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ABSTRACT

Through aiding the process of diagnosing cardiovascular diseases
(CVD) such as arrhythmia, electrocardiograms (ECGs) have progres-
sively improved prospects for an automated diagnosis system in
modern healthcare. Recent years have seen the promising applica-
tions of deep neural networks (DNNs) in analyzing ECG data, even
outperforming cardiovascular experts in identifying certain rhythm
irregularities. However, DNNs have shown to be susceptible to ad-
versarial attacks, which intentionally compromise the models by
adding perturbations to the inputs. This concept is also applicable
to DNN-based ECG classifiers and the prior works generate these
adversarial attacks in a white-box setting where the model details
are exposed to the attackers. However, the black-box condition,
where the classification model’s architecture and parameters are
unknown to the attackers, remains mostly unexplored. Thus, we
aim to fool ECG classifiers in the black-box and hard-label setting
where given an input, only the final predicted category is visible
to the attacker. Our attack on the DNN classification model for the
PhysioNet Computing in Cardiology Challenge 2017 [12] database
produced ECG data sets mostly indistinguishable from the white-
box version of an adversarial attack on this same database. Our
results demonstrate that we can effectively generate the adversar-
ial ECG inputs in this black-box setting, which raises significant
concerns regarding the potential applications of DNN-based ECG
classifiers in security-critical systems.
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1 INTRODUCTION

The World Health Organization has reported that cardiovascular
diseases (CVDs) are the leading cause of death, taking an estimated
17.9 million lives each year (31% of all deaths worldwide) [2]. In
certain cases, the irregularities may occur sporadically in a patient’s
daily life. Detecting these irregularities within a patient’s heart-
beat allows them to receive potentially life-saving treatment that
prevents this issue from manifesting into a more severe condition,
such as a heart attack or stroke. The main abnormality we focus
upon is arrhythmia, a type of CVD where there is an irregularity
in the rate or rhythm of the heartbeat and is usually diagnosed by
analyzing recordings of the electrical activity of the heart (ECGs).
Unfortunately, a study on cardiology in the U.S. [24] predicted as
much as an 18% increase in demand for cardiologists over the next
10 years. With such a limited number available, it’s impractical to
have cardiologists manually analyze all ECG data.

As the pervasiveness of machine learning and neural networks
continues to expand into all walks of life, (from social media ad-
vertising to stock market trends to speech recognition) there have
been numerous developments in their applications towards the
automation of healthcare practices. Google! has recently devel-
oped a machine-learning algorithm to identify cancerous tumors
in mammograms, while researchers have utilized DNNs to identify
types of skin cancer from images. Furthermore, recent works have
shown that DNNs can accurately recognize and classify different
types of arrhythmia [23, 28] from ECG signals. As the automation
of diagnosing arrhythmia and other CVDs becoming a much more
realistic endeavor with the assistance of DNNs, regions lacking a
sufficient number of cardiologists would greatly benefit from this.

!https://research.google/teams/health/
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Companies like Tricog [1] have already adopted these machine-
learning based methods to accomplish these healthcare goals in
over 12 countries, including China, Singapore, India, and Malaysia.

Adversarial Attacks: However, it has been observed that DNNs
are susceptible to adversarial attacks, where inputs are intention-
ally designed to cause a misclassification. For instance, previous
research has demonstrated that while a well-trained image classifier
exceeds the abilities of the average human in recognizing objects,
it can be fooled by adding almost imperceptible perturbations to
its inputs. [6, 8, 16, 32]. This phenomenon is also encountered in
time-series data, with prominent examples including speech sig-
nals [3, 25] and ECG data [9, 17, 18]. Such adversarial attacks pose a
serious threat to medical deep-learning systems, ultimately hinder-
ing the deployment of DNNs for such applications. Without proper
defense mechanisms against adversarial attacks, the risk of mis-
treatment or medical fraud occurring would be significantly higher
if these susceptible diagnosis systems were to replace certain tasks
normally completed by experienced doctors or cardiologists. [14].

Despite the looming concern of such consequential effects from
the use of recently developed ECG diagnostic systems, these time-
domain based attacks have seldom been explored relative to the
image and speech domains. Previous works have only shown that
ECG classifiers can be fooled by adding imperceptible perturba-
tions [9, 18] in the white-box setting, where attacks receive far more
assistance and information with regards to the given architecture
and parameters of the DNNs. In this paper, we focus on attacking
ECG classifiers in a more realistic hard-label and black-box setting
where the attacker only has access to the final top-1 category of
the deep-learning model especially.

Details of the Study: We conduct our study using the PhysioNet
Computing in Cardiology Challenge 2017 which contains single-lead
ECG signals of various classifications. Unlike prior works [9, 18]
which functioned under white-box conditions, our attack performs
under the black-box and hard-label setting. We demonstrate that our
algorithm can still produce imperceptible data sets that effectively
fool a modern ECG classifier at a rate on par with the white-box
attack. To improve the perceptual similarity of the adversarial ECG
data set, we propose an approach to smoothing the adversarial
signal while performing random searches during the attack (Fig.
2). Our experiments demonstrate that the perceptual similarity
improved significantly. As a result, our attack indicates that a deep-
learning based ECG diagnostic system can be compromised without
knowledge of any information regarding the model.

Key Contributions: This paper’s contributions can be summa-
rized as follows:

o We adversarially attack ECG classifiers in the black-box hard-
label setting. This is conducted in a computationally efficient
manner with a fairly minimal number of queries.

e We propose a smoothing step in our attack framework to
improve the human perceptual quality of the adversarial
ECG signals. In addition, we demonstrate that the proposed
attack can perform comparably with an attack in the white-
box setting in creating imperceptible, adversarial ECG data
sets in the time domain.

o We determine the success rate of creating imperceptible sig-
nals via qualified physicians, showing that the adversarially
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Figure 1: Example of Successful Black-Box Attack in Time Domain

generated ECG data sets and their respective original data
sets are consistently categorized the same.

2 BACKGROUND

In recent years, various strategies have been proposed to fool deep
neural networks. The attacks can be classified into two categories:
targeted and untargeted. In this paper, we focus on the targeted
version where the perturbed input must be categorized as a chosen
class. Furthermore, based on knowledge of the classifying model,
the attacks can be further divided into two classes: white-box at-
tacks and black-box. White-box attacks assume complete knowl-
edge of the trained models, including its architecture and param-
eters. Conversely, black-box attacks assume the attacker has no
knowledge of the information mentioned above and is simply acting
as a standard user. This setting is far more practical when attacking
online machine-learning services like Google Cloud AI? and AWS
Machine Learning?.

Problem Formulation. The following is a formulation of the tar-
geted attack problem. Consider the benign ECG signal x°'8 € RN,
A C-class ECG classifier produces the corresponding top-1 pre-
diction y € {1,...,C}. An attacker generally aims to minimize a

adv

distance metric between x?*° and x°"8 with the misclassification

constraint satisfied:

minimize D(Xadv, x°'8) (1a)
xadv cRN
subject to F(x90) = ¢ (1b)

The Lp-distance is commonly used as the objective metric, as it
computes element-wise distances. By minimizing the L,-distance,
the attacker seeks to make the adversarial inputs inconspicuous
from the human perspective.

Adversarial Attacks: White-Box Setting. Equation (1) can be
combined and simplified as follows:

minimize D(x%%?, x°"8) + AF(x%%) ®)
Xadz) cRN

2https://cloud.google.com/products/ai
Shttps://aws.amazon.com/cn/machine-learning/
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F(+) is an objective function, mapping the input to a non-negative
number. F(x?%) = 0 if and only iff(x“dv) = t. An example of a
potential F(-) is:

F(x“d”) = max(max;z; 9(Xadv)i - g(Xadv)t, 0) ®)

where ¢(-); is the logit output corresponding to the ith class.
Hence, in the white-box setting, since the attackers have access to
all information regarding the model, the above problem is differen-
tiable and can be solved via gradient descent.

2.1 Adversarial Attacks on ECG Data

[9, 18] have shown that deep-learning based ECG classifiers can be
fooled by imperceptible perturbation added to benign ECG signals.
They typically make use of the gradient-based white-box attack and
further apply the Gaussian low-pass filters to smooth the injected
noise for better imperceptibility by humans. [9] proposes to use the
local variance to generate the imperceivable perturbations for ECG
signals. Given & = x%9% — x°"& and Var(-) referring to variance
calculation, the similarity metric called smoothness is defined as
follows:

di=6; —0i-1,i=2,..,n (4)

dsmooth (6) :déf Var(d) (5

Smoothness metric dg;,,0:, quantifies the variation of the dif-
ference between the benign signal and the adversarial signal by
computing the variance of d. We will also adopt such a metric in
evaluating our attack performance. Additionally, [9] also considers
the transformation process in their attack scheme and applies the
Expectation Over Transformation (EOT) [5] to generate the adver-
sarial inputs that are robust against potential transformation func-
tions. However, these previous approaches are only viable within
the white-box setting, where the machine learning model is fully
exposed to the attacker. In this setting, the optimal perturbation
direction can be pointed to by the gradient of the victim model as
computed by back-propagation. But in real-world machine learning
applications, such an assumption is unrealistic.

2.2 Black-box Hard-Label Adversarial Attack

In hard-label attacks, the details of the model are not revealed and
the attacker can only query the model for the corresponding hard-
label decision instead of the probability of all its outputs. [6, 10,
11, 19] attack DNN-based image classifiers in the extreme cases,
where only the model classification with the highest confidence is
given to the attackers. Among these, [6] works toward the decision
boundary, traveling along it to produce adversarial images using
imperceptible perturbations.

3 METHODOLOGY

To generate adversarial data sets, we choose a decision-based bound-
ary attack [6], which performs random searches near the decision
boundary. In addition, we also noticed that directly minimizing the
L, distance in the image domain isn’t optimal for attacking time-
series data, which produces highly visible jaggedness. Thus, we
adopted a smoothing strategy to generate adversarial perturbations
with a better perceptual quality.
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3.1 Boundary Attack: Black-Box Setting

In the hard-label black-box setting, an attacker cannot utilize the
back-propagated gradient to generate adversarial perturbations
for the original input data. Instead, the boundary attack initializes
an ECG signal in the target class as the adversarial ECG signal
which will be updated through subsequent iterations. The random
searches ensure that successful samples of xadv stay within the
adversarial region and also reduce the L, distance from x°"8.

Algorithm 1 Boundary Attack

1. Input: original ECG x°8, ECG x'%8¢! in the target class t,
hard-label black-box classifier f(x) : RN — {1,2,..,C}

2: Output: adversarial ECG x40 gt ||(x°78 — x99?)||, is mini-
mized.

3: Initial step size y and f. Let x' = x

4: fori=1:Nydo

5 Generate random noise € RN and project it such that
(n,x°"8 —x')y = 0:

target

dEf X078 — Xi

= —— 6
7 sl ©
n < n-(nejpe )
6: i) Perform orthogonal step:
' 1 lI(x°"8 = x) 2 -
xp =X+ (v n-(TE=x))  @®)
Vi+y? lInll2
7: ii) Perform step towards original ECG data:
Xi+1 — X:'7+1 +ﬁ(xorg _ Xé+1) (9)
8: if x*1 is not adversarial then
o S G

10: Increase y and f if the attack success rate is too high. Oth-

erwise, decrease them.

1: return x*!

—_

In our initial iterations, the adversarial EGG signal seeks the de-
cision boundary separating adversarial and non-adversarial inputs.
For future iterations near the boundary, the attack samples noise
n and projects x* + i onto the sphere centered at x°"8 with radius
D(x°8,x%) (Eqn. 8). After the initial orthogonal step, it steps to-
wards x°"8 with size §(x°"8 —x*), (Eqn. 9). The iteration is complete
when an introduction of noise decreases the Ly distance and the
signal remains adversarial, or it has exhausted its maximum number
of attempts. We refer our readers to [6] for a detailed explanation.

3.2 Improving the Smoothness

The algorithm 1 mentioned above is designed to generate impercep-
tible perturbations in the image domain, but is not as effective in
doing so for time-series data. Thus, we apply a low-pass Hanning
filter onto our noise, removing a great deal of jaggedness from the
ECG signals created. This results in a smoother, far more realistic
signal as demonstrated in Figure 2.

ne—n®h-{(n®h,e)e (10)
h € R! is a discrete Hanning filter with window size equal to ¢.
By replacing Eqn. (7) with Eqn. (10) in Algorithm 1, we are able to
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generate adversarial ECG signals without significantly disruptive
noise.
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Figure 2: Effects of Low-Pass Hanning Filter

4 IMPLEMENTATION

4.1 PhysioNet Computing in Cardiology
Challenge 2017 Database

In this database [12], there are over 8500 single short ECG lead
recordings. The lengths range from 9 seconds to 60 seconds, with
a median length of 30 seconds. The recordings were sampled at a
rate of 300 Hz. There were four different classifications of rhythms,
normal sinus(N), atrial fibrillation(AF), alternative (O), and too
noisy to be classified (~). An alternative rhythm is any other kind
of arrhythmia which isn’t AF. As noted in [9], the relevant cases
occur when adversarially attacking a normal sinus rhythm to be

classified as arrhythmia (AF & alternative rhythms), and vice versa.

4.2 Deep Neural Network Arrhythmia
Classifier

For this experiment, we use a trained model which was submitted
specifically for the PhysioNet Computing in Cardiology Challenge
2017 by [4]. The model performed with an accuracy of 79%, on par
with current state-of-the-art ECG signal classifying models. It was
based on a previous model from [26], which used a 34-layer Residual
Network to classify single-lead ECG signals into 14 different classes.
Unlike its predecessor, the victim model for our experiment only
has four different classifications: AF, N, O, ~. This specific model [4]
is open-source, a main factor in our decision to attack it.

4.3 Processing & Attacking the ECG Data

We convert all 8,528 .mat files from the PhysioNet Computing in
Cardiology Challenge 2017 database into NumPy arrays and separate
them based on their respective classifications. We then process the
data exactly as the attack in the white-box setting did [9], by taking
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the first 9000 values and normalizing the array afterwards. If there
are less than 9000 values, zeros are padded. Similar to [9], we only
attack original and target ECG signals which are correctly classified
by the model, avoiding the possibility of initial misclassifications.
Finally, for each of the 12 combinations of two distinct labels, one
of which being designated as the original class and the other as the
target class, we randomly create 10 pairs to be inputted into both
our boundary attack algorithm and the white-box attack.*
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Figure 3: Comparing Various Window Lengths

4.4 Determining the Window Length

We initially attacked all 120 pairs with a window length of 5, which
proved ineffective. Using the 10 worst performing pairs based upon

4Our code is available at https:/github.com/nesl/Black-box-ECG-attack
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the smoothness metric (5), we increment the size of the window
and repeat this. We sought to not oversimplify the signal, while
maintaining the major characteristics such as the spikes and smaller
bumps before and after the beat. The adversarial signals in Figure 3
are intended to classify as normal sinus rhythms, while appearing
as the original signal’s example of an AF rhythm. As the length
of the window increases, the adversarial signal appears visually
cleaner due to smoother perturbations. The average smoothness
decreases until the window length was 41, then increases for greater
lengths, indicating that we have reached a relative minimum and
our desired value for the Hanning filter.

5 RESULTS

Metrics Based Evaluation: Based on the experiment (1), the per-
formance of our adversarial attack under black-box conditions bet-
ter minimizes the quantitative metrics when generating adversarial
ECG signals. In Table 1, we compare the average Ly and smooth-
ness(5), both metrics which quantify differences between generated
adversarial ECG signals and the original ECG signals. Also, we re-
port our average number of queries, which can be used to measure
the effectiveness of our black-box boundary attack when compared
against future black-box style attacks. As seen in Table 1, given
sufficient queries, the adversarial attack in the black-box setting
actually outperforms the white-box attack, [9] as it reduces the Ly
distance by 61.9% and improves the smoothness metric by 16.2%.

Table 1: Quantitative Comparisons w/ Various Metrics

Average Ly | Average Smoothness | Average Queries
ECG-adv[9] 28.4897 0.02035 /
Boundary Attack (ours) 10.8635 0.01705 31564

Perception Based Evaluation: We had two physicians, both of
whom achieved a 100% accuracy rate in classifying our original ECG
signals, qualitatively determine the classifications of our adversarial
signals. From these classifications, we determined whether our
attacks succeeded or failed. A successful attack is defined as follows:
a physician or cardiologist classifies the adversarial and original
ECG signals as the same, but when the adversarial signal is inputted
into the model, it remains in the target signal’s class. Table 2 consists
of a confusion matrix, where the original ECG signal classification
is labeled on the vertical axis, while the target classification is
labeled on the horizontal axis. The diagonal of empty cells for each
confusion matrix is because there were no original and target pairs
created with identical classes, as an adversarial attack wouldn’t
be relevant. As seen in Table 2, our black-box attack succeeded
98.3% of the time, while the ECG-adv[9] success rate was 100%, as
determined by the two physicians.

6 DISCUSSION & FUTURE WORK

Discussion: The process of adversarially attacking an ECG classi-
fier, versus say an image classifier, varies significantly due to how
the trained human eye determines their effectiveness. For classify-
ing images, the human eye typically looks for consistent similarities
across its entirety. This favors a metric such as the minimization of
the Ly distance, which helps create an adversarial image with less
discrepancies across the board. However, with something like ECG

10
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Table 2: Success Rate Confusion Matrices

Boundary Attack (ours) ‘ ECG-adv[9]
Target Classification

AF N O ~ AF N O ~
AF / 100% | 100% | 100% / 100% | 100% | 100%
N 100% / 100% | 100% | 100% / 100% | 100%
(@) 100% | 100% / 80% | 100% | 100% / 100%
~ 100% | 100% | 100% / 100% | 100% | 100% /
Overall 98.3% 100%

data, there are certain identifiable features that a human can pick
out when classifying them, without needing to look too deeply at ev-
ery individual discrepancy. DNN-based ECG classifiers accounting
too much for the change between each data point can be compro-
mised, as shown by the effectiveness of our adversarial attacks,
which render key characteristics identifiable to the trained human
eye while still having enough room to create discrepancies via noise
to throw off the model. Here, imperceptibility should still occur as
long as the data sets are categorized in the same class, regardless
if they look mildly different as a whole. While this is something
the experienced human eye can adapt to, the DNN often becomes
distracted and thereby fooled. The following in-depth examples
demonstrate this methodology enabling a successful attack.

For context, the key features in every ECG signal to look for and
analyze are the rate in beats per minute (bpm), the rhythm/regularity,
the P waves, the PR Interval (PRI), the QRS Complex, the QT inter-
val, the ST segment, and the T waves, as shown in Figure 4.

QRS
Complex

R

sT
Segment

PR
Segment|
PR Interval

Figure 4: Features of a Normal ECG Signal

QT Interval

For the four key pairings of original and target ECG signals (N
— AF, AF - N, O — N, & N — 0), we retain certain defining
features to ensure the trained human eye maintains an identical
classification, while incorporating others to an extent in order to
fool the ECG classifying model.

For instance, in Figure 5, one can see that in a normal sinus
rhythm there is a regular rhythm rate of 60-100 bpm, each QRS
complex is preceded by a normal P wave, the normal P wave is in the
correct orientation, the PR interval remains constant, and the QRS
complexes are less than 100 ms wide [7]. To the trained human eye
this signal is normal due to the presence of the features mentioned
above. But with the addition of noise creating a wavier baseline,
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Figure 5: N incorrectly classified as AF after the attack (N — AF)

the model was fooled into classifying this as atrial fibrillation.
‘Original Signal: Normal Sinus Rhythm
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Adversarial Signal- Alternative Rhythm

I P

0o 05 10 15 20 25 30 35 40
Seconds

Amplitude (my)

R I

Amplitude (m\}

o noBE oo

Figure 6: N incorrectly classified as O after the attack (N — O)

In Figure 6, the standard features of a normal sinus rhythm
remain, but our attack has rendered the P wave far more difficult to
identify, which caused the model to misclassify this as an alternative
rhythm. However, since the trained human eye can still notice
the smaller P wave occurring at regular intervals while appearing
similar in size & shape, it was still classified as normal.

‘Original Signal: Atrial Fibrillation

Amplitude (mi)
[V

=

Adversarial Signal: Normal Sinus Rhythm
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0o 05 10 15 20 25 30
Seconds

Figure 7: AF incorrectly classified as N after the attack (AF — N)

In Figure 7, there are clear signs of atrial fibrillation [21], in-
cluding the absence of P waves; an erratic, wavy baseline; and an
irregular rate of QRS complexes. However, while our adversarial
image maintains these features, it also adds some waviness to the
baseline that is typical in AF, but leads the model to mistake them
for P waves in a normal sinus rhythm.

Finally, in Figure 8, there is a noticeably abnormal P wave in the
2nd beat, followed by a normal QRS complex. This strongly indi-
cates Premature Atrial Complex (PAC) [22] which falls under the
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Figure 8: O incorrectly classified as N after the attack (O — N)

category of an alternative rhythm. Our attack alters the abnormal
P wave to be considered similar to the others, leading the model
to classified it as sinus arrhythmia. This is a type of normal sinus
rhythm, except with variations in the time between successive P
waves and an irregular rate of QRS complexes. The trained human
eye can still pick out the abnormal P wave and recognize this feature
that identifies PAC.

Overall, our adversarial decision-based boundary attack per-
formed very comparably with the attack in the white box-setting,
demonstrating the legitimacy of security threats to ECG diagnostic
systems.

Future Work: The primary direction will be researching on simi-
larity metrics that correlate with the trained human perception in
order to better quantify the assessment of adversarial ECG exam-
ples. This is per the fact that qualitative classifications like ECG data
are highly reliant on particular patterns and features the curved
lines present [13, 15], a property that conventional metrics such as
Lp distance cannot entirely capture. A secondary direction is the
development of methods that can detect these adversarial ECG in-
puts, as the means of defending against the application of low-pass
filters that improve the attack’s perceptual smoothness and similar-
ity [20, 30] is an area still largely unexplored. Finally, as mentioned
in the discussion, certain features in the adversarial inputs are likely
the main factors in compromising the security of DNNs when clas-
sifying ECG signals. We aim to explore methods to advance the
existing explainability approaches [27, 31] and uncertainty quan-
tifications [29] of DNNs to help combat these adversarial attacks
on ECG data sets.
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