
Hybrid Firmware Analysis for Known
Mobile and IoT Security Vulnerabilities

Pengfei Sun†, Luis Garcia∗, Gabriel Salles-Loustau† and Saman Zonouz†
† Electrical and Computer Engineering, ∗Electrical and Computer Engineering

†Rutgers University, ∗University of California, Los Angeles
{pengfei.sun, gabriel.sallesloustau, saman.zonouz}@rutgers.edu, {garcialuis}@ucla.edu

Abstract—Mobile and IoT operating systems–and their ensuing
software updates–are usually distributed as binary files. Given
that these binary files are commonly closed source, users or
businesses who want to assess the security of the software need
to rely on reverse engineering. Further, verifying the correct
application of the latest software patches in a given binary is
an open problem. The regular application of software patches
is a central pillar for improving mobile and IoT device security.
This requires developers, integrators, and vendors to propagate
patches to all affected devices in a timely and coordinated fashion.
In practice, vendors follow different and sometimes improper
security update agendas for both mobile and IoT products. More-
over, previous studies revealed the existence of a hidden patch gap:
several vendors falsely reported that they patched vulnerabilities.
Therefore, techniques to verify whether vulnerabilities have been
patched or not in a given binary are essential. Deep learning
approaches have shown to be promising for static binary analyses
with respect to inferring binary similarity as well as vulnerability
detection. However, these approaches fail to capture the dynamic
behavior of these systems, and, as a result, they may inundate
the analysis with false positives when performing vulnerability
discovery in the wild. In particular, they cannot capture the
fine-grained characteristics necessary to distinguish whether a
vulnerability has been patched or not.

In this paper, we present PATCHECKO, a vulnerability and
patch presence detection framework for executable binaries.
PATCHECKO relies on a hybrid, cross-platform binary code
similarity analysis that combines deep learning-based static
binary analysis with dynamic binary analysis. PATCHECKO does
not require access to the source code of the target binary
nor that of vulnerable functions. We evaluate PATCHECKO on
the most recent Google Pixel 2 smartphone and the Android
Things IoT firmware images, within which 25 known CVE
vulnerabilities have been previously reported and patched. Our
deep learning model shows a vulnerability detection accuracy of
over 93%. We further prune the candidates found by the deep
learning stage–which includes false positives–via dynamic binary
analysis. Consequently, PATCHECKO successfully identifies the
correct matches among the candidate functions in the top 3
ranked outcomes 100% of the time. Furthermore, PATCHECKO’s
differential engine distinguishes between functions that are still
vulnerable and those that are patched with an accuracy of 96%.

I. INTRODUCTION

The number of discovered software vulnerabilities and the
rate at which we discover them increase steadily every year.
The number of new vulnerability reports submitted to the
Common Vulnerabilities and Exposures (CVE) database was
approximately 4, 600 in 2010, 6, 500 in 2016, and doubled in
2017 with over 14, 700 reports [30]. In parallel, the increasing
ubiquity of mobile and IoT devices (Gartner forecasts that 20.4
billion IoT devices will be in use worldwide by 2020 [40])
makes them a target of choice for vulnerability research and
exploitation. Further, it is common practice for both customers

and businesses to rely on commercial off-the-shelf binaries in
their products or for their activities. These external products
often require a vetting step, including security assertion of the
product’s software, e.g., blackbox penetration testing. When
not done properly, such use or integration of IoT devices can
lead to security issues [10]. Fortunately for the penetration
testers, mobile and IoT vendors often reuse open source code
and adapt them to their products. Common targets for pene-
tration testers are binary files such as cryptographic libraries,
media libraries, and parsers that are regularly updated upon
vulnerability discovery. Unfortunately, the source code for
these libraries in mobile and IoT devices is not always easily
accessible, and ensuring that their software is up to date is an
open problem.

Generally, patch management for both IoT and mobile
devices is a challenge for heterogeneous ecosystems. A 2018
Federal Trade Commission report [11] mentioned that al-
though an ecosystem’s diversity provides extensive consumer
choice, it also contributes to security update complexity and
inconsistency. Software patches must go through many in-
termediaries from the software developers, to the software
integrators, and onto the vendors before getting pushed to the
end devices [1].

Two problems arise from this long patch chain. First, this
long list of intermediaries tends to delay the propagation of
patches to the end device. Duo labs found that only 25 percent
of mobile devices were operated on an up-to-date patch level
in 2016 [26]. Second, vendors do not always accurately report
whether a vulnerability has been patched or not (hidden
patch gaps), especially in the context of mobile and IoT
devices. A study showed that 80.4% of vendor-issued firmware
is released with multiple known vulnerabilities, and many
recently released firmware updates contain vulnerabilities in
third-party libraries that have been known for over eight
years [13]. Another study of Android phones [27] found that
some vendors regularly miss patches, leaving parts of the
ecosystem exposed to the underlying risks. Hidden patch gaps
not only leave a large set of devices vulnerable, but with
the pervasiveness of software code reuse, such vulnerabilities
can quickly propagate as developers may copy over existing
vulnerabilities [12].

Accordingly, identifying vulnerable binaries and patch sta-
tus is a critical challenge for end users. PATCHECKO solves
this problem via a two-step hybrid approach that combines
a lightweight whole firmware static analysis followed by
an accurate dynamic analysis that refines the static analysis
results.
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Known vulnerability discovery via deep learning. Obtaining
the set–or at least a superset–of candidate vulnerabilities for
a given binary is an explored problem without a satisfactory
answer. Recently, researchers have started to tackle the cross-
platform binary similarity checking to detect known vulnera-
bilities [32], [17], [16], [41]. These efforts try to identify the
functions, if any, in the target firmware that “look like” one of
the functions in a previously populated database of functions
with known vulnerabilities. They propose to extract various
robust, platform-independent features directly from binary
code for each node in the control flow graph that represents a
function. Other approaches have focused on binary similarity
detection where a graph matching algorithm is used to check
whether two functions’ control flow graph representations are
similar [32], [17], [16]. Further, deep learning in the context of
Natural Language Processing (NLP) can also replace manually
selected features [43], [14].

Prior efforts have shown that deep learning approaches can
be used for binary analysis to detect vulnerabilities[38], [41],
[9]. The most recent approach [41] has a training performance
of 0.971 Area Under the Curve (AUC) and detection accuracy
of over 80%. However, despite this performance, assuming
the target binary has around 3000+ functions, there is still
a large number of candidate functions (600+) that need to
be explored manually for confirmation after the analysis. It
has been shown the candidate functions can be pruned given
access to a binary’s symbol table [42]. However, for stripped
commercial-off-the-shelf (COTS) binaries, their solution can
only provide a very large set of candidate functions (mostly
false positives). Accordingly, further measures are necessary
to prune the candidate functions to identify and report only
the true positives (the functions with actual vulnerabilities).
PATCHECKO uses the target binary static analysis results
(static features) to conduct this first stage.

Candidate function pruning via dynamic analysis.
PATCHECKO prunes the set of candidate functions from the
deep learning-based approach with dynamic analysis results
(dynamic features) to get rid of the false positives. The
static analysis removes the bulk of improbable candidates and
returns a small subset of functions, which enables PATCHECKO

to consider more resource-expensive dynamic analysis tech-
niques on a smaller set of target functions. Prior work [17],
[41] prioritized speed at the expense of accuracy due to scala-
bility concerns–focusing only on heuristic or static features of
basic blocks and functions. Compared to [15], PATCHECKO’s
hybrid approach not only speeds up the vulnerability func-
tion matching process, but also provides higher accuracy via
removing false positives.

This initial framework allows us to develop a new training
model generation method that uses a default policy to pretrain
a task-independent graph embedding network. We then use this
method to generate a large-scale dataset using binary functions
compiled from the same source code but for different platforms
with different compiler optimization levels. We then built a
vulnerability database that includes 1,382 vulnerabilities for
mobile/IoT firmware.

However, the ultimate goal of our solution is not to only
find similar vulnerability functions. The final goal is to ensure
whether the vulnerability is still in the target firmware or if it

has been patched.
Missing patch detection. Prior work has already developed
precise patch presence tests [42]. However, this solution only
works with access to the source code for both the vulnerable
and patched function source code. Also, because this solution
relies on binary similarity-based approaches to locate target
functions, it suffers from the aforementioned high false posi-
tive rate for candidate functions. Our solution works directly
with stripped COTS binaries and does not require access to
the source code while significantly pruning false positives.

Ultimately, this paper presents PATCHECKO: a framework
that integrates deep-learning for binary similarity-checking
with dynamic analysis to discover known vulnerabilities as
well as to test for patch presence. Our evaluation demonstrates
that PATCHECKO significantly outperforms the state-of-the-art
approaches with respect to both accuracy and efficiency.
Contributions. We summarize our contributions as follows:

• We propose an efficient firmware vulnerability and patch
presence detection framework that leverages deep learn-
ing and dynamic binary analysis techniques to achieve
high accuracy and performance for known vulnerability
discoveries in stripped firmware binaries without source
code access.

• We propose a fine-grained binary comparison algorithm
to distinguish accurately between patched and unpatched
versions of the same function’s binaries. Our solution cur-
rently works cross-platform–supporting ARM and X86
architectures. The selected relevant features for the com-
parison enable our solution to pinpoint the unpatched
functions with a very low false positive rate.

• We evaluate PATCHECKO on 25 CVE vulnerabilities for
100 different Android firmware libraries across 4 different
architectures. Our results are very promising for practical
deployment in real settings. With most of PATCHECKO’s
prototype being fully automated, its dynamic analysis
module correctly identified and pruned the false positives
from the deep learning classification outcomes. The re-
sults were later processed, and the unpatched functions
were separated from the functions with already-patched
vulnerabilities.

II. OVERVIEW

We introduce the vulnerability function similarity problem
and challenges in II-A and then present our solution in II-B.

A. Threat Model and Challenges
In this paper, we consider the problem of searching for

known vulnerabilities in stripped COTS mobile/IoT binaries.
We assume that we do not have access to the source code.
We also assume that the binary is not packed or obfuscated
and that the binary is compiled from a high-level procedural
programming language, i.e., a language that has the notion of
functions. While handling packed code is important, it poses
unique challenges, which are out of scope for this paper.
Considering these assumptions, we identify the following
challenges that arise in the domain of mobile/IoT platforms.
Heterogeneous binary compilation. Mobile/IoT platforms
typically consist of heterogeneous distributions of hardware
that may share common software vulnerabilities. As such,
we explicitly consider cases where different cross-platform
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Fig. 1: PATCHECKO vulnerability and patch search workflow.

compilations with different levels of optimization produce
different binary programs from identical source code. This
way, we can generate one vulnerable function binary for
different hardware architectures (e.g., x86 and ARM) and
software platforms (e.g., Windows, Linux, and MacOS).
Copious amount of candidate vulnerable functions. To
illustrate the scale of the number of candidate vulnerable
functions, we analyzed the firmware of Android Things 1.0
and IOS 12.0.1. For Android Things 1.0, we found 379
different libraries that included 440,532 functions, while IOS
12.0.1 contained 198 different libraries with 93,714 functions.
Although prior work has shown that deep learning-based
methods can be used to identify a set of vulnerable candidate
functions with relatively high accuracy [41], these techniques
do not present an automated solution to prune/eliminate the
resulting false positives. Additionally, the solution in [42]
relies on symbol tables that are not available on stripped
COTS binaries. As such, there remains a challenge to prune
vulnerable candidate functions for stripped COTS binaries.
Differentiating between patched or vulnerable code. Vul-
nerable functions may not be very distinguishable from their
patched versions as a patch may be as little as changing a
single line of code. Past work [42] can detect whether or not
vulnerable code has been patched. However, this solution relies
on access to the source code for both the vulnerable code as
well as the patched code. In practice, we often do not have
access to the source code of binary functions.

Given these motivating challenges, we now present an
overview of the PATCHECKO framework.

B. Approach
An overview of the PATCHECKO framework is presented

in Figure 1. Our solution is implemented in three steps: (1)
deep learning is used to train the vulnerability detector; (2) the
vulnerability detector is used to statically analyze the target
mobile/IoT firmware; (3) the identified vulnerable subroutines
are run for in-depth dynamic analysis and verification of the
existence of a vulnerability. The analyses use the extracted

static and dynamic features of vulnerable and patched func-
tions to identify whether the candidate vulnerability function
has been patched.

PATCHECKO’s objective is to compare the functions within
firmware binaries to the set of known CVE vulnerabilities
as well as any associated patches. PATCHECKO outputs the
vulnerable points (functions) within the target firmware im-
age and the corresponding CVE numbers. To compare two
binary functions at runtime, PATCHECKO combines static and
dynamic programming language analysis techniques along
with deep learning methods from AI and machine learning.
PATCHECKO starts with lightweight static analysis to convert
each function within a binary to a machine learning feature
vector. PATCHECKO then leverages a previously trained deep
neural network model to determine if the two functions (one
from the firmware binary and the other one from the CVE
database) are similar, i.e., coming from the same source code
with possibly different compilation flags. If the two functions
are detected to be similar, PATCHECKO performs a more in-
depth dynamic analysis to ensure the report by the static
analysis is not a false positive and indeed indicates a matching
function pair.

To perform dynamic analysis, PATCHECKO leverages run-
time DLL binary injection and remote debugging solutions
to run the CVE vulnerable function binary as well as the
target firmware function binary on identical input values (e.g.,
function arguments and/or global variables) within the corre-
sponding mobile/IoT embedded system platform. PATCHECKO

captures the execution traces of the two function binary
executions and extracts dynamic features such as number/type
of executed instructions, number/type of system calls and
library function calls, amount of stack/heap data read/writes,
etc. for each execution trace.

Using the extracted features, PATCHECKO calculates a sim-
ilarity measure between the two functions and determines
whether the report by the static analysis is indeed correct.
If so, the target function within the firmware is reported to be
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vulnerable along with the corresponding CVE number. It is
noteworthy that PATCHECKO’s analysis is performed without
any source code access and hence its deployment does not rely
on the cooperation of the firmware vendors.

Since we don’t really know whether the reported function is
patched, PATCHECKO will first compare the difference based
on their static features and restart the whole process based on
the patched version of the vulnerable function. PATCHECKO

then uses the differential engine to analyze the static/dynamic
features as well as the similarity score to decide whether the
function has been patched.

III. DESIGN

In this section we present the design of the PATCHECKO

framework that explores any given mobile/IoT firmware binary
executable and discovers and reports vulnerable points in the
binary code/data segments of the firmware without access
to its source code. Beyond similarity-based vulnerable code
discovery, PATCHECKO can also accurately verify the pres-
ence/absence of a security patch for a target firmware binary.

A. Deep Learning-Based Firmware Assessment for Known
Vulnerabilities

Comparing with the previous bipartite graph matching [44]
and dynamic similarity testing [15], deep learning approaches
[41] can achieve significantly better accuracy and efficiency for
known vulnerability discovery. This is due to the fact that deep
learning approaches can evaluate graphical representations of
binaries as a whole and can also automatically learn relation-
ships without manually defined rules. PATCHECKO uses a deep
learning approach as a first step to generate a list of vulnerable
candidate functions on the order of seconds. However, in order
to accommodate our prior assumptions, we first need to build
a training dataset that extracts static function features to train
a deep learning model.
Feature extractor. In order to extract static function fea-
tures, PATCHECKO first analyzes functions in assembly format.
Marking the correct boundary, scope, and range of each
assembly routine is usually the first problem to solve. Fur-
thermore, distinguishing between code and data is equally
important. The input for PATCHECKO’s neural network model
is the function feature vector that is extracted from the
disassembled binary code of the target function. To obtain
this feature vector, we first identify the function boundaries.
Function boundary identification with minimal reliance of
instruction set semantics is an independent problem of interest.
Previous approaches range from traditional machine learning
techniques [4] to neural networks [38] to applying function
interface verification [35]. In this work, we assume that these
steps are handled by the disassembler using a robust heuristic
technique. A disassembler can provide the control flow graph
(CFG) of a binary–a common feature used in vulnerability
detection.

Figure 2 shows the procedure for PATCHECKO’s function
feature extraction. PATCHECKO utilizes the CFG with differ-
ent basic block-level attributes as the features to model the
function in our problem. For each function, PATCHECKO can
extract function-level, basic block-level and inter-block-level
information. Table I shows the completed extracted interesting
48 features from each function for generating a feature vector.

Fig. 2: PATCHECKO’s static analysis of mobile/IoT firmware.

Fig. 3: Sample feature vector for deep learning model.

PATCHECKO keeps the feature extraction rich (48 features),
efficient (automated feature extraction) and scalable (multi-
architecture support).
Training the deep learning model. For PATCHECKO’s deep
learning, we adapt a sequential model that is composed of a
linear stack of layers. All hyperparameters were determined
empirically. Figure 3 shows a sample vector for training the
deep learning model. The sample vector is composed of the
function vector pairs and a bit indicating whether the two
functions are similar. Two similar feature vectors correspond
to the two subroutine (function) binaries that come from the
same source codes. Figure 4 depicts an actual example process
of training the model with a 6-layer network. We first specify
the input for each layer. The first layer in our sequential model
needs to receive information about its input shape. The model
is trained using the extracted function features in our dataset
built from 2,108 binaries with different architectures.

B. Pruning Candidate Functions (False Positives) via In-
Depth Dynamic Analysis

We use dynamic analysis to further prune the candidates
returned by the deep learning stage. This step determines
whether the reported pair of matching functions from the
previous stage are indeed a match (i.e. either a patched or
vulnerable function). This dynamic analysis step executes
candidate functions of the two binaries with the same inputs
and compares the observed behaviors and several features for
similarity.

Two functions may be compiled with different flags. In
that case, the instruction execution traces of these functions
may differ drastically for the same input. Hence, our analysis
will consider the semantic similarity of the execution traces
in terms of the ultimate effect on the memory after the two
functions finish their execution on the identical input values.

To do so, we extract features from the execution traces
(dynamic features). Our approach compares the feature vectors
of the two traces that result from two function executions on
the same input values. If the observed features are similar
across different generated inputs, we assume that they are
semantically similar.

Figure 5 illustrates the workflow of PATCHECKO’s dynamic
analysis. There are a few challenges to apply the dynamic
analysis for actual execution. At first, one resides in preparing
the execution environment. The second one simultaneously
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Fig. 4: Training the neural networks for automated firmware
vulnerability assessment of mobile/IoT firmware.

TABLE I: Function features used in PATCHECKO.
Feature Name Feature Description
num constant the number of constants value in the function
num string the number of strings in the function
num inst the number of instruction in the function
size local the size of local variables in bytes
fun flag various flags associated with a function, e.g., FUNC NORET, FUNC FAR.
num import the number of import functions
num ox the number of code references from this function
num cx the number of function calls from this function
size fun the size of the function
min i b the minimal number of instruction for basic block
max i b the maximal number of instruction for basic block
avg i b the average number of instruction for basic block
std i b the standard deviation of number of instruction for basic block
min s b the minimal size of basic block
max s b the maximal size of basic block
avg s b the average size of basic block
std s b the standard deviation of size of basic block
num bb the number of basic block for each function
num edge the number of edge of among basic blocks for each function
cyclomatic complexity function cyclomatic complexity = Edges - Nodes + 2
fcb normal normal block type of function basic block
fcb indjump block ends with indirect jump
fcb ret return block type of function basic block
fcb cndret conditional return block type of function basic block
fcb noret noreturn block type of function basic block
fcb enoret external noreturn block (does not belong to the function)
fcb extern external normal block type of function basic block
fcb error block passes execution past the function end
min call b the minimal number of call instruction of each basic block
max call b the maximal number of call instruction of each basic block
avg call b the average number of call instruction of each basic block
std call b the standard deviation of call instruction of basic block
sum call b the total number of call instruction of the function
min arith b the minimal number of arithmetic instruction of each basic block
max arith b the maximal number of arithmetic instruction of each basic block
avg arith b the average number of arithmetic instruction of each basic block
std arith b the standard deviation of arithmetic instruction of each basic block
sum arith b the total number of arithmetic instruction of the function
min arith fp b the minimal number of arithmetic FP instruction of each basic block
max arith fp b the maximal number of arithmetic FP instruction of each basic block
avg arith fp b the average number of arithmetic FP instruction of each basic block
std arith fp b the standard deviation number of arithmetic FP instruction of each basic block
sum arith fp b the total number of arithmetic FP instruction of the function
min betweeness cent the minimal number of betweeness centrality
max betweeness cent the maximal number of betweeness centrality
avg betweeness cent the average number of betweeness centrality
std betweeness cent the standard deviation number of betweeness centrality
betweeness cent zero how many node the betweeness centrality is zero

monitors the execution of multiple candidate functions. Fur-
thermore, because we are working in a heterogeneous mo-
bile/IoT ecosystem, concretely running binary code to obtain
execution traces is not trivial, especially since “valid” values
are required for correct function execution. We first discuss the
preparation of the inputs that feed into the dynamic analysis
engine.
Inputs to the dynamic analysis engine. A key challenge in
implementing PATCHECKO’s dynamic analysis engine consists
of preparing the associated inputs. The dynamic analysis
engine takes two inputs: the program binary, F, and the
execution environment of F. The program binary contains
the target function, f. One difficulty consists in isolating the
binary execution to the target function. One approach consists
of providing concrete and valid input values. This usually
requires loading and executing the entire program binary since
it is not possible to instruct the operating system to start
execution at a particular address. PATCHECKO solves this
problem by providing an execution environment that contains
the required execution state.

PATCHECKO uses fuzzing to generate different inputs for

Fig. 5: PATCHECKO’s dynamic analysis. Given CVE function f
and a set of candidate functions g, collect the dynamic features
on given execution environments and compute the similarity
between CVE function and candidate functions based on
dynamic features vector.

target functions to boost coverage of the associated CFG. For
each execution of a target function, PATCHECKO exports a
compact representation of a function-level executable, i.e., a
compact binary representation of the file that can be executed
dynamically using runtime DLL binary injection, as well
as the associated inputs that triggered that execution. This
allows the dynamic analysis execution engine to efficiently
execute the target function. This implies that PATCHECKO

will use multiple fixed execution environments associated with
different inputs for target functions.

Candidate functions execution validation. Before
PATCHECKO begins to instrument the target function
execution, PATCHECKO uses multiple fixed execution
environments to perform execution on a large number of
candidate functions. There are several possible outcomes
after we start to run a target function, f. For example, the
candidate f may terminate, the candidate f may trigger a
system exception, or the candidate f may go into an infinite
loop. If the candidate f triggers a system exception, we
will remove the candidate function from a candidate set.
After validating candidate functions execution with multiple
execution environments, the reserved candidate functions will
be instrumented.

Target function instrumentation. The output of the dy-
namic analysis engine for a function f in a fixed execution
environment is a feature vector v(f, env) of length N . In
order to generate the feature vector, PATCHECKO traces the
function execution. For the actual dynamic analysis, a wealth
of systems are available such as debuggers, emulators, and
virtual machines. However, because of the heterogeneity of
mobile/IoT firmware architectures and platforms, PATCHECKO

utilizes an instrumentation tool that supports a variety of
architectures and platforms accordingly.

PATCHECKO extracts particular features that capture a vari-
ety of instruction information (e.g., number of instructions),
system level information (e.g., memory accesses), as well
as higher level attributes such as function and system calls.
Table II shows the initial set of features we initially considered
and eventually proved to be useful for establishing function bi-
nary similarity. However, this feature list is not comprehensive
and can easily be extended.

For each execution, the dynamic engine will generate a
set of observations for each feature, e.g., in the above case
there will be 21 sets of observations. Once all instructions for
a function f have been covered, PATCHECKO combines the
observations into a single vector, e.g., (finput_1). The same
process is repeated for different inputs for the same function
to produce (finput_2),(finput_3),...,(finput_N).
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TABLE II: Dynamic features used in PATCHECKO.
Index Feature Name Feature Description
1 binary defined fun call num number of binary-defined function calls during execution

2 min stack depth the minimal stack depth during execution

3 max stack depth the maximal stack depth during execution

4 avg stack depth the average stack depth during execution

5 std stack depth the standard deviation stack depth during execution

6 instruction num number of executed instruction

7 unique instruction num number of executed unique instruction

8 call instruction num number of call instruction

9 arithmetic instruction num number of arithmetic instruction

10 branch instruction num number of branch instruction

11 load instruction num number of load instruction

12 store instruction num number of store instruction

13 max branch frequency the maximal number of frequency of the executed same branch instruction

14 max arith frequency the maximal number of frequency of the executed same arithmetic instruction

15 mem heap access number of accessing heap memory space

16 mem stack access number of accessing stack memory space

17 mem lib access number of accessing library memory space

18 mem anon access number of accessing anonymous mapping memory space

19 mem others access number of accessing others part memory space

20 library call num number of library function calls during execution

21 syscall num number of system calls during execution

Now that we have the capability of extracting dynamic
features of a target function, we next present the algorithm
for calculating function similarity for a given pair of functions
and their extracted feature sets.

C. Calculating Function Semantic Similarity
For each function pair, (f, g), PATCHECKO computes a se-

mantic similarity measure based on the dynamic feature vector
distance between the two functions. Distance has been used
in data mining contexts with dimensions representing features
of the objects. In particular, PATCHECKO uses Minkowski dis-
tance [37] as our similarity measures based on each function’s
feature vector. Different behaviors result in slightly different
values of the corresponding coordinates in the feature vectors.
We now explore the distance measure in detail.

The Minkowski distance is a generalized form of the Eu-
clidean distance (if p=2) and of the Manhattan distance (if
p=1). In our case, we set p=3 for Minkowski distance. The
general equation is as follows,

dk(f, g) =

(
n∑

i=1

|xi − yi|p
)1/p

. (1)

In Minkowski distance equation, f represents the CVE func-
tion and g represents the candidate function in the target
firmware. k is the k-th execution environment used. x rep-
resents the dynamic feature vector of f and y represents the
dynamic feature vector of g. P is set to 3.

We compute the similarity of each pair of (f,g) in multiple
execution environments. So we compute their similarity by
averaging the similarity distance over the execution environ-
ments. We set K as the number of execution environments
used. We define

sim(f, g) =
1

K

K∑
i=1

dk(f, g). (2)

Finally, we feed the dynamic feature vector of each candi-
date function into the similarity computing equation. We can

get a list of ranking (function, similarity distance) pairs (see
Figure 5). This is the final component for the identification
of known vulnerabilities. We now design the final component
that allows us to perform patch presence detection.

D. Patch Detection

We noticed that a patch typically introduces few changes
to a vulnerable function. However, these minor changes can
still have a significant impact to make the pre- and post-patch
functions dissimilar - this intuition is confirmed in Section V.
Based on this notion, PATCHECKO uses a differential engine
to collect both static and dynamic similarity measures in order
to determine if a vulnerable function has been patched.

Given a vulnerable function fv , a patched function fp, and
a target function ft, the differential engine will first generate
three values: the static features of fv , fp, and ft, and the
dynamic semantic similarity scores of simv vs. simt and
simp vs. simt, as well as the differential signature between
Sv and Sp. The static features are the same aforementioned
48 different quantified features and the dynamic semantic
similarity scores are the aforementioned function similarity
metrics. The differential signatures are an additional metric
that compares the CFG structures, i.e., the CFG topologies
of two functions as well as the semantic information, e.g.,
function parameters, local variables, and library function calls.

IV. IMPLEMENTATION AND CASE-STUDY

We implemented the PATCHECKO framework on Ubuntu
18.04 in its AMD64 flavor. Our experiments are conducted
on a server equipped with one Intel Xeon E51650v4 CPU
running at 128 GB memory, 2TB SSD, and 4 NVIDIA 1080
Ti GPU. During both training and evaluation, 4 GPU cards
were used. As in the design, PATCHECKO consists of four
main components: a feature extractor, a deep learning model,
a dynamic analysis engine, and a differential analysis engine
for patch detection.
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A. Feature Extractor and Deep Learning

The input for the feature extractor is the disassembled binary
code of the target function. We assume the availability and
the correctness of function boundaries by building on top
of IDA Pro [19], a commercial disassembler tool used for
extracting binary program features. As such, we implemented
the feature extractor as a plugin for IDA Pro. We developed
two versions of the plugin: a GUI-version and command line-
version (for automation). Since PATCHECKO works on cross-
platform binaries, the plugin can support different architectures
(x86, amd64 and ARM 32/64 bit) for feature extraction.

We implement the neural network modeling, training and
classification based on Keras [8] and TensorFlow [2]. We use
TensorBoard [6] to visualize the whole training procedure.

B. Dynamic Analysis Engine

As was mentioned in the design section, the key challenges
for dynamic analysis are the preparation of the inputs for the
engine as well as the instrumentation of target functions for
tracing dynamic information.
Input preparation. As was mentioned in Section III-B,
PATCHECKO needs to efficiently prepare the execution en-
vironment. To perform dynamic analysis without having to
load the entire binary, we utilize DLL injection to execute
compact execution binaries that correspond to a single target
function. In particular, we use the dynamic loading function
(e.g. dlopen()) to load the dynamic shared object binary file
which returns an opaque “handle” for the loaded object. This
handle is employed with other useful functions in the dlopen
API, such as dlsym. Using dlsym, we can directly find the
exported functions based on the exported function’s name. We
then execute the targeted function.

Of course, a library binary will contain a large number of
different functions, some of which are non-exported functions.
As such, we must find a way to export these functions for
further analysis. PATCHECKO uses LIEF [36] to export func-
tions into executable binaries. Such a transformation allows
PATCHECKO to instrument a candidate function that was found
at a given address by using dlopen and dlsym. Thus, any
candidate function can be exported and executed without run-
ning the whole binary. This approach has excellent reliability
and efficiency, since we can focus on targeted function without
having to spawn the entire binary. Furthermore, we use Lib-
Fuzzer [22] to fuzz candidate functions and generate different
input sets. For the execution environment, we manually choose
concrete initial values for different global variables.
Instrumentation. Because we are targeting heterogeneous
mobile/IoT ecosystems, we choose to implement the same in-
strumentation of PATCHECKO on two dynamic instrumentation
frameworks: IDA Pro and GDB. Specifically, we implemented
a plugin based on GDB and GDBServer for Android and
Android Things platforms, and a plugin based on IDA Pro
and debugserver for IOS platforms.

C. Case Study

To facilitate the understanding of our implementation de-
tails, we will provide an ongoing example to show how we
can locate a known CVE vulnerability and how we can ensure
whether the vulnerability has been patched or not patched in

Android Things firmwares. Android Things is an embedded
IoT-specific operating system platform by Google.
Known CVE vulnerability function discovery. We chose one
CVE vulnerability, CVE-2018-9412, from Android Security
Bulletins [34]. This is a DoS vulnerability in the function
removeUnsynchronization of the library libstagefright.
In order to simplify the case study, we generated these
binaries directly from the source codes of both the vulnerable
and patched libstagefright libraries. We compiled both
versions using Clang with optimization level O0. Although
PATCHECKO never uses the source code for its analysis,
Figure 6 shows the source code and assembly code of the
patched CVE-2018-9412 for illustration. We elaborate on
the components of this figure in the following subsection.
Generating a training dataset. We compiled 100 Android
libraries from their source code using Clang. The compiler
is set to emit code in x86, amd64, ARM 32-bit, and ARM
64-bit with optimization levels O0, O1, O2, O3, Oz, Ofast.
In total, we obtained 2,108 library binary files1. We provide
more details in Section V.
Feature extraction. We use our feature extraction plugin to
extract the features on top of IDA Pro. Once we get the raw
features, PATCHECKO will refine the raw features to generate
the feature vector. PATCHECKO extracted all function features
from the library libstagefright.so and identified a
total of 5,646 functions and generated 5,646 function feature
vectors.
Vulnerability detection by deep learning. Once the features
are extracted, we use the training model for detection. We also
use the vulnerable and patched functions as a baseline. Our
model identified 252 candidate functions that are based on
the vulnerable function’s feature vector while generating 971
candidate functions based on the patched function’s feature
vector. We also compared the feature vectors of the vulnerable
and patched functions to check whether they are similar and
found them to be dissimilar, i.e., the patched version has
significantly different features than the vulnerable version.
Looking at the source code in Figure 6, one can intuit that
the patched version is significantly different. For instance, the
patch removed the memmove function and added one more
if condition for value checking. Similarly, one can observe
the difference in the number of basic blocks at the assembly
level.
Dynamic analysis engine. Not only are the numbers of
vulnerable candidate functions (252) and patched functions
(971) from the last step very large, but the candidate functions
are also very similar. As such, it would be difficult to locate
the target vulnerability function by manual inspection. We
therefore use the dynamic analysis engine to generate dynamic
information for each function. We first use LibFuzzer to
generate the different inputs for the vulnerability function
removeUnsynchronization. We tested that these inputs
worked with both the vulnerable and patched functions. As
before, we use the input to test each candidate function and
remove any functions that crashed. Using the input-function
validation, we obtain 38 candidate functions for the vulnerable
function and 327 candidate functions for the patched func-
tion. For these candidate functions, PATCHECKO’s dynamic

1Some compiler optimization levels didn’t work for certain instances
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void ID3::removeUnsynchronization() {
- for (size_t i = 0; i + 1 < mSize; ++i) {
- if (mData[i] == 0xff && mData[i + 1] == 0x00) {
- memmove(&mData[i + 1], &mData[i + 2], mSize - i - 2);
- --mSize;
+
+ size_t writeOffset = 1;
+ for (size_t readOffset = 1; readOffset < mSize; ++readOffset) {
+ if (mData[readOffset - 1] == 0xff && mData[readOffset] == 0x00)
+       {
+ continue;

}
+ mData[writeOffset++] = mData[readOffset];

}
+
+ if (writeOffset < mSize) {
+ mSize = writeOffset;
+ }
+
}

Fig. 6: Vulnerable code with the associated patch of CVE-2018-9412.

analysis engine will generate the dynamic information. For
instrumentation in Android Things, we use gdbserver to collect
the dynamic features on the Android Things device. Table III
shows the part of dynamic feature vector profiling for the
vulnerable candidate functions. In the next subsection, we
analyze why candidate_29 is the vulnerable function.

Calculating function similarity. We use the three aforemen-
tioned similarity metrics to calculate the function similarity.
The top 10 ranking results for the vulnerable function are listed
in Table IV and the top 10 ranking results for the patched func-
tions are listed in Table V. For the vulnerable function results,
we see that candidate_29 is the top-ranked candidate, i.e.,
according to the rule of similarity distance algorithm, if this
distance is small, there will be a high degree of similarity. We
can also see a significant difference between the top candidate
and the second candidate (candidate_27). As such, we
conclude that candidate_29 is the vulnerable function.

Diving deeper into the results in Table III, we can observe
why the distance between the dynamic features is so small.
The two highlighted rows indicate candidate_29 and the
ground truth vulnerable function. Referring back to Table II,
we know that F 13 represents the max frequency for the same
branch instruction and F 14 represents the max frequency for
the same arithmetic instruction. We can that candidate_29
is the only candidate function that has the same frequency
numbers as the vulnerable function. It is important to note
that this analysis was only enabled by dynamic analysis–static
analysis would not have been able to identify these dynamic
features.

For the patched case, Table V only shows the results for the
top 10 ranking candidate functions due to page limitations. In
this case, candidate_102, on average, is the top-ranked
candidate despite being the incorrect function. However, we
can see that candidate_29 is ranked in a very close second,

while there is a significant difference with the third candidate.
Intuitively, we can narrow down the candidate functions to the
top two and can assume that candidate_29 is likely to be
the associated candidate vulnerable function. However, at this
point we cannot tell whether the function is patched.
Differential analysis engine. According the previous steps,
we can consider candidate_29 is the target function. But
it is still not clear whether it is patched. We collect static
features (e.g. j___aeabi_memmove), dynamic semantic
similarity scores (34.7 V.S. 65.6), and the differential
signatures (j___aeabi_memmove, if condition). Based on
these metrics, the differential analysis engine concludes the
target function is still vulnerable and not patched.

V. EVALUATION

In this section, we evaluate PATCHECKO with respect to its
search accuracy and computation efficiency. In particular, we
evaluate the accuracy of our deep learning model, the dynamic
analysis engine, and the differential analysis engine using a
dataset containing ground truth.

A. Data Preparation
In our evaluation, we collected three datasets: 1) Dataset I

for training the deep learning model and evaluating the accu-
racy of the deep learning model; 2) Dataset II for collecting
known CVE vulnerabilities and for building our vulnerability
database. 3) Dataset III for evaluating the accuracy and per-
formance of the deep learning model, the dynamic analysis
engine, and the differential analysis engine for real world
mobile/IoT firmware;
Dataset I: This dataset is used for neural network training
and baseline comparison. It consists of binaries compiled
from source code, providing us with the ground truth. We
consider two functions compiled from the same source code
function are similar, and dissimilar if they are from different
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TABLE III: The dynamic feature vector profiling for part of candidate functions of the vulnerable version of
removeUnsynchronization in the library libstagefright.so. F 1,...,F 21 represents different dynamic features 1
to 21 showed in Table II. In the last row, the vulnerable function is from our vulnerability database.

Candidate F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F 14 F 15 F 16 F 17 F 18 F 19 F 20 F 21
candidate 1 1 2 2 2 0 12 12 0 0 0 4 0 0 0 0 0 0 3 0 0 0
candidate 28 1 2 6 2 1 16 16 0 3 0 1 0 0 1 0 0 0 1 0 0 0
candidate 29 1 2 2 2 0 89 17 0 27 19 19 0 9 9 0 0 0 10 0 1 0
candidate 30 1 2 2 2 0 3 3 1 0 1 0 0 1 0 0 0 0 0 0 0 0
candidate 31 1 2 2 2 0 13 13 0 0 1 1 4 1 0 0 0 0 5 0 0 0
candidate 32 1 2 2 2 0 5 5 0 0 0 1 0 0 0 0 0 0 1 0 0 0
candidate 33 1 2 2 2 0 12 12 0 3 1 2 1 1 1 0 2 0 0 0 0 0
candidate 34 1 2 2 2 0 238 17 44 48 0 0 4 0 40 0 0 0 0 4 0 0
candidate 35 1 2 2 2 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
candidate 36 1 2 2 2 0 11 11 0 0 0 4 0 0 0 0 0 0 4 0 0 0
candidate 37 1 2 2 2 0 11 11 1 2 0 2 1 0 1 0 3 0 0 0 0 0
candidate 38 2 2 2 2 0 15 15 0 3 1 5 1 1 1 0 1 2 2 1 0 0
Vulnerable function 1 2 2 2 0 122 21 0 9 18 19 0 9 9 0 0 0 10 0 1 0

TABLE IV: Calculating Function Similarity in PATCHECKO

for CVE-2018-9412 in Android Things based on vulnerable
function for top 10.

Candidate Sim Ground truth
candidate 29 34.7 ZN7android3ID323removeUnsynchronizationEv
candidate 27 68.1 safe malloc mul 2op p
candidate 12 91.4 ScaleOffset
candidate 22 92.3 ZNK9mkvparser7Segment11DoneParsingEv
candidate 24 92.3 ZN9mkvparser15UnserializeUIntEPNS 10IMkvReaderExx
candidate 3 93.3 ZN9mkvparser6ReadIDEPNS 10IMkvReaderExRl
candidate 7 95.3 ZN7android8RSFilterD2Ev
candidate 9 95.3 ZN9mkvparser14UnserializeIntEPNS 10IMkvReaderExxRx
candidate 25 99.2 ZNK9mkvparser5Block11GetTimeCodeEPKNS 7ClusterE
candidate 28 106.4 ZN9mkvparser10EBMLHeader4InitEv

TABLE V: Calculating Function Similarity in PATCHECKO for
CVE-2018-9412 in Android Things based on patched function
for top 10.

Candidate Sim Ground truth
candidate 102 32.8 CanonicalFourCC
candidate 29 65.6 ZN7android3ID323removeUnsynchronizationEv
candidate 52 91.4 ZN7android11MPEG4Writer13writeLatitudeEi
candidate 76 92.4 ZN7android11MPEG4Writer14writeLongitudeEi
candidate 85 96.7 ZN7android21ElementaryStreamQueueC2ENS0 4ModeEj
candidate 93 86.8 divdf3
candidate 101 106.3 ZN7android10MediaMuxerC2EiNS0 12OutputFormatE
candidate 40 109.5 ARGBToARGB4444Row C
candidate 66 113.2 CopyPlane
candidate 111 116.7 ZN7android10WebmWriter16estimateCuesSizeEi

functions. In particular, we compile 100 Android libraries from
their source code (version android-8.1.0 r36) using Clang. We
exported 24 different binaries for each Android library by
setting the compiler to emit code in x86, AMD64, ARM 32bit,
and ARM 64bit ISA with optimization levels O0, O1, O2,
O3, Oz, Ofast. However, not every library could be compiled
with the six optimization levels, e.g., libbrillo, libbacktrace,
libtextclassifier, and libmediaplayerservice. In total, we obtain
2,108 library binary files containing 2,037,772 function feature
samples. For this dataset, we compiled all binaries with a
debug flag to establish ground truth based on the symbol
names. For our problem setting, we strip all binaries before
processing them with PATCHECKO.

Dataset II: Since we perform vulnerability assessment, we
generated a vulnerability database that includes the static
feature vectors and dynamic feature vectors for vulnerable
versions and patched versions of functions. The vulnerable
function dataset comes from Android Security Bulletins [34].
We collect the vulnerabilities from 07/2016 to 11/2018. In
total, there are 2,076 vulnerabilities, including 1,351 high
vulnerabilities and 381 critical vulnerabilities.

Dataset III: To evaluate PATCHECKO, we collected different
firmware images, which included different versions of An-
droid, Android Things, and IOS. In particular, we select two
firmware images from Android Things 1.0 and Google Pixel

Fig. 7: False positive rate on Android Things and Google Pixel
2 XL with vulnerable and patched versions.

(a) Accuracy for training the deep
learning model

(b) Loss for training the deep
learning model

Fig. 8: Deep learning training results

2 XL (Android 8.0) as our targets. For vulnerability detection,
we considered the vulnerabilities which were patched in 2018
and focus on version 8.0 and 8.1. Finally, we choose 25
different CVE vulnerabilities from our database to evaluate
our solution on Android Things and Google Pixel 2 XL.

B. Training Details
Our deep learning model is first trained using Dataset I.

We adapt the sequential model with 6 layers. We first specify
the inputs for each layer. The first layer in our sequential
model needs to receive information about its input shape. In
our case, it is 96. We split Dataset I into three disjoint subsets
of functions for training (1,222,663), validation (407,554), and
testing (407,555), respectively.

C. Testing Devices
We evaluate PATCHECKO in two different devices: Android

Things and Google Pixel 2 XL. For Android Things, we use
Android Things 1.0–which includes a 05/2018 security patch
as well as a previous security patch. For Google Pixel 2 XL,
its system version is Android 8.0 and it includes a 07/2017
security patch as well as a previous security patch.
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TABLE VI: The accuracy for deep learning and dynamic
execution for Android Things based on vulnerable function.
Dp: Deep learning; DA: Dynamic analysis

CVE
Deep Learning Classification Dynamic Analysis Engine Time(s)

TP TN FP FN Total FP(%) Execution Ranking DP DA
CVE-2018-9451 1 1155 27 0 1183 2.28% 5 1 2.26 187.97
CVE-2018-9340 1 1113 69 0 1183 5.83% 6 1 2.14 197.56

CVE-2017-13232 1 951 35 0 987 3.55% 5 2 3.13 147.97
CVE-2018-9345 1 354 2 0 357 0.56% 1 1 2.72 41.13
CVE-2018-9420 1 107 8 0 116 6.90% 1 1 1.53 39.59

CVE-2017-13210 1 105 10 0 116 8.62% 2 1 1.57 73.18
CVE-2018-9470 1 1421 11 0 1433 0.77% 4 1 6.85 148.37

CVE-2017-13209 0 867 152 1 1020 14.90% 9 N/A 5.25 286.34
CVE-2018-9411 1 894 125 0 1020 12.25% 8 1 5.23 256.58

CVE-2017-13252 1 609 7 0 617 1.13% 7 2 3.35 227.15
CVE-2017-13253 1 609 7 0 617 1.13% 5 2 3.39 167.97
CVE-2018-9499 1 541 75 0 617 12.16% 6 1 2.56 210.35
CVE-2018-9424 1 561 55 0 617 8.91% 7 1 3.02 219.45
CVE-2018-9491 1 421 45 0 467 9.64% 3 1 1.19 108.78

CVE-2017-13278 1 2164 373 0 2538 14.70% 20 2 1.93 602.35
CVE-2018-9410 1 595 57 0 653 8.73% 22 1 2.76 671.46

CVE-2017-13208 1 178 1 0 180 0.56% 1 1 1.23 39.32
CVE-2018-9498 1 13598 130 0 13729 0.95% 7 1 5.90 227.15

CVE-2017-13279 1 723 11 0 735 1.50% 6 1 3.40 224.56
CVE-2018-9440 1 725 9 0 735 1.22% 4 1 2.06 156.52
CVE-2018-9427 1 1060 120 0 1181 10.16% 9 1 4.61 296.31

CVE-2017-13178 1 540 53 0 594 8.92% 15 1 2.01 473.89
CVE-2017-13180 1 571 22 0 594 3.70% 5 2 1.23 157.97
CVE-2018-9412 1 5393 252 0 5646 4.46% 38 1 3.54 1124.53

CVE-2017-13182 1 5050 595 0 5646 10.54% 72 3 3.16 2128.16
Average 6.16% 3.04 336.5844

D. Accuracy
In this section, we evaluate the accuracy of PATCHECKO’s

deep learning model, dynamic analysis engine, as well as its
patch detection.
Deep learning model. Figure 8 shows the accuracy and loss
when we train our deep learning model for ˜15 hours. The
accuracy can reach 96%.

Since [42] needs the previous similarity checking solutions
to locate the target function when the symbol table is not
available, the target function may be missed if the vulnerable
version and patched version are not similar. To validate this
notion, we use our deep learning model to check the similarity
between the vulnerable and patched version of the same
function for 25 CVEs. We found that there is a possibility
that vulnerable and patch versions are not similar based on
the deep learning model. For example, if CVE-2018-9345 had
been patched, the solution in [42] will miss the target function
based on vulnerable function features and, thus, may use the
wrong function to detect whether it is patched.

We use the training model to detect 25 CVEs in Android
Things and Google Pixel 2 XL. The average detection accuracy
is more than 93%. Figure 7 shows the false positive rate when
we test vulnerable and patched versions in the two devices’
firmware images. It is interesting that the false positive rate of
the vulnerable and patched versions of CVE-2017-13209 and
CVE-2018-9412 on the two devices are obviously different,
which is reflective of their dissimilar result. Furthermore, we
notice that because CVE-2017-13209 has been patched, the
false positive rate of the patched versions is lower than vulner-
able versions. Similarly, CVE-2018-9412 has not been patched
and Figure 7 shows the false positive rate of patched version is
higher than the vulnerable version. However, Table VI shows
the vulnerable version function gets 0 true positives and 1 false
negative in Android Things for CVE-2017-13209. This is due
to the fact that CVE-2017-13209 has been patched in Android
Things. Therefore, when PATCHECKO uses the vulnerable
function, the deep learning model may miss the correct target
function. Intuitively, it makes sense that a known vulnerability
discovery may miss a patched function as a vulnerability.
Dynamic analysis engine. The goal of the dynamic analysis
engine is to prune the set of candidate functions. In Table VI
and Table VII, the results for the dynamic analysis engine

TABLE VII: The accuracy for deep learning and dynamic
execution for Android Things based on patched function. Dp:
Deep learning; DA: Dynamic analysis

CVE
Deep Learning Classification Dynamic Analysis Engine Time(s)

TP TN FP FN Total FP(%) Execution Ranking DP DA
CVE-2018-9451 1 1148 34 0 1183 2.87% 8 2 2.29 246.25
CVE-2018-9340 1 1113 69 0 1183 5.83% 6 1 2.07 197.56
CVE-2017-13232 1 961 25 0 987 2.53% 5 1 3.20 177.97
CVE-2018-9345 1 349 7 0 357 1.96% 4 3 1.66 148.37
CVE-2018-9420 1 111 4 0 116 3.45% 1 1 1.50 59.59
CVE-2017-13210 1 110 5 0 116 4.31% 2 1 1.63 91.19
CVE-2018-9470 1 1420 12 0 1433 0.84% 4 1 5.93 160.46
CVE-2017-13209 1 947 72 0 1020 7.06% 7 1 4.07 207.15
CVE-2018-9411 1 858 161 0 1020 15.78% 10 2 4.24 301.23
CVE-2017-13252 1 611 5 0 617 0.81% 6 1 2.33 230.56
CVE-2017-13253 1 608 8 0 617 1.30% 5 2 2.67 165.51
CVE-2018-9499 1 531 85 0 617 13.78% 9 3 2.57 287.65
CVE-2018-9424 1 570 46 0 617 7.46% 5 1 2.01 156.32
CVE-2018-9491 1 443 23 0 467 4.93% 1 1 2.20 45.93
CVE-2017-13278 1 2159 378 0 2538 14.89% 19 1 1.90 587.86
CVE-2018-9410 1 601 51 0 653 7.81% 21 1 2.83 651.45
CVE-2017-13208 1 178 1 0 180 0.56% 1 1 1.08 35.53
CVE-2018-9498 1 13647 81 0 13729 0.59% 6 1 4.89 243.3
CVE-2017-13279 1 722 12 0 735 1.63% 6 1 3.48 236.78
CVE-2018-9440 1 722 12 0 735 1.63% 5 2 4.84 175.52
CVE-2018-9427 1 1110 70 0 1181 5.93% 2 2 4.74 99.18
CVE-2017-13178 1 551 42 0 594 7.07% 13 1 2.86 390.89
CVE-2017-13180 1 581 12 0 594 2.02% 2 1 2.17 71.48
CVE-2018-9412 1 4391 971 0 5646 17.20% 327 2 3.52 8676.91
CVE-2017-13182 1 5103 542 0 5646 9.60% 42 1 3.15 1249.96

Average 5.67% 2.95 595.784

TABLE VIII: The final patch detection results for PATCHECKO

in Android Things

CVE PATCHECKO Result Patched (?) Ground Truth Patched (?)
CVE-2018-9451 0 0
CVE-2018-9340 0 0
CVE-2017-13232 � �
CVE-2018-9345 0 0
CVE-2018-9420 0 0
CVE-2017-13210 � �
CVE-2018-9470 � 0
CVE-2017-13209 � �
CVE-2018-9411 0 0
CVE-2017-13252 � �
CVE-2017-13253 � �
CVE-2018-9499 0 0
CVE-2018-9424 0 0
CVE-2018-9491 0 0
CVE-2017-13278 � �
CVE-2018-9410 0 0
CVE-2017-13208 � �
CVE-2018-9498 0 0
CVE-2017-13279 � �
CVE-2018-9440 0 0
CVE-2018-9427 0 0
CVE-2017-13178 0 0
CVE-2017-13180 � �
CVE-2018-9412 0 0
CVE-2017-13182 � �

includes only the Execution and Ranking metrics. Because
we want to reduce the number of candidate functions that
we need to perform dynamic feature profiling. We use the
concrete input of vulnerable functions to validate the candidate
functions. As long as the candidate functions can survive the
input validation, PATCHECKO will do dynamic feature profil-
ing for the final candidate function. For example, after deep
learning, CVE-2018-9412 still has 252 candidate functions.
For dynamic analysis, PATCHECKO arranges different inputs of
vulnerable functions to validate the candidate functions. After
validation, only 38 candidate functions remain that require
dynamic feature profiling–which is a much more reasonable
number. Finally, PATCHECKO calculates the function similarity
score. Table VI and Table VII show that PATCHECKO can rank
the target function in the top 3 candidates 100% of the time.
The target function is only missed for CVE-2017-13209 since
the deep learning model already misses the target function.

Patch detection. According to the differential signature, se-
mantic static features, and the results from Table VI and Ta-
ble VII, PATCHECKO generates the final results in Table VIII.
There is only one missed classification for the patched version
of CVE-2018-9470. The reason that this classification was
missed was due to the fact that the only difference between
vulnerable and patched version is one integer–which is a very
minute and difficult to detect.
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Limitations. If the difference is very minute between a
vulnerable function and a patched function, our similarity
measures may not catch the difference, e.g., CVE-2018-9470.
The missed classification is due to the fact the static feature
and dynamic features do not represent the difference between
the vulnerable and patched versions of the code. A solution
would be to add more fine-grained features from known vul-
nerability exploits. However, assuming the associated exploits
are available, there is a trade-off in generalizability.

E. Processing Time
Table VI and Table VII respectively list the processing

times for the deep learning detection and dynamic analysis for
vulnerable and patched functions. The deep learning detection
phase takes around 3 seconds on average. The dynamic anal-
ysis’ execution time varies depending on the number of can-
didate functions to test and the number of execution environ-
ments (program states) to replicate. For example, CVE-2017-
13208 takes much less time than CVE-2017-13182 due to the
large difference (72) in candidate functions. For the dynamic
analysis, PATCHECKO bootstraps the execution environments
that correspond to the candidate functions. These environments
are run in parallel. PATCHECKO currently parallelizes the
execution environment testing for all candidate functions.
Future works will focus on parallelizing the candidate function
execution in each environment to further reduce the dynamic
analysis processing time.

VI. RELATED WORK

We briefly survey the related work. We focus on approaches
that use code similarity for known vulnerabilities without
access to source code. Other approaches for finding unknown
vulnerabilities [3], [5], [39], [7] and source code based ap-
proaches [24], [23], [21], [20], [28] will not be discussed
in this section. We divide the related work to programming
languages and machine learning based solutions.

Programming language-based solutions. The problem of
testing whether two pieces of syntactically-different code are
semantically identical has received much attention by previous
researchers. A lot of traditional approaches are based on a
matching algorithm for the CFGs of functions. Bindiff [44] is
based on the syntax of code for node matching. At a high-level,
BinDiff starts by recovering the control flow graphs of the two
binaries and then attempts to use a heuristic to normalize and
match the vertices from the graphs. For [33], each vertex
of a CFG is represented with an expression tree. Similarity
among vertices is computed by using the edit distance between
the corresponding expression trees. Another approach that
focuses on cross-platform binary similarity [16] proposes a
graph-based methodology. It used a matching algorithm on the
CFGs of functions. The idea is to transform the binary code
into an intermediate representation. For such a representation,
the semantics of each CFG vertex are computed by using
a sampling of the code executions using random inputs. On
the theoretical side, [17], [41] extract feature representations
from the control flow graphs and encodes them into graph
embeddings to speed up the matching process. Other recent
work [31], [25] leverage similar static analysis techniques.

In comparison to static analyses, dynamic binary analysis
is another approach to detect function similarity. Binhunt [18]

implemented symbolic execution and theorem proving as a
dynamic binary differentiate to test basic blocks for semantic
differences. However, this method only focused on basic
blocks. There is a possibility that two functions are function-
ally equivalent but they may have different basic blocks due to
compiler optimizations. Egele et. al [15] proposed a dynamic
equivalence testing primitive that achieves complete coverage
by overriding the intended program logic. It collects the
side effects of functions during execution under a controlled
randomized environment. Two functions can be similar if their
side effects are similar. However, it requires executing each
function with many different inputs–which is time-consuming.

Machine learning-based solutions. Deep learning-based
graph embedding approaches have also been used to do binary
similarity checking. The current state-of-the-art [41] looks
for the same affected functions in the complete collection of
functions in a target binary. Similarly, [29] leverages machine
code to compute the best parameters for their neural network
model. [43] and [14] both use Natural Language Processing
(NLP) to replace the manually selected features. However,
when the search space is huge, it still leaves a large set
of candidate functions. PATCHECKO can integrate dynamic
analysis to prune the candidate functions and reduce false
positives.

Zhang et. al [42] proposed a unique position that lever-
ages the source-level information to answer a more specific
question: whether a specific affected function is patched in
the target binary. However, it needs the source code support
as well as the aforementioned similarity checking solutions
to help it to locate the target function. PATCHECKO uses
deep learning and dynamic binary analysis to locate the target
function and perform accurate patch detection.

VII. CONCLUSION

We presented PATCHECKO, a vulnerability assessment
framework that leverages deep learning and hybrid static-
dynamic binary analysis to perform cross-platform binary code
similarity analysis to identify known vulnerabilities without
source code access with high accuracy. PATCHECKO then
uses a differential engine to distinguish between vulnerable
functions and patched functions. We evaluated PATCHECKO

on 25 existing CVE vulnerability functions for Google Pixel 2
smartphone and Android Things IoT firmware images on het-
erogeneous architectures - we compiled the firmware images
for multiple architectures and platforms with different com-
piler optimization levels. Our deep learning model identifies
vulnerabilities with an accuracy of over 93%.

We also demonstrated how dynamic analysis of the vulner-
ability functions in a controlled environment could be used
to significantly reduce the number of candidate functions
(i.e., eliminate false positives). PATCHECKO identifies the
correct matches (candidate functions) among the top 3 ranked
outcomes 100% of the time. Furthermore, PATCHECKO’s dif-
ferential engine distinguishes between functions that are still
vulnerable and those that are patched with an accuracy of 96%.
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