Lemma 4.11 allow us to prove the following result.

5.3. Corollary. Let M = (X xS?); (resp. M = (Msx)1) with a blowup form w encoded by (A, Ap;6). For
every embedded w-symplectic sphere in the class F— Eq, blowing down along it yields a symplectic manifold
that is symplectomorphic to My, (resp. ¥ x S?) with the symplectic ruling encoded by (Ap, A\p + %)\p —9).
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Proof. By Lemma 5.1, for some blowup form on M there is an embedded symplectic sphere in the
exceptional class F' — E; such that blowing down along it yields the stated symplectic manifold. By
Lemma 4.5, for every blowup form on M there exists a symplectic sphere in F'— F1, and by Lemma 2.11,
blowing down along it has the same effect on homology. The blow down is well-defined by Lemma 4.11,
and hence yields the desired symplectic manifold. O

5.4. Corollary. Let k > 1. The symplectic manifold (M) (resp. (3 x S?)x) with a blowup form w with
[w] encoded by (A, AB;01,...,0k) is symplectomorphic to (X x S?);. (resp. (Ms)i) with a blowup form
w’ with [W'] encoded by (Ap, Ap + %)\F — 015 A — 01,02, ...,0k). Moreover if k > 2 and |w] is in g-reduced
form, then so is [w'].

We now continue our study by looking at the effect of two blowups on a decorated graph. In Figures
5.5 and 5.6 we describe two different Hamiltonian blowups of different ruled symplectic manifolds that
yield the same symplectic manifold with Hamiltonian S'-action. Assume that 0 < &1, €2 < min{r, s}.

D(Z,,,,) = ats, Area =r+s-¢,-¢,, g O(Z,,,) = at+s, Area=1-¢,, g D, ) =0+s, Area=r1,g
e — ~— < —
® O(F) =s-¢,
—_— ~—
® O(F)=¢,
e — ~— < —
D(Zn) =0, Area =r1+s-8,-¢,, g D) =a,Area=r1-¢ ,g D=, =0a,Area=r,g

FIGURE 5.5. On the left, we have a decorated graph for ¥ x S? with A\g =r+ s —e1 — 2 and
Ar = s. From the left to the center, we take two blow-ups of ¥ x S? of sizes s — 2 from the
bottom and s — &1 from the top.

On the right, we have a decorated graph for ¥ x S? with Ap = r and Ar = s. From the right
to the center, we take two blow-ups of ¥ x S? of sizes e; from the bottom and &3 from the top.

O(Z,,,) = ats, Area=r+s-¢ ¢, , g O(Z,,,) =ats, Area=r-¢,, g ®(Z,,,,) =ots, Area=r, g
e — e — ~—
® O(F) =s-¢,
—_— -
@ O(F)=¢
e — e — ~—
D(Z,;,) = o, Area =r+2s-g,-¢,, g D(Z,;) =, Area =r+s-g, , g DE, ) =0,Area=T1+s, g

FIGURE 5.6. On the left, we have a decorated graph for Ms with

AB =17+ % 4+ s—e1 —e2 and Arp = s. From the left to the center, we take two blow-ups of Ms

of sizes s — €2 from the bottom and s — ¢; from the top.

On the right, we have a decorated graph for Mx with Ap = r+ 3 and Ar = s. From the right

to the center, we take two blow-ups of My of sizes €1 from the bottom and £2 from the top.
Consequently, we get an analogue of the Cremona transformation, adjusted for the positive genus
case.

5.7. Definition. Let k > 2. For a vector v = (Ap, Ap;d1,...,0), let
defect(v) := 01 + d3 — Ap.

We define
cremona(v) := (Np, Ng;81,...,0)
by setting
/\/F = )\F
s = Ap — defect(v)
5y —defect(v) =Ap—3dy ifj=1
5; = 62 — defect(v) = AF — 51 lfj =2

5; if3<j<k.
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5.8. Corollary. Let k > 2, and consider a k-fold blowup M = (X x S?)x or M = (Msx) of a ruled sym-
plectic manifold, and v = (Ap,Ap;01,...,0k). Let (Np, N;01,...,0;) = cremona(v). Suppose that there
exists a blowup form wx, rg:6,,....5, whose cohomology class is encoded by v. Then there exists a blowup
form w515, whose cohomology class is encoded by cremona(v). Moreover, (M,wxp xp:61.....61)
and (M, wA%Q\;B;(;i’__’(;;) are symplectomorphic.

Proof. First assume k = 2. In Figures 5.5 and 5.6 we show that there exists a blowup form w on the
manifold M? := (X x S?)3 or on M? := (Mxy)2, such that there is a diffeomorphism ¢: M? — M? with
the following properties. The induced map v, on Hy maps

Fis F; By > F— By, Esrs F—FEy; F—FEy > Ey;, F—Eyrs Ey; Bes B+ F — Ey — By,

where B = B if M2 = (X x §2),, and B = B_, if M? = (Msx)y. Moreover ¢*w is a blowup form.

In particular, there exists a blowup form on M? such that the pullback by ¥ is a blowup form. By
Lemma 2.11, it follows that for every blowup form, its pullback by v is a blowup form. Because of how
¥ acts on homology, if w is a symplectic form that is encoded by the vector (Ap, Ap;d1,d2), then ¢*w
is a symplectic form that is encoded by the vector (N, Ng;d1,95). The case k > 3 then follows by the
uniqueness of symplectic blowups of given sizes. O

6. EXISTENCE OF ¢g-REDUCED FORM

In this section we prove the existence part of Theorem 2.14. That is, given a k-fold blowup of a ruled
symplectic manifold over a surface of positive genus, M = (¥ x S?); or M = (My);, we show that
there exists a blowup form on M whose cohomology class is g-reduced. We achieve this by providing an
algorithm that starts with a vector encoding the cohomology class of a blowup form on a k-fold blowup
of an irrational ruled manifold, and returns a symplectomorphic blowup form which is g-reduced.

6.1. Definition. Let £ > 2. The Cremona move on R*** is the composition of the following two maps:

(1) first the map

0 ; followed by

s cremona(v) if defect(v) >
v otherwise.

(2) the map sort : (Ap,Ap;01,...,0k) — (Ap,AB;0iy,...,0;, ), which permutes the last k entries
such that d;, > ... > d;,.

Let & > 2. It is straight forward to check that the Cremona move satisfies the following properties.

6.2. Lemma. Let v = (Ap,AB;01,...,01) be a vector in R***. The set of real numbers 0} that occur
among the last k entries in vectors v' = (Np, Ng; 61, ...,0},) that can be obtained from v by finitely many
iterations of the Cremona move is a nonempty subset of the finite set {1,...,0k, A\F — 01, ..., Ar — Ik},

and in particular has no accumulation points.

6.3. Lemma. (1) The Cremona move preserves the standard symplectic cone

k
1
Co = {()\F,/\B;él,...,ék) € RZEF | Ap — 8; > 0 for all i and A\pAp — 5251-2 > o} .
i=1
(2) If the vector v/ = (Ap,Ng;61,...,08,,) is obtained from v = (Ap,Ap;01,...,0k) by the Cremona
move and v' is different from v, then §; < §; for all i, and for at least one i we have §; < §;.
(3) A wvector v = (Ap,AB;01,...,0r) € Co is fized by the Cremona move if and only if it satisfies
equation (2.2).

Sketch of Proof. Let v = (Ap,Ap;061,...,0k) € Cop and v/ = (Ap, Ng; 01, ..., ;) the vector obtained from
v by the Cremona move. In proving part (1), we note that both the “volume” ApAp — % Zle 8;2 and \p
are preserved by the Cremona move. Hence, since the “volume” of v’ and A = Ap are positive and all
other terms in the “volume” are nonpositive, we get that A’z > 0 as well. Also, by Lemma 6.2 and since
v € Cy, for all 4, the numbers §; and A\p — 0, are positive as well. Part (2) and part (3) are immediate
from the definition of the Cremona move. O

6.4. Notation. Let g > 0. A vector in R>** (kK > 2) with all positive entries encodes a g-reduced
cohomology class if it satisfies equation (2.2); we will call such a vector g-reduced.
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Assume k > 2 and g > 0. We will now use the Cremona move to obtain a g-reduced vector.

Algorithm 6.5 — CREMONAREDUCE.

o Input a vector v = (Ap, Ap;d1,...,d;) in the standard symplectic cone in RF+2

o Output a g-reduced vector (Mg, Ng;d1,...,6}) in the standard symplectic cone in RE+2

sort (v)
while defect(v) > 0 do
set v = sort (cremona(v))

end while loop

return v

6.6. Lemma. The algorithm CREMONAREDUCE terminates after finitely many steps.

Proof. We prove this by contradiction. Suppose that this process does not terminate for some vector
v in the standard symplectic cone. Then we get an infinite sequence v(™, for any n € N, of vectors in
the standard symplectic cone in R2t*. That is, v(!) = sort(v) and v+ = sort (cremona (U(”))). By

part (2) of Lemma 6.3, for some 1 < iy < k, the sequence 5§:) has an infinite subsequence 52(;“") that is
strictly decreasing. Moreover the numbers 55:5) are all bounded below, as they are positive. Thus, the
subsequence (55;”) has an accumulation point, contradicting Lemma 6.2. [l
6.7. Remark. Lemma 6.6 implies that Algorithm 6.5 terminates. By item (3) of Lemma 6.3 it produces
a g-reduced vector. Moreover, by Corollary 4.1 and Corollary 5.8, if the input vector encodes the coho-
mology class of a blowup form w on M = (X x §2); or M = (Ms), then the output vector encodes the

cohomology class of a blowup form on M that is diffeomorphic to w. This completes the proof of the
existence portion of Theorem 2.14.

6.8. Remark. In the case when g(X) = 0, i.e., ¥ = S2%, if we apply Algorithm 6.5 to a vector
(Ar,AB;d1,...,0k) encoding a blowup form on M = (S% x §%), or M = (Mg2)g, the output vector

(Mg, N3 64,...,05) may encode a blowup-up form that is not o-reduced. The trouble is that the condi-
tion

N < N if M =(S? x S?);; or

(gNp +01) <N if M = (Mg2)i,

may not hold. In particular, Algorithm 6.5 is not the push forward of the algorithm in [16, §2.16] to
obtain a 0-reduced form given a blowup form on (Mgz2); under the map

()\§67617~--;5k) — ()\F,)\B;él,...,ék)
as in (2.6).

7. UNIQUENESS OF THE g-REDUCED FORM

Our goal in this section is to prove the uniqueness part of Theorem 2.14. Let M = (¥ x S?); or
M = (Msy)y; assume that g(X) > 0. For any blowup form w the set of exceptional classes of minimal
area in (M,w) only depends on the cohomology class [w]. We denote this set by

v
min’

where v € R is the vector that encodes the cohomology class [w]. If k& > 2 and [w] is in g-reduced
form, then by (2.12), Ey € Y. . We proceed to identify all the elements of Y

min* min*

7.1. Notation. Let v = (Ag, AB;d1,...,0x) be the vector encoding the cohomology class of a blowup
form w on M = (¥ x S?), or M = (My)y. If k > 2, assume that [w] is in g-reduced form. In particular,

61 > ... > 0k, and the numbers A, Ag,d1,...,d; are positive.
We denote by j, the smallest nonnegative integer j such that d;41 = ... = 6. Thus, either j, = 0
and 61 =... =6, or 1 <j, <k—1and

512...2(53‘1} >6j'u+1:"':5k'
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As an immediate corollary of the identification of the exceptional classes in (2.12), and the definition
of a g-reduced form, we have the following proposition.
7.2. Proposition. Let (M,w) and v be as in Notation 7.1. Assume that g(X) > 0.

e In the case of one blowup, k=1, we have the following possibilities.
(1) Suppose that 6 < FAp. Then v ={E1}, so tEY,, = k.

(2) Suppose that §; > 1)\F Then Y. ={F — E1}, so §&€Y, = k.
(3) Suppose that 6, = 3Ap. Then EXy, = {E1, F — E1}, so $€%;, = 2k.

e For k > 2 blowups, we hcwe the following possibilities.
(1) Suppose that 61 < %)\F.
(a) Suppose that 0 < 1/\F Then EY;, = {EJ 1 Ek} so €Y, < k.
(b) Suppose that 6, = 3Ap. Then E2;, = UZ AETU Uz AF — E;}, so €Y, = 2k.
(2) Suppose that 6 > IAp.
(a) Suppose that \p—01 > 0. Then EY;

min

(b) Suppose that A\p — 61 = 0. Then 2,

min

={Ej, +1,.--, Ex} and j, > 0, so €Y, < k—1.

min

—{F—El,EQ,.. Ek}, SO ﬁg =k.

min

For the uniqueness of a g-reduced form, we will also need the following observations on symplectomorphic
blowups of ruled manifolds.

7.3. Lemma. Consider M = (X x S%), or M = (My)y. Assume that g(X) > 0. Let w and W' be
blowup forms on M whose cohomology classes are encoded by the vectors v = (Ap,Ap;01,...,0k) and
= (Np, N3 01, ...,0), which are both g-reduced.
Let p: (M,w) = (M,w’) be a symplectomorphism, and let p,: Ho(M) — Hy(M) be the induced map
on the homology.
(1) The isomorphism . sends E(M) to itself.
(2) The isomorphism o, sends the set Y. to the set EV . If k > 2 then

(7.4) O = 0.
If k=1 then
(7.5) min(dy, A\ — 61) = min(d}, N — 67).
(3) Ap = Ny
1< 1N o
(4) ApAp — 52@2 = Np\jp — 525; .
=1 =1

Proof. Ttem (1) and the first part of (2) follow immediately from the fact that ¢ carries w to w’. The
second part of (2) follows from (2.12) and the “g-reduced” assumption. Item (3) follows from Lemma
4.7. Ttem (4) follows from the fact that the symplectomorphism preserves symplectic volume, because

k

1 1 wAw
ABAp — = Y 82 = —
BAE 2Z (27)2 /M 2!

i=1

and a similar formula with w’. O
We now have all the ingredients to prove that the g-reduced form is unique.

Proof of the uniqueness part of Theorem 2.14. Recall that we have a manifold M that is a k-fold blowup,
either (Myx), or (S? x X);, where ¥ has positive genus. Let w and w’ be blowup forms on M whose
cohomology classes are encoded by the vectors v = (Ap, Ap;d1,...,0x) and v = (Np, Ng;0%,...,0}), and,
if kK > 2, are both in g-reduced form. Suppose that (M,w) and (M w’) are symplectomorphic. We aim
to show that v = ',

The case enumeration refers to the case enumeration in Proposition 7.2.

Suppose that £ > 1 and that the size of £, equals 2k.

By item (2) of Lemma 7.3, the set £V also has 2k elements. If k = 1, by Proposition 7.2, both v and

min

v" exhibit case (3 ) If k > 2, by Proposition 7.2, both v and v" exhibit case (1b). In either case, we have

that v = (Ap, Ap; 22, ..., 22) and v = (N, Ni 22, ..., 2£). From (7.4) we deduce that Ag = Xy, hence
by item (4) of Lemma 7.3, (and the fact that Ap > 0) also Ap = A5, and thus v = v’.
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Suppose that the size of £, equals k.
By item (2) of Lemma 7.3, the set £Y; also has k elements. If k = 1 then Proposition 7.2 says that the
vector v also exhibits one of the cases (1) or (2), and the vector v exhibits one of the cases (1) or (2).
When k > 2, Proposition 7.2 implies that the vector v exhibits one of the cases (1a) with j, = 0 or (2b);
and the vector v’ also exhibits one of the cases (1a) or (2b). For the purpose of what follows, if k = 1,
we will use (1a) to refer to (1), and (2b) to refer to (2).

The classes in €Y can be represented simultaneously by k pairwise disjoint embedded w-symplectic
spheres. Indeed, by Lemma 4.5 there exists an w-tamed almost complex structure J such that each
of the exceptional classes in £, is represented by an embedded J-holomorphic sphere. Since in cases
(1a) and (2b), for each two classes in this set the intersection number is zero, we conclude, by positivity
of intersections of J-holomorphic spheres [27, Proposition 2.4.4], that these J-holomorphic spheres are
pairwise disjoint. By item (2) of Lemma 7.3, the symplectomorphism sends k pairwise disjoint embedded
w-symplectic spheres in the classes of £, to k pairwise disjoint embedded w’-symplectic spheres in
£Y. . Moreover, the symplectomorphism between (M,w) and (M,w’) descends to a symplectomorphism

min*
between the blowdowns along k such spheres in £, and along the corresponding k spheres in £Y; .

If the vector is in case (1a), blowing down along the k spheres gives a manifold diffeomorphic to S? x ¥
if M = (S? x X)), and to My if M = (Ms)g, by Lemma 4.12. If the vector is in case (2b), blowing down
along the k spheres gives a manifold diffeomorphic to My if M = (¥ x §2);, and to ¥ x S? if M = (My)y,
by Lemma 4.12 and Corollary 5.3. Because the manifolds S? x ¥ and My are not diffeomorphic, either
both v and v’ are in case (1a) or both are in case (2b). In either case, £, = EVs.-

By item (3) in Lemma 7.3, Ap = M. Moreover, if k¥ > 1 and both vectors are in case (la) of
Theorem 7.2, then v = (Ap, Ap;d,...,0) and v/ = (Ap, Np;d’,...,d’), and if k£ > 1 and both vectors are
in case (2b), v = (Ap,AB;Arp —0,...,0) and v = (Ap, Ng; Ap — ¢',...,0’). In each of these cases, we
conclude, by (7.4), that 6 = ¢’. Then, for £ > 0, by Item (4) of Lemma 7.3 (and the fact that Ap > 0)

we get that Ag = Nz hence v = v'.

’
v

Suppose that k > 2 and that the size of £, is smaller or equal to £ — 1.
By item (2) of Lemma 7.3, the set £ has size at most k — 1. Then by Proposition 7.2 each of the
vectors v and v’ either exhibits case (1a) or case (2a). So

Eoin ={Ej4+1,-- -, Ex} = Egin where 1 < j, =k —&2:,-
By (7.4), we get §; = &; for j, +1 <1 < k.

Since w and w’ are blowup forms, the pairwise disjoint exceptional classes E; 41, ..., E can be repre-
sented simultaneously by pairwise disjoint embedded w—symplectic or w’-symplectic spheres. By Lemma
4.12, blowing down along these spheres in (M, w) and in (M, w’) gives manifolds with a blowup form that
is encoded by the vector = (Ar, Ag;d1,...,d;) and the vector &' = (N, Ng; 81, ...,0%). By “uniqueness
of blowdown” (Lemma 4.11) the resulting manifolds are symplectomorphic. Because the cohomology
classes encoded by vectors © and ¢’ are in g-reduced form, we may proceed by induction. We note that
the case k = 0 is included in the case where the size of £Y; equals k. O

Since Algorithm 6.5 and Lemma 6.6 prove that a g-reduced form always exists, see Remark 6.7, the
proof of Theorem 2.14, the existence and uniqueness of a g-reduced form, is now complete.

APPENDIX A. PROOF OF LEMMA 4.6

In the proof we will use the following corollary of the positivity of intersections of J-holomorphic
curves, see [18, Proposition 2.3].

A.l. Lemma. Let (M,w) be a symplectic four-manifold. Let A and B be homology classes in Ho(M) that
are linearly independent (over R). Suppose that GW(B) # 0, that c¢1(TM)(A) > 1, and that there exists
an almost complex structure Jy € Jr-(M,w) such that the class A is represented by a Jy-holomorphic
sphere. Then the intersection number A - B is nonnegative.

We now give a proof of Lemma 4.6.

Proof of Lemma 4.6. Assume that g = g(X) > 0. If M = (¥ x 5?); then (by (2.12)) there are two cases:
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a. The class Fj is of minimal area in £(M). In this case, denote
B = B, E = F.
b. Otherwise, the class F' — Fj is of minimal area in £(M). Denote
B::B+F7E1, E:=F—E,.

If M = (Msy);, then there are also two cases:

a. The class F' — Fj is of minimal area in £(M). In this case, denote
B:=B_,+F—E, E:=F—E.
b. Otherwise, the class Fj is of minimal area in £(M). Denote
B = By, E = FEy.
Note that the classes B, F, E, form a Z-basis to Hs (M).

Let w be a blowup form on M. For simplicity, we normalize w such that “’2(5:) = 1, and we denote
u = %f) and ¢ = %f) Then, since both F; and F — E; are exceptional classes and by the definition of
F and B,
1
O0<e< ok
and
u > 0.

Moreover, in case (b), u > %. Also, in case (a), B-B =0and ¢;(TM)(B) = 2 — 2g and in case (b),
B-B=1and ¢;(TM)(B) = 3 —2g. In both cases, B- F =1 and B- E = 0.

Fix J € J;(M,w). To start, suppose that A is a homology class that is represented by a simple
J-holomorphic sphere. Write

A=pB+qF —rE,

with p, g, r integers. We claim that the coefficient p of B is nonnegative and that if this coefficient is
zero then A is one of the classes F', F, and F' — F.
Indeed, the adjunction inequality [27, Cor. E.1.7] says that

0<2+A-A—c1(TM)(A).
In case (a), A- A =2pqg —r? and ¢;(TM)(A) = (2 —29)p + 2q — 7, so we get

(A.2) 0<2(p—1)(g—1)—r(r—1)+2gp
In case (b), A+ A =p?+2pg —r? and ¢, (TM)(A) = (3 —29)p + 2q — r, so we get
(A.3) 0<2(p—1)(g—1) —r(r—1)+p* +29p —p

Because A is represented by a J-holomorphic sphere for an w-tamed J, the symplectic area of A is
positive, i.e.,

(A4) 0<up+gq-—cr

Also note that, because r is an integer, r(r — 1) > 0 with equality only if r =0 or r = 1.

By Lemma [28, Lemma 1.2}, the minimal exceptional class Eis represented by a simple J-holomorphic
sphere, hence, and by the assumption on A and the positivity of intersections of J-holomorphic curves in
almost complex four-manifolds [27, Proposition 2.4.4], we get that either A = E ie.p=0,¢g=1,1=1,
orr=A-F > 0. Assume the latter case.

Assume that p < 0.

e In case (a), first assume 2¢g — r > 1. Thus (since g is positive and p < 0) we have ¢;(TM)(A) =
(2—29)p+2g—r>2g—r >1,so, by Lemma A.1, we get p = A- F > 0; hence p = 0 and, by
(A.2), —2¢ +2 > r(r — 1) > 0, which yields, since ¢ > 1(r +1) > 0 and r(r — 1) > 0, that either
g=landr=0o0rg=1andr=1,ie., either A=F or A=F — E. Now assume 2q — r < 1,
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ie, 2¢—1<r—1. By (A.4), and since —p, r, ¢, u are all nonnegative, we have ¢ > c¢r —up > 0.
So0<g—1and 0<2(¢q—1) < (r—1). We deduce then that
2p—=1)(g—=1) —r(r—1)+2gp
<2p-1(g—1)—r(2(¢—1)) +29p
=2(q-1)p-1-r)+29p <0
contradicting (A.2).

e In case (b), first assume p+2g—7r > 1. Thus ¢; (TM)(A) = (2—2g)p+p+2q—r > p+2q—r > 1,
so, by Lemma A.1, we get p = A- F > 0; hence it follows from (A.3) as before that either A = F
or A=F — E. Now assume p+2¢—r<l1,ie,p+2¢—1<r. By (A4), and since —p, r, c are
all nonnegatlve and u > ,We have 0 < up+q—cr < %p—l—q. So0<p+2q—2<r—1. We
deduce then that

20— 1)(g—1)—r(r=1)+p*+29p—p= (p—1)(2¢ = 2+p) —r(r —1) + 2gp
<(-1QR¢—2+p)—r(2q—2+p)+29p

(pP—1-r)2¢—2+p)+29p<0

contradicting (A.3).

Having proved the claim, we proceed to prove that there exists an embedded J-holomorphic sphere in
the class F — F. This will complete the proof.

By Lemma 4.5, we have GW(F — E) # 0, hence by Gromov’s compactness theorem, we can write
F—FE= C1+ ...+ Cy where each C; is represented by a simple J holomorphic sphere. We would like to
show that N = 1; the simple J holomorphic sphere in the class F' — E = €, would then be embedded by
the adjunction formula [27, Cor. E.1.7]. Write each C; as a combination of B, F, and E. By the previous
claim, all the coefficients of B are nonnegative. Because they sum to zero, they must all be equal to zero.
Applying the previous claim again, every C; is either F', or E ,or F'— E. In particular, all the coefficients
of F' are nonnegative integers. Because they sum to 1, the coefficient of F' in all but one of the C;-s are
equal to zero, and in one of the Cj-s, say in Cq, the coefﬁment of F is equal to 1 S0 C is either F or
F — E. Because the coefficients of E sum to —1, at least one of the Cj-s is F — E. We conclude that
Ci=F—E,and N=1. O

APPENDIX B. ALGORITHM TO COUNT CIRCLE ACTIONS
by Tair Pnini'

Introduction. This is a “greedy” algorithm. It starts by creating the set of Graphs determined by
Ar, Ap. Then, at each stage BLOWUPGRAPH creates the set of Graphs (up to equivalence) which may be
obtained by performing a blowup in the given size on a Graph from the set received in the previous step.
The output of the program is the number of Graphs in the set at the final stage. In order to optimize the
program, we use data structures designed to reduce the number of tests for equivalence between pairs of
Graphs and to optimize the equivalence test.

Data Structure. For each Graph we arbitrarily define one of the two fat vertices to be the bottom
fat vertex and the other to be the top fat vertex. In addition, we keep the distance between these two
vertices and define it as the Height of the Graph, Ag in this case. We relate to different paths between
the two fat vertices as Chains. A Chain will be represented by a doubly linked list of rational positive
numbers, consists of the serial representation of the path, built from vertices and edges that appear one
by one alternately. Each vertex is encoded by its distance from the bottom fat vertex and each edge is
encoded by its label. The list representing each Chain starts with the lowest non-fat vertex in the Chain
and ends with the highest non-fat vertex in the Chain (since edges between a fat vertex and a non-fat
vertex are all labeled 1, we do not need to store them). For each list we will keep its first and its last
nodes. In addition, every Chain in the Graph will receive a unique serial ID number, so that in a Graph

IDEPT. OF MATHEMATICS, PHYSICS, AND COMPUTER SCIENCE, UNIVERSITY OF HAIFA, AT ORANIM, TIVON 36006, ISRAEL
E-mail address: tair.pnini@gmail.com
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with n Chains the IDs would be from 0 to (n — 1). The Chains of a Graph are kept in an array so that
each Chain is put in its ID number cell of the array.

We define two different sorting methods on Chains; SORTBYSTART and SORTBYEND. Sorting by start
is a lexicogaphic sort in which each node of the list is considered a letter. Sorting by end is defined by the
same principle, except that the lists is read backwards and the value encoding each vertex is its distance
from the top fat vertex (equals the Height of the Graph minus its distance from the bottom). Notice
that sorting the Chains of a Graph by end will give the same result as sorting the Chains of the flipped
Graph by start. For each Graph we will keep two additional arrays, keeping the IDs of the Chains. Both
arrays keep the IDs in order, according to the corresponding Chains sort; one according to the “sort by
start” and the other according to the “sort by end”. See Figure B.1.

‘D(Zmax)=0tz,Area=Vz,g Bottom fat vertex area = V;
B —
Top fat vertex area = V,
1 .
Helght = 0— 04
@(p,) =0, @ ! Chains = J
3 /_/
<I)(p3):a4 ® (D(pq):(xqﬂ ID = 0 ID =1

A
: : e e,
O(p)=0, ® P(p,)=0,@ \_J \_/

1 1

—_— Chains by start =[1]o]
D(Emin) =0, ,Area=v, , g

Chains by end =

0(]<(13<0.4<0.5<0£2

FIGURE B.1. On the left is a decorated graph. On the right is the corresponding data structure.

Another structure we use is referred to as “Graphs Tree”. It is a balanced binary search tree,
storing a set of non-equivalent Graphs. Each node in the tree contains two fields - a key field and a field
containing a linked list of non-equivalent Graphs of that key. The key of a Graph is encoding the areas
of the two fat vertices in the Graph - the larger area first, and the number of the Chains in the Graph.
Notice that two Graphs may be equivalent only if they have the same key, meaning that they are stored
in the same Graphs Tree node. The operation of adding a Graph to the Graphs Tree would be done only
if there is no equivalent Graph already kept in the Graphs Tree.

Algorithms. The main algorithm counts the number of non-equivalent Graphs that can be produced
as blowups of sizes d1,...,d, from the Graphs determined by Ap and Ap. It calls on the remaining
algorithms defined in this section.

Algorithm B.2 — COUNTGRAPHS (Ap, Ap;d1,02,...,04).

o Input: Two positive real numbers A\g, Ag; and n positive real numbers §1,ds,...,d,, in decreasing
order.

o Output: The number of non-equivalent Graphs that can be created by performing the blowups sequen-
tially, starting from the Graphs that are determined by Ap and Ap.

1: Create a Graphs Tree structure gt (as described in the data structures section) of the Graphs defined
by /\B7 AR using GRAPHS()\F,)\B; )

2: Create a Graphs Tree structure t of all of the non-equivalent Graphs obtained from performing the
blowups of sizes d1,ds, ..., 6, sequentially, in every possible way, on each of the Graphs in gt, using
BLOWUPSET(gt, 61,82, . ..,0n).

3: Return the number of Graphs in t.
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Algorithm B.3 — GRAPHS (A\p, Ap;)
o Input: Two positive real numbers A\p, Ap
o Output: Graphs Tree structure gt, storing the Graphs defined by Ap and A\g

1: for ¢ =0 to R—ﬂ -1
2: Create a Graph with the following data:

bottom fat vertex area = A + iAp
top fat vertex area = A\p —iAp

Height = Ap

Chains = none
3: Add the Graph created to the Graphs Tree structure gt
4: Return gt

Algorithm B.4 — BLOWUPSET (gt, 1,02, ...,0,)

o Input: A Graphs Tree structure gt and n positive real numbers 91,62, ..., d, in decreasing order.

o Qutput: Graphs Tree structure ¢, storing the non-equivalent Graphs that can be created by performing
the blowups sequentially, starting from the Graphs in gt.

1: fori=1ton

2: Define t as a new empty Graphs Tree
3: for each Graph g in gt
4: Create all the Graphs that can be obtained by performing a blowup

of size 0; on g (perform the blowup in every possible way in g),
using BLOWUPGRAPH(g, d;).

5: Add each Graph that have been created in the previous step
to the Graphs Tree ¢t using ADDGRAPH(g,t) (an algorithm that
ensures that a Graph would be added if and only if there is no
equivalent Graph in the Graphs Tree).

6: Set gt =1t

7: Return gt
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Algorithm B.5 — BLOWUPGRAPH(g, §)
o Input: A Graph g and a positive number §
o Output: A list list of all the Graphs can be obtained by performing a blowup of size § on the Graph g

1: if a blowup can be performed at the bottom fat vertex
(that is, if § < bottomFatVertexArea) then

2: Create a deep copy ¢’ of Graph g. Let n be the number of Chains
in g, make the size of the arrays in ¢’ (Chains, ChainsByStart, ChainByEnd)
be n + 1.

3: Subtract  from the area of the bottom fat vertex.

=

Add a new Chain with one node 0 to ¢’. Let n be the number of Chains
in g, the ID of the new Chain will be n and a pointer to the new Chain
will be placed in Chains[n].

5: Use binary search and the sorting methods defined in the data
structure section to find the right place for the ID of the new

Chain in the ChainsByStart and ChainsByEnd arrays and place

it there (move other IDs to the right if needed to “make place”).

6: Add ¢’ to the list.
7: if a blowup can be performed on the top fat vertex (§ < topFatVertexArea) then
8: Do the same as when a blowup can be performed at the bottom

fat vertex, except subtract § from the top fat vertex area and the new Chain
will have the node height —¢
9: for every Chain chain

10: for every node v that represents a vertex in chain

11: if a monotone blowup can be made on the vertex then

12: Create a new Chain replacing to chain with a blowup on v,
with the same ID.

13: Create a deep copy ¢’ of the Graph g and replace the copy of chain
with the new Chain that have been created.

14: Use binary search and the sorting methods described above,

to find the right place for the ID of the new Chain in the
ChainsByStart and ChainsByEnd arrays and place it there
(move other IDs to the right if needed to “make place”).
15: Add ¢’ to list.
16: Return list
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Algorithm B.6 — ADDGRAPH(g, t)
o Input: A Graph g and a Graph Tree structure ¢
o Output: The Graph g would be added to the Tree structure ¢ if there is no equivalent Graph to ¢ in ¢
1: Get the node from t with the same key as the key of the Graph g.
2: if there is no such node in ¢ then
3: add a new node to t with the key of g.
Set the list of Graphs of this node to contain g.

4
5 for each Graph g, in the list of Graphs of the received node

6: if ¢ is equivalent to ga, (to be checked using AREEQUIVALENT(g, g2)), then
7 return

8 add g to the list of Graphs in the node that matches to its key.

Algorithm B.7 — AREEQUIVALENT(g1, g2)

o Input: A Graph g; and a Graph g, . Both g; and go have the same key according to the Graphs Tree
structure

o Qutput: True, if the two Graphs are equivalent and False otherwise

1: if g;.bottomFatArea = g;.topFatArea
Return ARETHESAME(g1, g2) or AREREFLECTION(g1, g2)
else
if (g1.bottomFatArea=gs.bottomFatArea)
Return ARETHESAME(g1, g2)
else
Return AREREFLECTION(g1, g2)

Algorithm B.8 — ARETHESAME(g1, g2)

o Input: A Graph g; and a Graph go. Both g; and go have the same key according to the Graphs Tree
structure. g7 and go fat vertices area are equals respectively.

o Output: True, if the two Graphs are exactly the same; False otherwise.

1: for ¢ = 0 to the number of Chains in g; and g

2: if not g;.Chain[g;.ChainsByStart[i]] equals g2.Chain|[ge.ChainsByStart[i]]
3: Return false

4: Return true

Algorithm B.9 — AREREFLECTION(g1, g2)

o Input: Graph g; and a Graph go . Both ¢g; and g have the same key according to the Graphs Tree
structure. ¢y first fat area equals g last fat area and vice versa.

o Output: True, if the two Graphs are a reflection of one another; False otherwise.

1: for ¢ = 0 to the number of Chains in g; and g

2: if not g;.Chain[g;.ChainsByStart[i]] is a
reflection of go.Chain[gs.ChainsByEnd[i]] (check node by node,
one Chain from the start and the other from the end, labels should be
equal and a vertex should be equal to the height of the Graph minus
the corresponding one.) then

3: Return false

4: Return true
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